
Pre-Copy and Post-Copy VM Live Migration

for Memory Intensive Applications

Aidan Shribman1 and Benoit Hudzia2

1 SAP Research, Ra’anana, Israel
aidan.shribman@sap.com

2 SAP Research, Belfast, UK
benoit.hudzia@sap.com

Abstract. Virtualization technology provides a means for server con-
solidation, reducing the number of physical servers required for running
a given workload. Virtual Machine (VM) live migration facilitates the
transfer of a running VM between physical hosts while appearing trans-
parent to the running application. Memory intensive applications tend
to obstruct the original pre-copy live migration process and may result
in the failure of the migration process due to its inability to transfer
memory faster than memory is dirtied by the running application. The
focus of this paper is to present several techniques that can be applied
to both pre-copy live migration and post-copy live migration to better
support migration of memory intensive applications.
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1 Introduction

Virtualization is widely used in enterprise data centers as a means to reduce
operational costs and increase operational flexibility. Adoption of this technol-
ogy has surged following recent advances in x86 architecture such as multi-core
and introduction of hardware assisted x86 extensions supporting full virtualiz-
tion. Live migration is a core capability of modern hypervisors helping increase
operational flexibility by serving as a foundation for capabilities such as High
Availability (HA), Disaster Recovery (DR) and dynamic policy based migration
of workloads for reducing power consumption in data center.

Live Migration Approaches. The live migration process handles the trans-
fer of memory, CPU and hardware device state of the running VM. While the
CPU and devices state are relatively small, typically in the size order of sev-
eral KBs, size of memory may be in the order of many GBs. 1 GB of DRAM
requires about 10 seconds to be transferred over a 1 GbE interconnect while 1
KB could be transfered over a 1 GbE in only 10 microseconds. Live migration
schemes differ according to the order of state transfer: Pre-Copy Live Migra-
tion: Implemented in most hypervisors such as VMWare [4], Xen [1] and KVM
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[2], presented by Brandford at el. [5] is both simple in design and does not re-
quire a fast interconnection between physical hosts. Memory is transfered to the
destination host in a succession of iterations until the remaining dirty memory
can be transferred in a short enough stop and copy phase which will not cause
prolonged VM downtime. Post-Copy Live Migration: CPU and device state
are transfered immediately to the destination host followed by transfer of exe-
cution control to the destination host. Source host memory is transfered in the
background or fetched on-demand if needed by the running VM on the destina-
tion host. This migration scheme reduces the downtime and total migration time
but incurs service degradation due to page faults which must be resolved over
the network by the source host. Hybrid Post-Copy Live Migration: Adds
a bounded pre-copy phase before entering the post-copy phase. The additional
pre-copy phase reduces the number of future network bound page faults as a
large portion of the VM memory is already pre-copied.

Live Migration Metrics. We evaluate the various live migration schemas
by using the following metrics: Downtime: Is the amount of time in which
the VM is suspended on the source host and until it becomes available again
on the destination host. Total Migration Time: The overall time elapsed
from the initiation of the live migration operation and until all resources on the
source host are released. Total Transfered Bytes: The total number of bytes
transfered over the network from the source host to the destination host. Service
Degradation: The degree at which the VM’s operation was slowed down due
to the live migration process compared to uninterrupted VM execution.

Our Contribution. Is the design and implementation of several improvements
to live migration to better support memory intensive applications:

Pre-Copy Live Migration:The fast memory dirtying rate of memory intensive
applications relative to available network bandwidth challenges the pre-copy live
migration scheme. In this paper we propose using a page reordering policy such
that Least Recently Used (LRU) pages, with lower chances of being re-dirtied,
are migrated earlier. Additionally, we propose using a fast delta encoder, Xor
Binary Zero Run Length Encoding (XBZRLE), which reduces the cost of a page
re-send.

Post-Copy Live Migration: Post-copy live migration has two major advan-
tages over pre-copy live migration: (1) shorter downtime as only CPU and device
state, several KB in magnitude, need to be migrated while the VM is stopped;
(2) total migration time is short and deterministic as pages are not re-dirtied
on the source host during live migration. We mitigate the challenge of service
degradation by several means: (1) a Remote Direct Memory Access (RDMA)
stack for low-latency resolution of network-bound page faults; (2) demand pre-
paging (a form of pre-fetching) for reducing the overall number of page faults;
(3) integration of page faulting mechanism with the Linux Memory Management
Unit (MMU) so that only the thread waiting on the page fault is paused while
other threads continue execution; (4) pre-copy post-copy hybrid live migration
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scheme which helps further reduce the number of page faults when entering the
post-copy phase.

2 Design and Implementation

This work introduces modifications to QEMU, originally developed by Fabrice
Ballard [3] and KVM originally developed by Avi Kivity [2] on the Linux OS.
Our enhancements are to be released as open source under GPL and LGPL
licenses. A XBZRLE patch [8] was released during 2011 and is in the process of
being integrated into the mainline QEMU code base.

2.1 Least Recently Used Page Reordering

Pre-copy page re-ordering can potentially reduce the total number of pages sent
over the network by reducing the number of page re-sends. Checconi at el. [6]
have proposed using LRU to dictate the order in which pages are transfered
over the network to the destination host. In certain applicative workloads using
such a policy may help reduce the page re-dirtying rate and hence reduce page
re-sends. In turn downtime and total migration time are much reduced. In our
implementation we propose subtle enhancements to the existing work:

QEMU constructs and maintains the LRU order according to when the VM
pages were dirtied by the running application. Page dirty events are tracked
by KVM in the Linux kernel using a dirty bitmap array. In each observation
interval the dirty bitmap array indexed by page virtual address is cleared. The
dirty bit is set for all pages dirtied in the observation interval. At the end of
the observation interval there is no way of knowing what is the chronological
order in which new pages were dirtied. Assuming address-based order (or any
other order) would cause a bias in our LRU ordering we therefore propose using
Fisher-Yates shuffle [18] to randomize dirty page order events before updating
the LRU order.

As the pre-copy live migration scheme transfers memory in consecutive iter-
ations we can use the LRU ordering not only to determine the order in which
pages are sent within the interval but also for determining which pages need not
be sent at all in the current interval as they will probably be re-dirtied again
soon. Any pages at the tail of the LRU, namely the Most Recently Used (MRU)
pages, are pages we do not send in the current interval. In our implementation we
used an empiric value: the first 75 % LRU pages are transfered; the remainder 25
% MRU pages are not transferred. A more self-tuning approach for determining
what is the percentage of pages to be sent in each interval may better suite real
applicative workloads.

2.2 XBZRLE Delta Encoder

Reducing the number of page re-sends, via LRU page reordering, is speculative
in nature and may have an adverse effect if future memory dirtying pattern
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can’t be derived from past memory dirtying pattern. A different approach to
optimizing pre-copy live migration is to reduce the cost of each page re-send
by using delta encoding for a compact representation of page updates. General
purpose delta compression algorithms such as ZDelta are relatively slow reaching
rates of about 50 MB/s [10]. Hudzia et el. [7] proposed the use of Xor Binary
Run Length Encoding (XBRLE) for delta encoding of dirty pages for pre-copy
live migration which reached rates of about 2 GB/s but had a relativly low
compression ratio.

In this paper we present XBZRLE which provides a more compact encod-
ing representation than XBRLE while additionally improving encoding speed.
XBZRLE is comprised of two phases: (1) binary XOR for encoding the delta
between the old memory page content and the new memory page content - XOR
is both fast and is able of capturing the in-place memory changes - represented
by the XOR as a sequence of non-zeros; (2) Zero Run Length Encoding (ZRLE)
attempts to compress only the zero runs using Run Length Encoding (RLE) but
does not attempt to encode non-zero runs. (as non-zero sequences have little
chance for character repetition). Both phases XOR and ZRLE can utilize CPU
Single Instruction Multiple Data (SIMD) instructions taking advance of multi-
byte parallelism by using input and output characters of 8-bytes (=64 bit) rather
than executing on byte sized characters. The XBZRLE delta encoder requires
as input both the new page contents and the old page contents. The old page
contents is cached each time a page is sent to the destination host. We currently
use a rudimentary LRU cache but plan in future to use an advanced self-tuning
cache such as ARC [11] or CAR [12] which would provide a higher hit-ratio
without any increase in cache size. Cache size is determined by optimizing both
cache hit-ratio and cache memory overhead incurred on host - for most work-
loads a 10 % of the VM memory size allocated for the cache - should provide
ample hit-ratio.

In [9] we presented comparative results for both encoding speed and encoding
size of various page encoders. We evaluated several encoders using 4 scenarios:
sparse memory update pattern (step 1111 bytes alter 12 bytes), medium (step
701 alter 33), dense (step 203 alter 41) and very dense (step 121 alter 43).
In order to compare compression algorithms candidates we first run a XOR
phase (for getting a non compressed delta representation), following we run our
candidates: LZO (xblzo), Google Snappy (xbsnappy), RLE (xbrle) and ZRLE
(xbzrle). Results demonstrate that XBZRLE outperforms the other candidates
in encoding speed achieving a 2200 MB/s compared 200 MB/s for byte-wise
XBRLE, and 500 MB/s - 1200 MB/s for xblzo and xbsnappy. While fast -
XBZRLE - does incur a 50% increase in compressed size compared with the
slower xblzo and xbsnappy encoders.

2.3 Post-Copy Live Migration

In this subsection we present our implementation of post-copy live migration of
VMs across an RDMA interconnect. While post-copy live migration is not new,
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our QEMU and KVM based implementation has incorporated several innova-
tions which make it especially capable of handling memory intensive applications.

Core to a high performing post-copy implementation is the efficient resolu-
tion of network bound page faults - which has also been a relative barrier to
implementing post-copy live migration in general.

MMU Integration: Hirofuchi and Yamahata in Yabusame project [17] disclose
post-copy enhancement of QEMU/KVM using a character device and page fault-
ing transport via user mode. Our approach was to extend the Linux MMU such
that network bound page faults are handled directly in the kernel much like swap
in of page from a disk-based swap device incurring no context switches into user
mode. By introducing a new flag in the page table entries we indicate that the
page is backed by memory residing on a remote host. While Yabusame causes
a full VM freeze during remote page fault - our implementation only causes the
requesting thread to pause while all other VM threads continue uninterrupted.

RDMA Interconnects: The concept of remote DRAM backed swap was pro-
posed by Comer and Griffioen [15], however, only the recent advancement in
network interconnects performance and accompanying standardization in the
RDMA stack have enabled to unleash its power. Especially notable is OFED
and its promotion of standard RDMA semantics for all underlying hardware
and software stacks such as InfiniBand, IWARP and RDMA over Converged
Ethernet (RoCE). While 40 Gbps InfiniBand and 10 Gbps Ethernet provide
excellent performance it is also possible to use a pure software stack such as
softiWARP atop 1 GbE making post-copy live migration feasible in many cost-
conscious environments without the need for up-front hardware expenses. While
RDMA is an enabler to post-copy live migration it can also benefit pre-copy live
migration as presented by Huang at el. [13].

Demand Pre-paging: Was first presented by Kaplan at el. [14] who demon-
strated that by altering the amount of pre-fetched pages according to the load
characteristics reduced the percentage of page faults in specific scenarios while
not incurring increased service degradation in other scenarios. By adding a simple
pre-fetcher that demands the 40 pages surrounding the faulted page we managed
to reduce service degradation. Hines at el [16] demonstrated the effectiveness of
pre-paging for reducing network-bound page faults to be within 21% of the VM
working set size.

Hybrid Post-Copy: We additionally implemented hybrid post-copy allowing
for a pre-defined bound pre-copy phase to proceed the post-copy phase as a
means for reducing the number of future page faults.

3 Evaluation

While initially considering realistic applications such as the SAP Sales & Dis-
tribution Benchmark as used by Hudzia et al [7], it became apparent that these
may vary in behavior greatly between runs thus making comparative testing
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of live migration schemes difficult. We thus focused on artificial benchmarks
which may not fully represent real memory intensive applications but are highly
deterministic in behavior.

Pre-Copy Evaluation. We built a synthetic multi threaded workload genera-
tor appmembench, which dirties different groups of pages in different frequencies
using 8 threads, a working set of 512 MB, and a workload characterized by a
memory dirtying rate of 1 GBps (adding the full 4 KB page size as dirty mem-
ory for each page partially dirtied). Workload was run on a guest VM of: 4 x
vCPU; 1 GB RAM; Each physical host with 2 cores, 8 GB RAM, while hosts
were interconnected with 1 Gbps Ethernet network, we limitted network band-
width to only 30 MB/s or 240 Mbps to maintain a high application-dirty-rate /
network-transfer-rate ratio - characteristic to real memory intensive workloads.

Figure 1 compares three pre-copy live migration implementations: (1) the
original QEMU implementation - ’original’; (2) Page LRU reordering modifica-
tion - ’prio’; (3) XBZRLE modification - ’xbzrle’. The chronological sequence
of events presented in the chart: 0 seconds - start running appmembench; 30
seconds - start live migration; 150 seconds - force migration (by setting a high
max downtime value); 180 seconds - end of measurements.

The original live migration incurs a short downtime right after live migration
initiation at 30 seconds, continues to work without any degraded service, but
does not manage to complete the migration and transfers control only after 150
seconds and in the process sustaining a 6 seconds downtime. XBZRLE causes
a severe service degradation - indicating that the application and XBZRLE are
competing on limited compute resources - but it succeeds in completing the live
migration after 105 seconds. (Although due to degraded service level XBZRLE
had to cope with a much lower rate of page dirtying than the original live mi-
gration which did not cause service degradation). Finally LRU page reordering
caused a 50% service degradation, also due to CPU overcommit, and only mi-
grated after 150 seconds but has a slightly shorter downtime of about 4 seconds
compared with the original implementation.

The appmembench benchmark ran 8 threads on 4 vCPUs atop 2 physical CPU
cores, causing severe CPU pressure. As both XBZRLE and LRU page reordering
use compute to mitigate network bandwidth strain the result in our case was
an adverse effect on overall system performance due to competition between the
running VM and the live migration process itself. Also highlighted by this test
is the absence in our PoC of an automatic disabling mechanisms during CPU
pressure.

Post-Copy versus Pre-Copy. So as to highlight post-copy’s ability to cope
with very high workloads we use Google Stress Application Test (SAT) - a scal-
able high-performance benchmark. Google SAT performs large bit-wise inverse
operations which may not fully represent the types of operations done by real
applications but creates a high multi-threaded workload which can saturate phys-
ical resources. For our tests we used the following guest VM specification: 2 x
vCPU ; 1, 2, 4, 8, and 16 GB of memory; Google SAT benchmark with 1 GB
working set; 1 Gbps Ethernet Network between hosts.
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Fig. 1. Pre-Copy Evaluation Fig. 2. Post-Copy vs. Pre-Copy

Figure 2 depicts total migration time for both pre-copy original implementa-
tion and post-copy live migration for various VM sizes. Post-copy live migration
completed the live migration in about 10% of the time required for the original
pre-copy implementation, indicating that the original pre-copy sends page up-
dates over and over again in average 10 times each compared to post-copy which
sends each memory page exactly once.

Fig. 3. Full Post-Copy Fig. 4. Hybrid Post-Copy

Hybrid Post-Copy Evaluation. We used the following guest VM specifica-
tion: 2 x vCPU ; 4 GB of memory; 1 GB Google SAT working set; 1 Gbps
Ethernet Network between hosts. Network bound page faults are the main cause
of degraded service right after transfer of control to the destination host and
therefore their pattern and timespan can help assess the severity of this period.
In figures 3, 4, individual network bound page fault events were recorded: Using
virtual address as y coordinate and using relative time from first page fault as
x coordinate. The figures depict that the pre-copy phase helps reducing page
faults induced application service degradation - as can be seen when comparing
full post-copy figure 3 versus hybrid post-copy 10s (a 10 second pre-copy phase)
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figure 4. The contribution of the pre-copy phase is nonetheless finite and does
not go beyond a certain point as was determined when comparing our results
for the hybrid post-copy 10s case to hybrid post-copy 20s and hybrid post-copy
40s.

4 Conclusions and Future Work

Migrating large memory intensive workloads challenges the existing live migra-
tion implementations. In this work we presented our enhancements and optimiza-
tion over the original pre-copy live migration KVM QEMU implementation. We
presented XBZRLE and LRU page reordering which support live migration of
applications with high memory dirtying rate relative to available network band-
width. Next we disclosed our enhanced post-copy live migration implementation
which by subsuming demand pre-paging, fast RDMA interconnects, MMU inte-
gration and hybrid post-copy can provide a fast and predictable live-migration
over fast interconnects maintaining minimal page fault incurred service degra-
dation. In the future we plan extending our work on live migration to handle
transfer of CPU and memory state between a cluster of hosts serving as a single
Virtual Distributed Shared Memory system.

Acknowledgments. This work was funded by grant from the Invest Northern
Ireland regional economic development agency covering work done by John Stu-
art, David Leib and Benoit Hudzia. Additional funding supported by the EU
FP7 project VISION Cloud covering Aidan Shribman’s work. We thank Chaim
Bendelac and Eliezer Levy for their invaluable feedback.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Proceed-
ings of the 19th ACM Symposium on Operating Systems Principles, pp. 164–177.
ACM, New York (2003)

2. Kivity, A.: KVM: Kernel-based Virtualization Machine,
http://www.linux-kvm.org

3. Ballard, F.: QEMU: Open Source Processor Emulator, http://wiki.qemu.org
4. VMWare Inc.: VMWare, http://www.vmware.com
5. Bradford, R., Kotsovinos, E., Feldmann, A., Schiberg, H.: Live wide-area migration

of virtual machines including local persistent state. In: VEE 2007 Proceedings of
the 3rd International Conference on Virtual Execution Environments, pp. 169–179
(2007)

6. Checconi, F., Cucinotta, T., Stein, M.: Real-Time Issues in Live Migration of Vir-
tual Machines. In: Lin, H.-X., Alexander, M., Forsell, M., Knüpfer, A., Prodan, R.,
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