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We investigate the fluctuations of the diquark-pair field and their effects on observables
above the critical temperature Tc in two-flavor color superconductivity (CSC) at moderate
density using a Nambu-Jona-Lasinio-type effective model of QCD. Because of the strong-
coupling nature of the dynamics, the fluctuations of the pair field develop a collective mode,
which has a prominent strength even well above Tc. We show that the collective mode is
actually the soft mode of CSC. We examine the effects of the pair fluctuations on the specific
heat and the quark spectrum for T above but close to Tc. We find that the specific heat
exhibits singular behavior because of the pair fluctuations, in accordance with the general
theory of second-order phase transitions. The quarks display a typical non-Fermi liquid
behavior, owing to the coupling with the soft mode, leading to a pseudo-gap in the density
of states of the quarks in the vicinity of the critical point. Some experimental implications
of the precursory phenomena are also discussed.

§1. Introduction

In recent years, there have been many studies of the properties of dense and cold
matter.1) In such a system, the baryonic density is so high that quarks and gluons
are expected to be deconfined to make a quark matter.2) Then, the attractive quark-
quark interaction in some channels should give rise to a Cooper instability leading to
color superconductivity (CSC) at sufficiently low temperatures.3),4) The asymptotic
freedom of QCD allows us to use perturbation theory to describe CSC at extremely
high densities with µ > 108 MeV, where µ is the quark chemical potential.5) In
this region, the weak-coupling theory analogous to BCS theory, i.e. a mean-field
approximation (MFA), is valid. In such a system composed of u, d and s quarks at
extremely high density, it is believed that the quark matter takes the special form of
the color-superconducting phase, i.e. the color-flavor locked (CFL) phase,6) in which
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all kinds of quarks take part equally in the pairing.
What is the phenomenological significance of CSC including the CFL? Possible

relevant systems consisting dense QCD matter include the cores of compact stars,7)

both in equilibrium and in the newly-born stage and the intermediated states created
in the heavy-ion collisions that are expected to be performed in the forthcoming
facilities at GSI and J-PARC.8),9) One of the basic points concerning real systems of
this kind lies in the fact that the quark-number chemical potential µ and hence the
baryon density are moderate; µ should be at most ∼500 MeV. Therefore the ideal
situation realized in an extremely dense system may not be expected in these real
systems but various complications come into play in the determination of the nature
of CSC.

To realize CSC in a compact star at vanishing temperature, the color- and
electric-charge neutrality conditions must be satisfied as well as the β-equilibrium
condition.10)–12) These conditions, in turn, induce a mismatch of the Fermi momenta
of quarks of different flavors and colors. This is the case in particular when the con-
stituent mass of the strange quark, Ms (which ranges from some 100 to 500 MeV
owing to the dynamical symmetry breaking of the chiral symmetry) is comparable
with µ. Thus we see that the incorporation of the charge neutrality and β-equilibrium
conditions, with finite Ms taken into account, brings about quite interesting com-
plications in the physics of CSC in quark matter at moderate densities. Indeed, it
has been shown in the MFA that the combination of all these effects can lead to a
variety of pairing patterns, including the so-called gapless CFL’s.13)–20)

In this paper, we focus on another important feature of QCD matter at mod-
erate densities, i.e. the strong-coupling nature of QCD at low energy scales, which
invalidates the MFA. This strong coupling may imply the significance of large fluctu-
ations of the diquark-pair field, especially in the vicinity of the critical temperature,
Tc.8),21),22) It is noteworthy that some recent analyses of the RHIC experiments
suggest that quasi-bound quark-antiquark states may be formed in moderately hot
QCD matter. This reflects the strong-coupling nature of QCD,23) although the pos-
sible existence of hadronic modes above Tc was suggested earlier in Refs. 24) and
25). ∗)

It is thus natural to expect that heated quark matter at a moderate density
may also accommodate pre-formed diquark pairs as a pre-critical phenomenon of
CSC phase transition. Owing to the strong-coupling nature inducing large fluctu-
ations of the order parameter, CSC in heated quark matter at moderate densities
may have some of the same basic properties as the superconductivity in strongly
correlated electron systems, such as high-Tc superconductivity (HTSC), rather than
usual superconductivity in metals.8),27) We notice that materials at T > Tc show
various types of non-Fermi liquid behavior, one of which is pseudogap formation, i.e.
an anomalous depression of the density of states (DOS) N(ω) as a function of the
fermion energy ω around the Fermi surface.28)–30) It would be intriguing to explore
whether quarks in the heated quark matter near the critical point exhibit similar
abnormal behavior. In this paper, we investigate pair fluctuations of CSC for T

∗) See also recent lattice results presented in Ref. 26).
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Pre-Critical Phenomena of 2SC 119

above Tc and explore their effects on some physical quantities, including the quark
spectra in such quark matter near the critical point.

The relevant quark matters we have in mind are those created by the heavy-ion
collisions or those realized in the core of a proto-compact star just after a supernova
explosion. In these systems, the temperature is considerably high, and for this reason
the β-equilibrium condition may not be completely satisfied, in contrast to the case
in the interiors of cold compact stars. Therefore, the difference between the chemical
potentials of the up- and down-quarks in these systems is smaller than that under the
β-equilibrium condition, and hence a two-flavor superconductor (2SC) will be favored
over other pairings which incorporate strange quarks. Furthermore, the effect of the
difference in chemical potentials induced by the neutrality conditions will be smaller
at finite temperature than that at T = 0, because the Fermi surface is diffused for
T �= 0.15) Thus, one may simply introduce the same chemical potential for all the
kinds of quarks as a fair approximation to study CSC in such hot quark matter.

There are two types of fluctuations in superconductors, i.e., the fermion-pair
and gauge-field fluctuations, irrespective of whether they are electric or color super-
conductors. Gauge-field fluctuations are known to make CSC phase transition first
order in the weak coupling region.4),31)–33) In this region, it is known that CSC
is strong type-I superconductivity31),34) in which the fluctuations of the gauge field
dominate the pair-field fluctuations. On the other hand, as is argued in Ref. 34),
CSC is expected to be type-II superconductivity at lower density, i.e. for µ � 500
MeV,∗) where the fluctuations of the pair field dominate those of the gauge field in
contrast to the weak-coupling case. In the present work, therefore, we simply ignore
the gluon degrees of freedom, and examine the effects of pair fluctuations near Tc,
as done in Refs. 8) and 27): Because pair fluctuations are inherent in second- (or
weak first-) order phase transitions, the results in the present work should hold ir-
respective of the different pairing patterns and the chemical potential combination,
as long as the phase transition to CSC is second order or weak first order. We treat
the system at relatively low density, where the strange quark degrees of freedom do
not come into play; accordingly the pairing pattern is taken as 2SC throughout this
paper.

To investigate a system at relatively low temperature and density, a perturbative
QCD calculation is inadequate, because of the strong coupling. Lattice Monte Carlo
simulations for finite µ are still immature for the present purpose, although much
progress has been being made in recent years.35) Therefore, it is appropriate to adopt
a low-energy effective theory of QCD. Because we are considering the situation in
which the diquark pairing dominates over that of the gluons, an effective model
composed solely of the quark fields may be adopted. Such effective models include
the instanton induced model36) and the Nambu-Jona-Lasinio (NJL) model.37),38)

Note that the latter model is a simplified version of the former. Both models are in
fact used to explore the phase structure at low density.38)–42) One should note here

∗) In Ref. 34), it is shown by extrapolation from the weak coupling region that CSC is type-II

superconductivity when Tc > 14 MeV for µ = 400 MeV. In our model, Tc = 40–60 MeV for µ = 400–

500 MeV, as shown in the next section, and thus one may conjecture that type-II superconductivity

is realized.
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that an NJL-type theory can be deduced as a low-energy effective theory for dense
quark matter on the basis of the renormalization-group equations.43) It is also known
that the phase structures obtained in these models are qualitatively consistent, and
they are similar to those calculated using the Schwinger-Dyson equation with the
one-gluon exchange interaction.22),44) In this work, we employ the NJL model to
explore the fluctuations in CSC.

In previous short communications, Refs. 8) and 27), we studied the precursory
phenomena to CSC: We showed for a vanishing wave number that the dynamical
fluctuations of the pair field have a prominent strength near the vanishing frequency
up to T � 1.2Tc,8) and for this reason that these fluctuations can give rise to inter-
esting precursory phenomena, such as a pseudogap in the quark DOS near Tc.27),∗)
It is worth emphasizing that Ref. 27) is the first investigation to explore whether
and how the quasi-particle properties of quarks are changed by the precursory paring
mode in CSC. In the present paper, we present a formulation of the basic theory and
give a detailed account of both analytic and numerical calculational procedures. We
also present a more extensive study of the properties of the precursory pair field with
finite wave-numbers and the mechanism through which the pseudogap appears. We
investigate for the first time the effects of the precursory pair fluctuations on the spe-
cific heat. It is found that the heated quark matter close to the critical point of CSC
shows typical non-Fermi liquid behavior, owing to the precursory pair fluctuations,
which form a soft mode.

This paper is organized as follows. In §2, we introduce our model Lagrangian
and present the phase diagram obtained in the MFA in the model. In §3, we inves-
tigate the behavior of the pair fluctuations above Tc using linear response theory. It
is shown that the fluctuations of the pair field develop a collective mode with a large
strength even well above Tc. We show that the complex frequency of the collective
pair-field moves toward the origin in the complex energy plane, which implies that
the pair fluctuations form the soft mode of CSC phase transition. We calculate the
spectral function of the pair fluctuations, ρ(k, ω), as a function of the momentum
k and energy ω in order to elucidate the spatial and temporal behavior of the pair
fluctuations when the temperature is lowered toward Tc. We also present the behav-
ior of the dynamical structure factor. In §4, we discuss the effect of the soft mode
on the specific heat cv above Tc and show that cv increases when T is lowered to Tc

and eventually diverges at T = Tc in accordance with the singular growth of pair
fluctuations. We examine how the soft mode affects the single quark spectrum and
changes the quasi-particle picture of the fermion above Tc in §5. We start from a
calculation of the single-quark Green function in the T-matrix approximation to in-
corporate the effects of the pair fluctuations in the quark sector. It is shown that the
pair fluctuations give rise to a large decay width for quarks near the Fermi surface,
i.e. non-Fermi liquid behavior of the quarks near Tc. It is further shown that the
anomalous behavior leads to a pseudogap in the DOS of the quarks. The chemical
potential dependences of the quark spectrum and the DOS are also examined. The

∗) Possible pseudogap formation in association with the chiral transition due to phase fluctua-

tions was discussed previously.45)
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Pre-Critical Phenomena of 2SC 121

final section is devoted to a summary and concluding remarks.

§2. Model and phase diagram

In this section, after introducing our model Lagrangian, we recapitulate the
derivation of the thermodynamic potential and present the phase diagram obtained
in the MFA.41) This forms the basis for the succeeding investigation of the nature
of the precursory pair fluctuations.

We employ a Nambu–Jona-Lasinio (NJL) model with two flavors and three col-
ors, as mentioned in the Introduction:

L = ψ̄i/∂ψ + LS + LC . (2.1)

Here the quark-antiquark and quark-quark interactions, LS and LC are given by

LS = GS [(ψ̄ψ)2 + (ψ̄iγ5�τψ)2],
LC = GC(ψ̄iγ5τ2λAψ

C)(ψ̄Ciγ5τ2λAψ), (2.2)

with ψC(x) ≡ Cψ̄T (x) and C = iγ2γ0 being the charge conjugation operator. The
matrices τ2 and λA (A = 2, 5, 7) are the antisymmetric components of the Pauli and
Gell-Mann matrices for the flavor SU(2)f and color SU(3)c, respectively. We take
the chiral limit puttingmu = md = 0, since the properties of the diquark condensates
are affected very little by the small quark masses.

We choose the scalar coupling constant as GS = 5.01GeV−2 and the three-
dimensional momentum cutoff Λ = 650MeV so as to reproduce the pion decay con-
stant fπ = 93 MeV and the chiral condensate 〈ψ̄ψ〉 = (−250MeV)3 in the chiral
limit.46) There are several sources to determine the diquark coupling constant GC ,
for example, the instanton-induced interaction and the diquark-quark picture of
baryons.47) The former gives GC/GS = 0.5,42) while the values GC/GS = 0.49–
0.7348) and GC/GS = 1.5–249) have been obtained using the latter model. In the
present work we fix GC/GS=0.62, i.e., GC = 3.11GeV−2, following Refs. 8),40) and
27), where GC is chosen so as to reproduce phase diagram similar to that calculated
in the instanton-induced interaction.39)

To determine the phase diagram, we have to first derive the thermodynamic
potential Ω = −T log Tr e−βK with

K =
∫
d3x

{
ψ̄(−iγ · �∇)ψ − µψ̄γ0ψ − LS − LC

}
. (2.3)

Here, Tr denotes a trace operation over the color, flavor and Dirac indices. To apply
the MFA, we assume a finite diquark condensate for the 2SC pairing ∆ and the
quark-antiquark condensate M ,

∆ = −2GC〈ψ̄CΓψ〉, M = −2GS〈ψ̄ψ〉, (2.4)

with Γ ≡ iγ5τ2λ2. Employing the MFA for LC and LS , the thermodynamic potential
in the MFA per unit volume is given by41)

ΩMF (M,∆;T, µ) = −T
V

log Tre−βK
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Fig. 1. The calculated phase diagram in the T -µ plane for our model. The solid and dashed curves

denote the critical lines of a first- and second-order phase transitions, respectively.

=
M2

4GS
+

|∆|2
4GC

− 4
∫

d3p

(2π)3
{
Ep + T log

(
1 + e−βξ−

)(
1 + e−βξ+

)
+ε− + ε+ + 2T log

(
1 + e−βε−

)(
1 + e−βε+

)}
, (2.5)

where

Ep =
√
p2 +M2, ξ± = Ep ± µ, ε± =

√
ξ2± + |∆|2, (2.6)

and β = 1/T . The thermodynamic potential ΩMF realizes its absolute minimum as
a function of M and ∆ in the equilibrium state; accordingly the optimal values of
M and ∆ satisfy the stationary conditions

∂ΩMF

∂M

∣∣∣∣
∆

= 0 and
∂ΩMF

∂∆

∣∣∣∣
M

= 0, (2.7)

which are actually self-consistent equations for the condensates and are called “the
gap equations”.

Using Eqs. (2.5) and (2.7), we can determine the phase structure of the model.
The phase diagram in the T -µ plane is shown in Fig. 1: The dashed (solid) curves
denote the critical line for a second-(first-)order phase transition. The critical chemi-
cal potential for the chiral-to-CSC transition at T = 0 is µ = 316 MeV in our model.
The second order normal-to-2SC phase transition occurs somewhere in the range
T = 35–60 MeV for µ = 350–500 MeV. In the following sections, we explore the pair
fluctuations and precursory phenomena above Tc in this region of µ.

For later convenience, we now explicitly write down the critical condition for the
normal-to-CSC phase transition with vanishing chiral condensate (M = 0). We first
give the explicit expression of the gap equation for ∆ in Eq. (2.7):

∆ = 8GC∆

∫
d3p

(2π)3

{
1
ε−

tanh
βε−
2

+
1
ε+

tanh
βε+
2

}
, (2.8)

where ε± =
√|p± µ|2 + |∆|2, because we have set M = 0. Dividing Eq. (2.8) by ∆

and then setting ∆ = 0, the condition for determining the critical temperature Tc of
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the normal-to-CSC phase transition is obtained as

0 = 1 − 8GC

∫
d3p

(2π)3

{
1

p− µ
tanh

βc(p− µ)
2

+
1

p+ µ
tanh

βc(p+ µ)
2

}
, (2.9)

with βc ≡ 1/Tc. Below we find that Eq. (2.9) plays a crucial role for understanding
the anomalous behavior of the pair fluctuations near the critical point.

§3. Pair fluctuations above Tc

In this section, we discuss the properties of the precursory fluctuations of the
diquark-pair field in the normal phase on the basis of linear response theory. Because
we limit our attention to the behavior of fluctuations in the normal phase, we setM =
∆ = 0. It will be shown that a collective mode corresponding to pair fluctuations is
developed near the critical point; we find that this mode is the soft mode for the CSC
phase transition in the sense that the pole of the spectral function in the complex
energy plane moves toward the origin as T is lowered toward Tc. We then calculate
the spectral function and the structural factor of the pair field with finite energy and
momentum and examine their temperature dependence. We also discuss how the
chemical potential µ affects the properties of the soft mode.

3.1. Linear response of the pair field

In this subsection, we apply linear response theory in order to investigate the
diquark-pair fluctuations.8) The presentation of the theory here is more formal than
that given in Ref. 8). See also Ref. 8) for a more intuitive discussion of the linear
response of the pair field.

When we apply an external perturbation Hex(t) to a thermal equilibrium state
at t = t0, the expectation value of an arbitrary operator, 〈O(x, t)〉, deviates from the
initial equilibrium value 〈O(x, t)〉eq, where O(x, t) ≡ e iKtO(x)e−iKt, with K being
a time-independent operator. In the linear response theory, this deviation is given
by

〈O(x, t)〉 − 〈O(x, t)〉eq = i

∫ t

t0

ds〈[Hex(s), O(x, t)]〉eq. (3.1)

Here, 〈 〉eq represents the thermal expectation value without Hex(t).
In order to study the pair fluctuations of CSC, we choose

O(x) = −2GCψ̄(x)ΓψC(x), (3.2)

Hex(t) =
∫
d3x∆∗

ex(x, t)
(
ψ̄C(x)Γψ(x)

)
+ h.c., (3.3)

where ∆∗
ex(x, t) is a classical external source. Substituting these into Eq. (3.1) and

using the fact that 〈ψ̄ΓψC〉eq vanishes in the normal phase, we obtain the diquark
pair field induced by ∆∗

ex,

∆∗
ind(x, t) ≡ −2GC〈ψ̄C(x, t)Γψ(x, t)〉,

= −2GC

∫ ∞

−∞
dt′
∫
d3x′DR(x, t; x′, t′)∆∗

ex(x′, t′). (3.4)
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Here, the response function DR is given by

DR(x, t; x′, t′) = −iθ(t− t′)〈[ψ̄(x, t)ΓψC(x, t), ψ̄C(x′, t′)Γψ(x′, t′)]〉eq,

=
∫
d3kdω

(2π)4
DR(k, ω)e−iω(t−t′)eik·(x−x′), (3.5)

where we have taken the limit t0 → −∞. The Fourier transformation of Eq. (3.4)
gives

∆∗
ind(k, ω) = −2GCD

R(k, ω)∆∗
ex(k, ω). (3.6)

Equation (3.6) contains a significant amount of information regarding elementary
excitations in the system. We first note that if the external field has the form

∆∗
ex(x, t) = ∆∗

ex(k, ω)e−iωt+ik·x, (3.7)

then Eq. (3.6) implies that there appears an induced pair field

∆∗
ind(x, t) = ∆∗

ind(k, ω)e−iωt+ik·x (3.8)

with amplitude ∆∗
ind(k, ω). If the system has an intrinsic collective excitation with

the dispersion relation ω = ωs(k), the induced pair field will have a larger ampli-
tude ∆∗

ind(k, ω) for ω ∼ ωs(k) owing to a resonance mechanism; this implies that
DR(k, ω) increases as ω approaches ωs(k) on account of Eq. (3.6) and eventually may
diverge at ω = ωs(k). Conversely, if the amplitude ∆∗

ind(k, ω) has a finite value with
an infinitesimally-small external disturbance ∆∗

ex(k, ω), the system would have an
intrinsic collective excitation with frequency ω and wave number k. This situation
is realized when the response function DR(k, ω) is divergent, which may occur for a
special ω with a given k. Thus we find that the equation

DR(k, ω)
−1

= 0 (3.9)

gives the dispersion relation ω = ωs(k) of the possible collective excitation in the
diquark channel of the system. A remark is in order. Note that the frequency ωs(k)
with given k can be a complex number; for instance, (i) if Re ωs(k) �= 0, the mode is
oscillatory, and (ii) if ωs(k) is pure-imaginary, the mode is diffusive. Below we find
that Re ωs(k) is finite, but so small that the mode is almost diffusive.

The information concerning the strength of the pair fluctuations is contained
in the spectral function ρ(k, ω), which is defined through the response function
DR(k, ω):

ρ(k, ω) = − 1
π

ImDR(k, ω). (3.10)

The strength of the fluctuations is also represented by the dynamical structure
factor, defined by

S(k, ω) = − 1
π(1 − e−βω)

Im DR(k, ω), (3.11)
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Fig. 2. The diquark propagator in the random phase approximation.

which is positive definite. At finite temperature, S(k, ω) can be directly observed in
scattering experiments;50) the van Hove scattering formula50) gives the cross section
in terms of the dynamical structure factor. As we see below, ρ(k, ω) represents the
total width of the fluctuations, i.e., the difference between the decay rate and the
production rate, and it is negative in the case ω < 0 for bosonic excitations. Accord-
ingly, S(k, ω), not ρ(k, ω), represents the excitation probability of the fluctuations
of the system at finite temperature.

To calculate DR(k, ω), we employ the imaginary time formalism; we first calcu-
late the response function in the imaginary time formalism (the two-particle Mat-
subara Green function),

D(x, τ ;0, 0) = −〈Tτ ψ̄(x, τ)ΓψC(x, τ)ψ̄C(0, 0)Γψ(0, 0)〉
≡ T

∑
n

∫
d3k

(2π)3
D(k, νn)e−iνnτeik·x, (3.12)

with νn = 2πn/β being the Matsubara frequency for bosons.
In order to evaluate Eq. (3.12), we employ the random phase approximation

(RPA) in which we sum up the ring diagrams shown in Fig. 2, with the lines repre-
senting the free Matsubara Green function in the normal phase (M = ∆ = 0),

G0(k, ωn) =
1

(iωn + µ)γ0 − k · γ , (3.13)

and the vertices correspond to LC . In this approximation, the Matsubara Green
function (3.12) is given by

D(k, νn) =
1
2

Q(k, νn)
1 +GCQ(k, νn)

, (3.14)

where Q(k, νn) is the contribution from the one-loop particle-particle correlation
function,

Q(k, νn) = −2T
∑
m

∫
d3p

(2π)3
Tr
[
CΓG0(k − p, νn − ωm)ΓCGT

0 (p, ωm)
]
.

(3.15)

Here ωn = (2n+1)π/β denotes the Matsubara frequency for fermions. The response
function in the real time Eq. (3.5) is given by the analytic continuation iνn → ω+ iη,
and we obtain

DR(k, ω) = D(k, νn)
∣∣
iνn=ω+iη

=
1
2

QR(k, ω)
1 +GCQR(k, ω)

, (3.16)
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with QR(k, ω) = Q(k, νn)|iνn=ω+iη. It is thus seen that the equation to determine
the dispersion relation for the collective excitation given in Eq. (3.9) is reduced to

1 +GCQ
R(k, ω) = 0. (3.17)

With some manipulations (see Appendix A for details), we find the following
simplified form of QR(k, ω):

QR(k, ω) = Nf (Nc − 1)
∫

d3p

(2π)3
1

e1e2

×
{[

(e1 + e2)2 − k2
]( 1 − f−(e2) − f−(e1)

ω + 2µ− e1 − e2 + iη
+

1 − f+(e2) − f+(e1)
ω + 2µ+ e1 + e2 + iη

)

− [
(e1 − e2)2 − k2

]( f−(e2) − f+(e1)
ω + 2µ+ e1 − e2 + iη

+
f+(e2) − f−(e1)

ω + 2µ− e1 + e2 + iη

)}
.

(3.18)

Here f±(x) = 1/[eβ(x±µ) + 1] is the Fermi-Dirac distribution function for the quark
and anti-quark, respectively, and e1 ≡ |p|, e2 ≡ |k−p| and k ≡ |k|.∗) The imaginary
part of QR(k, ω) is given by

ImQR(k, ω) = −πNf (Nc − 1)
∫

d3p

(2π)3
(ω + 2µ)2 − k2

e1e2

× [(1 − f−(e1) − f−(e2)
)
δ(ω + 2µ− e1 − e2)

− (1 − f+(e1) − f+(e2)
)
δ(ω + 2µ+ e1 + e2)

+
(
f−(e1) − f+(e2)

)
δ(ω + 2µ− e1 + e2)

− (f+(e1) − f−(e2)
)
δ(ω + 2µ+ e1 − e2)

]
. (3.19)

Each term in the square brackets of Eq. (3.19) corresponds to the decay process
shown in Figs. 3 (a)–(d) and its inverse. To see this, the following identities for
arbitrary quantities fi (i = 1, 2) are useful: 1 − f1 − f2 = (1 − f1)(1 − f2) − f1f2

and f1 − f2 = (1− f2)f1 − f2(1− f1). In general, the imaginary part of the retarded
Green function is related to the net decay rate or the total width. Because of the
delta function in each term owing to energy-momentum conservation, the ranges of
energy and momentum over which each decay process can take place are restricted
to the region shown in the right panel of Fig. 3; for example, the decay process into
two particles, as shown in (a) of Fig. 3, and its inverse occur only for ω > |k| − 2µ.
The processes (b) and (c), the so-called Landau damping processes, and their in-
verses take place only for −|k| − 2µ < ω < |k| − 2µ; hence the collective modes
with vanishing momenta do not decay through these processes. We now see that the
decay process (a) plays the dominant role near Tc, because the strength of the pair
fluctuations is concentrated near (ω,k) = (0,0) for T ∼ Tc, as we show in the next
subsection. We note that DR(k, ω) is analytic around (ω,k) = (0,0) for T > Tc,
because the functions QR(k, ω), and hence DR(k, ω), have discontinuities only on

∗) Using the change of variables p ↔ k − p, Eq. (3.18) is converted into QR(k, ω) of Ref. 8).

Equation (3.18) is more convenient for the following calculation than that given in Ref. 8).
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(a)

(b)

(c)

(d)

(a)

(b),(c)

(d)

ω
k0

-2µ

2µ

Fig. 3. The left panel shows the kinetic processes contained in ImQR(k, ω); the corresponding

inverse processes are not shown. The dashed line denotes the diquark pair field and the solid

line the quark or the antiquark. The right panel represents the energy-momentum regions in

which the decay processes (a)–(d) (and their inverse ones) occur.

the boundaries ω = ±|k| − 2µ.∗)

Here, we would like to discuss the critical behavior of the response function
Eq. (3.16). In general, when the temperature approaches Tc of the second-order
transition from above, the fluctuations of the order parameter with a low frequency
(small ω) and a long wave-length (small k) become easily excited. This implies, on
account of Eq. (3.6), that DR(k, ω) with small ω and k becomes larger as the system
approaches the critical point. At Tc, the system becomes unstable with respect to
uniform diquark-pair formation, and a finite and permanent pair-field is formed with
an infinitesimally-small external field. Then, according to Eq. (3.6), DR(0, 0) should
be divergent at T = Tc. One can show that this is indeed the case, that is

DR(0, 0)
−1
∣∣∣
T=Tc

= 0. (3.20)

In fact, the denominator of Eq. (3.16) for vanishing k and ω becomes

1 +GCQ
R(0, 0)

= 1 − 8GC

∫
d3p

(2π)3

{
1

p− µ
tanh

β(p− µ)
2

+
1

p+ µ
tanh

β(p+ µ)
2

}
,

(3.21)

which is found to vanish at T = Tc, on account of Eq. (2.9). Equation (3.20) is called
the Thouless criterion,51) which may be used to determine the critical point.

For the momentum integration of Eq. (3.18), we employ the following cutoff
scheme.52),53) First, we note that the imaginary part of QR(k, ω) is free from an
ultraviolet divergence. Thus, we can evaluate the imaginary part without introducing
a cutoff. In this scheme, the imaginary part, Eq. (3.19), can be reduced to a compact
form (see Appendix A),

Im QR(k, ω) = −Nf (Nc − 1)T
(ω + 2µ)2 − k2

2πk
∗) In the case of particle-hole modes, a discontinuity of the response function exists at ω =

±|k|.37) Hence, the response function is not analytic at the origin.
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×
[
log

cosh(ω + k)/4T
cosh(ω − k)/4T

− θ(−|ω + 2µ| + k)
ω

2T

]
. (3.22)

Then, we evaluate the real part of QR(k, ω) from the imaginary part by using the
dispersion relation. We introduce a cutoff at this stage, because Re QR(k, ω) has
an ultraviolet divergence. The cutoff should be chosen so as to satisfy the Thouless
criterion for k = 0, discussed above. Thus, as shown in Appendix A, the real part
of QR is expressed as

ReQR(k, ω) = − 1
π

P
∫ 2Λ−2µ

−2Λ−2µ
dω′ ImQR(k, ω′)

ω − ω′ , (3.23)

where P denotes the principal value.∗) This cutoff scheme has the advantages that
the imaginary part of QR(k, ω) does not destroy any conservation laws through the
introduction of a cutoff and it does reflects the symmetries of the system. In addition,
the simple form Eq. (3.22), which is derived without introducing a cutoff, is quite
convenient for numerical calculations.

3.2. Collective excitation

In this subsection, we obtain the dispersion relation of the collective mode in the
diquark channel by solving Eq. (3.17) for ω, with k given. Solutions of Eq. (3.17)
should exist in the lower-half complex energy plane C

−, because the imaginary part
of the pole should be negative; otherwise the system would be unstable with respect
of the creation of collective modes. Thus we actually solve the equation,

1 +GCQ
R(k, z) = 0 (3.24)

for a complex variable ω ≡ z with QR(k, z) ≡ QR(k, ω)|ω→z. In fact, it can be
numerically verified that Eq. (3.24) does not have any solution in the upper-half
plane C

+. In order to calculate Eq. (3.24) for z ∈ C
−, we must perform the analytic

continuation of QR(k, ω) to C
−; a simple analytic continuation of Eq. (3.15), defined

as

Q(k, z) ≡ Q(k, νn)|iνn→z, z ∈ C, (3.25)

with C denoting the entire complex plane, has a cut along the real axis. Hence
QR(k, z) �= Q(k, z) in C

−. The retarded function QR(k, z) in C
− is defined on an-

other Riemann sheet of Q(k, z), and therefore one has to derive the analytic function
of Q(k, z) in this Riemann sheet to solve Eq. (3.24). As shown in Appendix B, the
form of QR(k, z) in C

− is found to be

QR(k, z) = Q(k, z) + 2iI(k, z), (3.26)
∗) The Thouless criterion does not restrict the range of integration in Eq. (3.23) for k �= 0,

because this criterion is a property of static homogeneous matter. In this sense, we have no criterion

to determine the range of integration in Eq. (3.23) for k �= 0. In this work, however, we simply

assume that the range does not change even for finite momentum. In any case, the final results for

the relevant range of |k| and ω do not depend on the choice of cutoff scheme.
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Fig. 4. The pole ωs of the collective mode above Tc for vanishing momentum with various µ. The

points denote the positions of the poles at the reduced temperature ε ≡ (T − Tc)/Tc = 0, 0.1,

0.2 · · · . Note here that ωs(k = 0)|ε=0 = 0. The pole approaches the origin as ε is lowered.

with I(k, z) ≡ ImQR(k, ω)|ω→z.
Using Eq. (3.26), we find a solution of Eq. (3.24) in C

−. Note that the Thouless
criterion Eq. (3.21) ensures that there exists a solution at the origin for T = Tc,
irrespective of µ. The temperature dependence of the solutions with k = 0 is already
presented in Ref. 8). We display them in Fig. 4 for three chemical potentials, µ = 350,
400 and 500 MeV; the three curves correspond to these three values of µ, while the
dots on the curves denote the position of the poles for each reduced temperature, ε ≡
(T −Tc)/Tc = 0, 0.1, 0.2, · · · . It can be seen that the pole goes up to the origin in the
complex energy plane as T is lowered toward Tc. It is also seen that the rate at which
the origin is approached is almost the same for all the chemical potentials. The result
clearly shows that the collective mode of the pair fluctuations is the soft mode37)

of CSC phase transition, which gives rise to the precursory phenomena of CSC phase
transition, as shown in the following sections. We will see that the softening of the
pole causes a rapid growth of the peak in ρ(k, ω) and S(k, ω) as T → Tc.

It is noteworthy that Re ω is small but finite. In the weak coupling limit, as
described by BCS theory, the pole of the soft mode appears on the imaginary axis,
i.e., Re ω = 0. This is due to a particle-hole symmetry inherent in the weak coupling
limit: In metal superconductors, an attractive interaction exists only for fermions
with energies satisfying |ω| < ωD, as measured from the Fermi energy EF with the
Debye frequency ωD, which satisfies ωD � EF . Thus, the DOS for the fermions
participating in the pairing can be treated as a constant in this energy range, and
accordingly the range is symmetric with respect to the Fermi surface. For CSC, the
pairing involves all of the states in the Fermi sphere, not just those around the Fermi
surface. This leads to an asymmetry between particles and holes. This asymmetry
is the origin of the finite real part of the soft mode. From Fig. 4, we find that the
ratio Re ω/Im ω becomes smaller for larger µ. This is plausible, because the rate
of the particle-hole asymmetry becomes smaller as µ is increased. It is instructive
to note that an increase of Im ω, along with that of µ, is also understood in a
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Fig. 5. Momentum dependence of the pole ωs(k) for µ = 400 MeV and ε = 0, 0.2 and 0.4. The left

panel depicts the k dependence of Imωs(k). The right panel depicts the momentum dependence

of ωs(k) in the complex energy plane. The pole moves away from the origin as k is increased.

different way: The density of states on the Fermi surface into which the collective
mode decays increases with the chemical potential. Thus, a larger decay probability
of the collective mode is realized, and this leads to a larger Im ω.

The fact that the pole has both real and imaginary parts implies that the dy-
namical behavior of the order parameter near Tc is a damped-oscillator mode, while
the pure imaginary poles in the weak coupling limit correspond to over-damped
modes, or diffusive modes as mentioned above. However, the absolute value of Im ω
is larger than that of Re ω even in the present case. This implies that the dynamical
behavior of the order parameter of CSC is approximately the same as that of the
over-damped case, and it is accurately described by a non-linear diffusion equation
like the time-dependent Ginzburg-Landau (TDGL) equation in the weak coupling
theory.8),54)

Next, let us consider the momentum dependence of the pole ωs(k). In Fig. 5,
we plot Imωs(k) as a function of k. It is seen that |Imωs(k)| becomes larger as k is
increased. This means that the lifetime of the fluctuations of the pair field becomes
shorter with smaller wavelength. The pole ωs(k) in the complex energy plane is
shown in the right panel of Fig. 5. It can be seen that the ratio Reω/Imω is almost
independent of k and ε.

3.3. Softening of the pair fluctuations

In the previous subsection, we saw that quark matter at values of T above
but near Tc develops a collective mode owing to diquark-pair fluctuations. In this
subsection, we show how the strength of the fluctuations changes when T is lowered
toward Tc.

We first show the temperature dependence of ρ(k, ω) at vanishing momentum
k = 0 for three different chemical potentials, µ = 350, 400, 500 MeV, and at several
reduced temperatures in Fig. 6.8) One can see that the position of the peak moves
toward the origin, while the peak height increases as the temperature is lowered
toward Tc, although the rate of growth of the peak decreases as µ is increased.
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Fig. 6. The spectral function ρ(k, ω) with k = 0 for µ = 350, 400 and 500 MeV and several values

of ε. The height of the peak increases as T is lowered in the normal phase for all values of µ. A

clear peak is seen even at as high a temperature as ε = 0.2.

Using the Thouless criterion Eq. (3.21), it can be analytically shown that the
spectral function has a divergent peak at the origin, (k, ω) = (0, 0), for T = Tc. It
can be seen in Fig. 6 that the peak remains quite distinct as away from Tc as ε = 0.2.
In the case of electric superconductivity in metals, the effect of fluctuations is small,
because of weak coupling. Precursory phenomena in electric conductivity can be
observed experimentally. For example, there appears anomalous enhancement called
‘paraconductivity’ in the electric conductivity just above the critical temperature.
However, the range of T over which clear paraconductivity is seen is limited to those
satisfying ε � 10−3, even in superconductors with large fluctuations such as dirty
alloys and low-dimensional materials. Therefore, we can conclude that fluctuations
in CSC survive for values of ε in two or three orders larger than in the case of electric
superconductors. It follows that the precursory fluctuation phenomena of CSC can
exist over a rather wide range of T , and hence they can be used as experimental
signatures of CSC.

The above arguments are based on the behavior of the spectral function ρ(k, ω).
We can draw further conclusions on the strength of the fluctuations if we consider
the dynamical structure factor S(k, ω), defined in Eq. (3.11). As mentioned above,
S(k, ω) is more directly related to observables than the spectral function ρ(k, ω),
which has a negative value for bosons when ω < 0, as shown in Fig. 7. We display
the ε dependence of S(k, ω) for µ = 400 MeV at vanishing momentum transfer in
Fig. 7(b). It can be seen that a peak appears in S(k, ω) and moves toward the
origin as the temperature approaches Tc. This behavior is consistent with that of
the spectral function, and it is a reflection of the softening of the pair fluctuations.
We remark that the position of the pole corresponds to the peak of the dynamical
structure factor, not the spectral function.

Next, we show the energy-momentum dependence of S(k, ω) at µ = 400 MeV
and ε = 0.02 and 0.1 in Fig. 8. The peak near ω = 0 flattens as k is increased in
each figure, which means that the fluctuations with smaller wavelength tend to be
suppressed.
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Fig. 7. The spectral function ρ(k, ω) and the dynamical structure factor S(k, ω) for k = 0 at

µ = 400 MeV.
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Fig. 8. The energy and momentum dependence of S(k, ω) for µ = 400 MeV. Here, we have ε = 0.02

(ε = 0.1) in the left (right) panel. The peak in S(k, ω) grows, which implies that the pair

fluctuations around ω = k = 0 become stronger, as ε approaches 0.

§4. Specific heat

In the previous section, we showed that there exist strong pair fluctuations even
well above Tc. In the present and following sections, we evaluate the effects of the
pair fluctuations on some observables. In this section, we calculate the specific heat,
taking into account the precursory fluctuations above Tc, and show that the pair
fluctuations cause an anomalous enhancement of the specific heat over range of T
that is similar to that over which a prominent peak in the spectral function is seen.

The specific heat per unit volume, cv, is calculated from the thermodynamic
potential per unit volume, Ω, as

cv = −T ∂
2Ω

∂T 2
. (4.1)
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Ω0=

Ωfl.= + + +

,

...

Fig. 9. The diagrams taken into account in the calculation of the thermodynamic potential Ω =

Ω0 + Ωfl.. Here, Ω0 is the thermodynamic potential of a free fermionic system, and Ωfl. is the

contribution from the fluctuations of the pair field.

Therefore, we first evaluate the thermodynamic potential Ω in the normal phase,
incorporating the pair fluctuations:

Ω = Ω0 +Ωfl.. (4.2)

Here, Ω0 (Ωfl.) denotes the contribution at the mean-field level (from the pair fluctu-
ations). Then, the specific heat cv is also divided into the two parts, corresponding
to Ω0 and Ωfl., respectively:

cv = c0v + cfl.
v . (4.3)

The thermodynamic potential of the free quarks Ω0 reads

Ω0 = ΩMF (M = 0, ∆ = 0)

= T
∑

n

∫
d3k

(2π)3
Tr logG0(k, νn). (4.4)

Here, Ωfl. consists of the summation of the ring diagrams shown in Fig. 9, where all
vertices correspond to the diquark interaction term Eq. (2.2). Below, we find that
these diagrams correspond to those considered in the response function DR(k, ω)
in the RPA, and hence Ωfl. exhibits anomalous behavior through DR(k, ω). The
lowest-order diagram in Ωfl. is calculated to be

Ω
(1)
fl. = −2GCT

2
∑
m,n

∫
d3p1d

2p2

(2π)6
∑

A=2,5,7

Tr [iγ5τ2λAG(p1, ωm)iγ5τ2λAG(p2, ωn)]

= −2GCT
2
∑
m,n

∫
d3p1d

2p2

(2π)6
3Tr [iγ5τ2λ2G(p1, ωm)iγ5τ2λ2G(p2, ωn)]

= 3T
∑

n

∫
d3p

(2π)3
GCQ(p, νn). (4.5)

In the second equality here, we have used the fact that the A = 2, 5 and 7 terms in
the first line of Eq. (4.5) give the same contribution; we have incorporated them all
into the A = 2 term with an overall factor of 3. Physically, this factor corresponds to
the existence of three degenerate collective excitations of the pair field in the normal
phase, that is, the red-blue, blue-green and green-red collective modes in the color
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z
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Fig. 10. The contour of integration in Eq. (4.8).

space. This factor appears in the diagrams of Ωfl. at all orders. Similarly, the l-th
order diagrams of Ωfl. can be evaluated as

Ω
(l)
fl. = −3

l
T
∑

n

∫
d3p

(2π)3
[−GCQ(p, νn)]l . (4.6)

Summing up all the terms, we obtain

Ωfl. =
∞∑
l=1

Ω
(l)
fl. = −3T

∑
n

∫
d3p

(2π)3

∞∑
l=1

1
l

[−GCQ(p, νn)]l (4.7)

= 3T
∑
n

∫
d3p

(2π)3
log [1 +GCQ(p, νn)]

= 3
∫

d3p

(2π)3

∫
C

dz

2πi
1

eβz − 1
log [1 +GCQ(p, z)]

=
3
π

∫
d3p

(2π)3
P
∫
dω

1
eβω − 1

Im log
[
1 +GCQ

R(p, ω)
]
. (4.8)

In the last equality, the contour of integration is modified so as to avoid the cut along
the real axis, as shown in Fig. 10.55) Note that the argument of the logarithmic
function is the same as the denominator of the response function of the pair field
DR(k, ω), which, we have seen, exhibits a singular behavior near Tc. Therefore, Ωfl.

should also show an anomalous behavior near Tc, which gives rise to an enhancement
of cfl.

v .51)

Before taking the derivatives in Eq. (4.1), we expand the argument of the log-
arithmic function in Eq. (4.8) in a Taylor expansion about ω = k = 0 and T = Tc.
To lowest order, this yields

G−1
C +QR(k, ω) � C0ω + C|k|2 +Aε, (4.9)

with

C0 =
∂QR(0, 0)

∂ω

∣∣∣∣
T=Tc

, C =
∂QR(0, 0)
∂|k|2

∣∣∣∣
T=Tc

, A = T
∂QR(0, 0)

∂T

∣∣∣∣
T=Tc

. (4.10)
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Fig. 11. The specific heat per unit volume in the free fermionic system, c0
v, and the effects of the

fluctuations of the pair field, cfl.
v . The total specific heat of the system is cv = c0

v + cfl.
v . It is seen

that as ε decreases, the enhancement of cfl.
v begins to become appreciable near ε = 0.05–0.1.

The dot-dashed curve represents the specific heat obtained with only the static part of Ωfl..

Note that there is no zeroth-order term in the expansion Eq. (4.9). This follows
from the Thouless criterion, G−1

C + QR(0, 0)|T=Tc = 0. One can numerically check
that the right-hand side of Eq. (4.9) indeed does provide a good approximation of
the behavior of the left-hand side over a rather wide region of ω, k and ε; roughly
for those values satisfying |ω|, |k| � 120 MeV and ε � 0.3.56) As was shown in the
previous section, the strength of the pair field is concentrated around ω = |k| = 0
as T approaches Tc. Therefore, the fluctuating modes in the vicinity of the origin of
the ω-k plane are expected to give the dominant contribution to the thermodynamic
potential and hence the specific heat. Thus, use of the simple expansion given in
Eq. (4.9) in their calculation is justified.

In Fig. 11, we plot the behavior of the specific heat c0v and cfl.
v , above Tc. It is

seen that cfl.
v diverges as T → Tc. A clear enhancement of cfl.

v is seen already near
ε = 0.05–0.1. The range of temperatures in which cfl.

v is larger than c0v is called the
Ginzburg-Levanyuk region.57),58) In our case, the Ginzburg-Levanyuk region exists
up to ε = 0.02 above Tc. In electric superconductors, the Ginzburg-Levanyuk region
is continued only to values ε satisfying ε � 10−3, even for dirty alloys. Therefore,
the Ginzburg-Levanyuk region for CSC is very much larger than that for electric
superconductors. It can be numerically checked that cfl.

v ∼ ε−1/2 near Tc. This
critical exponent of cv is the same as that obtained from the Ginzburg-Landau
equation without nonlinear terms.59) This is because we have adopted the RPA
for the pair field. However, the RPA is not valid in the vicinity of Tc, because there
the amplitude of the fluctuations becomes large, and therefore the nonlinear effects
begin to play a significant role. For this reason, the true critical exponent of the
specific heat should differ from −1/2.

The singular behavior of the specific heat above Tc of the superconductivity is
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136 M. Kitazawa, T. Koide, T. Kunihiro and Y. Nemoto

usually studied using only the static part of Ωfl.,59) i.e., the n = 0 component of the
Matsubara sum in Eq. (4.7). However, we have explicitly included the dynamical
modes as well. We now give an account of the relation between the two approaches.
The most singular behavior of Ωfl. which causes the enhancement of cfl.

v near Tc

certainly comes from the static part of Ωfl., because only the static part in Eq. (4.7)
diverges as ε → 0. Therefore, the contribution from the static part dominates the
behavior of Ωfl., at least near Tc. In Fig. 11, the specific heat obtained using only the
static part is plotted by the dot-dashed curve. It is seen that the singular behavior
of cfl.

v near Tc is reproduced by the contribution from the static part of Ωfl. alone,
and the contribution from the n �= 0 components of Ωfl. to cfl.

v is smaller than c0v.
Recently, Voskresensky calculated the specific heat above the CFL phase and

found that the Ginzburg-Levanyuk region exists up to ε ∼ 1,9) which is more than
one order of magnitude larger in the units of ε than that found in the present case.
The origin of this difference can be understood as follows. In two-flavor quark matter,
the degeneracy of the collective modes gives rise to the factor of 3 in Eq. (4.8), while
the existence of nine collective modes above Tc for the CFL phase can cause a factor
of 9 to appear in cfl.

v , provided that the strange quark mass is ignored. Therefore,
cfl.
v above the CFL phase can take a value three times larger than that in ours. The

coefficients of the Ginzburg-Landau equation in Ref. 9), which are determined in
the weak coupling limit, further increase cfl.

v . These factors can account for the wide
Ginzburg-Levanyuk region obtained in Ref. 9).

§5. Non-Fermi liquid behavior due to fluctuations

As seen in the previous sections, the pair fluctuations form a well-developed
collective mode near Tc in CSC, and they cause anomalous behavior in the specific
heat. In this section, we explore how the pair fluctuations in turn affect the properties
of quarks. We show that the pair fluctuations give rise to non-Fermi liquid behavior
of the quarks near Tc: It is shown, for instance, that a large decay width is acquired
by the quarks near the Fermi surface. It is also shown that the anomalous behavior
leads to the pseudogap in the DOS of the quarks.

The pair field may exhibit both amplitude and phase fluctuations. We assume
that the amplitude fluctuations dominate the phase fluctuations.29) Thus we are led
to employ the T-matrix approximation,60) which is suitable to evaluate the effects
of the amplitude fluctuations of the pair field on the quarks. Historically, the DOS
above Tc was first calculated within the T-matrix approximation for the case of
the electric superconductivity in the weak coupling regime more than three decades
ago.61)–63) It was shown that a pseudogap can form but only in the vicinity of Tc.
After the discovery of the HTSC, the same approximation was reconsidered in the
strong coupling regime in the study of the DOS for HTSC.30),64) In this section,
we compute the quark Green function in the T-matrix approximation and evaluate
the spectral function and the dispersion relation of the quarks in the relativistic
kinematics.
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5.1. T-matrix approach

The one-particle quark spectral function is defined by

A(k, ω) = − 1
π
· ImGR(k, ω)

= − 1
π

GR(k, ω) −GA(k, ω)
2i

= − 1
π

GR(k, ω) − γ0GR†(k, ω)γ0

2i
, (5.1)

where GR(k, ω) and GA(k, ω) are the retarded and advanced Green functions of the
quarks, respectively. Conversely, GR(k, ω) is given in terms of A(k, ω) as

GR(k, ω) =
∫
dω′ A(k, ω′)

ω − ω′ + iη
. (5.2)

The spectral function A(k, ω) has a Dirac matrix structure in the relativistic formal-
ism. From the rotational and parity invariances, the Dirac indices of A(k, ω) can be
decomposed into three parts,

A(k, ω) = ρ0(k, ω)γ0 − ρv(k, ω)k̂ · γ + ρs(k, ω), (5.3)

with k̂ = k/|k|. Actually, ρs(k, ω) vanishes in the chiral limit, which we have taken.
Note that ρ0(k, ω) is related to the number density of quarks, and hence to the DOS
of the quarks, as

N(ω) = 4
∫

d3k

(2π)3
Trc,f [ρ0(k, ω)] , (5.4)

with Trc,f denoting the trace over color and flavor indices.
To calculate the quark Green function Eq. (5.2), we use the Matsubara for-

malism. The Dyson-Schwinger equation for the quark Matsubara Green function
G(k, ωn) reads

G(k, ωn) = G0(k, ωn) + G0(k, ωn)Σ̃(k, ωn)G(k, ωn), (5.5)

where Σ̃(k, ωn) is the quark self-energy in the imaginary-time formalism. We take
the following approximate form for the self-energy Σ̃(k, ωn)

Σ̃(p, ωn) = 4
∑

A=2,5,7

(λA)2T
∑
m

∫
d3k

(2π)3
Ξ̃(p + k, ωn + ω′

m)G0(k, ω′
m) (5.6)

= 8T
∑
m

∫
d3k

(2π)3
Ξ̃(p + k, ωn + ω′

m)G0(k, ω′
m), (5.7)

where the T-matrix Ξ̃(k, νn) is

Ξ̃(k, νn) = −GC
1

1 +GCQ(k, νn)
= −GC (1 − 2GCD(k, νn)) , (5.8)

with D(k, νn) defined in Eq. (3.14). This is the so-called non-self-consistent T-matrix
approximation, which is consistent with RPA employed in §3 to describe the pair
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T

T ...

Fig. 12. The Feynman diagrams representing the quark Green function in the non-self-consistent

T-matrix approximation. The thin lines represent the free propagator G0, while the bold lines

represent the full propagator G.

fluctuations. Figure 12 is the schematic representation of our T-matrix approxi-
mation; the thin and bold lines represent the free and full Matsubara propagators,
G0(k, ω) and G(k, ω). If the thin lines in the diagram are replaced by the bold
lines, the approximation becomes the self-consistent approximation. We comment
on this approximation in the concluding remarks. The T-matrix Ξ̃(k, νn) show the
same anomalous behavior as the response function near Tc, in accordance with the
softening of the pair fluctuations.

In the second equality of Eq. (5.7), we have used the fact that the sum of the
Gell-Mann matrices in Eq. (5.6) yields

∑
A(λA)2 = 2. This factor corresponds to the

two possible patterns of Σ̃(k, ωn) in the color space owing to the existence of three
degenerate collective modes of the pair field in the normal phase; a red quark, for
example, can create a red-green and red-blue collective modes incorporating green or
blue quarks, respectively. In the case of the specific heat discussed in §4, the factor
3(= Nc) appears because the three degenerate collective modes contribute equally.
On the other hand, only two of the three collective modes can couple to an incoming
quark, and this is the reason that the factor 2(= Nc − 1) arises in the self-energy
appearing in Eq. (5.7).

The analytic continuation of Σ̃(k, ωn) to the real axis from the upper-half com-
plex energy plane gives the self-energy in real time,

ΣR(k, ω) = Σ̃(k, ωn)|iωn→ω+iη. (5.9)

After several manipulations (summarized in Appendix C), this self-energy is found
to be

ΣR(p, ω) = 2
∫

d4q

(2π)4

{
tanh

q0

2T
ΞR(p + q, ω + q0)ImGR

0 (q, q0)

+ coth
q0

2T
ImΞR(p + q, q0)GA

0 (q, q0 − ω)
}
, (5.10)

with

ΞR(k, ω) = Ξ̃(k, νn)|iνn=ω+iη = −[G−1
C +QR(k, ω)]−1. (5.11)

The imaginary part of Eq. (5.10) is

ImΣR(p, ω)
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= 2
∫

d4q

(2π)4

(
tanh

q0

2T
− coth

q0 + ω

2T

)
ImΞR(p + q, ω + q0)ImGR(q, q0). (5.12)

Using Eq. (5.10), the retarded Green function, Eq. (5.2), can be written

GR(k, ω) =
1

[GR
0 (k, ω)]−1 −ΣR(k, ω)

. (5.13)

From the rotational and parity invariances, we find that the self-energy has the
same Dirac matrix structure as the spectral function,

ΣR(k, ω) = Σ0(k, ω)γ0 −Σv(k, ω)k̂ · γ +Σs(k, ω), (5.14)

with Σ0 = (1/4)Tr[ΣRγ0], Σv = (1/4)Tr[ΣRk̂ · γ] and Σs = (1/4)Tr[ΣR]. From
Eq. (5.10), one can easily check that Σs vanishes in the chiral limit, which also
means that ρs = 0 in this case.

It is useful to decompose ΣR(k, ω) and A(k, ω) into positive and negative energy
parts using the projection operators Λ∓(k) = (1 ± γ0γ · k̂)/2. We obtain

ΣR(k, ω) = γ0(Σ−(k, ω)Λ−(k) +Σ+(k, ω)Λ+(k)),
A(k, ω) = (ρ−(k, ω)Λ−(k) + ρ+(k, ω)Λ+(k))γ0, (5.15)

where

Σ∓(k, ω) =
1
2
Tr[ΣR(k, ω)Λ∓(k)γ0] = Σ0(k, ω) ∓Σv(k, ω), (5.16)

ρ∓(k, ω) =
1
2
Tr[A(k, ω)γ0Λ∓(k)] =

1
π

Im
1

ω + µ∓ k −Σ∓(k, ω)
= ρ0(k, ω) ± ρv(k, ω) (5.17)

are the self-energies and spectral functions for positive and negative energies, respec-
tively. Using Eq. (5.16), the retarded Green function is written as

GR(k, ω) =
Λ−(k)γ0

ω + µ− k −Σ−(k, ω) + iη
+

Λ+(k)γ0

ω + µ+ k −Σ+(k, ω) + iη
(5.18)

=
Λ−(k)γ0

R−(k, ω) + iη
+

Λ+(k)γ0

R+(k, ω) + iη
. (5.19)

In the second equality, we have defined

R∓(k, ω) ≡ ω + µ∓ k −Σ∓(k, ω), (5.20)

for later convenience. The equations

Re R∓(k, ω∓) = 0, (5.21)

give the dispersion relations for quarks and anti-quarks ω = ω∓(k), respectively.
There are several possible choices of the four-momentum cutoff for the integral in

Eq. (5.10). To compute this integral, we first calculate the imaginary part Eq. (5.12);
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substituting the explicit formula for Im GR
0 (k, ω) to Eq. (5.12), the q0 integral is

removed by the delta function in Im GR
0 (k, ω) (see, Eqs. (C.10) and (C.11)). Then,

Im ΣR(k, ω) is calculated using the usual three-momentum cutoff Λ. The real part
is then evaluated from Im ΣR(k, ω) through the dispersion relation. To calculate
Re ΣR(k, ω) with the dispersion relation, we again need to introduce a cutoff. Here,
we assume that the cutoff for the dispersion relation is the same as the momentum
cutoff Λ, and we then have

ReΣR(k, ω) = − 1
π

P
∫ Λ

−Λ
dω′ ImΣR(k, ω′)

ω − ω′ . (5.22)

We have checked numerically that the quark spectral function and the DOS near the
Fermi energy are hardly affected by the choice of the cutoff in Eq. (5.22).

5.2. The quasiparticle picture of quarks

Now we present the numerical results and discuss the properties of the quarks
above Tc. To investigate the quasiparticle picture of the quarks, it is useful to consider
the behavior of the dispersion relation ω = ω∓(k) and the spectral function ρ0(k, ω).
Here, ω∓(k) is defined above; see Eq. (5.21). A remark is in order here. Because
ω∓(k) is only the solution to the real part but not the whole part of R∓(k, ω∓),
ω∓(k) may not correspond to the peak position of the spectral function and does
not represent physical excitations when the imaginary part of the Green function is
large.

We plot the the dispersion relation of the positive energy quarks ω = ω−(k) for
µ = 400 MeV and ε = 0.01 in the left panel of Fig. 13. One sees from the figure
that the dispersion relation deviates from that for free quarks, ω = k − µ, (dotted
line) and exhibits a rapid increase around the Fermi energy, ω = 0. We also show
(∂ω(k)/∂|k|)−1 in the right panel of Fig. 13. This quantity is proportional to the
DOS, provided that the imaginary part of the self-energy is ignored. As shown in
the figure, there appears a pronounced minimum of (∂ω(k)/∂|k|)−1 near the Fermi
momentum, kF = µ, reflecting the rapid increase of ω−(k). Although this rapid
increase may not be physical because there exists a large imgainary part of the
self-energy in this kinematical region, it may suggest that the gap-like structure is
induced in the dispersion relation as a precursor to CSC. We will see that this is the
case from the behavior of the spectral function.

We show the spectral function ρ0(k, ω) for µ = 400 MeV with ε = 0.01 and
0.2 in Fig. 14. One can see two families of peaks in both figures, near ω = k − µ
and ω = −k − µ, which correspond to the quasiparticle peaks of the quarks and
anti-quarks, respectively. A notable point is that the quasiparticle peak has a clear
depression around the Fermi energy, ω = 0, which represents the enhancement of
the decay rate of the quasiparticles around the Fermi energy. Thus the depression
becomes more pronounced as ε becomes smaller. This behavior is quite different from
that of the conventional Fermi liquids, for which the lifetime of the quasiparticles
becomes longer as ω approaches the Fermi energy, ω = 0.

To understand these types of non-Fermi liquid behavior of ω−(k) and ρ0(k, ω)
near ω = 0, we investigate the quark self-energy ΣR(k, ω). Before giving the numeri-
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Fig. 13. The dispersion relation for the quarks, ω = ω−(k) in the left panel, and (∂ω(k)/∂|k|)−1

in the right panel with µ = 400 MeV and ε ≡ (T − Tc)/Tc = 0.01. Near the Fermi momentum

kF = µ, we see a rapid increase of ω−(k) and a pronounced minimum of (∂ω(k)/∂|k|)−1 around

k = kF , which means that a gap-like structure is induced in the dispersion relation as a precursor

to CSC.
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Fig. 14. The spectral function ρ0 at µ = 400 MeV and ε = 0.01 and 0.2. The peaks near ω = k−µ

and ω = −k − µ correspond to the quark and anti-quark quasiparticles, respectively. Note that

there is a depression around ω = 0, which is responsible for the pseudogap formation.

cal results, we note that the spectral function of the negative energy ρ+(k, ω) always
takes small values around ω = 0, because the real part of R+(k, ω), Re R+(k, ω) �
ω + µ + k, does not become smaller around ω = 0. Thus, ρ0(k, ω) near the Fermi
energy is reproduced by ρ−(k, ω) alone:

ρ0(k, ω) =
ρ−(k, ω) + ρ+(k, ω)

2
� 1

2
ρ−(k, ω). (5.23)

Therefore, it is sufficient to consider the self-energy of the positive energy Σ−(k, ω)
in order to understand the non-Fermi liquid behavior of ω−(k) and ρ0(k, ω).

In Fig. 15, we plot the real and imaginary parts of Σ−(k, ω)|k=kF
for µ = 400

MeV and ε = 0.01. One finds a peak structure in |Im Σ−(k, ω)| and a rapid increase
in Re Σ−(k, ω) near ω = 0. These phenomena are closely related to the non-Fermi
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Fig. 15. The self-energy Σ− for k = kF with µ = 400 MeV and ε = 0.01. We observe a peak in

ImΣ− and a rapid increase of ReΣ− at the same ω = 0.
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...

Fig. 16. The decay processes of the quarks described in the non-selfconsistent T-matrix approxi-

mation.

liquid behavior of ρ0(k, ω) and ω−(k). In fact, the former means that the decay rate
of the quasiparticles is enhanced around the Fermi energy, and the latter implies an
increase of ω−(k) around ω = 0.

To understand the origin of the characteristic behavior ofΣ−(k, ω) around ω = 0,
let us consider the decay mechanism of a quark. In our calculation, a quark decays
only through the process depicted in Fig. 16, where an incident quark takes up
another quark to make a hole “h” and a diquark “(qq)” state;

q → h + (qq). (5.24)

This process is enhanced when the diquark pair is in a collective state, provided that
the energy-momentum matching is satisfied, i.e.

(ω,k) = (ωh,kh) + (ωs,ks), (5.25)

where (ω,k), (ωh,kh) and (ωs,ks) denote the energy-momentum of the decaying
particle, the hole, and the collective mode composed of the diquark pair, respectively.
We have seen in §3 that the diquark pair field makes a collective soft mode and the
pair fluctuations are strong near ω = k = 0 as T approaches Tc. Thus one sees that
the decay process Eq. (5.24) is enhanced for (ωs,ks) � (0,0) when T is close to Tc.
On the other hand, the hole energy should become ωh = µ − |kh|, since the hole
in Eq. (5.24) is on-shell. Combining these two conditions, we find that the decay
process Eq. (5.24) is most enhanced when

(ω,k) � (ωh,kh) = (µ− |k|,k), (5.26)
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Fig. 17. The imaginary and real parts of the quark self-energy Σ−(k, ω) with µ = 400 MeV and

ε = 0.01. One observes a peak in |ImΣ−| and a rapid increase of ReΣ− near ω = µ − k.

where we have used the momentum conservation in the last equality. We show
that this is indeed the case in the left panel of Fig. 17, where we show the energy-
momentum dependence of Im Σ−(k, ω) for µ = 400 MeV and ε = 0.01. There we can
clearly see peaks along the line ω = µ− |k|, as expected. At the Fermi momentum
k = kF , this peak corresponds to ω = 0, as shown in Fig. 15. We also show in the
right panel of Fig. 17 the energy-momentum dependence of Re Σ−(k, ω) for the same
µ and ε. There a rapid increase in Re Σ−(k, ω) is seen along the line ω = µ− |k|, at
which |Im Σ−(k, ω)| has a peak structure, in accordance with the behavior expected
from the dispersion relation Eq. (5.22).

Substituting ρ0 into Eq. (5.4), we obtain the DOS, N(ω), of the quarks including
the effect of the pair fluctuations. In Fig. 18, we show the DOS at µ = 400 MeV for
ε = 0.01, 0.02, 0.05 and 0.2. The DOS of the free quarks

N0(ω) =
2NfNc

π2
(ω − µ)2, (5.27)

is also shown by the thin dotted curves for comparison. We find that there appears
a clear depression in the DOS around the Fermi energy for ε = 0.01.27) This is the
pseudogap of CSC. This pseudogap survives up to ε ≈ 0.05. Therefore, the pseudo-
gap certainly does appear as an effect of the pair fluctuations. The appearance of the
pseudogap in the quark DOS can be naturally understood as a manifestation of the
non-Fermi liquid behavior in ρ0(k, ω) and ω = ω−(k), because both the pronounced
minimum of the quasiparticle peak and the rapid increase of the dispersion relation
around ω = 0 indicate a decrease of the DOS near ω = 0. Although we did not
calculate the DOS for smaller ε, say, ε < 0.01, because of numerical difficulties, it
seems that the gap-like structure grows as ε is lowered. In such a region, however,
the non-linear effects of the pair fluctuations become significant, and a systematic in-
corporation of theses nonlinear effects using, for instance, the renormalization group
analysis, should be made to obtain the correct behavior of the DOS. Such a treatment
is, however, beyond the scope of the present work.

To elucidate the chemical potential dependence of the DOS, we show the DOS
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Fig. 18. The density of states for µ = 400 MeV and various ε. The thin dotted curve represents

that of free quarks. A clear pseudogap structure is seen, which survives up to ε ≈ 0.05.
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Fig. 19. The chemical potential dependence of the DOS. Here, the quantities plotted is the ratio

of the DOS for the system under study to that for free quarks, N0(ω). The pseudogap becomes

more pronounced as µ increases.

for µ = 350, 400, 500 MeV in Fig. 19, where the values actually plotted are the ratios
N(ω)/N0(ω) of the DOS for the system under study to that of free quarks given in
Eq. (5.27). From Fig. 19, we can conclude that there is a “pseudogap region” within
the QGP phase above Tc up to T ∗ = (1.05–1.1)Tc at intermediate densities. We also
find that the pseudogap becomes more significant as µ increases. This is because the
Cooper instability becomes stronger as µ increases owing to the larger Fermi surface.

A comment is in order. In Ref. 65), the pseudogap in low density nuclear matter
is investigated, and it is found that a clear pseudogap is seen up to ε ≈ 0.0025,
which is more than one order of magnitude smaller (in units of ε) than our result.
This is simply a reflection of the strong coupling nature of QCD in the intermediate
density region. Our result obtained for a three-dimensional system reveals that a
considerable pseudogap can be formed without a low-dimensionality effect, as in
the HTSC, and that the pseudogap phenomena may be universal in strong coupling
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superconductivity.64)

§6. Summary and concluding remarks

In the present paper, we have examined precursory fluctuations of the diquark-
pair field above the critical temperature Tc for two-flavor color superconductivity
(CSC) in heated quark matter at moderate density. A Nambu-Jona-Lasinio-type
model was adopted as an effective theory embodying the strong coupling nature of
QCD, which becomes more relevant for quark matter at such a relatively low den-
sity. The detailed formulation given here is based on linear-response theory, and a
detailed account of the calculational procedure has also been given in the imaginary-
time formalism. We showed that the pair fluctuations develop a collective mode
whose complex frequency approaches the origin of the complex energy plane as T
decreases toward Tc; i.e., the pairing fluctuations form the soft mode of CSC. More-
over, it was shown that the pairing fluctuations are quite strong even well above Tc,
owing to the strong-coupling nature of the dynamics, in comparison with usual metal
superconductors. We have presented an extensive investigation of the properties of
the precursory pair field with finite momenta. We calculated the spectral function
of the pair fluctuations ρ(k, ω) as a function of the momentum k and energy ω to
clarify the spatial and temporal behavior of the pair fluctuations. We also presented
the behavior of the dynamical structure factor. It was found that the collective mode
with a shorter wavelength has a larger decay width and smaller strength.

We examined the effects of the precursory pair fluctuations on the specific heat
and the quark spectrum at values of T close to but above Tc. It was shown that
cv increases rapidly when T is lowered toward Tc, and it diverges at T = Tc, along
with singular growth of the pair fluctuations, in accordance with the general theory
of second-order phase transitions.

The single-quark Green function was also calculated for the first time by incor-
porating the effects of the diquark-pair fluctuations in the T-matrix approximation.
We showed that the quarks behave like a typical non-Fermi liquid, owing to the
soft mode. In particular, the quarks have a larger width near the Fermi surface as
a result of the interaction with the pairing soft mode. This leads to a pseudogap
in the density of states (DOS) of the quarks in the vicinity of the critical point.
The chemical potential dependence of the quark spectrum and the DOS were also
studied. Our results suggest that the heated quark matter in the vicinity of CSC
phase transition at moderate densities is not a simple Fermi liquid, due to the strong
fluctuations of the pair field. This may invalidate the mean-field approximation. It
is also to be noted that a pseudogap can form even in (relativistic) three-dimensional
systems without the need for low-dimensionality, as has been suggested for HTSC.
This leads us to conjecture that the formation of a pseudogap may be a universal
phenomenon for strongly correlated matter irrespective of the spatial dimensionality
of the system.

What observables can be most strongly affected by the precursory fluctuations
of the diquark-pair field? It is known in the context of the condensed matter physics
that pair fluctuations above Tc affect several transport coefficients, including the
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...

...

γµ γν

Aslamasov-Larkin term

...

γµ γν

Maki-Thompson term

external gauge field
(photon or gluon)

Fig. 20. The diagrams that contribute to the photon (or gluon) self-energy, representing the

Aslamazov-Larkin term (left) and the Maki-Thompson term (right).

electric conductivity (EC) and the phonon absorption coefficient, as well as the spe-
cific heat.66) A large excess of electric conductivity seen near but above Tc is known
as paraconductivity.66) They are attributed to pairing fluctuations in the normal
phase: Typical microscopic mechanisms that can give rise to such an anomalously
large conductivity are those resulting from the so-called Aslamazov-Larkin and Maki-
Thompson terms.67) Those are depicted in Fig. 20. The dotted lines in the figure
denote the gauge field, i.e., the electro-magnetic field (or the photon) in this case. A
direct analogy of electric superconductivity to CSC may be realized by replacing the
photon field by the gluon field in Fig. 20, leading to color-paraconductivity above Tc in
our case. However, unfortunately it would be difficult detect the color-conductivity
directly in experiment or observation. Nevertheless, note, however, that the external
photon field can couple to the diquark-pair fluctuations of CSC. This coupling is
precisely depicted by the same diagram, Fig. 20, with the pair field interpreted as
being composed of colored quarks; in other words, the photon self-energy in quark
matter at T > Tc is strongly modified due to the fluctuating diquark pair field. This
is interesting, because modifications of the photon self-energy in heated quark matter
near Tc should bring about an enhancement of dilepton emission from the system,
which may carry some information concerning the fluctuations of the diquark-pair
field in heated quark matter, created, say, in the intermediate stage of heavy-ion
collisions. It is also conceivable that the electric conductivity in quark matter will
show anomalous enhancement at T near Tc in the normal phase due to fluctuations
of the colored pair-field through the same process.

The precursory phenomena may also affect the cooling process of compact stars.
The temperature of newborn compact stars just after a supernovae can exceed 40
MeV. Therefore, dense matter in the interior of compact stars may undergo CSC
phase transition. However, it may be the case that the β-equilibrium condition is
not completely satisfied in proto-compact stars just after supernova explosion, in
contrast to the situation in the interiors of cold compact stars, as mentioned in the
Introduction. Furthermore, a soft mode necessarily appears if the phase transition
is second order, irrespective of the pattern of CSC. Therefore, the results presented
in the preceding sections can apply to the new-born compact stars. If it is the case,
then the precursory phenomena could affect their cooling process. Indeed, we have
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shown that the specific heat is enhanced through the precursory diquark soft mode
as T approaches Tc from above. Moreover, the neutrino mean-free path should be
affected and become shortened through the scattering with the soft mode near Tc.

In the present work, we have employed the non-self-consistent T-matrix approx-
imation. As another, more complicated approximation, there is the self-consistent
T-matrix approximation, in which all free fermion propagators are replaced by re-
summed fermion propagators. However, the self-consistent approach does not nec-
essarily yield better approximation. As shown in Ref. 68), the vertex corrections to
the self-energy ignored in the self-consistent approximation cancel each other, and
only the lowest-order term survives. As shown in Ref. 68) again, if one takes into
account the vertex corrections as well as the self-consistency to the self-energy, their
contributions approximately cancel each other, and correspondingly the results are
rather close to those obtained with the non-self-consistent approximation.

In this paper, we have used a fixed diquark coupling GC to examine the T and
µ dependences of the quark spectrum and the DOS. An investigation of the quark
spectrum with a larger GC may provide a deeper understanding of the underlying
physics for the formation of the pseudogap, for instance, in terms of the so-called
resonance scattering.30),64),69)
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Appendix A
Calculation of Q(k, ω)

In this appendix, we calculate the quark-quark polarization function Q(k, νn)
given in Eq. (3.15), which reads

Q(k, νn) = −2T
∑
m

∫
d3p

(2π)3
Tr
[
iγ5τ2λ2CG0(k − p, νn − ωm)iγ5τ2λ2CGT

0 (p, ωm)
]

= −2Nf (Nc − 1)T
∑
m

∫
d3p

(2π)3
TrD [G0(k − p, νn − ωm)G0(p, ωm)] , (A.1)

where TrD denotes the trace over the Dirac spinor. Here, G0(k, ωn) is the free
Matsubara Green function

G0(k, ωn) ≡ 1
(iωn + µ)γ0 − p · γ =

∑
s=±

Λsγ
0

iωn + µ+ s|p| , (A.2)
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Fig. 21. The domains of integration in Eqs. (A.4) and (A.7).

where Λ∓ = (1 ± γ0γ · k̂)/2 are the projection operators onto positive and negative
energies, respectively. Substituting Eq. (A.2) into Eq. (A.1), we obtain

Q(k, νn)

= −2Nf (Nc − 1)T
∑
m

∫
d3p

(2π)3
∑

s,t=±
TrD

[ |k − p|γ0 + s(k − p) · γ
2|k − p|

|p|γ0 + tp · γ
2|p|

]

× 1
iνn − iωm + µ+ s|k − p|

1
iωm + µ+ t|p|

= 2Nf (Nc − 1)
∑

s,t=±

∫
d3p

(2π)3
|k − p||p| − st(k − p) · p

|k − p||p|
f+(−s|k − p|) − f−(t|p|)
iνn + 2µ+ s|k − p| + t|p|

= Nf (Nc − 1)
∑
s=±

∫
d3p

(2π)3

{
(|k − p| + |p|)2 − k2

|k − p||p|
f+(−s|k − p|) − f−(s|p|)
iνn + 2µ+ s(|k − p| + |p|)

−(|k − p| − |p|)2 − k2

|k − p||p|
f+(−s|k − p|) − f−(−s|p|)
iνn + 2µ+ s(|k − p| − |p|)

}
(A.3)

=
Nf (Nc − 1)

(2π)2k

∑
s=±

∫
S
de1de2

{[
(e1 + e2)2 − k2

] f+(−se1) − f−(se2)
iνn + 2µ− s(e1 + e2)

− [(e1 − e2)2 − k2
] f+(−se1) − f−(−se2)
iνn + 2µ− s(e1 − e2)

}
. (A.4)

Using Eq. (A.3), Eq. (3.18) can be obtained with a simple manipulation. In the last
equality, we have introduced the new variables e1 ≡ |k − p| and e2 ≡ |p|, which are
such that ∫

d3p

(2π)3
1

|k − p||p| =
1

(2π)2k

∫
S
de1de2, (A.5)

with S being the domain of integration shown in Fig. 21(a).
Performing the analytic continuation QR(k, ω) = Q(k, νn)|iνn=ω+iη and using

the fact that the domain S is invariant under the exchange of e1 and e2, we have

QR(k, ω) =
Nf (Nc − 1)

(2π)2k

∫
S
de1de2
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×
{

[(e1 + e2)2 − k2]
(

1 − 2f−(e1)
ω + 2µ− e1 − e2 + iη

− 1 − 2f+(e1)
ω + 2µ+ e1 + e2 + iη

)

+2[(e1 − e2)2 − k2]
f−(e1) − f+(e2)

ω + 2µ− e1 + e2 + iη

}
(A.6)

=
Nf (Nc − 1)

(2π)2k

∫
S′

dE1dE2

2

×
{

(E2
1 − k2)

(
tanh E1+E2−2µ

4T

ω + 2µ− E1 + iη
− tanh E1+E2+2µ

4T

ω + 2µ+E1 + iη

)

+2(E2
2 − k2)

f−(E1+E2
2 ) − f+(E1−E2

2 )
ω + 2µ− E2 + iη

}
. (A.7)

In the second equality, the new variables E1 ≡ e1 + e2 and E2 ≡ e1 − e2 have been
introduced for later convenience to obtain the imaginary part of QR(k, ω).

As explained in the main text (§3), we first calculate the imaginary part Q
without introducing a cutoff, and then we define the real part using the dispersion
relation with a momentum cutoff introduced. From Eq. (A.7), we have for the
imaginary part of QR,

ImQR(k, ω)

= −πNf (Nc − 1)
8π2k

∫ ∞

k
dE1

∫ k

−k
dE2

×
{

(E2
1 − k2)

(
tanh E1+E2−2µ

4T δ(ω + 2µ− E1) − tanh E1+E2+2µ
4T δ(ω + 2µ+ E1)

)
+2(E2

2 − k2){f(E1+E2
2 − µ) − f(E1−E2

2 + µ)}δ(ω + 2µ− E2)
}

= −Nf (Nc − 1)
8πk

{
θ(|ω + 2µ| − k)

∫ k

−k
dE2

[
(ω + 2µ)2 − k2

]
tanh ω+E2

4T

+2θ(−|ω + 2µ| + k)
∫ ∞

k
dE1

[
(ω + 2µ)2 − k2

] {f(E1+ω
2 ) − f(E1−ω

2 )}
}

= −Nf (Nc − 1)T
2πk

[
(ω + 2µ)2 − k2

]{
θ(|ω + 2µ| − k) log

cosh(ω + k)/4T
cosh(ω − k)/4T

+θ(−|ω + 2µ| + k) log
1 + e−(ω+k)/2T

1 + e−(−ω+k)/2T

}

= −Nf (Nc − 1)T
2πk

[
(ω + 2µ)2 − k2

]
×
{

log
cosh(ω + k)/4T
cosh(ω − k)/4T

− ω

2T
θ(−|ω + 2µ| + k)

}
. (A.8)

As stated above, we next define the real part of QR through the dispersion
relation with Eq. (A.8) for the imaginary part:

ReQR(k, ω) = − 1
π

P
∫
dω′ ImQ(k, ω)

ω − ω′ . (A.9)
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We introduce a cutoff so that the integration of Eq. (A.9) becomes consistent with
the Thouless criterion Eq. (3.21). With vanishing momentum, Eq. (A.8) becomes

ImQR(k → 0, ω) = −Nf (Nc − 1)
4π

(ω + 2µ)2 tanh
ω

4T
+O(k2). (A.10)

Substituting this equation into Eq. (A.9), we have

ReQR(0, 0) =
Nf (Nc − 1)

4π2
P
∫
dω

(ω + 2µ)2 tanh ω
4T

ω
. (A.11)

In comparison with Eq. (2.9), we find that the cutoff should be introduced as in
Eq. (3.23).

Appendix B
Analytic Properties of Q(k, ω)

In order to find the pole of the response function DR(k, ω), we have to derive
the analytic form of QR(k, ω) in the lower-half complex energy plane, as given in
Eq. (3.26).

We here restate the definitions of Q(k, z), QR(k, z) and QA(k, z) in the complex-
energy plane C

Q(k, z) ≡ Q(k, νn)|iνn→z, (B.1)
QR(k, z) ≡ QR(k, ω)|ω→z, (B.2)
QA(k, z) ≡ QA(k, ω)|ω→z. (B.3)

Because Q(k, z) has a cut along the real axis, QR(k, z) (QA(k, z)) coincides with
Q(k, z) only in the upper (lower) half plane C

+ (C−):

Q(k, z) = QR(k, z) for z ∈ C
+,

Q(k, z) = QA(k, z) for z ∈ C
−. (B.4)

In this appendix, we wish to find the analytic form of QR(k, z) in C
−. To

accomplish this, we first evaluate QR(k, z) just below the real axis, at z = ω − iη,
and then determine QR(k, z) in C

− by analytic continuation. Here, we note that
the discontinuity of Q(k, z) at the cut along the real axis is characterized by the
discontinuity of the imaginary part, that is,

ReQR(k, ω + iη) = ReQ(k, ω + iη) = ReQ(k, ω − iη) = ReQA(k, ω − iη), (B.5)
ImQR(k, ω + iη) = ImQ(k, ω + iη) = −ImQ(k, ω − iη) = −ImQA(k, ω − iη)

≡ I(k, ω), (B.6)

with ω being a real variable. We find from Eq. (3.22) that cuts of I(k, z) ≡
I(k, ω)|ω→z exist at Imz = 2(2n + 1)πT . Hence, this function is analytic in CI ≡
{z ∈ C| − 2iπT < Imz < 2iπT}. Using Eqs. (B.5) and (B.6), we find

QR(k, ω) − iI(k, ω) = QR(k, ω + iη) − iImQR(k, ω + iη)
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z

z

k k(a) (b)

Fig. 22. The analytic continuation of QR(k, ω) for a vanishing momentum.

= ReQR(k, ω + iη) = ReQA(k, ω − iη)
= QA(k, ω − iη) − iImQA(k, ω − iη),
= Q(k, ω − iη) + iI(k, ω), (B.7)

which leads to

QR(k, ω − iη) = QR(k, ω + iη)
= Q(k, ω − iη) + 2iI(k, ω). (B.8)

In the first equality here, we have used the fact that QR(k, z) is a continuous function
on the real axis, and Eq. (B.7) is applied to derive the second equality. Equation
(B.8) implies that we can express QR(k, z) just below the real axis in terms of the
functions Q(k, z) and I(k, z), whose analytic forms in Imz < 0 are already known.
Because both Q(k, z) and I(k, z) are analytic functions in C

− ∩ CI , the analytic
form of QR in this domain can be obtained straightforwardly from the uniqueness
theorem of the analytic continuation as

QR(k, z) = Q(k, z) + 2iI(k, z) for z ∈ C
− ∩ CI . (B.9)

Although Eq. (B.9) is valid only for Imz > −2πT , this region is sufficient to find the
pole.

For vanishing momentum, analytic continuation into the lower half plane is
understood as changing the contour of the momentum integration as shown in Fig. 22.
In this case, the term originating from the pole integration is added in the lower half
plane,8) and we obtain

QR(0, z ∈ C
−) =

2Nf (Nc − 1)
π2

[
P
∫ Λ

−Λ
k2dk

tanh |k|−µ
2T

z − 2(|k| − µ)

−1
2
2πi

(
µ+

z

2

)2
tanh

z

4T

]
. (B.10)

Equation (B.10) coincides, of course, with the k → 0 limit of Eq. (B.9).

Appendix C
Calculation of Σ

To carry out the summation of the Matsubara frequency ω′
m in Eq. (5.7), it is

sufficient to consider the case ωn > 0. Because both Ξ(k, z) and G0(k, z) have a
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Fig. 23. The contours of the q0 integrals in Eqs. (C.1) and (C.3).

cut along the real axis, the integrand of Eq. (5.7) has two cuts along the horizontal
lines Imz = 0 and Imz = −iωn in the complex energy plane as shown in Fig. 23.
Therefore, we must to separate the Matsubara frequency into four parts to carry out
the Matsubara sum in Eq. (5.7):

Σ̃(p, ωn) = 8T
∑
m

∫
d3q

(2π)3
Ξ̃(p + q, ωn + ωm)G0(q, ωm)

= 4
∫

C1

dq0

2πi
tanh

q0

2T

∫
d3q

(2π)3
ΞR(p + q, iωn + q0)GR

0 (q, q0)

+ 4
∫

C2

dq0

2πi
tanh

q0

2T

∫
d3q

(2π)3
ΞR(p + q, iωn + q0)GA

0 (q, q0)

+ 4
∫

C3

dq0

2πi
tanh

q0

2T

∫
d3q

(2π)3
Ξ(p + q, iωn + q0)GA

0 (q, q0)

+ 4
∫

C4

dq0

2πi
tanh

q0

2T

∫
d3q

(2π)3
ΞA(p + q, iωn + q0)GA

0 (q, q0), (C.1)

where the contours C1–C4 are shown in the left panel of Fig. 23. The definitions of
the retarded and advanced T-matrices ΞR and ΞA are

Ξ(p, z) = ΞR(p, z) for z ∈ C
+,

Ξ(p, z) = ΞA(p, z) for z ∈ C
−. (C.2)

Next, we change the contours C1–C4, as shown in Fig. 23. Then the contribution
from the integral along the large circle vanishes, and only the integrals along the
horizontal lines Imω = 0 and Imω = −iωn remain. Thus, we have

Σ̃(p, ωn) = 4
∫

d3q

(2π)3

∫ ∞

−∞

dq0

2πi
tanh

q0

2T

×ΞR(p + q, iωn + q0)
{
GR

0 (q, q0) −GA
0 (q, q0)

}
+ 4

∫
d3q

(2π)3

∫ ∞−iωn

−∞−iωn

dq0

2πi
tanh

q0

2T
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×{ΞR(p + q, iωm + q0) − ΞA(p + q, iωm + q0)
}
GA

0 (q, q0)

= 2
∫

d4q

(2π)4
{

tanh
q0
2T

ΞR(p + q, iωn + q0)ImGR
0 (q, q0)

+ tanh
q0 − iωn

2T
ImΞR(p + q, q0)GA

0 (q, q0 − iωn)
}
, (C.3)

where
∫
d4q/(2π)4 ≡ ∫ dq0/(2π)

∫
d3q/(2π)3, and the relations

ImΞR = (ΞR − ΞA)/2i, ImGR
0 = (GR

0 −GA
0 )/2i (C.4)

have been used in Eq. (C.3). It is known that the singularity corresponding to
the integral along C3 does not give rise to any problem.55) Then, bearing in mind
that tanh ω−iωn

2T = coth ω
2T , and employing the analytic continuation ΣR(k, ω) =

Σ̃(k, ωn)|iωn=ω+iη, we obtain the self-energy in real time,

ΣR(k, ω) = 2
∫

d4q

(2π)4

{
tanh

q0

2T
ΞR(p + q, ω + q0)ImGR

0 (q, q0)

+ coth
q0

2T
ImΞR(p + q, q0)GA

0 (q, q0 − ω)
}
. (C.5)

To simplify Eq. (C.5) further, we substitute the explicit form of the free Green
function,

G
{R,A}
0 (q) =

Λ−(q)
q0 + µ± iη − |q| +

Λ+(q)
q0 + µ± iη + |q| , (C.6)

and its imaginary part,

ImG{R,A}
0 (q) = ∓π (Λ−(q)δ(q0 + µ− |q|) + Λ+(q)δ(q0 + µ+ |q|)) , (C.7)

into Eq. (C.5). Then, Eq. (C.5) becomes

Σ0(p, ω) =
1
4
Tr{γ0Σ(p, ω)}

= −1
2

∫
d3q

(2π)3

∫
dω

2π
Im ΞR(p + q, ω)

ω − p0 − |q| + µ− iη

[
tanh

|q| − µ

2T
− coth

ω

2T

]

−1
2

∫
d3q

(2π)3

∫
dω

2π
Im ΞR(p + q, ω)

ω − p0 + |q| + µ− iη

[
tanh

−|q| − µ

2T
− coth

ω

2T

]
,

(C.8)

Σv(p, ω) = −1
4
Tr{(p̂ · γ)Σ(p, ω)}

= −
∫

d3q

(2π)3

∫
dω

2π
Im ΞR(p + q, ω)

ω − p0 − |q| + µ− iη
(q̂ · p̂)

[
tanh

|q| − µ

2T
− coth

ω

2T

]

+
∫

d3q

(2π)3

∫
dω

2π
Im ΞR(p + q, ω)

ω − p0 + |q| + µ− iη
(q̂ · p̂)

[
tanh

−|q| − µ

2T
− coth

ω

2T

]
.

(C.9)
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The imaginary parts of these quantities are found to be

Im Σ0(p, p0)

= −1
4

∫
d3q

(2π)3
Im ΞR(p + q, p0 + |q| − µ)

[
tanh

|q| − µ

2T
− coth

p0 + |q| − µ

2T

]

−1
4

∫
d3q

(2π)3
Im ΞR(p + q, p0 − |q| − µ)

[
tanh

−|q| − µ

2T
− coth

p0 − |q| − µ

2T

]
,

(C.10)
Im Σv(p, p0)

= −1
4

∫
d3q

(2π)3
Im ΞR(p + q, p0 + |q| − µ)(q̂ · p̂)

[
tanh

|q| − µ

2T
− coth

p0 + |q| − µ

2T

]

+
1
4

∫
d3q

(2π)3
Im ΞR(p + q, p0 − |p| − µ)(q̂ · p̂)

[
tanh

−|q| − µ

2T
− coth

p0 − |p| − µ

2T

]
.

(C.11)
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