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Abstract. A problem of enduring interest in connection with the study of

frames in Hubert space is that of characterizing those frames which can es-

sentially be regarded as Riesz bases for computational purposes or which have

certain desirable properties of Riesz bases. In this paper we study several as-

pects of this problem using the notion of a pre-frame operator and a model

theory for frames derived from this notion. In particular, we show that the

deletion of a finite set of vectors from a frame {jc,,}^, leaves a Riesz basis if

and only if the frame is Besselian (i.e., SSii anXn converges <=> (a„) e I2).

1. Introduction

Let 77 denote a separable, infinite-dimensional Hilbert space. A sequence

{x„}^i, in H is called a frame [3] if there exist positive numbers A and B

for which
oo

¿||x||2<£|(*,*„)|2<2i||x||2
n=l

for all x in 77. Of course, a particular example of a frame (and one that

provides the motivation for the entire theory) is an orthonormal basis for 77
or, more generally, any isomorphic image of an orthonormal basis, i.e., a Riesz

basis [6, p. 160] for 77.
Generally speaking, frames provide a natural generalization of orthonormal

bases in problems involving the expansion of vectors in 77 into a series in

situations where uniqueness of representation may be unimportant and where

an attempt to use an orthonormal basis may actually be a hindrance to ef-
fective computation (see [5] and its references). In the particular case where

77 = L2(p), certain frames are called wavelets (e.g., [5]) and have become an

important tool for handling such expansion problems in cases where Fourier

series methods are difficult to apply (see, e.g., [1, 2, 7, 12]).
As these remarks suggest, the heart of the notion of a frame {xn}^, lies in

the possibility of expanding vectors in 77 as a convergent series 2~2^Li a"xn • In

fact, every x in 77 has a "canonical" representation x = Yln°=\(^~lxn > x)x„ ,
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where S is the so-called frame operator associated with {x„}~ , [5], and hence

one in which the coefficients of the series are in I2. Except in the particular

case where {x„}^, is a Riesz basis for 77, a vector x in 77 will generally have

infinitely many series representations in terms of {x„}£L[ and the coefficients in

such expansions need not come out of I2 (for example, let {x,,}^ be the frame

{ex,-ex,e2,-e2,...}, so x = £~, \en = £~ ■ anxn for a2n-X = ± + -L

and a2„ = 4^ for all n).

A natural and important problem which arises, then, is that of determining
when a frame is actually a Riesz basis for 77 or, more generally, when a frame

is a "near-Riesz basis" in the sense that the deletion of a finite subset leaves

a Riesz basis (in the language of some authors, the frame has "finite excess").

The answer to the first of these questions is well known [5]; a frame {x„} is
a Riesz basis «• it is exact (i.e., no vector in the set may be deleted without

leaving an incomplete set). In this paper we study the second, more general,

problem of determining when a frame is a near-Riesz basis. Central to this

investigation is the introduction of what we call a "pre-frame operator" and the

connection of this concept to that of a "Besselian frame", one whose convergent

series expansions have coefficients in I2 . In particular, we show (Theorem 2.5)
that a frame is a near-Riesz basis -&■ it is Besselian. In the process we develop

a simple model theory for frames in which the study of abstract frames can be

reduced to the study of a particular canonical type of frame whose properties

are often more easily deduced.

The author expresses his appreciation to Professor C. Heil for his helpful

comments regarding frames and their relationship to bases. The interested

reader should consult the papers [5, 6], in particular, for the motivation and

background for much of what appears here.

2. Besselian frames and near-Riesz bases

As usual, we denote by I2 the Hilbert space of all square-summable sequences

of scalars and by {en}^Lx the unit vector basis for I2 defined by e„ = {o¡n}°Zx •

By analogy to the case of a Schauder basis (e.g., [11, pp. 337, 396]) we say that

a frame {x,,}^, for 77 is:

(i) Besselian, if whenever Y^=ianxn converges, then {an}£Li € I2 ',

(ii) unconditional, if whenever £^Li 0„x„ converges, it converges uncon-

ditionally; and
(iii) a near-Riesz basis, if there is a finite set a for which {xn}n^a is a Riesz

basis for 77.

As mentioned in §1, we begin our study with a simple characterization of

frames in a Hilbert space as images of an orthonormal basis under a quotient
map. In this context the relationship of general frames to Riesz bases becomes

very transparent, as does the sense in which frames are a natural generalization

of Riesz basis.

Theorem 2.1. A sequence of vectors {x,,}^, in a Hilbert space 77 is a frame •»

there exists a bounded linear operator Q from I2 onto H for which Qe„ = x„

for all n.

Proof. (=>) If {x„}^i, is a frame in 77 then, by definition, there are positive

constants A and B so that for all x,  A\\x\\2 < ££L, |(x, x„)|2 < B\\x\\2.
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In particular, Yln°=i \(x, xn)\2 converges for all x e 77, so we can define

a bounded linear operator U: 77 —> I2 by U(x) = {(x,x„)}£L,. Clearly

II^OOII2 > ^||x||2, so U is bounded below on the unit sphere in 77 and hence

has closed range. It follows that Q = U* maps I2 onto 77 [4, p. 487], and
since (x, Qe„) = (Ux, e„) = (x, x„) for all n and all x € 77, Qe„ = x„ for

all n.
(<=) On the other hand, suppose Q is an operator from I2 onto 77 for

which Qe„ = xn for all n . Then for any x £ 77, Q*(x) = Y^Li(Q'x ■> en)en =

¿Z7=i(x> xn)en - If we set B = ||ß*||2, it follows that 5||x||2 > ||ß**ll2 =

127=1 \(x ' xn)\2 ■ Moreover, since Q maps onto 77, the operator Q* is one-to-

one with closed range [4, p. 487] and hence is bounded below on the unit sphere

in 77. That is, there is some positive number A for which Yln°=i !(•*> xn)\2 —

||ö*x||2 > ,4||x||2 for all x £ 77. By definition, then, {x„}£L, is a frame for 77
and the theorem is proved.

Terminology. 1. If {Xn}^ is a frame in 77, the quotient map Q: I2 -» 77

for which Qe„ — xn guaranteed by Theorem 2.1 is clearly unique and has the

property that QQ*(x) = ££L,(x„, x)x„ for all x £ 77. That is, QQ* is the
so-called frame operator [5] associated with {x„}£L, ; consequently, we call Q

the pre-frame operator associated with {x„}^,.

2. As is customary for the case of bases in Banach spaces [11, p. 68] we
will say that two frames {x„}^, and {yn}^ in Hilbert spaces 77i and 772 ,

respectively, are equivalent if there is an isomorphism V from 77! onto 772

for which Vxn = yn for all n . Clearly, then, equivalent frames have the same

linear-topological properties and hence may be identified with one another.

Now if P denotes the orthogonal projection of I2 onto a closed subspace X

of I2 , by Theorem 2.1 the set {Pe„}^Lx is a frame for the Hilbert space X. On
the other hand, if {x„} is an arbitrary frame in 77 then by Theorem 2.1 there

is an operator Q from I2 onto 77 for which Qe„ = x„ for all n. It follows

that if P is the orthogonal projection of I2 onto (kerQ)-1 then Q(Pen) - xn

for all n and Q maps (kerQ)-1 isomorphically onto 77. That is, the frames
ixn}„*Lx m H and {T^n}^! in (kerQ)-1 are equivalent (under the induced

isomorphism Q), and the study of arbitrary frames is reduced to the study of

frames of the form {7>e„}^1 in a closed subspace of I2 .

We state this result formally for future reference (keeping in mind, as well,

the details of the equivalence of the frames involved as outlined above):

Theorem 2.2. Every frame is equivalent to one of the form {Pe„}^Lx, where P

is some orthogonal projection on I2 .

As we remarked earlier, we will use these ideas to study the problem of

characterizing frames which are near-Riesz bases. In particular, we examine

the relationship between Besselian frames and Riesz bases in a Hilbert space.

Obviously, a Besselian frame in 77 need not actually be a Riesz basis since

a frame, in general, need not even be linearly independent. For example, the

frame {ex, ex, e2, e-¡, ...} in I2 is certainly Besselian but not a Riesz basis!

However, this example and others like it turn out to be indicative of the general

situation: If {x„}^, is a Besselian frame, then by deleting some finite number
of vectors we are left with a Riesz basis. The following theorem on pre-frame

operators forms the basis for establishing this result.
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Theorem 2.3. Let {x„}^i, be a Besselian frame in 77. If Q: I2 -> 77 is the pre-
frame operator associated with {x„}^i,, then Q has finite-dimensional kernel.

Proof. Let P denote the orthogonal projection of I2 onto (kerQ)-1. As we
showed in Theorem 2.2, {Pen}%Lx is a frame in (kerQ)1- which is equivalent

t0 {Xn}^ and hence Besselian by assumption. Since ker Q = kerP, we need

only show that kerP is finite dimensional.

Suppose, to the contrary, that kerP is infinite dimensional and therefore

has an orthonormal basis {0¡}Si • Then 0 = Pfa = £~ i(en » <t>x)Pen , so since

||(/>i|| = 1 we can choose some Nx for which both ||£^ii(e,,, 0i)£«ll > ~m

an¿ II Y^íi(en> <J>i)Pen\\ > \ ■ Since {<j)¡} converges weakly to zero in I2 , we

can then choose some m2 > mx — 1 for which ||(/>m2 - Y17=nx+i (en > </>m2)enll <

Yg. As in the previous step, it follows from this and the fact that P<j>mi =

0 that we can get some N2 > Nx so that || ¿Z^ÍN¡+X(en, <t>m2)en\\ > ^ and

IIE^1+i(^^m2)^„||>|.Thatis,

N2        {

V]   -j=(en, (t>m2)en
t¡T^ v2n=N, + l

N2

£
n=N, + l

>
1

V2
(en, (t>m2)Pe„

V2-V2'

1
<

v/2-8'

and, of course,

7V2

n=N, + l V2
(e„, <j>m1)Pen <-=    forallr>7Y1 + l.

- y/2

By the same argument, choose m3 > m2 so \\(ßm} - T,7=N2+i(en, <l>m})e„\\ < ¿
"^3 ±_ta        A,      -\^»   II   —  _Land choose N3 > N2 so that || E„=iv2+i 75(en > <Pmi)en\\ > ^75 , while

N3
1

(&n ) <Pm¡)I^^n
1

v^-ló
and

r       j

E   -j=(en, 4>mi)Pen
rr^, V3n=N2+l

< J_
71^   vT

for all r > N2 + 1.
Continuing in this fashion we construct increasing sequences {wa-}|?=i and

{NK}f=0 (where N0 = 1) for which

Afc+i ,

(Cn ) YntK+i )en(i)

(Ü)

£
n=NK+l

NK+i

£
n=NK+l

and

(iii)
n=NK+l

^/K+~ï

1

v^TT

_1_
V^rfTT

>
1

(&n ) 'PniK+i )P^n <

y/tCTÏ • y/2'

1

VX+T • 2*+2

(en, (t>mK+l)Pen <
1

v^+T
for all r> NK + l.
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Clearly, the series

oo oo      2Vy+i .

Y,c»Pe" = Y,   £   -7==(en,(ßmKJPen
n=l K=0n=NK+l V      +

converges in I2 (by (ii) and (iii)). However, by (i) (and the divergence of the

harmonic series) it is also clear that £J¡li c2 = +00, so {Pe„}%Lx cannot be a

Besselian frame. But this is a contradiction to our assumption, and it follows

that kerP must be finite dimensional.

Remark. Recall that an operator from one Banach space to another is called a

Fredholm operator [10, p. 125] if it is onto and has a finite-dimensional kernel.

Using such terminology, Theorem 2.3 can be stated as follows: If {x„}£l, is

a Besselian frame in H, the associated pre-frame operator Q is a Fredholm
operator.

In fact, the converse to Theorem 2.3 is also true but is really only a simple

consequence of our next result which shows that it is the finite-dimensionality

of the kernel of the pre-frame operator which determines the Riesz basis—like

behavior of the frame.

Theorem 2.4. Let {x„}^i, be a frame in 77 and Q: I2 -> H the associated pre-

frame operator. Then kerQ is finite dimensional & {xn}^, is a near-Riesz

basis for 77.

Proof. According to the comments preceding Theorem 2.2, if P is the orthog-
onal projection of I2 onto (kerQ)-1 then {Pen}£Li is a frame in (kerQ)-1
which is equivalent to {x„} . Hence, {x„}^i, is a near-Riesz basis for 77 if

and only if {Pen}^Lx is a near-Riesz basis for (kerg)^ = ranP.

Now suppose kerß (= kerP) is finite dimensional. Then 7 - P is the or-

thogonal projection onto this finite-dimensional subspace and hence is certainly

a Hilbert-Schmidt operator [9, p. 34]. That is, ¿Zn°=i IK7 ~ p)en\\2 < +00, so

there is an integer N for which Y^Ln+i \\en~P^n\\2 < 1. If we set zn = e„ for

n = 1, 2, 3, ... , TV and z„ = Pen for n > N + I, then £~ , We* ~ zn\\2 < 1.

so {zn}^Lx is a basis for I2 which is equivalent to {a}^, [8]. In other words,

{zn}™=x is a Riesz basis for I2 , and it follows that {Pen}%°=N+i — izn)T=N+i *s

a Riesz basis for its closed linear span [Pe„]%LN+l in I2 . But this is a subspace

of finite codimension in (kerQ)-1, and since {Pe„}£L, spans (kerQ)x the set

{Pe„}^LN+x can be extended by the addition of some subset of {Pe„}%=l to

a (Riesz) basis for all of (kerQ)-1. That is, there is a finite set a (in fact, a

subset of {1, 2,... , N}) for which {Pen}„<{.„ is a Riesz basis for (ker Q)1-,

and hence the corresponding set {x„}„ g a is a Riesz basis for 77.

Conversely, suppose {x„}£L, is a near-Riesz basis for 77, so there is some

finite set a for which {xn}n^a is a Riesz basis for 77. If Y^li^n converges

then Y,n í a anxn certainly does, implying {an}n t a £ I2. But then {a„}£L, € I2

also, and it follows that {x„}£L, is a Besselian frame. By Theorem 2.3 kerQ
is finite dimensional, and the theorem is proved.

Putting Theorem 2.3 and 2.4 together with the observation that for any frame
{x„}£L,, if (a„) £ I2 then E^li anx„ converges, we get the following charac-

terization of frames which are near-Riesz bases.
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Theorem 2.5. If {x„}~ > is a frame in 77, the following are equivalent:

(i) ixn}T=i is a near-Riesz basis for H.

(ii) {x„}~j is Besselian.

(iü) T,T=x anxn converges in 77 <=> {a„}£L, € I2.

Note. The equivalence (i) o (iii) of Theorem 2.5 is the direct analogue for
frames of the well-known characterization of Riesz bases in a Hilbert space as

those whose coefficient spaces coincide with I2 [11, p. 341].

3. Related results

Again, let {x„}~ , be a frame in a Hilbert space 77. According to Theorem
2.4, there is some finite set a so that {x„}„ $ „ is a Riesz basis for 77 if and only
if the pre-frame operator Q associated with {x„}^i, has a finite-dimensional

kernel. We now give a more quantitative version of this result by showing that

in this case the "excess" of the frame (i.e., the cardinality for the set a) is

actually equal to the dimension of the kernel of Q.

Theorem 3.1. Let {x,,}^, be a frame in 77 for which {x„}n^a is a Riesz

basis for some finite set a. If Q denote the pre-frame operator associated with

{xn}„*Lx > then carder = dim(kerQ).

Proof. Suppose {x„}„^a is a Riesz basis for 77, where a is some finite set.

Let P denote, as usual, the orthogonal projection of I2 onto (kerQ)-1- (so

kerP = kerQ). By Theorem 2.2 the set {Pen}„ ^ isa Riesz basis for ranP

and P acts as an isomorphism mapping [e„]n $ a onto ranP.

If x £ I2, then Px € ranP, so there is a (unique) vector Y2na.aa„en in

[en]n i a for which P(£n $ a anxn) = Px and hence for which x-¿„ t „ a„xn £

kerP. That is, I2 = kerP+[en]„ $ a (the algebraic sum of these subspaces). But

if z is in kerPn[e„]„ ¿ „, then z = ¿B ^ a b„e„ and 0 = Pz = £„ ( a bnPen, so
since {Pe„}„ $ a is a basis for ran P, we see that bn = 0 for all n , and it follows

that z = 0. Therefore, kerP n [e„]n $ a = {0} , and by the above we have that

I2 = ker P© [en]n $ a (where this is a topological, but not necessarily orthogonal,

direct sum). But then dim(kerP = carder, and since dim(ker Q) = dim(kerP),

the theorem is proved.

Finally, we consider the relationship between the results of §2 and the notion

of an unconditional frame introduced there.
Heil has shown [6, p. 168] that if {x„}^, is a frame in 77 which is bounded

below (i.e., inf„||x„|| > 0) then (in our terminology) {x„}^i, is Besselian

& {x„}^ij is unconditional. From this result and Theorem 2.5 we have the

following characterization of unconditional frames:

Theorem 3.2. If {xn}™=x is a frame in 77 which is bounded below, then {x„}£L,

is unconditional ■«• {x,,}^ is a near-Riesz basis for H.

Again, Theorem 3.2 is the frame analogue of the corresponding well-known

characterization of Riesz bases in Hilbert space as those which are bounded and

unconditional [6, p. 160].

Remark. The notion of a pre-frame operator and the model theory for frames
which it affords can also be applied with similar success to other problems

involving frames, many of which are analogues of corresponding problems for

bases. In a subsequent paper these ideas will be developed more fully.
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