
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.

DAC 2004, June 7-11, 2004, San Diego, California, USA

Copyright 2004 ACM 1-58113-828-8/04/0006...$5.00.

Pre-layout Wire Length and Congestion Estimation
 Qinghua Liu Malgorzata Marek-Sadowska

Department of Electrical and Computer Engineering Department of Electrical and Computer Engineering

Univ. of California, Santa Barbara, CA 93106, USA Univ. of California, Santa Barbara, CA 93106, USA

1-805-893-5678 1-805-893-2721

qinghual@ece.ucsb.edu mms@ece.ucsb.edu

Abstract
In this paper, we study the pre-layout wire length and congestion
estimation. We find that two structural metrics, mutual contraction
and net range, can be used to predict wire lengths. These metrics
have different application ranges and complement each other. We
also propose a new metric, the structural pin density, to capture the
peak routing congestion of designs. Larger maximum pin densities
usually lead to larger peak congestions in circuits with similar
average congestions. We demonstrate experimentally very good
correlation of our pre-layout measures with post layout
interconnect lengths. We also isolate the structural netlist
properties which cause the peak congestion.

Categories and Subject Descriptors
J.6 Computer-Aided Engineering-Computer-aided Design (CAD)

General Terms
Algorithms

Keywords
Wire Length, Congestion, Prediction

1. INTRODUCTION
Interconnects play a crucial role in the overall performance of
modern VLSI systems. Early wire optimization is needed to
achieve the required performance, routability, and power. The
cost functions employed during traditional logic synthesis do
not take interconnects into consideration, which may lead to
sub-optimal designs. On the other hand, physical synthesis
with fixed circuit structure has limited improvement space. For
this reason, physical and logic co-synthesis have attracted a lot
of research effort in recent years. Integrating logic synthesis
and physical design steps will be possible only if we
understand how decisions made at the logic synthesis level
affect placement and routing results.

Previous works on physical and logic co-synthesis can be
grouped into three categories: layout-driven logic synthesis,
local netlist transformations, and metric-driven structural logic
synthesis. Layout-driven logic synthesis [12][17][18] starts
with creating an initial placement of the technology-
independent netlist and uses placement coordinates of the
objects to improve the synthesis flow. Such methods work with
very inaccurate placement model since final placement is
likely to change substantially after synthesis. Local-netlist-
transformation methods [14][16] directly operate on a placed
netlist. Targeting different objectives such as timing, or power
consumption, critical parts of the circuit are extracted with
accurate layout information. Re-synthesis and re-placement
are used to transform them. These approaches work on correct
net-lengths estimates and apply local transformations to
preserve the existing placement as much as possible. This
limits the optimization potential. More recently, the metrics
such as adhesion [11] and distance [10] have been proposed to
capture routability of designs. Those metrics were applied in
logic synthesis to obtain more routable designs. We refer to
this approach as metric-driven structural logic synthesis.

We believe that the first step towards guiding logic synthesis
in producing layout-friendly results, is the ability to predict
layout characteristics from the netlist structure. In this paper
we focus on pre-layout wire length and congestion estimations.
We find that mutual contraction and net range, two structural
metrics, can be used to predict wire lengths in the final layout.
They have different application ranges and complement each
other well. We propose also a new metric, the structural pin
density, to capture the peak routing congestion. This metric is
much simpler to calculate than adhesion.

The paper is organized as follows. In Section 2 we discuss wire
length prediction using multiple metrics. We analyze the
quality of wire length predictions by mutual contraction,
connectivity, edge separability and net range. In Section 3 we
study the relationship between netlist structure and routing
congestion. We introduce the structural pin density, which
serves as a second-order congestion-estimation metric. Section
4 concludes the paper.

2. PRE-LAYOUT WIRE LENGTH
PREDICTION

2.1 Previous work
Statistical wire length prediction has been studied for a number
of years. Most of the papers [6][20] in this category follow the
pioneering work of Donath in 1979, and make wire length
predictions based on Rent’s rule. In [19], Pedram and Preas
estimate interconnect lengths by considering all possible
distributions of pins in rows.

34.3

582

Very few papers address the individual wire-length prediction.
In [13], the authors show that individual wire lengths depend
on placement algorithms. Wire-length predictions accurate for
one placement flow may be inaccurate for another. To solve
this problem, the authors embed the wire length prediction into
their FPI [8] placement flow and predict individual wire-
lengths during the clustering step. This approach can make
predictions only on intra-cluster nets, which tend to be short in
the final placement. Another solution is proposed by Bodapati
and Najm [1]. Their method requires building black-box
models for the place-and-route tools, which is a time-
consuming task.
In this paper we propose a new type of wire length prediction.
We consider nets which have similar characteristics in terms of
some structural metric. Based on the numerical values of those
metrics, we can predict that nets in one group have a tendency
to be longer or shorter than the members of another group. We
call this kind of prediction, a semi-individual prediction. In
this paper we restrict our discussion only to such predictions.

2.2 Predicting wire lengths of 2-pin nets
Net lengths usually increase with an increase of the pin
number. The correlation is good, but this measure cannot
capture wire length variations among nets with the same
number of pins. Typically, in real circuits, more than 50% of
nets are 2-pin nets, so we begin our discussion from those nets.

2.2.1 Predicting lengths of 2-pin nets
Several metrics, such as connectivity [7], edge separability [5],
and mutual contraction [9], have been proposed to guide the
clustering process in multi-level partitioning, or placement
frameworks. In this paper, we apply them to predict wire
lengths of 2-pin nets, and compare their efficiencies.
We model multi-pin nets by cliques. A connection c(u,v)
represents all edges connecting nodes u and v. The weight of a
connection, w(u,v), is a sum of edge-weights of the edges in
c(u, v). A node v is node u’s neighbor if the connection c(u,v)
exists. A(v) is the area-cost of a node v. Traditionally, a weight
in a clique representing a multi-pin net is assumed to be:

(EQ 1)

where d(i) denotes a degree of a net i. Connectivity is a
measure of contraction between two connected nodes u and v.
EQ2 expresses connectivity in our terminology:

(EQ 2)

Edge separability is defined for each connection c(u, v) in a
graph G. is the minimum cut-size among all the cuts
separating nodes u and v in G. From this definition it follows
that:

(EQ 3)

Intuitively, the larger is, the more contracted u and v are,
since separating u and v causes a greater cut-size penalty.
Computing for each connection c in a graph is very time-
consuming, [5] proposes an algorithm to compute a tight lower
bound q(c) for such that:

(EQ 4)

Based on the metric q(c), a connection-ranking formula given
by EQ5 is suggested in [5] and used for greedy clustering:

(EQ 5)

Mutual contraction of a connection(u,v) has been proposed in
[9]. For multi-pin nets, the authors propose a modified clique-
edge weight:

(EQ 6)

and introduce the relative weight of a connection:
(EQ 7)

In EQ7, is a weight of the connection (u, x), the
summation is taken over all nodes x adjacent to u. The product
of wr(u,v) and wr(v,u) is a measure of the mutual contraction
of a connection (u,v):

(EQ 8)

Connections with strong contractions are most likely to end up
having short lengths.

2.2.2 Comparing the metrics
We experiment with IBM [23] and LGSyn93 benchmark
suites. Our LGSyn93 suite consists of 21 benchmarks selected
from [26]. We synthesize the netlists of LGSyn93 benchmarks
by script.delay and map -n 1 -AFG commands in SIS using a
standard cell library translated from a commercial 0.13um
library. The mapped circuits in LGSyn93 suite range from 617
to 12562 cells. In the rest of the paper, all placements of the
circuits are generated by Capo8.7, unless indicated otherwise.
We explain our experiments for the mutual contraction case.
Experiments with other metrics are run in the same fashion.
We calculate the mutual contractions of all 2-pin nets, and for
each benchmark we determine the range [Cmin, Cthr]. Cthr is a
threshold value of mutual contraction determined such that the
summation of net lengths (after placement), whose mutual
contractions are larger than Cthr, is smaller than 5% of the total
wire length. We partition [Cmin, Cthr] into 20 equal-sized bins:

[Ai, Bi], i=1,2...20, A1=Cmin B20=Cthr
We assign nets to bins based on their mutual contractions and
then calculate the average length of nets in each bin.
The results for ibm01 are shown in Figure 1. The x-axis
corresponds to bins sorted by their left boundary values. The y-
axis shows the average net lengths for the placed circuit.
Figure 1(a) shows the mutual contraction case, 1(b) the
connectivity, and 1(c) the edge separability. From this figure
we observe that all these metrics are correlated with wire
lengths.

w e() 1

d i() 1–
--------------------=

c
c
u v,() w u v,()

A u() A v() d u() w u v,()–() d v() w u v,()–()⋅ ⋅ ⋅
--=

λ c()

w c() λ c() min d u() d v(),{ }≤ ≤
λ c()

λ c()

λ c()
w c() q c() λ c()≤ ≤

r c() q c()
min d u() d v(),{ }
--=

w' e() 2

d i() 1–()d i()
------------------------------------=

w
r
u v,() w' u v,()

w' u x,()
x

∑

-------------------------=

w' u x,()

c
p
x y,() w

r
x y,()w

r
y x,()=

(a) Mutual contraction

(b) Connectivity (c) Edge separability
Figure 1: Placed wire length vs. prediction metrics on ibm01

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
ve

ra
g

e
 le

n
g

th

Mutual contraction

Mutual Contraction VS Average length

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
g

e
 le

n
g

th

Connectivity

Connectivity VS Average length

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0

A
ve

ra
g
e
 le

n
g
th

Edge separability

Edge Separability VS Average length

583

We will refer to a pair (metric, length) as a node. We define a
correlation ratio (c-ratio) to quantify the correlation between a
metric and wire length by the following equation:

(EQ 9)

In the above equation, TotalNodePairs denotes the total count
of node pairs. If there are n (metric, length) nodes, there are

 TotalNodePairs. ViolationNodePairs denotes the number
of node pairs violating the correlation. Take two nodes in
Figure 1(a) for example. If one node has larger mutual
contraction and larger wire length than the other, then this pair
violates the negative correlation between mutual contraction
and wire length. C-ratio is a number between 0 and 1. A larger
c-ratio corresponds to a better correlation or better
predictability of the metric. We also compute r-square, the
linear regression fit of the wire length for each metric. In Table
1, we show the average c-ratio and r-square for IBM and
LGSyn93 benchmarks for different metrics. We note that the
correlation between the mutual contraction and wire length is
the best.

We have also verified that the good predictability of the mutual
contraction holds for different placers. We repeated the
experiments on IBM benchmarks using Capo8.7 [2], Dragon
[23] and mPL2.1 [3].

2.3 Limitations of mutual contraction
The IBM- and LGSyn93-benchmarks have Rent’s exponent
around 0.6. So they all have similar interconnection
complexity.

PEKO [4] benchmarks are a special class of low Rent’s
exponent circuits. In the optimal solutions of PEKO
benchmarks, all nets are local and their lengths are the
minimum possible. Nets with the same pin numbers have
exactly the same lengths, though their mutual contractions are
usually different. Mutual contraction is not correlated well
with placed wire-lengths on PEKO benchmarks.

Using gnl [21], we built a suite of synthetic circuits with
different Rent’s exponents. Each of these circuits has 40,000
cells and the same number of nets. We place those circuits and
collect wire lengths and mutual contraction values for 2-pin
nets. We list the c-ratios and r-squares for all synthetic
benchmarks in Table 2.

In Table 2, the first column lists the Rent’s exponents. The
results suggest that mutual contraction does not work well on
low Rent’s exponent circuits.

In [9], mutual contraction has been extended from 2-pin to
multi-pin nets. Here we examine how mutual contraction
works on multi-pin nets.
In Table 3 we compare the predictability of mutual contraction
on 2-pin and multi-pin nets by c-ratio and r-square. In the
table, the data are computed as an average for 18 IBM
benchmarks.

From the table, we observe that the correlation between mutual
contraction and wire lengths of multi-pin nets is not as good as
in the case of 2-pin nets. We need other metrics to predict
accurately wire lengths of multi-pin nets. In the next section,
we will show that net_range is a good candidate.

2.4 Net range
The fanout-range-of-a-node metric was first proposed in [22].
It is defined as a circuit depth spanned by the fanout nodes.
In [22] the authors show that the net lengths increase with an
increase in the fanout ranges. The correlation is especially
good for nets with low fanout ranges. This conclusion may be
misleading. Nets with larger pin numbers tend to have larger
fanout ranges. So the correlation that the authors have
observed may be actually caused by the pin number instead of
fanout range. Fanout range cannot distinguish two cases in
Figure 2 - both nets have fanout range 1. It is intuitive that in
the final layout, the right net will most likely be longer than the
left net.

Based on these observations,
we define net range as a
circuit depth spanned by all
terminal nodes of a net. From
the definition, the left net in
figure 2 has net range of 2,
and the right one has a net
range of 7. We use the net
range metric to predict wire
lengths of nets with the same
pin number. It is intuitive that

larger net-range-nets usually correspond to longer net lengths.
In this section, we will examine the predictive power of the net
range metric.
In IBM benchmarks, the fanin and fanout information are
incomplete and we cannot traverse circuits to assign circuit
depths to the nodes. Because of that, we cannot calculate net
ranges for nets in IBM benchmarks. In this section we test the
net range as a prediction metric. We use the LGSyn93
benchmark suite and the synthetic benchmark suite generated
by gnl.
First, we place the LGSyn93 benchmarks and plot the
relationship between the net range and wire length. We take

c ratio– 1
ViolationNodesPairs

TotalNodePairs
---–=

n

2

Table 1. Average c-ratio and r-square values for IBM- and LGSyn93-benchmarks on different metrics

Benchmarks Mutual Contraction Connectivity Edge Separability
c-ratio r-square c-ratio r-square c-ratio r-square

IBM 0.903 0.701 0.710 0.260 0.811 0.528
LGSyn93 0.858 0.635 0.776 0.327 0.778 0.430

Table 2. Predictive power of mutual contraction on circuits
with different Rent’s exponents

r c-ratio r-square
0.3 0.531 0.083
0.4 0.667 0.131
0.5 0.760 0.377
0.6 0.879 0.648
0.7 0.953 0.741
0.8 0.857 0.673

Table 3. Predictability using mutual contraction on nets
with different pin numbers

pin number c-ratio r-square
2 0.903 0.701
3 0.529 0.005
4 0.631 0.118

Circuit Depth
0 1 2 3 4 5 6 7 8 9 10

Figure 2: Two nets with the
same fanout range

584

the benchmark seq as an example and show the results for 3-
pin and 4-pin nets.

In Figure 3, on the x-axis we have net range and on the y-axis
we have the average lengths of nets corresponding to those net
ranges. We do not show the results for 2-pin nets because most
of the 2-pin nets have a net range of 1. In other words, net
range is too crude a measure for 2-pin nets. We observe that
net range works well on nets with pin numbers larger than 2.
Larger net ranges correspond to longer net lengths.
In section 2.3, we observed that the predictability of mutual
contraction varies with interconnection complexity. Here we
use the same synthetic benchmark suite and test the
predictability of a net range. In Figure 4, we show the results
for 3-pin nets for circuits with Rent's exponent 0.3 (very low)
and 0.8 (large). We observe that net range works well on the
whole spectrum of Rent's exponent circuits.

2.5 Summary
It appears that accurate pre-layout wire length prediction is not
possible with just one of the examined metrics. Among
different metrics, mutual contraction and net range show the
best prediction efficiency. These two metrics have different
application ranges. Mutual contraction works well only on 2-
pin nets in high Rent's exponent circuits. Net range works well
on both high Rent's exponent and low Rent's exponent circuits,
but since it is too coarse for two-pin nets, we apply it only to
multi-pin nets. These two metrics are complementary, and
jointly work as accurate pre-layout wire length predictors.

3. CAPTURING ROUTING CONGESTION
FROM NETLIST STRUCTURE

3.1 Previous work
The increasingly large sizes of modern circuits lead to
increasingly long design turn-around time. This problem is
often caused by the routing congestion which has to be
resolved before reaching convergence. Predicting and
removing routing congestion has been attracting a great deal of

attention. Research efforts focus on determining routable
placements.
Accurate information about routing congestion is not available
until after detailed routing, which is too late to make
significant changes. Therefore, it is desirable to have
congestion estimations earlier in the design cycle. In [15], the
authors propose a stochastic congestion estimation algorithm
for a placed netlist. In [24], Rent's rule is used to quantitatively
estimate the maximum congestion prior to the placement stage.
None of these methods can be applied to optimize for
congestion since it is difficult to capture Rent's exponent
during structural transformations. Recently, a new measure
called adhesion [11] has been proposed to predict routability of
logic networks. Adhesion has been applied to logic synthesis to
improve routability. It is not clear how to determine and update
it in a computationally efficient manner.
In this section, we propose a new metric called structural pin
density to predict the peak congestion for designs with similar
average congestion. This metric is very simple and can be
measured very efficiently.

3.2 Structural pin density
We cover the chip area with a matrix of equal-sized bins. We
define routing congestion as the number of nets which after
global routing cross a bin boundary. Congestion and routing
requirements are very closely related. When considering
congestion, we need to look at both average congestion and
peak congestion. We define routing area ratio as the ratio of
the total wire length and chip area:

 (EQ 10)

We use the same
LGSyn93
benchmark suite
as in section 2,
and in Figure 5
we plot the
relationship
between Rrar
and congestion
in placed and
routed designs.
In these
experiments the
chips have
aspect ratio 1.

We obtain the congestion maps from placements using the
congestion plotter [25].
In Figure 5, the x-axis measures Rrar and y-axis measures
congestion. The circles represent peak congestions and
triangles represent the average congestion. We observe that
there is a correlation between the Rrar and congestion.
Looking at Figure 5, we also note that a larger average
congestion usually corresponds to a larger peak congestion.
However, in some cases, circuits with similar average
congestion may have very different peak congestions. To
capture the peak congestion from the netlist structure more
precisely, we need a second order metric.
We define node level as the circuit depth of the node. Also we
define net level of a net i by the formula:

(EQ 11)

(a) 3-pin nets (b) 4-pin nets
Figure 3: Placed wire lengths vs. net range for benchmark seq

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 0 2 4 6 8 10 12

A
ve

ra
g

e
 le

n
g

th

Net range

Net Range VS Average length

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 1
A

ve
ra

ge
 le

ng
th

Net range

Net Range VS Average length

(a) r = 0.3 (b) r = 0.8
Figure 4: Placed wire length vs. net range on

circuits with different Rent's exponents

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 5 10 15 20 25 30 35

A
ve

ra
g
e
 le

n
g
th

Net range

Net Range VS Average length

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35 40

A
ve

ra
g
e
 le

n
g
th

Net range

Net Range VS Average length

R
rar

TWL

Area
-------------=

Figure 5: Rrar VS Congestion

10

20

30

40

50

60

70

80

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Rrar

Average congestion
Peak congestion

NetLevel i()

NodeLevel j()
Node j Net i∈
∑

NetDegree i()
---=

585

Using circuit depth, we partition a circuit from PIs to POs into
n regions (slices) of the same depth. For example, we may
partition a circuit of depth 20 into 5 regions, each of depth 4. A
partition is maximal if all regions have depth 1. We associate
each net with a region covering this net's level. After that, we
define the structural pin density of a region i by:

(EQ 12)

The structural pin density is a ratio between the total number
of pins on the nets in a region i, and the total pin count in the
whole circuit. The maximum pin density is the largest
structural pin density among all the regions in a maximal
partition. Intuitively, larger maximum pin density suggests that
interconnects are more entangled in some region of the circuit.
We conjecture that a larger maximum pin density will lead to a
larger peak congestion in circuits with similar average routing
congestion or Rrar.
Circuits with larger circuit depths tend to have smaller
maximum pin density. So when comparing the maximum pin
density between two circuits with different circuit depths, we
normalize the maximum pin density values to the average pin
density.

3.3 Maximum pin density vs. peak congestion
To verify our conjecture, we first observe three benchmark
pairs selected among the 21 benchmarks used in obtaining data
in Figure 5. Pertinent measures for those benchmark-pairs are
listed in Table 4.

In this table, ave_c denotes the average congestion and peak_c
denotes the peak congestion. Benchmarks in each pair have
similar average congestions but very different peak
congestions. For example, seq has a little larger average

congestion but significantly smaller peak congestion than
misex3. In Figure 6 we plot the pin density distribution in the
maximal partitions of those benchmarks.

From Table 4 and Figure 6, we observe that in each benchmark
pair, the benchmark with a larger maximum pin density has a
larger peak congestion in the final placement.

To further examine the maximum pin density measure, we first
build different benchmark suites from the same original
LGSyn93 benchmarks by applying different logic synthesis
flows. In SIS, we optimize the netlists by the scripts rugged,
boolean and algebraic. Then we perform mapping using
commands map -m 0, map -m 0.5 and map -n 1 -AFG. These 9
combinations of logic synthesis and technology mapping steps
result in 9 different versions of each original benchmark
circuit. Together with the circuits used in previous
experiments, we have 10 benchmark suites and we refer to
them as LGS01 through LGS10. Each suite contains different
mutants of the same initial benchmark examples. We compute
the maximum pin density and the average congestion and
predict the peak congestion in the following way. For each
benchmark suite, we first determine for each pair of circuits
their relative average congestions. Our estimations are
computed based on the c-ratio method defined in EQ9. In the
first experiment a node is a pair (average congestion, peak
congestion). We validate the relationship between the average
and peak congestion by computing the c-ratios (second column
in Table 5). In the second experiment when average
congestions differ less than 5%, a node is (maximum pin
density, peak congestion); otherwise a node is (average
congestion, peak congestion). Again we compute c-ratios and
list them in column 3 of Table 5. We repeat the same
experiments by replacing average congestion by Rrar. The
results are shown in columns 4 and 5 in Table 5.

In Table 5, ave_c denotes the average congestion and mp
stands for the maximum pin density. We observe that in case
when two benchmarks have similar average congestions or
similar Rrar values, the difference between their peak
congestions can be well explained by the maximum pin density.
The Maximum pin density serves well as a second order metric
for peak congestion prediction.

3.4 Relationship between logic synthesis and
congestion distribution

Logic synthesis has a significant impact on a netlist structure.
In this section, we examine the influence of logic synthesis on
congestion. We consider only the congestion distribution.

PinDensity i()

NetDegree j()
Net j Region i∈

∑

TotalPinNumber
---=

(a) seq VS misex3

(b) C5315 VS C7552 (c) apex3 VS apex4
Figure 6: Comparing the structural pin density

distribution for different benchmarks

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18

S
tr

u
ct

u
re

 p
in

 d
e
n
si

ty
 (

%
)

Region index

seq
misex3

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30

S
tr

u
ct

u
re

 p
in

 d
e
n
si

ty
 (

%
)

Region index

C5315
C7552

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

S
tr

u
ct

u
re

 p
in

 d
e
n
si

ty
 (

%
)

Region index

apex3
apex4

Table 4. Benchmark paris with similar average congestions
but very different peak congestions

Bench
pairs

1 2 3
seq misex3 C5315 C7552 apex3 apex4

Rrar 1.6529 1.6536 1.4427 1.2933 1.7012 1.6928

ave_c 28.874 28.753 23.189 21.826 30.602 30.212
peak_c 54.914 61.446 41.837 48.608 56.922 61.063

Table 5. Maximum pin density vs. peak congestion as
measured by c-ratio

Bench ave_c ave_c+mp Rrar Rrar+mp
LGS01 0.879 0.947 0.805 0.879
LGS02 0.862 0.929 0.732 0.832
LGS03 0.863 0.916 0.742 0.816
LGS04 0.889 0.942 0.842 0.921
LGS05 0.847 0.926 0.742 0.821
LGS06 0.884 0.921 0.737 0.842
LGS07 0.886 0.963 0.879 0.947
LGS08 0.823 0.889 0.758 0.804
LGS09 0.889 0.924 0.772 0.848
LGS10 0.901 0.930 0.871 0.936

Ave 0.872 0.929 0.788 0.854

586

By applying different logic synthesis flows on the same
benchmark, we get different mutants of the same circuit. In our
examples we optimize each circuit by the script.rugged
followed by one of the technology mapping commands: map -
m 0 or map -n 1 -AFG. After placing the netlists, we compare
their congestion maps. Here we use the mPL2.1 placer. For
each benchmark we divide the chip area into bins such that
each version of the same example is covered by the same
number of rows and columns of bins. Since we are interested in
high congestion areas, for each example, we determine the
indices of the 10% of the highest congestion bins. The number
of selected bins n is the same for all circuit-pairs. For any two
congestion maps corresponding to mutants of the same circuit,
we find those m bins whose indices are present in selected bins
in both circuits. We define the overlapping ratio as m/n. The
overlapping ratios for the congestion maps are shown in the
third column of Table 6. We repeat the same experiment on
circuits obtained by optimizing the initial benchmark using
script.algebraic and script.boolean followed by the same
mapping command map -n 1 -AFG. The overlapping ratios are
shown in the fourth column of Table 6.

In Table 6, # nodes denotes the number of nodes in initial
circuits before optimization and technology mapping. Due to
page limitations, we show results only for five benchmarks.
Our experiments suggest that logic synthesis has a significant
impact on the congestion distribution of the final layout.
Guiding logic synthesis by congestion maps obtained from un-
optimized netlists would be misleading.

4. CONCLUSIONS
In this paper, we studied the pre-layout wire length prediction
and congestion estimation. We found that mutual contraction
and net range, the two structure-level metrics, predict wire
lengths quite well. These two metrics have different
application ranges and complement each other in accurate wire
length predictions. We also analyzed the relationship between
netlist structure and routing congestion and proposed a new
second-order metric, called structural pin density which
captures the relative peak congestions. Larger maximum pin
densities usually lead to larger peak congestions in circuits
with similar average congestions. Future work includes logic
synthesis based on wire length predictions and congestion
driven logic optimization.

5. ACKNOWLEDGEMENTS
This work was supported in part by the California MICRO
Program through IBM and Fujitsu Laboratories of America and
in part by the MARCO/Darpa Giga Scale Research Center. We
acknowledge the equipment grant from Intel.

6. REFERENCES
[1] S.Bodapati and F.N.Najm, “Pre-layout estimation of individual wire

lengths”, ACM Intl. Workshop on System-Level Interconnect
Prediction, pp.93-98, 2000.

[2] A.E.Caldwell, A.B.Kahng and I.L.Markov, “Can recursive bisection
alone produce routable placements”, Design Automation Conference,
pp.260-263, 2000.

[3] T. F. Chan, J. Cong, J. Shinnerl and K. Sze, “An enhanced multilevel
algorithm for circuit placement,” Proc. of ICCAD, 2003.

[4] C.C.Chang, J.Cong and M.Xie, “Optimality and scalability study of
existing placement algorithms”, ASP-DAC, pp.621-627, 2003.

[5] J.Cong and S.K.Lim, “Edge separability based circuit clustering with
application to circuit partitioning”, ASP-DAC, pp.429-434, 2000.

[6] J.A.Davis, V.K.De, and J.D.Meindl, “A stochastic wire-length
distribution for gigascale integration (GSI)-Part I: Derivation and
validation”, IEEE Trans. on Electron Devices, vol.45, pp.580-589,
1998.

[7] S.Hauck and G.Borriello, “An evaluation of bipartitioning
techniques”, IEEE Trans. on CAD, vol 16, No.8, 1997.

[8] B.Hu and M.Marek-Sadowska, “Fine-granularity clustering for large-
scale placement problems”, Proc. of ISPD, pp.67-74, 2003.

[9] B.Hu and M.Marek-Sadowska, “Wire length prediction based
clustering and its application in placement”, Design Automation
Conference, pp.800-805, 2003.

[10] V.N.Kravets and P.Kudva, “Understanding metrics in logic synthesis
for routability enhancement”, ACM Intl. Workshop on System-Level
Interconnect Prediction, pp.3-5, 2003.

[11] P.Kudva, A.Sullivan and W. Dougherty, “Metrics for structural logic
synthesis”, Proc. of ICCAD, pp. 551-556, 2002.

[12] T.Kutzschebauch and L.Stok, “Congestion aware layout driven logic
synthesis”, Proc. of ICCAD, pp. 216-223, 2001.

[13] Q.Liu, B.Hu and M.Marek-Sadowska, “Wire length prediction in
constraint driven placement”, ACM Intl. Workshop on System-Level
Interconnect Prediction, pp.99-105, 2003.

[14] J.Lou, W.Chen and M.Pedram, “Concurrent logic restructuring and
placement for timing closure”, Proc. of ICCAD, pp. 31-35, 1999.

[15] J.Lou, S.Krishnamoorthy and H.S.Sheng, “Estimating routing
congestion using probabilistic analysis”, Proc. of ISPD, pp. 112-117,
2001.

[16] M.Murofushi, T.Ishioka, M.Murakata and T.Mitsuhashi, “Layout
driven re-synthesis for low power consumption LSIs”, Design
Automation Conference, pp. 666-669, 1997.

[17] D.Pandini, L.T.Pileggi and A.J.Strojwas, “Congestion aware logic
synthesis”, Proc. of DATE, pp. 664-671, 2002.

[18] M.Pedram and N.Bhat, “Layout driven technology mapping”, Design
Automation Conference, pp.99-105, 1991.

[19] M.Pedram and B.Preas, “Accurate prediction of physical design
characteristics for random logic”, Proc. of Int. Conf. on Computer
Design, pp.390-393, Nov. 1989.

[20] D.Stroobandt and J.Van Campenhout, “Accurate interconnection
length estimations for predictions early in the design cycle”, VLSI
Design, vol. 10, no. 1, pp.1-20, 1999.

[21] D.Stroobandt, P.Verplaetse and J.Van Campenhout, “Generating
synthetic benchmark circuits for evaluating CAD tools”, IEEE Trans.
on CAD, vol.19, no.9, pp.1011-1022, 2000.

[22] H.Vaishnav and M.Pedram, “Minimizing the routing cost during
logic extraction”, Design Automation Conference, pp.70-75, 1995.

[23] M.Wang, X.Yang and M.Sarrafzadeh, “Dragon2000: Standard-cell
placement tool for large industry circuits”, Proc. of ICCAD, pp. 260-
264, 2000

[24] X.Yang, R.Kastner and M.Sarrafzadeh, “Congestion estimation
during top-down placement”, Proc. of ISPD, pp. 164-169, 2001.

[25] VLSI CAD Bookshelf:http://gigascale.org/bookshelf/.

[26] LGSynth93 benchmarks:
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth93/

Table 6. Overlapping ratio for congestion maps generated by
different logic synthesis flows

Bench # nodes experiment 1 experiment 2
C3540 1743 0.333 0.211
C5315 3212 0.286 0.273
C6288 4833 0.083 0.220
alu4 2367 0.381 0.333

apex4 1384 0.429 0.205
ave 2708 0.302 0.248

587

