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Abstract. Sun/sky radiometer observations over the Indo-

Gangetic Basin (IGB) region during pre-monsoon (from

April–June 2009) have been processed to analyze various

aerosol characteristics in the central and eastern IGB re-

gion, represented by Kanpur and Gandhi College, respec-

tively, and their impacts on climate in terms of radiative forc-

ing. Monthly mean aerosol optical depth (AOD at 500 nm)

and corresponding Angstrom Exponent (AE at 440–870 nm,

given within the brackets) was observed to be about 0.50

(0.49) and 0.51 (0.65) in April, 0.65 (0.74) and 0.67 (0.91) in

May and 0.69 (0.45) and 0.77 (0.71) in June at Kanpur and

Gandhi College, respectively. Results show a positive gradi-

ent in AOD and AE from central to eastern IGB region with

the advancement of the pre-monsoon, which may be caused

due to diverse geographical location of the stations having

different meteorological conditions and emission sources.

Relatively lower SSA was observed at the eastern IGB (0.89)

than the central IGB (0.92) region during the period, which

suggests relative dominance of absorbing aerosols at the east-

ern IGB as compared to central IGB region. The absorbing

aerosol optical properties over the station suggest that the

atmospheric absorption over central IGB region is mainly

due to dominance of coarse-mode dust particles; however,

absorption over eastern IGB region is mainly due to domi-

nance of fine-particle pollution. The derived properties from

sun/sky radiometer during pre-monsoon period are used in

a radiative-transfer model to estimate aerosol radiative forc-

ing at the top-of-the atmosphere (TOA) and at the surface

over the IGB region. Relatively large TOA and surface cool-

ing was observed at the eastern IGB as compared to the cen-
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tral IGB region. This translates into large heating of the at-

mosphere ranging from 0.45 to 0.55 K day−1 at Kanpur and

from 0.45 to 0.59 K day−1 at Gandhi College.

Keywords. Atmospheric composition and structure

(Aerosols and particles) – Meteorology and atmospheric

dynamics (Radiative processes)

1 Introduction

Aerosols play crucial role in the climate of the Earth-

atmosphere system by means of their direct and indirect im-

pact on climate (Schwartz et al., 1995). Nonetheless, there is

a large uncertainty in the aerosol radiative forcing and hence

in the assessment of global climate as well as climate change

(IPCC, 2007). Though the level of scientific understanding

of aerosols has been increased by incorporating in-situ mea-

surements along with various satellite measurements, still it

is far less than that of greenhouse gases (IPCC, 2007). Het-

erogeneity in aerosol optical and microphysical properties

over a wide range of spatial and temporal scales could be one

of the major causes of the difficulties in reducing the level

of scientific understanding due to aerosols. Thus, it is im-

portant to improve aerosol characterization on regional basis

with high spatial and temporal resolutions; particularly over

the region, where high population is under the impact (Dey

and Di Girolamo, 2010).

The Indian sub-continent is one of the highly populated

regions in the world, where more than one billion people

(about one-sixth of the world’s population) live and, are ex-

posed to enormous pollution produced by various natural and

anthropogenic sources. The region strictly requires improve-

ments in the characterization of aerosol properties, which

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


790 A. K. Srivastava et al.: Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin

is basically due to the inadequate measurements of aerosol

characteristics. Ever since the Indian Ocean Experiment (IN-

DOEX) was conducted (Ramanathan et al., 2001; Moorthy et

al., 2001), which has shown that enormous pollution trans-

ported from the Indian subcontinent to the adjacent oceanic

regions affected the regional forcing significantly, the focus

to characterize the aerosols over Indian landmass and adja-

cent oceans has intensified.

Further, over the northern part of India, information on

aerosols is much limited, particularly, over the Indo-Gangetic

Basin (IGB) region, which has been considered to be an

important region of research interest due to its unique na-

ture of topography and high population, as well as industrial

density. Studies undertaken so-far, over IGB, indicate high

emissions of various anthropogenic aerosols from different

sources (Reddy and Venketaraman, 2002a, b; Di Girolamo et

al., 2004; Ramanathan and Ramana, 2005; Tare et al., 2006;

Tripathi et al., 2006; Rengarajan et al., 2007; Tiwari et al.,

2010). Moreover, during pre-monsoon or summer seasons,

IGB receives heavier loads of natural dust aerosols, trans-

ported from the neighboring Desert regions (Thar Desert) of

western Rajasthan in India (Dey et al., 2004; Pandithurai et

al., 2008; Gautam et al., 2009b; Srivastava et al., 2010b,

c), which are the single largest contributor to the mineral

dust aerosols over the northwest Indian regions (Todd et al.,

2007). Desert-dusts are rarely found during March months,

even April month found to have rare desert dust events (Sri-

vastava et al., 2010b) and their frequency increases during

the late pre-monsoon season, until the onset of monsoon.

Higher frequencies of dust event occurrence have been found

by Middleton (1986) in the western part as compared to the

eastern part of the IGB, which is related to the increasing

west to east pressure gradient caused by advancement of the

summer season over IGB (Pandithurai et al., 2008). These

dust particles are frequently lifted into the free troposphere

and transported as elevated aerosol layers over long distances

to impact in heating of the atmosphere and changing the ra-

diation balance (Srivastava et al., 2010a, b). While trans-

portation, dust mixes with various anthropogenic aerosols

in the polluted environment (Singh et al., 2005; Dey et al.,

2008), and the resulting optical properties and the associated

radiative impacts becomes highly variable (Dey et al., 2008;

Mishra et al., 2008).

Aerosols exhibit high spatio-temporal variability in terms

of their abundance, optical and chemical properties. Al-

though, satellites are the good tool to understand the broad

spatio-temporal characteristics of aerosols over a wider re-

gion (Di Girolamo et al., 2004; Jethva et al., 2005; Prasad

and Singh, 2007; Ramachandran and Cherian, 2008); they

are unable to provide an in-depth view of aerosol properties

on a local scale and pose higher uncertainties as compared to

the ground-based instruments, particularly, during dust load-

ing season (Tripathi et al., 2005; Prasad and Singh, 2007).

NASA has setup ground-based aerosol monitoring network

under the Aerosol Robotic Network (AERONET) program

(Holben et al., 1998), in which automatic sun/sky radiome-

ters are deployed at various places around the world. As per

India, particularly in the northern part, the routine measure-

ments of aerosols under this network were started initially by

the deployment of the automatic sun/sky radiometers at Kan-

pur over the IGB region in year 2001 (Singh et al., 2004).

At a later stage, it was deployed at other places in the IGB,

considering the region as crucial for aerosol measurements.

In view of the importance and sensitivity of aerosol prop-

erties over the IGB region, the present study has been car-

ried out using ground-based automatic sun/sky radiometer

data rather than the satellite-derived one. Sun/sky radiometer

data were collected at two different stations located at Kan-

pur (26.4◦ N, 80.4◦ E) and Gandhi College (25.8◦ N, 84.2◦ E)

during April to June 2009 to infer various aerosol properties

and their impacts on radiative forcing with respect to the ad-

vancement of pre-monsoon months.

2 Site description and experimental set-up

The present study involves CIMEL sun/sky radiometer data

measured at two different AERONET stations over the IGB

region: (i) Kanpur (26.4◦ N, 80.4◦ E), one of the highly pol-

luted mega cities in Asia, situated in the central part of the

IGB and (ii) Gandhi College (25.8◦ N, 84.2◦ E), a sub-urban

station, situated in the eastern part of the IGB. Both the sites

are shown over the IGB region in Fig. 1a. For ready refer-

ence, the aerosol characteristics over the region have been

plotted in Fig. 1a as mean aerosol optical depth (AOD) val-

ues from April to June 2009 at 550 nm in color code, ob-

tained from Moderate Resolution Imaging Spectroradiome-

ter (MODIS). Spatial gradient in AOD can readily be no-

ticed from the Fig. 1a showing significant amount of aerosol

particles (mostly dust aerosols during pre-monsoon) existing

at the central IGB in comparison to the eastern part. Fur-

ther, to understand the fine-mode AOD (aerodynamic radius

≤0.35 µm) distribution for the same period, data from Po-

larization and Anisotropy of Reflectances for Atmospheric

Sciences coupled with Observations from a Lidar (PARA-

SOL), is shown in Fig. 1b in color code. Figure 1b informs

rather opposite feature of fine-mode AOD in comparison to

the MODIS derived AODs over the region. Results obtained

from the above observations, although, include the impact

from prevailing meteorology, but encourages investigating

further in the possible causes and impacts over radiation-

budget as well as on weather and climate.

The CIMEL sun/sky radiometers deployed at the Indian

Institute of Technology, Kanpur and Gandhi College, Bal-

lia is part of AERONET/TIGERZ Program of NASA, USA.

The instrument measures the direct Sun radiances at eight

spectral channels (340, 380, 440, 500, 670, 870, 940 and

1020 nm), where 940 and 1020 nm channels are used to

estimate the columnar water vapor content, and remain-

ing channels are used to retrieve spectral AODs. On the
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other hand, sky radiance measurements (in almucantar and

principal plane) at four spectral channels (440, 670, 870,

and 1020 nm) are used to retrieve size distribution, sin-

gle scattering albedo (SSA) and refractive indices of the

aerosols (Holben et al., 1998). The processed aerosol re-

lated data are available on-line at the AERONET site (http:

//aeronet.gsfc.nasa.gov/) in three categories: cloud contami-

nated (level 1.0), cloud screened (level 1.5) and quality as-

sured (level 2.0) (Smirnov et al., 2000). Level 2.0 data is the

final product of AERONET, which have been utilized for the

present study for the period from April to June 2009. Out of

total 3 months data, total 91 days data (30 days in April, 31

days in May and 30 days in June) were observed at Kanpur

and 83 days data (28 days in April, 28 days in May and 27

days in June) at Gandhi College.

The total uncertainty in the spectrally dependent AOD by

CIMEL sun/sky radiometers and AERONET algorithms is

found to be between ∼0.01–0.03 (Holben et al., 2001), with

higher errors in the near ultraviolet than in visible range. Fur-

ther, Dubovik et al. (2000) have shown the accuracy level

in the retrieval of SSA, which is of the order of 0.03 for

high aerosol loading (AOD ≥ 0.5 at 440 nm) and 0.05 for low

aerosol loading (AOD ≤ 0.2 at 440 nm). It is notable that, in

any case, the retrieval errors are not supposed to exceed 10 %

for 0.1 ≤ r ≤ 7 µm, and it may increase up to 80 % for fine-

(r < 0.1 µm) and coarse- (r > 7 µm) mode particles. How-

ever, it is found that these errors do not significantly affect

the important characteristic features of aerosol distribution

(Dubovik et al., 2000).

3 Factors affecting aerosol properties

3.1 Topography

The IGB region is bounded by the Himalayas to the north,

and by Vindhyan and Satpura range of mountains in the

south. The western part is surrounded by the Thar Desert

and Arabian Sea, whereas the eastern part is bounded by the

Bay of Bengal. Due to its unique topography, this region

can be summarized as a type of region, where, both anthro-

pogenic and natural, aerosols show distinct seasonal charac-

teristics and mixing (Guttikunda et al., 2003; Singh et al.,

2004; Monkkonen et al., 2004; Massie et al., 2004; Jethva

et al., 2005; Dey et al., 2008; Mishra et al., 2008). General

seasonal abundance shows that the winter months are domi-

nated by the fine-mode aerosols, produced by various anthro-

pogenic sources from the IGB region, and pre-monsoon or

summer months are dominated by the coarse-mode mineral

dust, primarily from the Thar Desert region in the western

Rajasthan and its frequent transportation over the IGB re-

gion. Further details regarding geography, climate, regional

sources and emissions of these aerosols over the IGB as well

as over the other Indian region, however, can be found in

Ramachandran and Cherian (2008).

Fig. 1. (a) MODIS AODs at 550 nm (mean from April to June

2009) showing intense dust loading spreading over the entire IGB,

(b) PARASOL fine-mode AODs (mean from April to June 2009)

showing significant amount of fine-mode particles over the entire

IGB region. The location of measurement sites at the central (Kan-

pur) and eastern (Gandhi College) part of IGB is marked by blue

stars.

3.2 Synoptic meteorology

Synoptic meteorology (wind pattern, air temperature and

relative humidity) over the stations in the IGB region

along with other parts of India and its surroundings are

shown in Fig. 2a–c for April to June months of 2009, re-

spectively. National Center for Environmental Prediction

(NCEP)-National Center for Atmospheric Research (NCAR)

reanalysis monthly data of weather parameters such as wind,

air temperature, and relative humidity (RH) at 850 hPa pres-

sure level were used to study the synoptic meteorological

conditions over the stations. In Fig. 2a–c, winds are shown

with arrows pointing towards the wind direction, where

length of arrows defines the magnitude of wind speed (in

m s−1), line contour represents air temperature (◦C) and

shaded color contour represents RH (%) (showing in purple-

blue color for low and red color for high RH). Results reveal

www.ann-geophys.net/29/789/2011/ Ann. Geophys., 29, 789–804, 2011
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Fig. 2. Synoptic meteorological conditions over the entire IGB region along with the other parts of India and its surroundings during

(a) April 2009, (b) May 2009, (c) June 2009 at 850 hPa level and (d) sun photometer retrieved columnar water vapor at Kanpur and Gandhi

College during April to June 2009.

that the study regions over IGB are generally characterized

by westerly to northwesterly winds during pre-monsoon sea-

son, intensifying from April to June months. These winds

are found to pass through arid regions of the western India

and southwest Asia to bring dry air mass over the stations

(Srivastava et al., 2010b). In the year 2009, low air tempera-

ture and RH were observed over these stations during April,

which was found to be exceeding as months progresses. With

the advancement of pre-monsoon from April to June, the

west to east temperature gradient is found to increase, to

influence the increase of pressure gradient. This pressure

gradient caused winds to be intensified from west to east-

ward locations and from April to June months. These strong

winds can carry tremendous amount of mineral dust from

the Desert region in the west, and may transport it eastward

over the neighboring states of India (Srivastava et al., 2010b).

Sun/sky radiometer derived columnar water vapor content at

Kanpur and Gandhi College is shown in Fig. 2d. It is found

that relatively dry atmosphere exist at both the stations dur-

ing the month of April, which subsequently got humidified

with the advancement of months from May to June. Spa-

tially, higher water vapor content was observed over Gandhi

College for all the months in comparison to Kanpur. This

observation is well associated with the observed RH over the

IGB region during pre-monsoon months.

3.3 Emission sources

The IGB region, apart from being a major source region for

aerosols, is bordered by densely populated and industrial-

ized areas on the west and eastern sides from where differ-

ent aerosol species such as mineral dust, soot, nitrate, sulfate

particles and organics are produced and transported to this

region and thus making it an aerosol hotspot (Ramachandran

and Cherian, 2008). The region itself has both, rural and ur-

ban, population and various kinds of emission sources, nat-

ural as well as industrial. In rural areas, bio-fuels such as

fuel wood, dung cake and crop waste, predominantly con-

tribute to aerosol formation (Habib et al., 2006). However,

in urban areas, aerosol emissions from fossil fuels such as

coal, petrol and diesel oil dominate (Ram and Sarin, 2010;

Tiwari et al., 2010). Large fluxes of absorbing aerosol emis-

sions (black carbon and inorganic oxidized matter, which is

mostly fly ash from coal-based power plants and particles

from open burning of crop waste/forest-fires) were reported

over the IGB (Habib et al., 2006). Apart from the dust emis-

sions from the Thar Desert during pre-monsoon months, the

influence of emissions from the forest-fires and open burning

of crop waste from the central India were also found over

IGB during these months as biomass aerosol contribution

(Ramachandran and Cherian, 2008).
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Table 1. Mean value (± standard deviation) of aerosol parameters at different stations over IGB region during pre-monsoon.

Month (2009) Locations
Mean aerosol parameters

AOD500 AE440−870 SSA675 AP675

April
Kanpur 0.50 (±0.22) 0.49 (±0.30) 0.92 (±0.02) 0.69 (±0.03)

Gandhi College 0.51 (±0.20) 0.65 (±0.29) 0.88 (±0.03) 0.69 (±0.03)

May
Kanpur 0.65 (±0.12) 0.74 (±0.27) 0.91 (±0.03) 0.68 (±0.02)

Gandhi College 0.67 (±0.20) 0.91 (±0.34) 0.89 (±0.02) 0.67 (±0.02)

June
Kanpur 0.69 (±0.24) 0.45 (±0.27) 0.94 (±0.03) 0.70 (±0.02)

Gandhi College 0.77 (±0.34) 0.71 (±0.33) 0.92 (±0.03) 0.69 (±0.02)

The IGB covers ∼20 % geographical area and contributes

∼42 % to the total food grains production of India and holds

nearly ∼40 % of the total population (Tripathi et al., 2005).

In the IGB region, ∼12 million hectares is accounted for rice-

wheat crop rotation. Harvesting of these crops with combine

harvesters is very popular with the farmers (Badarinath et al.,

2009). Harvesting of wheat system is usually done during

pre-monsoon mainly in the months of May and June, which

leaves behind large quantities of straw in the field as crop

residues. These crop residues are subjected to open burning

to clear the wastes and to prepare the field for sowing the

rice system, which generate abundance of biomass aerosols

(fine-size) over the region during pre-monsoon period.

4 Results and discussion

4.1 Optical and microphysical properties of aerosol

4.1.1 Aerosol optical depth and Angstrom exponent

Figure 3a shows daily mean variations in AOD (at 500 nm)

at Kanpur and Gandhi College, respectively, during April

to June 2009. A consistent increase in the magnitude of

AOD, ranging from 0.21 (April) to 1.30 (June) at Kanpur

and 0.22 (April) to 1.53 (June) at Gandhi College was ob-

served. Angstrom exponent (AE), derived from the spectral

dependence of AOD measurements, computed for the wave-

length pair of 440 and 870 nm, is shown in Fig. 3b for the

two stations. The AE is supposed to provide qualitative ap-

proximation about the dominant size of the particles, with

higher AE implying dominance of small-size particles and

vice-versa (Srivastava et al., 2008). Changes in the size of

fine-mode concentrations are possible due to coagulation,

which increases with increasing aerosol loading under suit-

able meteorological conditions (Eck et al., 2005, 2010; Li et

al., 2007). The observed large range of AE, from 0.06 to 1.19

at Kanpur and 0.15 to 1.37 at Gandhi College, suggests that

there are different types of aerosols (from coarse-mode dust

to fine-mode pollution) present over these stations during

pre-monsoon, caused by day-to-day variations in the weather

parameters and emission factors. An increase in AOD with

corresponding increase in AE, which is the case observed at

Gandhi College, suggests an enhancement in fine-mode par-

ticles over the station. Results are expected to be caused due

to open burning of field straw of wheat harvest, which is usu-

ally done in the northern India during the pre-monsoon and

generated abundance of fine-mode biomass aerosols over the

region (Badarinath et al., 2009; Sharma et al., 2010).

Monthly mean values of AOD and AE, calculated by daily

means for April, May and June 2009 at both the considered

stations are given in Table 1. A gradual increase in AOD was

observed at both the stations with the advancement of the

pre-monsoon season, from April to June, which was found to

be slightly higher at Gandhi College than observed at Kan-

pur. A small positive gradient in AOD was observed from

Kanpur to Gandhi College when AOD at Kanpur was found

to be low by ∼2 %, 4 % and 10 % from the values observed

at Gandhi College during April, May and June months, re-

spectively. The increasing AOD from Kanpur to Gandhi Col-

lege is expected due to increased aerosol loading from natural

and/or anthropogenic origin. Though Gandhi College (Bal-

lia) is much smaller station than the city like Kanpur, it is one

of the representative rural AERONET sites, which is affected

mostly by the fine-size aerosols rather than the coarse-size

dust aerosols. These results are substantiated by the air mass

back-trajectory analysis given in the Sect. 4.1.3.

Besides day-to-day variability in AE, it can be seen that

both stations are influenced by dust loading because of mean

AE < 1 (Eck et al., 2010); however, Gandhi College is rel-

atively dominated by anthropogenic aerosols (mostly from

biomass), mainly during the month of May. A gradual in-

crease in the magnitude of AE was observed at both the sta-

tions during April to May, which is found to decrease during

the month of June (Table 1). However, relatively large mag-

nitude of AE was found over Gandhi College as compare

to Kanpur during pre-monsoon, indicating large influence of

fine-size particles in AOD at Gandhi College. On the other

hand, relatively low AE at Kanpur informs dominance of

coarse-mode dust particles in AOD, which are mostly trans-

ported from the nearby Thar Desert region in the western

www.ann-geophys.net/29/789/2011/ Ann. Geophys., 29, 789–804, 2011
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Table 2. Mean volume size distribution parameters of aerosol particles∗ at different stations over IGB region during pre-monsoon.

Month (2009) Locations
Aerosol parameters of volume size distribution

Vf Reff,f V MRf σf Vc Reff,c V MRc σc

April
Kanpur 0.04 0.12 0.14 0.53 0.32 2.25 2.80 0.64

Gandhi College 0.05 0.12 0.13 0.47 0.28 2.38 2.95 0.62

May
Kanpur 0.07 0.12 0.13 0.47 0.34 2.13 2.63 0.63

Gandhi College 0.09 0.14 0.15 0.46 0.23 2.06 2.57 0.65

June
Kanpur 0.05 0.11 0.13 0.56 0.49 2.18 2.65 0.59

Gandhi College 0.08 0.13 0.14 0.49 0.32 2.16 2.63 0.61

∗ Vf and Vc are the volume concentration (in µm3 µm−2) of fine and coarse particles, respectively; Reff,f and Reff,c are the effective radii (in µm) of fine- and coarse-modes,
respectively; VMRf and VMRc are the volume median radius (in µm) of fine- and coarse-modes, respectively and σc and σf are the geometric standard deviation of fine- and
coarse-modes, respectively.

Fig. 3. Daily mean variations in (a) AOD at 500 nm and (b) AE

at 440–870 nm at Kanpur and Gandhi College during April to

June 2009.

Rajasthan. This fact is also reported by various authors as

one of the major dust source region over IGB during pre-

monsoon (Dey et al., 2004; Singh et al., 2005; Pandithurai

et al., 2008; Srivastava et al., 2010c). As month advances

from April to June, a positive gradient in the magnitude of

AE as seen in AOD, is evident from Kanpur to Gandhi Col-

lege implies spatial changes in aerosol features over IGB re-

gion during the study period. In order to substantiate the

above results, fine- and coarse-mode aerosol fractions, de-

rived from sun/sky radiometer, have been examined for these

stations (not shown here). As expected, fine-mode fraction

was found to be relatively higher (∼27 %) at Gandhi Col-

lege and coarse-mode fraction was found to be relatively

higher (∼20 %) at Kanpur. A small gradient from Kanpur to

Gandhi College was observed in both fine- and coarse-mode

fractions, which was positive for fine-mode and negative for

coarse-mode fraction, and suggests an increase in fine-size

particles over the eastern IGB (Gandhi College) and coarse-

size over the central IGB (Kanpur) region.

4.1.2 Aerosol volume size distribution

Sun/sky radiometer retrieves aerosol volume size distribu-

tion for 22 size bins between 0.05 and 15 µm. Such dis-

tributions are depicted in Fig. 4a–c for Kanpur and Gandhi

College from April to June 2009. It was found that they fol-

low bi-modal size distributions at both the stations during all

the considered months; however, they show different volume

concentrations, and effective radius in fine- and coarse-sizes

to the earlier reported values (Singh et al., 2004; Prasad et

al., 2007; Pandithurai et al., 2008) over the IGB region. The

observed bi-modal size distributions can be explained on the

basis of mixing of air masses containing primary aerosols

with fine- and coarse-modes (Hoppel et al., 1985) or hetero-

geneous nucleation and growth of particle size by conden-

sation of gas phase reaction products (Dey et al., 2004). It

can be seen from Fig. 4a–c that the volume concentration in

fine-size is comparatively larger and coarse-size is smaller

at Gandhi College than Kanpur. The difference in fine- and

coarse-size aerosol volume concentrations at both stations

are more pronounced during the month of June. A small

positive shift in the magnitude of fine-size aerosol volume

concentration was observed from Kanpur to Gandhi College

during almost all the months, which is more pronounced dur-

ing the month of June. Results could be due to the possible

hygroscopic growth of fine-size particles at Gandhi College

with higher RH, as can be seen clearly with the spatial dis-

tribution of RH during the month of June in Fig. 2c. The

fine-size particles were observed to be ranging from about

0.1–0.2 µm and coarse-size particles from about 3–4 µm at

both the stations during pre-monsoon.

Monthly mean aerosol volume size distribution parameters

such as columnar volume concentration (V ), effective radii

(Reff), volume median radius (VMR) and geometric stan-

dard deviation (σ) for fine (f)- and coarse (c)-modes at Kan-

pur and Gandhi College are presented in Table 2. It is noted

from Table 2 that the magnitude of volume concentration in

fine-mode (Vf) is higher at Gandhi College as compared to

Ann. Geophys., 29, 789–804, 2011 www.ann-geophys.net/29/789/2011/
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Fig. 4. Aerosol volume size distribution for 22 size bins be-

tween 0.05 and 15 µm at Kanpur and Gandhi College during

(a) April 2009, (b) May 2009 and (c) June 2009. The vertical bars

at each size bin indicate standard deviation (SD) from their mean.

Kanpur; however, vice-versa was observed for the volume

concentration in coarse-mode (Vc) at these stations. Results

confirm the relative dominance of fine-mode particle con-

centrations at Gandhi College and coarse-mode at Kanpur

with no significant changes in the mean effective radius for

fine-mode particle size (Reff,f) at these stations during pre-

monsoon. However, changes in the mean effective radius for

coarse-mode particle (Reff,c) was observed at both the sta-

tions during each considered months of pre-monsoon. Re-

sults suggest large variability in the coarse particle sources;

however, the fine particle sources are by-and-large stable at

both the stations over the IGB.

4.1.3 Air mass back-trajectory analysis

Since the impact of ambient aerosols on radiation budget of

the atmosphere changes with source regions and transport

pathways, it is prerequisite to get the information for their

impact assessment. In order to know the transport pathways,

5-day backward air mass trajectories have been computed us-

ing the Hybrid Single Particle Lagrangian Integrated Trajec-

tory (HYSPLIT) model of the National Oceanic and Atmo-

spheric Administration (NOAA), USA (Draxler and Rolph,

2003). Figure 5a–c shows mean backward-trajectories from

two stations for the month of April to June 2009 to locate the

path of transport of dust-carrying air masses to each station

at an altitude of 1000 m above mean sea level (a.m.s.l.). It is

evident from Fig. 5 that there are different pathways for the

transport of air masses from the source regions to both the

stations during different months.

Figure 5a shows that the air masses reaching to each sta-

tion over the IGB region during April month are mostly

started 5-days back from the Gulf regions, and have longer

and wider spread of pathways at Kanpur as compare to

Gandhi College where nearly similar air mass pathway

was observed with relatively narrow spreading. Figure 5b

shows comparatively larger spreading of air mass pathway at

Gandhi College than at Kanpur during the month of May,

indicating large variability in the transport of air mass at

Gandhi College. Figure 5c shows that during the month of

June, air masses are mostly confined over the Thar Desert

region, and transported at Kanpur, whereas for Gandhi Col-

lege, back-trajectories show that the air mass is highly lo-

calized and confined to the IGB region only. Results show

that, except during the month of June, air masses reaching at

Gandhi College follow the similar path as air masses reach-

ing at Kanpur. There may be the possibility of mixing of

air masses reaching at Gandhi College with the air masses

already arrived at Kanpur during April and May months, de-

pending upon the initial and final altitudes of these air masses

at both the stations. Figure 5d depicts air mass altitude varia-

tions with back-days at Kanpur (with solid lines) and Gandhi

College (with dotted lines) during April to June. Final alti-

tude for the backward air mass trajectory is 775 and 535 m

above the ground level (a.g.l.), respectively at Kanpur and

Gandhi College (corresponds to 1000 m a.m.s.l. altitude at

both the stations). It is evident from the figure that except in

the month of June, air masses at both the stations are arriv-

ing from the higher attitudes. Also, air masses reaching at

Gandhi College during all the months are mixed with the air

masses that already affected Kanpur, as shown by the inter-

action of air masses at different altitudes (shown by circles

in Fig. 5d). Thus, the eastern IGB region, apart from the lo-

cal aerosol sources, could also be influenced by the aerosol

particles carrying from the other parts of the IGB and the sur-

rounding Desert regions. However, during June, Gandhi Col-

lege is largely influenced by the locally generated aerosols

only. Similar information is also observed in the wind pat-

tern of June month (Fig. 2c), which shows intensification in

the wind speed from west-northwest to southeast direction

over the IGB region.

4.2 Radiative properties of aerosol

4.2.1 Single scattering albedo

Aerosol single scattering albedo (SSA), characterizes the

combined effect of scattering and absorption properties of

aerosols. The scattering and absorption characteristics of dif-

ferent aerosol types in combination with surface reflectance

determine whether the aerosol is contributing to cooling or

heating (Satheesh, 2002). In addition, it is a measure of

the fraction of radiation absorbed by atmospheric aerosols

(expressed through 1-SSA). Monthly mean SSA retrieved

by sun/sky radiometer at 675 nm is also shown in Table 1

for Kanpur and Gandhi College stations during April–June.

Though, average SSA was observed to be more than 0.85 at

both the stations over IGB, it was found to be relatively lower
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Fig. 5. 5-day air mass back-trajectory clusters at Kanpur and Gandhi College during (a) April 2009, (b) May 2009 and (c) June 2009 (vertical

lines show standard deviations, represent spreading of air masses). (d) Air mass altitude variations with back-days at Kanpur (KNP, with

solid lines) and Gandhi College (GC, with dotted lines) during April to June.

Fig. 6. Spectral variations of SSA at four discrete wavelengths

(440, 675, 880 and 1020 nm) at Kanpur and Gandhi College dur-

ing (a) April 2009, (b) May 2009 and (c) June 2009.

at Gandhi College (0.89) than observed at Kanpur (0.92) dur-

ing the pre-monsoon period. Results suggest dominance of

absorbing type aerosols at Gandhi College in comparison

to Kanpur. The observed SSA at both the stations over the

IGB region is found to be by-and-large comparable with the

earlier reported values over IGB during pre-monsoon period

(Singh et al., 2004; Prasad et al., 2007; Dey and Tripathi,

2008; Pandithurai et al., 2008; Srivastava et al., 2010c). Con-

structing the aerosol compositions by combining two dif-

ferent aerosol types (urban and desert) during pre-monsoon

period, Singh et al. (2010) have derived SSA value at the

nearby station at New Delhi over the IGB region, which was

found to be ∼0.80 at 500 nm. In other studies, Pandithurai et

al. (2008) have reported SSA (at 500 nm) at New Delhi in the

range between 0.74 and 0.84 during pre-monsoon. However,

Srivastava et al. (2010c) have reported comparatively larger

value of SSA (∼ 0.94±0.04 at 675 nm) during the month of

June, which could be due to the presence of higher loading

of water-soluble aerosols produced from the anthropogenic

sources nearby the station (Singh et al., 2004; Prasad et al.,

2007).

The mean spectral variations of SSA at four discrete wave-

lengths (440, 675, 870 and 1020 nm) for both the stations

during the months of April, May and June are shown in

Fig. 6a–c, respectively. Interesting features were observed,

which are: (i) large spectral dependence (i.e. SSA increase

with increasing wavelength) was observed at Kanpur, in-

dicating relative dominance of dust as also reported ear-

lier for various episodes of dust advection over the IGB re-

gion (Dey et al., 2004; Singh et al., 2005, 2010; Pandithu-

rai et al., 2008; Srivastava et al., 2010c), (ii) relatively less

spectral dependence was observed at Gandhi College, ex-

hibits the dominance of biomass burning generated aerosols

along with transported urban-industrial aerosols from fossil
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fuel combustion from nearby and far located regions, and

(iii) spectral variation in SSA at Gandhi College in the month

of April shows nearly similar feature (large spectral depen-

dence) as observed at Kanpur for dust-containing aerosols;

however, its magnitude was found to be relatively low at

Gandhi College than Kanpur for all the considered wave-

lengths. Singh et al. (2004) at Kanpur and Pandithurai et

al. (2008) as well as Srivastava et al. (2010c) at New Delhi

have reported similar kind of SSA spectra for dust-containing

aerosols during pre-monsoon as absorption due to dust is

much higher at the lower wavelengths which rapidly de-

creases in the higher wavelengths (Dey and Tripathi, 2008).

Bergstrom et al. (2007) and Russell et al. (2010) have shown

spectra of aerosol SSA at different regions of the world

and used the information to infer the compositions of vari-

ous types of aerosols presence for various locations. They

have reported that the SSA spectra increases with increas-

ing wavelength for desert dust dominated locations, similar

to the case at Kanpur in the present study. They further re-

ported that the locations dominated by the urban-industrial

and biomass burning aerosols show the SSA spectra to de-

crease with increasing wavelength, but, such spectra was not

observed in the present study at Gandhi College probably due

to mixing of these aerosols with the locally generated dust

aerosols.

Following the Bergstrom et al. (2007) and Russell et

al. (2010), the spectral absorption aerosol optical depth

(AAOD) at both the stations during pre-monsoon period is

obtained as

AAOD(λ) = [1-SSA(λ)]AOD(λ) (1)

where λ is the wavelength. This is a well known theoreti-

cal equation, which provides information about the absorb-

ing optical properties of aerosols with the term 1-SSA (λ),

representing the fraction radiation absorbed by atmospheric

aerosols.

The AAOD follows a decrease with increasing wavelength

at both the stations during each month (Fig. 7a–c) having

relatively larger slope at Kanpur than Gandhi College. The

absorption Angstrom exponent (AAE) is computed from the

slope of spectral absorption optical depth in the wavelength

range from 440 to 1020 nm (corresponds to the retrieved SSA

values used for AAOD calculation), which is analogues to the

Angstrom power law (Ångström, 1964).

The magnitude of AAE at each station in each month is

shown by the arrows in Fig. 7a–c and the same is plotted in

Fig. 7d, separately. An enhancement over AAE value of 1.0,

a theoretical AAE value for black carbon (Bergstrom et al.,

2007), was found at both the stations. Results suggest the

absorption could be due to the presence of mineral dust and

biomass burning aerosols at both the locations over the IGB

region during pre-monsoon period, in which dust aerosols

absorption is mostly dominating at Kanpur (AAE = 1.62)

and biomass aerosols absorption is mostly dominating at

Gandhi College (AAE = 1.46). Similar to SSA, a negative

Fig. 7. The absorption aerosol optical depth (AAOD) versus wave-

length for Kanpur and Gandhi College during (a) April 2009,

(b) May 2009 and (c) June 2009. The curve fit straight line rep-

resents the best-fit absorption Angstrom exponent (AAE) shown by

arrows. (d) AAE for the wavelength region of 440–1020 nm at Kan-

pur and Gandhi College during April to June 2009.

gradient in the magnitude of AAE was observed from Kanpur

to Gandhi College during pre-monsoon. It is expected from

the results that the atmospheric absorption over the central

IGB (Kanpur) region could mainly be due to dominance of

coarse-mode dust particles, transported from the Thar Desert

region and their mixing/coating with polluted aerosols. On

the other hand, over the eastern IGB (Gandhi College) re-

gion, the atmospheric absorption could be expected mostly

due to dominance of fine-particles from biomass burning

along with locally produced coarse-dust particles. Earlier,

Collaud et al. (2004) measured the scattering and absorp-

tion wavelength dependence during Saharan dust events at

the Jungefraujoch station, and informed that the AAE of the

Saharan dust particles increased from above 1.0 to a range

between 1.0 and 2.0. Results are highly associated with

the steepness of the slope of AAOD with the wavelength as

shown in Fig. 7a–c and the variations in monthly mean SSA.

4.2.2 Asymmetry parameter

The asymmetry parameter (AP), i.e. angular distribution of

light scattering by the aerosol particles, is an important prop-

erty of aerosol, which actually regulates the aerosol radiative

forcing. The ideal value of AP ranges from −1 (for entirely

backscattered radiation) to +1 (for entirely forward-scattered

radiation). Similar to SSA, this parameter is also depen-

dent on the size and the composition of particles (Andrews

et al., 2006; Ramachandran and Rajesh, 2008). The monthly

mean values of AP during April–June retrieved by sun/sky

radiometer at 675 nm are given in Table 1 for Kanpur and

Gandhi College. Small negative gradient in the magnitude
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Fig. 8. Same as Fig. 6 for AP at four discrete wavelengths (440,

675, 880 and 1020 nm).

of AP was observed, in concurrence with SSA, from Kan-

pur to Gandhi College almost in each month except during

the month of April, when the magnitude was found to be

almost equal. Results suggest a gradient of coarse-to-fine-

mode particles over the IGB region. Results also show that

AP is behaving opposite to the variations in AE (Table 1),

and indicate a decrease in the magnitude of AP with increas-

ing AE values, and vice-versa, at both the stations during

pre-monsoon period.

Ramachandran and Rajesh (2008) have derived AP values

for the coastal stations in India and given a range of 0.3 to

0.6 at 550 nm for coastal aerosols. However, D’Almeida et

al. (1991) suggested the range of AP between 0.64 and 0.83

(average 0.72) for dry aerosol particles at 500 nm depend-

ing on the aerosol type and seasonal variability. Andrews et

al. (2006) reported the values of AP at 550 nm between 0.60

(±0.03) for dry aerosols to 0.65 (±0.05) for aerosols at am-

bient conditions. The mean spectral variations of AP at four

discrete wavelengths for two stations over IGB region during

April, May and June are shown in Fig. 8a–c, respectively.

The magnitude of AP was found to decrease with increas-

ing wavelength in the visible region and an increase in the

near-IR region at all stations in each month, which may be

attributed to the presence of coarse-size dust particles during

pre-monsoon. This feature was seen prominent at Kanpur

during all the months as compare to Gandhi College.

4.3 Aerosol radiative forcing

Aerosol radiative forcing is defined as the net change of top-

of-atmosphere (TOA)/surface radiative flux due to aerosols.

In the present analysis, net radiative flux has been estimated

in the short-wave region (0.25–4.0 µm) with and without

aerosols at TOA and at the surface using the Santa Barbara

DISORT Atmospheric Radiative Transfer (SBDART) model

(Ricchiazzi et al., 1998). The basic input parameters used

in the SBDART for forcing estimations are spectral AOD,

SSA and AP. Besides these, other important input parameters

includes solar geometry, model atmospheric profile and the

surface albedo. The information on vertical distribution of

aerosols is of paramount importance and a major source of

uncertainty in the estimation of atmospheric radiative forc-

ing (Ganguly et al., 2009; Lemaı̂tre et al., 2010). In most

of the studies, surface aerosol properties are attributed to the

column properties by making assumptions about the vertical

profiles. However, in the present study, sun/sky radiome-

ter derived columnar aerosol parameters at different wave-

lengths were used in the estimation of radiative forcing.

Based on the measured meteorological parameters and

prevailing atmospheric conditions, the tropical model at-

mospheric profile has been used in the present case. In

order to have a better representation of the atmosphere

and the accuracy of the estimated aerosol radiative forcing,

monthly mean value of columnar water vapor, retrieved by

the sun/sky radiometer (1.5 and 1.8 g cm−2 during April,

3.0 and 4.1 g cm−2 during May and 3.2 and 4.3 g cm−2 dur-

ing June, respectively for Kanpur and Gandhi College) and

total column ozone retrieved by Ozone Monitoring Instru-

ment (OMI) onboard Aura spacecraft (278 and 279 DU dur-

ing April, 286 and 287 DU during May and 278 and 284 DU

during June, respectively, for Kanpur and Gandhi College)

were used in SBDART model. Since surface albedo plays

a crucial role in the forcing estimations, it was obtained at

each station during the months from April to June 2009 from

the Aura OMI version 3 reflectivity data (at 500 nm wave-

length). The surface albedo for each month at each station

is obtained by averaging the values of each day in the par-

ticular month. The monthly mean surface albedo values at

single wavelength (at 500 nm) were obtained about 0.12 and

0.13 in April, 0.19 and 0.22 in May and 0.21 and 0.23 in

June at Kanpur and Gandhi College, respectively. In a recent

study, Raut and Chazette (2008) have discussed the influence

of spectral surface albedo values on radiation budget. There

are some differences in surface albedo values found in the

present study at both the stations, having relatively higher

values at Gandhi College as compare to Kanpur during pre-

monsoon. However, the magnitude of surface albedo was

found to be increased with the advancement of pre-monsoon

months at both the stations. Calculations of irradiance were

repeated for every 5◦ solar zenith angle and the diurnally av-

eraged radiative forcing were estimated for the TOA and sur-

face. The difference between the TOA and surface forcing

is considered as atmospheric forcing (1F ), which represents

the amount of energy trapped within the atmosphere by ab-

sorbance of the aerosols to get transformed into heat.

Figure 9a–c shows short-wave radiative forcing at the

TOA, surface and in the atmosphere, respectively, at Kan-

pur and Gandhi College over the IGB region during pre-

monsoon. TOA forcing was found to be negative during all
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Fig. 9. Short-wave radiative forcing at (a) TOA, (b) surface and (c) in the atmosphere at Kanpur and Gandhi College during April to June

2009.

the months at both the stations indicating net cooling. The

monthly mean TOA forcing (Fig. 9a) was found to be −6.6

and −8.9 W m−2 during April, −12.2 and −15.5 W m−2 dur-

ing May and −13.0 and −15.4 W m−2 during June at Kan-

pur and Gandhi College, respectively. On the other hand,

surface forcing (Fig. 9b), which is the net flux received at

the surface after passing through the atmosphere, was also

observed to be negative at both the stations during all the

months. The monthly mean surface forcing was observed to

be about −26.1 and −29.7 W m−2 during April, −31.7 and

−31.5 W m−2 during May and −29.2 and −31.9 W m−2 dur-

ing June at Kanpur and Gandhi College, respectively. The

resultant atmospheric forcing (difference between TOA and

surface forcing) is the absorption due to aerosols within the

atmosphere, which is shown in Fig. 9c for both the sta-

tions during pre-monsoon. Atmospheric forcing was found

to be +19.5 and +20.9 W m−2 during April, +19.6 and

+16.0 W m−2 during May and +16.1 and +16.6 W m−2 dur-

ing June at Kanpur and Gandhi College, respectively, and

indicates significant heating of the atmosphere at both the

stations. An interesting feature in radiative forcing was ob-

served during May month when surface forcing was found

to be by-and-large equal at both the stations. On the same

period, TOA forcing at Gandhi College was found to be rel-

atively larger (more negative) than at Kanpur (less negative),

which was opposite for atmospheric forcing at these stations.

Results indicate that relatively large heating was exerted into

the atmosphere at Kanpur as compare to Gandhi College dur-

ing May due to dominance of dust absorption. Computed

forcing efficiency (i.e. the change in net flux [1F ] at the sur-

face or TOA per unit AOD at 500 nm) at the surface was

found to be about −21 and −9 W m−2 and at the TOA, it

was about −34 and −26 W m−2 during pre-monsoon period

for Kanpur and Gandhi College, respectively.

Large aerosol induced negative surface forcing (more than

−20 W m−2) with higher values (more than −30 W m−2)

during the pre-monsoon season was reported by Dey and

Tripathi (2008) at Kanpur with negative TOA forcing, when

the transported natural dusts get mixed with anthropogenic

aerosol pollution. Moreover, Prasad et al. (2007) have re-

ported a change in the average surface forcing by about

−23 W m−2 and in the TOA forcing by about −11 W m−2

during dusty days as compared to the non-dusty days

(pre-monsoon season). On the other hand, Pandithurai

et al. (2008) have observed a consistent increase in sur-

face cooling, ranging from −39 (March) to −99 W m−2

(June) and an increase in heating of the atmosphere from

+27 W m−2 (March) to +123 W m−2 (June) over New Delhi

during March to June 2006. Another study by Satheesh et

al. (2006) have examined the impact of dust aerosols on TOA

albedo and radiative forcing especially over desert regions

(African and Arabian regions) under high surface reflection

conditions. They have reported that the TOA albedo becomes

less than that of surface albedo over deserts due to absorbing

nature of dust aerosols.

Results show that surface level radiative forcing at both the

stations is primarily governed by the magnitude of AOD val-

ues. However, the TOA forcing is very intricately dependent

on several parameters such as AOD, surface albedo, SSA

which in turn depends on the real and imaginary components

of refractive indices and asymmetry parameter (Satheesh,

2002; Andrews et al., 2006). Satheesh (2002) has done de-

tailed analysis of aerosol forcing by considering different

cases of surface albedo and suggested that due to the high
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Table 3. Mean heating rate values (K day−1) at different stations

over IGB region during pre-monsoon.

Month (2009)
Heating rate (K day−1) at

Kanpur Gandhi College

April 0.55 0.59

May 0.55 0.45

June 0.45 0.47

surface albedo (e.g. for soil surface), the aerosols forcing

at the TOA will change its sign from negative to positive.

Furthermore, Satheesh et al. (2002) have shown that if the

INDOEX model was used over land (having higher surface

reflectance), TOA forcing becomes positive from negative

over ocean, which results in increased atmospheric forcing

by ∼7 W m−2. In the present study, however, surface albedo

values at Kanpur was found to be relatively lower as com-

pared to that at Gandhi College and vice-versa was found

with SSA at both the stations, which decides the magnitude

and sign of aerosol forcing at the TOA.

The uncertainty in the radiative forcing calculation in the

present case may arise from the difference in the used trop-

ical model atmospheric condition and the real atmosphere,

deviations in the surface albedo values, uncertainty in the

aerosol parameters retrieved from sun/sky radiometer. The

overall uncertainty in the estimated radiative forcing due to

deviations in simulation is found in the range about 10–15 %.

Recently, Dey and Tripathi (2008) have also reported various

sources of uncertainties in estimating the aerosol direct ra-

diative forcing during clear- and cloudy-sky conditions over

Kanpur in the IGB region. They have estimated the total

uncertainty of ∼15 % in the estimations of clear-sky aerosol

direct radiative forcing, and suggested that the uncertainty

may be reduced with an increased number of in-situ mea-

surements of various aerosol parameters at better temporal

and spatial resolutions.

4.4 Atmospheric heating rate due to aerosol

An important aspect is the aerosol generated atmospheric

heating, which can be estimated by following Liou (2002)

as

∂T

∂t
=

g

Cp

1F

1P
(2)

where ∂T /∂t is the heating rate (K day−1), g is the acceler-

ation due to gravity, Cp is the specific heat capacity of air

at constant pressure, 1F is the resultant atmospheric forcing

and 1P is the atmospheric pressure difference between top

and bottom boundary of each layer.

Table 3 shows monthly mean heating rates as 0.55 and

0.59 K day−1 during April, 0.55 and 0.45 K day−1 during

May and 0.45 and 0.47 K day−1 during June at Kanpur and

Gandhi College, respectively. The present result of net at-

mospheric absorption is comparable with the INDOEX re-

sults, where the atmospheric heating rate was estimated to

be about 0.5 K day−1 (Satheesh et al., 2002). However, Dey

and Tripathi (2008) have reported the annual mean clear-sky

atmospheric heating rate of about 0.84 K day−1 over Kan-

pur. The high surface cooling due to negative forcing at the

surface and strong heating due to positive aerosol forcing in

the atmosphere at both the stations during pre-monsoon indi-

cates their association with various aerosol properties includ-

ing size and chemical composition of aerosols, which raises

several climatic issues. The observed atmospheric heating

rate implies that the excess energy in the region is trapped in

the atmosphere during dry season, which can have significant

impact on regional climate and monsoon circulation systems

(Ramanathan et al., 2007; Pilewskie, 2007). Anomalous at-

mospheric heating due to absorbing aerosols over northern

India during pre-monsoon season has been reported by Lau

et al. (2006), which was interpreted as increased dust loading

coupled with black carbon emissions from the local sources

in northern India during pre-monsoon may lead to an ad-

vancement of the rainy period and subsequently, can impact

for the intensification of the Indian summer monsoon (Gau-

tam et al., 2009a).

5 Conclusions

Simultaneous measurements of aerosol optical properties

carried out by AERONET at Kanpur and Gandhi College- a

typical representative stations of central and eastern IGB re-

gion, during April–June 2009 have been used to investigate

pre-monsoon aerosol characteristics in terms of their impli-

cations to climatic impact. Results also indicate a significant

spatial difference in aerosol characteristics between central

and eastern IGB region which lead to a considerable asym-

metry in aerosol radiative forcing between the regions. The

salient results of the present study are given here under:

1. A gradual increase in AOD at each station and rela-

tively large positive gradient in Angstrom exponent as

compare to AOD from Kanpur to Gandhi College sug-

gests an increased aerosol loading having markable dif-

ference in aerodynamic size range of volume of aerosols

from coarse- to fine-mode. Results may be caused due

to diverse geographical position of both the stations

having diverse meteorological conditions and emission

sources.

2. Large SSA (>0.85) was observed at both the stations,

which was found to be relatively lower at Gandhi Col-

lege (0.89) as compared to Kanpur (0.92) and suggested

relative dominance of absorbing aerosols at Gandhi Col-

lege than at Kanpur.
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3. The magnitude of AAE shows an enhancement over the

AAE value of 1.0 at both the stations, which was more

prominent at Kanpur as compare to Gandhi College. A

negative gradient in the magnitude of AAE from Kanpur

to Gandhi College suggests that the atmospheric absorp-

tion over the central IGB (Kanpur) region could mainly

be due to dominance of coarse-mode dust particles and

over the eastern IGB (Gandhi College) region, it could

be due to dominance of fine-particle pollution.

4. Large TOA and surface forcing was observed at both

the stations which were found to be relatively larger

at Gandhi College as compare to Kanpur. The resul-

tant atmospheric forcing exerts significant heating to the

atmosphere at both the stations ranging from 0.45 to

0.55 K day−1 at Kanpur and from 0.45 to 0.59 K day−1

at Gandhi College. Results are largely associated with

measured aerosol parameters, which are mainly influ-

enced by the synoptic condition, emission sources and

geography of the locations.

The present study reveals that, during pre-monsoon, there are

different aerosol characteristics at central and eastern IGB re-

gion, which show significant gradients in magnitude of most

of the aerosol characteristics over central to eastern sectors

of the IGB. Such gradient can be due to the gradual changes

in weather parameters and/or emission sources during subse-

quent months of the pre-monsoon season. Such gradient is,

ultimately, found to impact the Earth-atmosphere system by

negative radiative forcing, thus causing cooling, at the sur-

face, and positive aerosol forcing, thus causing heating in

the atmosphere for the study period. Such gradient in heat-

ing rate raises several climatic issues, and is needed to be

answered on the basis of longer period investigations at sev-

eral stations to improve the scientific understanding of the re-

gional climate in inter-annual as well as intra-seasonal scale.

Supplementary material related to this

article is available online at:

http://www.ann-geophys.net/29/789/2011/

angeo-29-789-2011-supplement.pdf.
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