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Abstract: In this study, the authors present a hierarchical algorithm to register a partial fingerprint against a full fingerprint using
only the orientation fields. In the first level, they shortlist possible locations for registering the partial fingerprint in the full
fingerprint using a normalised correlation measure, taking various rotations into account. As a second level, on those
candidate locations, they calculate three other similarity measures. They then perform score fusion for all the estimated
similarity scores to locate the final registration. By registering a partial fingerprint against a full fingerprint, they can reduce
the search space of the minutiae set in the full fingerprint, thereby improving the result of partial fingerprint identification,
particularly for poor quality latent fingerprints. They report the rank identification improvements of two minutiae-based
automated fingerprint identification systems on the National Institute of Standards and Technology (NIST)-Special Database
27 database when they use the authors hierarchical registration as a pre-alignment.

1 Introduction

Any impression made by the ridges in the skin of the human
finger is generally termed as ‘fingerprint’. Fingerprints which
are revealed using some chemical or optical processing from a
crime scene are called ‘latent fingerprints’. These are
unintentionally left fingerprints found in the crime scenes.
In the realm of forensic analysis (‘criminology’), the use of
latent fingerprints is a routine procedure to identify
suspects. Such practice has been followed for over a
century now, and has most of the time proven to be
pertinent in identifying the suspects. Consequently, the
identity of an individual established on the basis of
fingerprints is accepted by law enforcement agencies [1, 2].
Fingerprints are also widely used in civilian biometric

recognition applications such as authentication, passport
controls, biometric-based digital identity etc. Since the
fingerprint is one of the oldest biometric traits, many
techniques have been proposed in the literature for
fingerprint recognition. It is comparatively a mature
biometric trait compared against face, iris, voice etc.
Automated fingerprint identification systems (AFIS) are
widely used for fingerprint recognition in both forensic as
well as commercial domains. Most AFIS currently use two
prominent ridge characteristics (called ‘minutiae’) namely
ridge-endings and bifurcations to compare fingerprints. The
minutia-based decision is accepted as a proof of identity
legally by courts in almost all countries around the world
[1, 2].
In general, depending on the nature of the feature used by

matching algorithms, fingerprint matching can be broadly

classified into ‘correlation-based matching, minutiae-based
matching and non-minutiae feature-based matching’. In
correlation-based matching, grey-scale fingerprint images of
both input and reference are superimposed and pixel
correlations are computed between them. In minutiae-based
matching, minutiae stored as sets of points are compared
using point pattern matching algorithms. In non-minutiae
feature-based matching, other features of fingerprints such
as orientation fields (OF), frequency maps, ridge shapes,
texture information etc., are used for matching the input and
the reference [2].
Irrespective of the core methodology used for fingerprint

matching, the alignment between the input and the
reference fingerprint is a crucial step. This is because the
fingerprint images captured in different instances might
have different rotation, translation or non-linear deformation
between them. The main objective of fingerprint alignment
is to estimate the transformation parameters between input
and reference fingerprints.
The most widely used alignment method is based on

minutiae. The main idea behind minutiae-based alignment
is to search in the space of transformation parameters to
find an optimal transformation with the maximum number
of matched minutiae between the input and the reference.
One such methodology is based on the generalised Hough
transform (GHT) [3]. The main disadvantage for such
technique is the inaccuracy in the transformation
estimation because of discretisation of the parameters
space. Other approaches could be to use brute force to
check for all possible correspondences between minutiae
pairs. There exist some alignment techniques that augment
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minutiae with other supplementary features such as ridge
information, OFs around a small neighbourhood of
minutiae, geometric relationships between minutiae and its
neighbours etc.
Alignment of full fingerprints is a well-studied problem.

However, these methods are limited in alignment accuracy
because of quantisation of transformation parameters, or are
not adapted for the partial fingerprint scenario. Partial
fingerprints can arise in a number of situations, for example
[4, 5]: latent fingerprints lifted from crime scenes, because
of small size of the fingerprint capturing devices, or an
already enrolled fingerprint has noisy regions and is left
only with a partial good/recognisable region for
identification. The performance of the existing partial
fingerprint identification systems mainly depends on the
image quality, the number of minutiae available and other
derived and extended features that can be obtained from the
partial fingerprint region. Various approaches in partial
fingerprint identification [5] include: the use of localised
secondary features derived from relative minutia
information [4], using representative points along ridge
lines in addition to minutiae [6] and use of Level-3 features
such as dots and incipients [7].
Most fingerprint matching algorithms, in general, assume

approximately the same size of the minutiae set between the
query and the reference minutiae for good identification
accuracy [4]. It is nevertheless frequent in some scenarios
to have very different sizes between query and reference
because of the situations discussed above. Trying to align a
partial fingerprint to a full fingerprint only based on
minutiae features could lead to errors. Law enforcement
agencies employ AFIS to shortlist the suspects from its
criminal database (exemplar/tenprint fingerprints). In such a
scenario, it is crucial that the performance accuracy of AFIS
is as good as possible. Latent fingerprints inherently are of
poor quality, which leads to poor identification accuracy of
AFIS in the latent scenario as compared with full
fingerprint identification.
To evaluate the performance of feature extraction and

matching techniques of commercial AFIS, NIST has
conducted a multi-phase open project called evaluation of
latent fingerprint technologies (ELFT) [8]. In Phase-I of
ELFT, the best performing system reported a Rank-1
identification accuracy of 80% in which 100 latents were
compared against 10 000 rolled prints [9]. In Phase-II,
Evaluation-1, the best performing system reported a Rank-1
identification accuracy of 97.2% in which 835 latents were
compared against 100 000 rolled prints [10], and in
Phase-II, Evaluation-2, the best performing system reported
a Rank-1 identification accuracy of only 63.4% in which
1114 latents were compared against 100 000 rolled prints
[11]. The reported accuracies from Phase-I and Phase-II
cannot be directly compared as the database and the quality
of the latents were different. In [12], it is concluded that
only a limited class of latents benefits from automated
procedures, but the procedures of marking the minutiae,
determining the subjective quality of latents etc. still need
to be carried out manually.
In this paper, we focus on the problem of aligning a partial

fingerprint against a full fingerprint, especially of poor quality
latents. Instead of minutiae, we used OFs to perform the
alignment. We reduce fingerprint images to orientation
images, and we look at the alignment problem as
registering the partial fingerprint orientation image into the
full fingerprint orientation image. Image registration is
the process of overlaying (geometrically align) images of

the same scene acquired in different times, different
viewpoints and from different sensors [13].
Image registration is broadly classified into area-based and

feature-based registration. We used area-based registration in
our paper. The OF representing the flow of ridges is a
relatively stable global feature of fingerprint images, and it
represents the intrinsic nature of the fingerprint. The
representative OF of a fingerprint is very less affected by
the type of capture device, contrast variations and other
quality effects compared with the input image or the
minutiae. To improve the rank identification accuracy of
minutiae-based matching, we consider only the minutiae
around the region where the partial fingerprint orientation
image is registered in the full fingerprint. This thereby
reduces the search space of minutiae in the full fingerprint
to approximately the size of partial fingerprint minutiae set,
and consequently improves the performance of the
minutiae-based matcher. A preliminary version of this work
[14, 15] used correlation-based registration. Here, we
extend that work by incorporating a hierarchical registration
method.
The main contributions of this work are as follows:

1. New correlation-based hierarchical registration method for
orientation images to register a partial fingerprint in a full
fingerprint.
2. Experimental exploration of various types of OF
generation methods adequate for the registration.
3. Experimental demonstration of the performance
improvement of minutiae-based matching by incorporating
our registration algorithm to reduce the search space of
minutiae in full fingerprints. In particular, our algorithm
significantly improves the rank identification accuracy for
poor quality latents (bad and ugly categories) of
NIST-Special Database 27 (SD27) database using
NIST-Bozorth3 and Minutia Cylinder-Code (MCC)-software
development kit (SDK) minutiae-based matchers.

In the following sections, we review related works on
fingerprint OF-based registration, describe the database used
in our experiments, the similarity measures used in our
algorithm, followed by a detailed description of the
proposed algorithm, experiments, results and conclusion.

2 Related works

2.1 OF-based registration

In this section, we review the OF-based fingerprint
registration techniques in the literature, and its applicability
in registering partial fingerprint images. A basic
implementation of orientation-image registration requires
computing the similarity between the input orientation
image and the reference orientation image for every
possible transformation considered between them (e.g.
rotation and translation) [2]. Table 1 summarises various
techniques in the literature for OF-based fingerprint
registration together with their limitations for partial
fingerprint registration.
Liu et al. [16] uses normalised mutual information (NMI)

as the similarity measure between orientation images to
perform fingerprint registration. They align fingerprint
images by maximising NMI between the input and
reference orientation images under different transformations.
This technique is not suitable in aligning a partial
fingerprint against full fingerprint as reported in [16]. In this

www.ietdl.org

2

& The Institution of Engineering and Technology 2015

IET Biom., pp. 1–11

doi: 10.1049/iet-bmt.2014.0087



approach, for good alignment, the size of input and reference
orientation images should be almost of similar size. Another
drawback in this technique is the necessity of enough
samples of reference fingerprints to correctly estimate the
distribution of the OF, otherwise it leads to incorrect
alignment. Both of these scenarios are not pertinent in
forensic fingerprint identification.
Nilsson and Bigun [17] focus on registering the fingerprints

by complex filtering and by one-dimensional (1D) projections
of orientation images. Given the orientation images of the
fingerprints represented as complex OFs, they first use
specific complex filters to locate singular points (SPs) (core
and delta) in the fingerprint. Once these SPs are located in
both input and reference orientation images, transformation
parameters (rotation and translation) are estimated by
superimposing the SPs. Another technique studied in [17] is
1D projections of orientation images. In this method, the
fingerprint image is decomposed into six equally spaced
directions called orientation images, and a Radon
transformation is used to compute 1D projections of these
orientation images (called radiograms). A translation
parameter is estimated between a pair of radiograms from
input and reference belonging to the same projection angle
by a correlation measure. When utilising this method, it is
already assumed that the rotation alignment between input
and reference is negligible or is already corrected. These
techniques cannot be adapted to register partial fingerprints
because SPs are not always guaranteed in partial fingerprint,
and the area of overlap between input and reference is often
small.
Yager and Amin [18, 19] explore three types of OF

registration techniques summarised as follows:

1. Distinctive local orientations (DLO): This approach
mainly depends on distinctive patterns in the OF called SPs
(core and delta). This is similar to the work in [17], except
for the technique to locate the SPs.
2. GHT: In this approach, the space of all possible
transformation parameters is discretised and analysed for
the best transformation.
3. Steepest descent (SD): Starting with some initial
parameters, this algorithm evaluates a cost function. It then

evaluates a sample of local neighbourhood in the parameter
space and selects the parameters that give greatest descent
in the cost. This procedure is repeated until a local
minimum has been found.

It is reported in [18] that both GHT and SD do not perform
well when the area of overlap between the input and reference
is small, similar to the case using NMI [16]. Therefore both
GHT and SD are not suitable for partial fingerprint
registration. Moreover, DLO looks for SPs, and it is not
assured that a partial fingerprint will have SP in it.
Therefore all the OF registration techniques proposed in the
literature are not suitable for partial fingerprint registration,
and cannot be quickly adapted to this scenario.

2.2 Other registration techniques

There are two main approaches in pre-alignment, namely:
‘absolute pre-alignment’ and ‘relative pre-alignment’ [2].
The OF-based registration in this work falls under the
category of relative pre-alignment.
In ‘absolute pre-alignment’, the reference fingerprints are

pre-aligned independently of the input fingerprint before
storing in the database. The input fingerprint is pre-aligned
just once before any comparisons are performed with the
reference fingerprints. For absolute pre-alignment, the most
common technique is to translate the fingerprint according
to position of the core point. There are also other
techniques which focus on absolute pre-alignment based on
the shape of the external fingerprint silhouette, orientation
of delta or core points or average orientations in the
neighbourhood of cores. Since all these absolute
pre-alignment depends on the SPs, and for latent
fingerprints SPs are not guaranteed, absolute pre-alignment
is not possible for latent scenario.
In ‘relative pre-alignment’, the input fingerprint has to be

pre-aligned with respect to the reference fingerprints while
matching. The most common techniques in relative
pre-alignment are performed by superimposing the SPs
(core or delta), by comparing ridge features or by
correlating the orientation images. Superimposing SPs are
not feasible in latent scenario as they are not always
guaranteed in latent fingerprint images. The ridge features,
that is, length and orientation of the ridge on which a
minutiae resides, seem to be possible feature candidate, but
a reliable extraction of ridge features from bad or ugly
quality latent fingerprints is a challenging problem.
Estimation of OF is more reliable as compared against ridge
feature extraction in latent fingerprints. Therefore we used
the method of correlating the orientation images in this
paper to register a partial fingerprint in a full fingerprint.

3 Database

NIST-SD27 [20] is a publicly available forensic fingerprint
database which comprises of 258 latent fingerprint images,
its matching tenprint images and their minutiae sets. The
NIST-SD27 minutia set database is classified into two [20,
21]: (i) ‘ideal’ and (ii) ‘matched’ minutiae sets. The ‘ideal’
minutiae set for latents was manually extracted by a
forensic examiner without any prior knowledge of its
corresponding tenprint image. The ‘ideal’ minutiae set for
tenprints was initially extracted using an AFIS, and then
these minutiae were manually validated by at least two
forensic examiners. The ‘matched’ minutiae set contains

Table 1 Summary of OF-based fingerprint registration
techniques in the literature together with their limitations to be
applied for partial fingerprint registration

Method Core technique Limitations to partial
fingerprint registration/

latent scenario

Liu et al.
[16]

maximise the NMI
between input and
reference OF images

i) needs large area
overlaps

ii) more reference
sample required to

correctly estimate OF
distribution

Nilsson and
Bigun [17]

i) SP detection i) SP not guaranteed in
partial or latent
fingerprints

ii) 1D radiograms ii) quantised projection
angles, and require
large area overlaps

Yager and
Amin [18,
19]

i) DLO i) SP not guaranteed in
partial or latent
fingerprints

ii) generalised Hough
transform

ii) needs large area
overlaps

iii) SD
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those minutiae which are in common between the latent and
its mated tenprint image. There is a one-to-one
correspondence in the minutiae between the latent and its
mate in the matched minutia set. This ground truth
(matched minutiae set) was established manually by a
forensic examiner looking at the images and the ‘ideal’
minutiae.
The NIST-SD27 database consists of latent fingerprint

images of varying quality. Each image is of 800 × 768
pixels in size and has been scanned at 500 pixels per inch
as a grey-scale image. It already contains a classification of
the latent fingerprints based on the subjective quality of the
image into good, bad and ugly, containing 88, 85 and 85
fingerprints, respectively, determined by the forensic
examiner. The average number of minutiae for good, bad
and ugly category latents are 32, 18 and 12, respectively.
Fig. 1 shows sample images from the NIST-SD27 database
which belong to good, bad and ugly quality categories,
respectively. In [22], it is shown that there is a correlation
between this subjective quality classification and the
matching performance.

4 Similarity measures

In this section, we introduce various similarity measures that
are used in our hierarchical registration algorithm.
Let U and V be discrete images of the same size,

represented as a 2D array where the array elements may
represent values of grey pixels (‘zero-order tensors’), colour
pixels (‘first-order tensors’) or local directions
(‘second-order tensors’).
The Schwarz inequality

|kU , V l|
‖U‖ × ‖V‖

≤ 1 (1)

holds for U and V [23, Chapter 3]. Here, 〈U, V〉 is the inner
product between U and V calculated as

kU , V l =
∑

r, c

U(r, c)∗ · V (r, c) (2)

where r, c are the indices, U(r, c)* is the complex conjugate of
U(r, c), and ‖U‖ and ‖V‖ are the L2 norms of U and V,
respectively.

The L2 norm ‖U‖ is calculated as

‖U‖ =
∑

r, c

U(r, c)∗ · U(r, c)

[ ]1/2

(3)

and similarly for ‖V‖.
The normalised correlation between U and V, referred to as

Schwarz Similarity (SS) hereafter is defined as

SS(U , V ) =
|kU , V l|

‖U‖ × ‖V‖
(4)

Owing to (1), the interval for SS(U, V) is in the range [0, 1].
By calculating SS as a similarity measure, we can locate a
given pattern (a small image) in a large image. When SS(U,
V) is 1, then both U and V are viewed as most similar
patterns, and when SS(U, V) is 0, they are least similar [23].
Assuming U and V represent local directions

(‘second-order tensors’) in the range [−90°, +90°), we
define the Manhattan-based Similarity MS(U, V) as

MS(U , V ) = cos
1

N

∑

r, c

D
U ,V
r, c

( )

( )

(5)

and Euclidean-based similarity ES(U, V) as

ES(U , V ) = cos
1

N

∑

r, c

D
U ,V
r, c

( )2

[ ]1/2
⎛

⎝

⎞

⎠ (6)

where

D
U ,V
r,c =min |U(r, c)−V (r, c)|, 180− |U(r, c)−V (r, c)|

( )

(7)

which takes values in the range [0, +90°) and N is the size in
pixels of U or V (U and V are of same size). Owing to (7), the
value of MS and ES will be in the range [0, 1].
The Consistency Similarity CS(U, V) (which was proposed

in [24]) is defined as

CS(U , V ) =
1

N

∑

r, c

ei2 U(r, c)−V (r, c)( )
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(8)

Fig. 1 Subjective quality classification of latent fingerprint images in NIST-SD27 database

a Good
b Bad
c Ugly
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where i is the complex number
����

−1
√

and |z| is the magnitude
of complex number z. The CS averages the unit vector whose
phase is doubled orientation difference, and the value is in the
range [0, 1].
All the similarity measures SS, MS, ES and CS are in the

normalised range [0, 1] and these measures can be fused
directly.

5 Algorithm

The algorithm to register the OF of the latent fingerprint with
that of the tenprint fingerprint is achieved in two hierarchical
levels. In the first level, we perform the normalised correlation
between the OF of latent and tenprint for various rotation
alignments in the range [−45°, +45°] with 1° increments.
We then shortlist the correlation peaks for each rotation.
These peaks are the possible target locations for registration.
We observed that deciding the target location only based

on the normalised correlation score does not always yield
satisfactory results. Therefore, a second level, on these
candidate locations, we calculate MS, ES and CS similarity
measures between the latent centred at the peak location in
the tenprint. The final registration location is chosen from
the candidate locations as the one that maximises the mean
similarity between SS, MS, ES and CS. This gives better
registration accuracies than deciding only based on SS. In
the following section, we describe this approach in more
detail.

5.1 Level 1: normalised correlation

Step 1: Generate the OF L for the latent fingerprint and T for
the tenprint fingerprint as detailed in Section 6. The
orientations are obtained for 16 × 16 block sizes, and are in
the range [−90°, +90°). Figs. 2a and b shows the OF
reconstructed from the minutiae set of latent and tenprint,
respectively. The expected outcome of the registration
algorithm is to locate the minutiae region shown in Fig. 2c.
Step 2: Generate the orientation tensors �L and �T for the latent
L and tenprint T, respectively, in double angles (i.e. in the
range [−180, +180]°) using complex numbers, as follows

�L = exp (i× 2× uL)
�T = exp (i× 2× uT)

(9)

where i is the complex number
����

−1
√

, θL and θT are the angles
of L and T from step 1. �L is the smallest rectangular region
that covers the latent minutiae.
For each subregion �T s of

�T that is of the same size as �L
located at a position indexed by s, we can find the inner
product between �L and �T s as follows

k�L, �T sl =
∑

r, c

�L(r, c)∗ · �T s(r, c) (10)

where r, c are the indices, �L(r, c)∗ is the complex conjugate of
�L(r, c).
Step 3: Define the bounding box for the latent orientation
tensors �L by discarding the background. The bounding box
can be estimated by the minimum and maximum row and
column numbers that correspond to the foreground of latent
orientation tensors.
Step 4: When searching for the pattern �L in �T , it is possible
that �L is not perfectly aligned with �T , rotation wise. To
compensate for the rotation alignment, we need to test the

latent �L against tenprint �T for various rotations of �L. In our
experiments, we rotate �L in the range [−45°, +45°] with a
step size Δθ of 1° to compensate for rotation alignment to
generate �L

u
. A geometric rotation of Δθ implies a related

rotation of the tensor field of 2Δθ.
Step 5: The correlation is obtained by generating k�L

u
, �T sl for

all locations s in �T . The result of this operation is a complex
image. We then observe the correlation peaks for all θ

(magnitude of the complex image). Figs. 2d–f show the

magnitude of the correlation images of �L
−35◦

, �L
+1◦

and

�L
+35◦

with �T , respectively.
Step 6: For each θ from the correlated result, find the location

of the peak su = (rum, c
u

m), that is, the location with maximum
magnitude in the correlated image. The peak in the correlated

image is where �L
u
agrees the most in �T . S = {(rum, c

u

m)} is the
set containing the coordinates of the correlation peaks for all θ.

Step 7: For all orientations θ, calculate SS(�L
u
, �T

m

s ), where
�T
m

s

is the subregion in �T whose centre is su = (rum, c
u

m). SS is the
normalised correlation measure as defined in (4).

The correlation and normalised correlation are essentially
equivalent in the scenario where θL and θT are not
estimated from grey pixel gradients, but reconstructed from
minutiae orientations. Consequently, the orientation tensors
ei2uL and ei2uT are complex numbers falling on a unit circle.
Therefore the magnitude of the orientation tensors thus
obtained is always 1.

5.2 Level 2: fusion of similarity scores

Step 8: For each su = (rum, c
u

m) [ S, calculate MS(�L
u
, �T

m

s ),

ES(�L
u
, �T

m
s ) and CS(�L

u
, �T sm ) as defined in (5), (6) and (8),

respectively.
Step 9: SS, MS, ES and CS are all similarity scores in the
range [0, 1], where 0 denotes minimum similarity and 1
denotes maximum similarity. We perform score fusion of
SS, MS, ES and CS based on the mean rule, and look for
the su = (rum, c

u

m) [ S for which the fused similarity score
is maximum.
Step 10: The resulting (rum, c

u

m) is the location in the tenprint
where the latent rotated at θ is registered with best alignment
(see Fig. 2g). The centre of the latent L is registered to (rum, c

u

m)
in tenprint T, and with a radius half the diagonal length of the
bounding box of the latent OF, a subset of minutiae which falls
inside this circular region is chosen (see Fig. 2h).

6 Types of OF estimation techniques

In this paper, we have used five different techniques for
computing the OF of the fingerprints:

1. Manually estimated OF from the fingerprint image [25]
(‘MANUAL_OF’).
2. OF estimated directly from fingerprint image using local
Fourier analysis [26], and then performing context-based
correction of the OF using dictionary lookup of orientation
patches [25] (‘DICT_OF’).
3. OF estimated directly from the fingerprint image using
gradient-based approach [27] (‘IMG_OF’).
4. OF reconstructed from the minutiae [28] (‘MINU_OF’).
5. OF estimated by taking the average of both of ‘IMG_OF’
and ‘MINU_OF’, denoted as ‘AVG_OF’.
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‘AVG_OF’ is estimated using the technique proposed in
[29], also detailed in [2, Chapter 3] to average local gradients.
Let uik and u

m
k be the orientation corresponding to kth block

of ‘IMG_OF’ and ‘MINU_OF’, respectively. We double the
angles to encode them by vectors

�d
i

k = [cos(2uik ), sin(2uik)] (11)

�d
m

k = [cos(2umk ), sin(2umk )] (12)

where �d
i

k and
�d
m

k are the vectors corresponding to u
i
k and u

m
k .

We then find the average vector �d
a

k = [avg cosak , avg sinak ]
where

avg cosak = 0.5× (cos(2uik)+ cos(2umk )) (13)

avg sinak = 0.5× (sin(2uik)+ sin(2umk )) (14)

From this average vector �d
a

k , find the corresponding

Fig. 2 Various stages in the registration algorithm shown on G028L1 (latent) and G028T1 (tenprint) of NIST-SD27

a, b OF reconstructed from the ideal minutiae set, with the minutiae plotted over the OF
c Region in the tenprint that is to be found after registration of (a) into (b). (d)–(f) are the correlation peaks when the latent is rotated at −35°, 1° and +35°,
respectively, and correlated with tenprint
g Region where the latent pattern is identified in the tenprint based on the proposed score fusion for rotation alignment of +1°
h Minutiae region selected by our pre-alignment algorithm
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orientation of the kth block of ‘AVG_OF’ as

u
a
k = 0.5× atan2(avg sinak , avg cosak ) (15)

The double angle representation avoids any errors because of
circularity of angles while averaging. Here, we assume uik , u

m
k

and u
a
k are in radians.

Out of these five different techniques, ‘MANUAL_OF’
and ‘DICT_OF’ were used for latent fingerprints, whereas
‘DICT_OF, IMG_OF, MINU_OF and AVG_OF’ were used
for tenprints. All the OF estimated were of 16 × 16 block
size. The region of interest for the fingerprint is considered
to be the region inside the convex hull of the corresponding
ideal minutiae of the fingerprint present in NIST-SD27.

7 Experiments

We perform experiments on good, bad and ugly quality
classifications of NIST-SD27 to report the accuracy of the
proposed registration algorithm. About 88 latents of good
category, 85 latents of bad category and 85 latents of ugly
category were searched in the entire set of 258 tenprints in
the NIST-SD27 database. We report the rank identification
accuracy for two publicly available minutiae-based
matchers, namely NIST-Bozorth3 [30] and MCC SDK [31–
34] before and after incorporating our proposed hierarchical
registration algorithm as a pre-registration before the
identification.
When reporting the rank identification accuracies, for good

quality, there are 88 match scores and 88 × 257 non-match
scores, for bad and ugly qualities, there are 85 match scores
and 85 × 257 non-match scores, respectively. When we
report the rank identification accuracy for the entire
NIST-SD27 database (all category), then there are 258
match scores and 258 × 257 non-match scores.
NIST-Bozorth3 is a minutiae-based fingerprint matcher

that is specially developed to deal with latent fingerprints.
This matcher is part of the NIST Biometric Image Software
[30], developed by NIST. MCC-SDK is a well-known
minutiae matcher more adapted to good quality fingerprints
with reasonable number of minutiae in both query and
reference templates. Both NIST-Bozorth3 and MCC-SDK
are publicly available. We show the performance accuracy
of the matcher using cumulative match characteristic
(CMC) curves.

7.1 Experiment 1: choosing the best OF for
tenprints

Fig. 3 shows the CMC curve of the NIST-Bozorth3 matcher
when using ‘MANUAL_OF’ for latent against various other
OF estimation techniques for tenprints while performing
pre-registration using our proposed hierarchical method. We
can observe that the rank identification accuracy has a
consistent improvement when ‘AVG_OF’ is used for
tenprints. The improvement while using ‘AVG_OF’ is
mainly because the image noise introduced in the
estimation of ‘IMG_OF’ is reduced while averaging with
‘MINU_OF’.
On the basis of this result, we have chosen ‘AVG_OF’ as

the OF for tenprints in remaining experiments reported here.

7.2 Experiment 2: pre-registration

In this experiment, we perform pre-registration using our
registration algorithm to reduce the minutiae search space of
the tenprint minutiae set, and then use the reduced minutiae
set template as the reference template for the matcher. We
used NIST-Bozorth3 and MCC-SDK as the minutiae-based
matchers.
For latents, ‘MANUAL_OF’ and ‘DICT_OF’ were used,

and for the tenprints we used ‘AVG_OF’ to report the rank
identification accuracies in this experiment. We also
analyse separately the performance of the matcher using
correlation only based registration and using hierarchical
registration.

7.2.1 NIST-Bozorth3: Figs. 4 and 5 show the CMC curve
of NIST-Bozorth3 for two different registration levels when
‘MANUAL_OF’ and ‘DICT_OF’ are used for latents,
respectively.
Fig. 4a shows the rank identification accuracy of

NIST-Bozorth3 when correlation-based registration (Level
1) of our algorithm is used as pre-registration, and also
without using pre-registration (‘MANUAL_OF’ for latents).
We see a significant and consistent improvement in the rank
identification accuracy for all the quality categories when
incorporating the proposed pre-registration.
Fig. 4b shows the rank identification accuracy of

NIST-Bozorth3 when hierarchical registration (Level 2) of
our algorithm is used as pre-registration with
‘MANUAL_OF’ for latents. Here, we note a consistent
improvement in the CMC curve for all subjective quality
categories compared with the correlation-based registration.
Especially, there is a significant improvement for both bad
and ugly quality categories.
Table 2 summarises the Rank-1 identification accuracy of

NIST-Bozorth3 for both correlation-based registration and
hierarchical registration when ‘MANUAL_OF’ is used for
latents. The column ‘DIRECT’ represents the Rank-1
identification accuracy of NIST-Bozorth3 when no
pre-registration is applied to the minutiae set. Columns L1

Fig. 3 CMC curve showing the rank identification rate of

NIST-Bozorth3 for NIST-SD27 when different types of OF

estimation techniques were used for the tenprints, and

MANUAL_OF for latents, when applying the proposed OF-based

pre-alignment
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and L2 represent the Rank-1 identification accuracy for
correlation-based registration (Level 1) and hierarchical
based registration (Level 2), respectively.
Similarly, Figs. 5a and b shows the rank identification

accuracy of NIST-Bozorth3 when correlation-based
pre-registration and hierarchical pre-registration were
applied using ‘DICT_OF’ for the latents. Table 3
summarises the Rank-1 identification accuracy in this case.
Similar results compared with using ‘MANUAL_OF’ for
the latents are also obtained here when considering
‘DICT_OF’. This proves the robustness of the ‘DICT_OF’
method for obtaining a reliable OF even with very difficult

latents and the feasibility of our method as a fully automatic
tool.

7.2.2 MCC-SDK: Fig. 6 shows the CMC curve of
MCC-SDK for the two registration levels considered when
‘MANUAL_OF’ is used for latents. Figs. 6a and b show
the rank identification accuracy of MCC-SDK when
correlation-based pre-registration and hierarchical
pre-registration were applied, respectively. Table 4
summarises the Rank-1 identification accuracy in this case.
The overall Rank-1 accuracy improved from 78.3 to 79.4%
when incorporating Level 1 pre-registration, and to 79.4%

Fig. 4 Performance of NIST-Bozorth3 when using MANUAL_OF for latents

a Correlation only based registration (Level 1)
b Hierarchical registration (Level 2)

Fig. 5 Performance of NIST-Bozorth3 when using DICT_OF for latents

a Correlation only based registration (Level 1)
b Hierarchical registration (Level 2)

Table 2 Rank-1 identification for NIST-Bozorth3 with
correlation-based pre-registration and hierarchical registration
when ‘MANUAL_OF’ is used for latents

Quality Bozorth3 Bozorth3 Bozorth3
DIRECT,% L1,% L2, %

all 68.6 77.52 78.29
good 77.27 85.23 86.36
bad 60.00 70.59 72.94
ugly 68.24 76.47 75.29

Table 3 Rank-1 identification for NIST-Bozorth3 with
correlation-based pre-registration and hierarchical registration
when ‘DICT_OF’ is used for latents

Quality Bozorth3 Bozorth3 Bozorth3
DIRECT,% L1,% L2, %

all 68.6 74.42 75.19
good 77.27 84.09 85.23
bad 60.00 68.24 68.24
ugly 68.24 70.59 71.76
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when hierarchical based pre-registration (Level 2) is
incorporated. Even though the improvement is small, it is
consistent and increases for bad and ugly quality categories
when we look beyond Rank-1.

7.3 Experiment 3: parameters – rotation step size,
radius

In this experiment, we study the quantisation step size for
rotation alignment (step 4 in algorithm) as well as the best

radius of the circular region (step 10 in algorithm) to
generate the subset of minutiae from the tenprint minutiae
set. We used ‘MANUAL_OF’ for the latents, ‘AVG_OF’
for tenprints and performed hierarchical registration on
NIST-Bozorth3 matcher.
From Fig. 7a, we can observe that when we use a step size

(X-axis) for the rotation equal to 1°, we obtain the best
performance in terms of rank identification accuracy
(Y-axis). We looked at the Rank-5 identified accuracy of the
NIST-SD27 database (all category) to evaluate the
performance, and looked at the step size varying from 1° to
25°. Also interestingly, the performance is not very much
degraded with large steps, which can justify the use of large
steps in some scenarios when computation speed is prioritised.
With 1° as the step size, we studied the effect of the radius

of the circular region. We observe that the optimal radius is
obtained using a scale factor of 0.7 on half the length of the
diagonal of bounding box. Fig. 7b shows the Rank-5
accuracy for various scales of the radius ranging from 0.6
to 1.4 scale factor in X-axis and the corresponding Rank-5
accuracy in Y-axis.

Fig. 6 Performance of MCC-SDK when using MANUAL_OF for latents

a Correlation only based registration (Level 1)
b Hierarchical registration (Level 2)

Fig. 7 Finding the optimal value for rotation step size and radius scales using NIST-Bozorth3 matcher

a Change in Rank-5 accuracies when increasing the step size in the range 1–25°
b Change in Rank-5 accuracies when changing the scale factor from 0.6 to 1.4

Table 4 Rank-1 identification for MCC-SDK with
correlation-based pre-registration and hierarchical registration
when ‘MANUAL_OF’ is used for latents

Quality MCC-SDK MCC-SDK MCC-SDK
DIRECT,% with L1, % L2, %

all 78.29 79.46 79.46
good 96.59 93.18 97.73
bad 72.94 76.47 75.29
ugly 64.71 68.24 64.71
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7.4 Experiment 4: best result obtained

With the optimal parameters estimated from our experiments,
we have obtained the best performance boost for the matchers
when using the hierarchical registration as a pre-registration.
Figs. 8a and b show the CMC curve for both
NIST-Bozorth3 and MCC-SDK with the optimal parameters
for the hierarchical pre-registration. ‘MANUAL_OF’ was
used for latents and ‘AVG_OF’ was used for tenprints.
Table 5 summarises the Rank-1 identification accuracy of
NIST-Bozorth3 and MCC-SDK for the optimal parameters
(rotation step size with 1° and radius scale factor of 0.7).
Using our registration algorithm as a pre-registration, we

were able to boost the overall Rank-1 identification
accuracy from 68.60 to 78.29% for NIST-Bozorth3, and
from 78.29 to 80.62% for MCC-SDK. In other regions of
the CMC curve, the improvement is even higher.

7.5 Experiment 5: runtime analysis

We have implemented the proposed hierarchical registration
algorithm in MATLAB which is not an optimised version
to be directly compared with that of a corresponding C/C++

implementation. Nevertheless, we summarise the average
runtime of the MATLAB version for each subjective quality
category in Table 6.
We assume that the minutiae extraction and computation of

‘AVG_OF’ are pre-computed offline, and they need to be
generated only once for the reference fingerprints in the
database.
In our MATLAB implementation, we used ‘filter2()’

function to obtain the correlations mentioned in step 5 of
algorithm. If the size of the region of interest for the input
latent is large, then it will be advantageous to perform the
correlation in frequency domain using fast Fourier
transform (FFT) implementations where correlation reduces
to multiplication, and then obtain the inverse FFT to obtain
the equivalent of correlation in spatial domain.

8 Conclusions

We have proposed an OF-based registration algorithm for
partial fingerprints. When we use our hierarchical
registration algorithm as a pre-registration stage and reduce
the search space of minutiae in the tenprint minutiae set, we
were able to significantly boost the performance of two
popular minutiae matchers using challenging and realistic
data. The main objective of our research was to improve the
rank identification accuracy for poor quality latents. We
were able to obtain consistent and significant improvement
for both bad and ugly quality category of latents from
NIST-SD27.
On studying various OF estimation techniques for

fingerprints to be used in our registration, we have noted
that the best representative OF for tenprints was obtained

Fig. 8 CMC curve of NIST-Bozorth3 and MCC-SDK with the optimal parameters

a NIST-Bozorth3: hierarchical registration with optimal parameters
b MCC-SDK: hierarchical registration with optimal parameters

Table 5 Rank-1 identification for NIST-Bozorth3 and MCC-SDK with optimal parameters

Quality NIST-Bozorth3 NIST-Bozorth3 MCC-SDK MCC-SDK
DIRECT,% with L2, % DIRECT,% with L2,%

all 68.6 78.29 78.29 80.62
good 77.27 85.23 96.59 95.45
bad 60.00 75.29 72.84 80.00
ugly 68.24 74.12 64.71 65.88

Table 6 Average runtime for each subjective quality category

Quality Average runtime in milliseconds, ms

good 921
bad 792
ugly 707
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by averaging a gradient-based OF estimated from the
fingerprint image and the OF reconstructed from the
minutiae set. This gave the best performance mainly
because of noise reduction while averaging. For latents, we
studied two types of OFs corresponding to two different
scenarios: with manual intervention and fully automated
procedure. We obtained the best performance while using
manually extracted OF for latents, and also a significant
improvement with automated dictionary-based OF
estimation.
We have observed that if the region of interest is very small

in the latent fingerprint, especially in bad and ugly quality
categories, the registration accuracy is slightly degraded
while using the hierarchical method compared with
correlation-based registration. This accounts for a slight
variation in the Rank-1 performances between L1 and L2.
Since we are not using our own minutiae matcher, but
using standard ones, it will be difficult to give a theoretical
justification on the behaviour for Rank-1 identification
between L1 and L2, especially for bad and ugly categories.
Anyway on an average, we observe that the hierarchical
method significantly improves the rank identification
accuracy.
We also observed that for a large quantisation step in the

rotation alignment, we have not degraded the performance
very much, and while matching, we have reduced the size
of the minutiae search space in the tenprint to good extent
which accounts for overall efficiency of our proposed
method. Moreover, we have established the feasibility of
our method as a fully automatic tool.
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