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1 Introduction

Physicists who work on canonical quantum gravity will sometimes remark that
the general covariance of general relativity is responsible for many of the thorni-
est technical and conceptual problems in their field.1 In particular, it is some-
times alleged that one can trace to this single source a variety of deep puzzles
about the nature of time in quantum gravity, deep disagreements surrounding
the notion of ‘observable’ in classical and quantum gravity, and deep questions
about the nature of the existence of spacetime in general relativity.

Philosophers who think about these things are sometimes skeptical about
such claims. We have all learned that Kretschmann was quite correct to urge
against Einstein that the “General Theory of Relativity” was no such thing,
since any theory could be cast in a generally covariant form, and hence the gen-
eral covariance of general relativity could not have any physical content, let alone
bear the kind of weight that Einstein expected it to.2 Friedman’s assessment
is widely accepted: “As Kretschmann first pointed out in 1917, the principle of
general covariance has no physical content whatever: it specifies no particular
physical theory; rather, it merely expresses our commitment to a certain style of
formulating physical theories” (1984, p. 44). Such considerations suggest that
general covariance, as a technically crucial but physically contentless feature of
general relativity, simply cannot be the source of any significant conceptual or
physical problems.3

Physicists are, of course, conscious of the weight of Kretschmann’s points
against Einstein. Yet they are considerably more ambivalent than their philo-
sophical colleagues. Consider Kuchař’s conclusion at the end of a discussion of
this topic:

∗We would like to thank Karel Kuchař and Carlo Rovelli for invaluable tutelage, and Craig
Callender, Nick Huggett, and Steve Weinstein for helpful comments.

1Here and throughout we restrict our attention to the canonical approach to quantum
gravity.

2See Norton 1993 for a discussion of this and other episodes in the long debate over general
covariance.

3See Belot and Earman 1999 for a discussion of some related contrasts between the pes-
simistic attitudes of (many) philosophers and the optimistic attitudes of (some) physicists
with respect to the relevance of interpretative work on general relativity to ongoing research
on quantum gravity.
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the Einstein-Kretschmann discussion is clearly relevant for the canon-
ical quantization of covariant theories, but, as so many times before
in the ancient controversy between the relative and the absolute, it
is difficult to decide which of these two alternative standpoints is
correct and fruitful. This leaves the canonical quantization of co-
variant systems uncomfortably suspended between the relative and
the absolute. (1988, p. 118)

It becomes clear in the course of Kuchař’s discussion that he takes the phys-
ical content of the general covariance of general relativity to reside not in the
fact that that theory, like every other, can be given a generally covariant for-
mulation, but in the fact that it ought to be so formulated (see, e.g., pp. 95-6).
The idea is that one does some sort of violence to the physical content of general
relativity if one breaks its general covariance by introducing preferred coordi-
nates, slicings, or other geometrical structure, in a way in which one does not
when one moves from a generally covariant formulation of Newtonian mechanics
or special relativity to the standard formulations in which inertial coordinates
play a special role.

Central to this way of thinking about general covariance is the idea that
misjudging the physical content of a given theory can lead one astray in attempts
to construct new theories—since, e.g., empirically equivalent formulations of a
given theory may well lead to inequivalent quantum theories, it is important to
begin with the correct formulation. This link between content and method is
the source of the sentiment, widespread among physicists working on canonical
quantum gravity, that there is a tight connection between the interpretative
problems of general relativity and the technical and conceptual problems of
quantum gravity.

Our goal in this paper is to explicate this connection for a philosophical
audience, and to evaluate some of the interpretative arguments which have
been adduced in favor of various attempts to formulate quantum theories of
gravity. We organize our discussion around the question of the extent to which
the general covariance of general relativity can (or should) be understood by
analogy to the gauge invariance of theories like classical electromagnetism, and
the related questions of the nature of observables in classical and quantum
gravity, and the existence of time and change in the quantum theory.

We provide neither a comprehensive introduction to the formalism of quan-
tum gravity, nor a survey of its interpretative problems (readers interested in
the latter should turn to the canonical survey articles: Isham 1991, Isham 1993,
and Kuchař 1992). We do, however, want the paper to be both accessible to
readers who are unfamiliar with the formalism, and helpful for those who would
like to use it as a starting point for a serious study of the field. To this end,
we have tried to keep the presentation in the body of the text as intuitive as
possible, while relegating technicalities and references to background literature
to footnotes and an Appendix.4

4The main text presumes that the reader is familiar with the formalism of nonrelativistic
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We begin in the next section with a sketch of the formalism of gauge theories,
and a brief discussion of their interpretative problems. This is followed in §3 by
a discussion of how general relativity itself may be cast as a gauge theory, and
how in this context the hole argument can be viewed as a special case of the
general interpretative problem of gauge invariance. In §4 we bring out some of
the potential demerits of reading the general covariance of general relativity as
a principle of gauge invariance. Most importantly, we discuss the fact that this
reading seems to force us to accept that change is not a fundamental reality in
classical and quantum gravity. This sets up the discussion of the following two
sections, where we survey a number of proposals for understanding the general
covariance of general relativity and discuss the proposals for quantizing gravity
which they underwrite. Finally, in §7, we argue that the proposals canvassed in
§§5 and 6 are directly related to interpretative views concerning the ontological
status of the spacetime of general relativity. We conclude that problems about
general covariance are indeed intimately connected with questions about the
correct quantization of gravity, and the nature of time and change in physical
theory.

2 Hamiltonian and Gauge Systems

There are a number of ways to formulate classical physical theories. One of the
most straightforward is to proceed as follows. Construct a space whose points
represent the physically possible states of the system in which you are interested.
Then introduce some further structure which singles out a set of curves in this
space which correspond to dynamically possible histories of the system. In the
first two subsections we will sketch two implementations of this strategy: the
Hamiltonian formalism and the gauge-theoretic formalism. We will see that the
notion of a gauge system is a modest generalization of the notion of a Hamilto-
nian system—one simply weakens the geometric structure which is imposed on
the space of states. As will become clear in the third subsection, however, this
relatively small difference generates some very interesting interpretative prob-
lems: in the context of gauge systems, one is forced to make difficult decisions
concerning the nature of the representation relation which holds between the
mathematical space of states and the set of physically possible states of the sys-
tem. We close the section with a brief discussion of the quantization of gauge
systems.

2.1 Hamiltonian Systems

Many classical physical systems can be modeled by Hamiltonian systems. These
are triples of mathematical objects, (M,ω,H). Here M is manifold, and ω is

quantum mechanics and with enough differential geometry to be able to read the standard
textbook presentations of general relativity. The most important technical details are collected
together in an Appendix. Although we hope that our presentation is not misleading, it does
of course leave out many details.
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a tensor, called a symplectic form, which gives M a geometric structure. The
pair (M,ω) is called a symplectic geometry ; the dension of M , if finite, must be
even.. For our purposes, it is sufficient to note two ways in which the symplectic
structure ω interacts with the set C∞(M) of smooth real-valued functions on M .
The first is that the symplectic structure ω gives us, via Hamilton’s equations,
a map f 7→ Xf between smooth functions on M and vector fields on M . Given
f ∈ C∞(M) , one can integrate its vector field, Xf , to obtain a unique curve
through each point of M (that is, one looks for the family of curves whose
tangent vector at x ∈ M is just Xf (x)). Thus we can associate a partition
of M into curves with each smooth function on M . The second, and related,
important function of the symplectic structure is to endow the set C∞(M)
with an interesting algebraic structure, the Poisson bracket. This is a binary
operation which associates a smooth function, denoted {f, g}, with each pair
of functions f, g ∈ C∞(M). Intuitively, {f, g} measures the rate of change
of g along the set of curves generated by f , so that g is constant along the
curves generated by f iff {f, g}=0. The Poisson bracket plays a crucial role in
quantization.

We construct a Hamiltonian system by supplementing a symplectic geometry
(M,ω) by a choice of a distinguished element H ∈ C∞(M), called the Hamilto-

nian. The set of curves on M determined by ω and H are called the dynamical

trajectories. Figure 1 depicts a Hamiltonian system: at the top, we have a sym-
plectic geometry (M,ω); specifying a Hamiltonian serves to determine a unique
dynamical trajectory through each point.

Taken together, H and (M,ω) constitute a theory of the behavior of the
system in the following sense. We think of (M,ω) as being the space of dynam-
ically possible states of some physical system—the phase space of the system.
Each point of (M,ω) corresponds to exactly one physically possible state of the
system, so a curve in phase space corresponds to a history of physically possible
states of the system. To say that there is a unique dynamical trajectory through
each point is to say that our theory specifies a unique past and future for every
possible present state of the system. It is a complete and deterministic theory.

In the context of classical mechanics, one typically constructs a phase space
by beginning with a smaller space, Q, the configuration space , which is taken to
be the space of possible configurations of some set of particles or fields relative to
physical space. One then identifies the phase space with the cotangent bundle,
T ∗Q, of Q. A point of T ∗Q is a pair (q, p) where q ∈ Q, and p is a covector at
q. If Q represents the set of possible positions of some set of particles relative
to physical space, then T ∗Q can be thought of as the space of possible positions
and momenta of these particles. We can tell a similar story about fields. There
is a canonical way of endowing T ∗Q with a symplectic structure. We can now
impose the Hamiltonian, H, whose value at a point (q, p) is just the energy of a
system with that position and momentum. The dynamical trajectories for this
Hamiltonian ought to model the observed behavior of our system.

Examples:
(1) The free particle. If we are dealing with a single particle in Euclidean

space, then Q = ℜ3—the space of possible configurations of the particle is just
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the space of positions of the particle relative to physical space. The phase space
is T ∗Q = T ∗ℜ3, and H is just the kinetic energy. More generally, if we have
a free particle moving in a physical space which is modeled by a Riemannian
geometry, (S, g), then the configuration space is S and the phase space is T ∗S
endowed with the canonical symplectic form, ω. The dynamical trajectories
corresponding to the particle moving along the geodesics of (S, g) are again
generated by setting the Hamiltonian equal to the kinetic energy, gabpapb.

(2) The Klein-Gordon Field. Fix a simultaneity slice in, Σ, Minkowski space-
time, and let Q be the space of configurations on this slice of the Klein-Gordon
field φ of mass m—thus each point in Q corresponds to a φ : ℜ3 → ℜ. We
then look at T ∗Q, where a point corresponds to a pair (φ, φ̇). Our phase space
consists of T ∗Q equipped with the canonical symplectic structure, ω. Fixing an
arbitrary timeslice, Σ, we can write:

ω((φ1, φ̇1), (φ2, φ̇2)) =

∫

Σ

φ1φ̇1 − φ2φ̇2 dx3

(here we are dealing with a linear field theory, so that Q and T ∗Q are vector
spaces, and we may identify vectors on Q with elements of T ∗Q). For our
Hamiltonian, we take:

H =
1

2

∫

Σ

(

φ̇2 + ∇φ + mφ2
)

dx3

The equation of motion is just the usual Klein-Gordon equation,

∂a∂aφ − mφ = 0.

2.2 Gauge Systems

We consider an especially interesting generalization of the Hamiltonian frame-
work: gauge systems.5 The starting point is to relax one of the conditions im-
posed upon symplectic forms. This leads to a more general class of geometries,
known as presymplectic geometries, which serve as the phase spaces of gauge
theories. The presymplectic structure, σ, of a presymplectic geometry (N,σ)
determines a natural foliation of the manifold N by submanifolds of some fixed
dimension—there is one such submanifold through every point of N (see the
top half of Figure 2). These submanifolds are called the gauge orbits of (N,σ).

Since (N,σ) is partitioned by gauge orbits, ‘being in the same gauge orbit’ is
an equivalence relation. We denote this relation by x ∼ y, and denote the gauge
orbit of x by [x]. We call a diffeomorphism Φ : N → N a gauge transformation

if it preserves gauge orbits—i.e. if x ∼ x′ implies Φ(x) ∼ Φ(x′). We call a
function f : N → ℜ gauge-invariant if f is constant on each gauge orbit—i.e.
if x ∼ x′ implies f(x) = f(x′).

5The original development of the formalism, Dirac 1964, remains the best place to learn
about gauge systems. Chapters 1–3 of Henneaux and Teitelboim 1992 include many invaluable
examples as well as an introduction to the modern geometric point of view.
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If we take a gauge-invariant function, H, on N as our Hamiltonian, then
we can use the resulting gauge system, (N,σ,H), to model physical systems.
We can again investigate the dynamical trajectories generated by H. Whereas
in the Hamiltonian case there was a single dynamical trajectory through each
point of phase space, we find in the gauge-theoretic case that there are infinitely
many trajectories through each point.

The saving grace is that the family of dynamical trajectories through a given
point, although they in general disagree radically about which point represents
the future state of the system at a given time, do agree about which gauge
orbit this point lies in. That is: if x(t) and x′(t) are dynamical trajectories
which have their origin at the same point x(0) = x′(0) = x0, then we have that
x(t) ∼ x′(t) for all t ∈ ℜ. Thus, although the presymplectic geometry is not
strong enough to determine a unique dynamical trajectory through each point,
it is strong enough to force all of the dynamical trajectories through a given
point to agree about which gauge orbit the system occupies at a given time (cf.
Figure 2). In particular, if f is a gauge-invariant function on N then the initial
value problem for f is well-posed in the sense that if we fix an initial point
x0 ∈ N , then for any two dynamical trajectories x(t) and x′(t) which have their
origin at the same point x(0) = x′(0) = x0, we find that f(x(t)) = f(x′(t)) for
all t. Thus specifying the initial state of the system completely determines the
past and future values of any gauge-invariant quantity.

In practice, the most interesting gauge systems arise as constrained Hamil-

tonian systems. This means that our presymplectic phase space (N,σ) arises
by restricting attention to a regular submanifold, N , of a symplectic geometry
(M,ω), where N is equipped with the presymplectic form σ = ω |N (the restric-
tion of ω to N).6 We introduce the notation f ∼= g (read “f is weakly equal to
g”) to indicate f |N= g |N , where f, g ∈ C∞(M).

Locally, we can specify N by requiring that some set, C = {Ca} of real-valued
functions on M vanish. Such functions are called constraints. There are two
kinds of constraints: if Ca ∈ C is such that for x ∈ N , XCa

(x) is tangent to [x],
then Ca is a first class constraint, and is denoted γa; otherwise, Ca is a second

class constraint, and is denoted χa. Equivalently, the first class constraints are
those which commute with all of the constraints. The first class constraints, but
not the second class constraints, generate gauge transformations on N .7 That
is: following in N the integral curve of a vector field associated with a first
class constraint carries one along gauge orbits of (N,σ) (here we are thinking
of vector fields as the infinitesimal generators of diffeomorphisms). In fact, at
each point x ∈ N , {Xγa

(x)} is a basis for the tangent space of [x] so that the
dimensionality of the gauge orbit of x is just the cardinality of {γa}.

A function f : M → ℜ has a gauge-invariant restriction to N iff {f, γ} ∼= 0
for all first class constraints γ (here {, } are the Poisson brackets on (M,ω)).
One describes this result by saying that gauge-invariant functions commute with

6A regular submanifold is one which is given locally by stipulating that some subset of a
set of coordinates on M take on a given constant value.

7Here we gloss over the subtleties surrounding the Dirac conjecture. See pp. 16–20 of
Henneaux and Teitelboim 1992.
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the first class constraints. In what follows we shall be exclusively concerned with
first class constraints.

Examples:
(3) Let (T ∗Q,ω) be a finite dimensional cotangent bundle with its canonical

symplectic structure, and let (qi, pi) be canonical coordinates. Now let (N,σ)
arise by imposing the first class constraint p1 = 0.8 The Hamiltonian vector
field of p1 in (M,ω) generates motions in the q1 direction, so the gauge orbits
in (N,σ) are of the form {(s, q2, . . . ; p2, . . .) : where s ∈ ℜ and all other qi

and pi are fixed}. Thus the gauge-invariant functions on N are those which
are independent of q1. For any Hamiltonian, a dynamical trajectory is of the
form (qi(t), pi(t)), with qi(t) and pi(t) determined uniquely for i ≥ 2, but with
q1(t) an arbitrary function of time—we call the physically irrelevant q1 a gauge

degree of freedom. The behavior of this trivial example is typical: if (N,σ,H)
is a constrained Hamiltonian system in a finite dimensional symplectic manifold
(M,ω), then we can always find local canonical coordinates, (qi; pi), on (M,ω)
so that the first class constraints are of the form pi = 0 for i ≤ k and the qi(t)
are arbitrary for i ≤ k.

(4) Vacuum Electromagnetism. Let (S, g) be a three dimensional Rieman-
nian manifold representing physical space. And let Q = {A : S → ℜ3} be the
infinite dimensional space of covector fields on S—that is, each element of Q
is a function which maps each point of S to a three-vector. We construct the
cotangent bundle, T ∗Q. A point in T ∗Q is a pair (A,E), where E, like A, is
a vector field on S (again, identifying vectors on a linear space with elements
of that space). We endow T ∗Q with the canonical symplectic structure, ω. In
order to construct the phase space of electromagnetism, we restrict attention
to those points (A,E) ∈ T ∗Q such that div E = 0. This is a first class con-
straint. The constraint manifold, N , is an infinite dimensional submanifold of
T ∗Q. We equip N with the presymplectic form, σ = ω |N . The presymplectic
manifold, (N,σ) is the phase space of electromagnetism. The gauge orbits of
(N,σ) are determined by the following equivalence relation: (A,E) ∼ (A′, E′)
iff E′ = E and A′ = A+grad Λ for some Λ : S → ℜ. Thus, [(A,E)] = {(A′, E) :
A′ = A+grad Λ, Λ : S → ℜ}. What are the gauge-invariant functions on this
phase space? If, e.g., we fix a point ξ ∈ S, then the function ξE : N → ℜ3

whose value at (A,E) is just E(ξ) is gauge-invariant. On the other hand, the
function which returns the value A(ξ) is clearly not gauge-invariant (in general,
A(ξ) 6= A′(ξ) even if (A,E) ∼ (A′, E)). We can, however, use A to construct
gauge invariant quantities. Of these, the most important is the magnetic field,
B ≡curl A. Since curl (A) =curl (A+grad Λ) for any scalar Λ, we find that
B(ξ) = B′(ξ) whenever (A,E) ∼ (A′, E).

We choose our Hamiltonian to be H =
∫

S
(| E |2 + |curl A |2) dx . Hamilton’s

equations are Ȧ = −E and Ė =curl (curl A). These are Maxwell’s equations
for E and A, the electric field and the vector potential. Here we find the
behavior that we expect from a gauge system: specifying an initial point does

8Note that if we imposed both p1 = 0 and q1 = 0, then the constraints would be second
class, and (N, σ) would be a symplectic geometry.
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not serve to determine a unique dynamical trajectory. But we do find that if
(A(t), E(t)) and (A′(t), E′(t)) are solutions of Maxwell’s equations for the initial
data (A0, E0) ∈ N , then for each t, E(t) = E′(t) and there is a scalar function
on space, Λ(t), such that A′(t) = A(t)+grad Λ(t). Equivalently: if (A(t), E(t))
and (A′(t), E′(t)) are dynamical trajectories with their origins in the same point
of (N,σ), then we have that [(A(t), E(t)] = [(A′(t), E′(t)] for all t. Maxwell’s
equations do not determine the future value of A(t), but they do determine in
which gauge orbit A(t) will lie.

2.3 Interpreting Gauge Theories

The interpretation of theories cast in Hamiltonian form is typically quite straight-
forward. Given a Hamiltonian system, (M,ω,H), one can always stipulate that
it represents a system whose dynamically possible states stand in a one-to-one
correspondence with the points of M (call this the literal approach to inter-
preting the theory). Furthermore, in the context of classical mechanics, it often
happens that M = T ∗Q, where Q can be viewed as the space of possible con-
figurations of a set of particles or fields relative to some inertial frame. In this
case, one ends up with an extremely attractive interpretation of the theory as
a deterministic account of a physically reasonable system.

Unfortunately, interpreting gauge theories is seldom so simple. In the case
of electromagnetism, the application of the literal strategy leads to the claim
that our system has a distinct dynamically possible state for every pair (A,E).
But then one is committed to viewing electromagnetism as an indeterministic
theory: specifying the initial dynamical state, (A0, E0), fails to determine the
future dynamical state, since if (A,E) is a dynamically possible state at time
t according to Maxwell’s equations, then so is (A+grad Λ, E). The present
state of the electromagnetic field fails to determine the future state of the field.
Clearly, the same sort of indeterminism will arise whenever a gauge theory is
given a literal interpretation.

This flies in the face of common sense: given initial data one can use
Maxwell’s equations to make highly accurate predictions. So there has to be
something wrong with our literal interpretation of the theory. There are two
possible diagnoses here. The first is that the interpretation, although essentially
correct, needs to be supplemented with an account of measurement which will
insure that the predictions derivable from our gauge theory are perfectly deter-
minate. The second is that the formalism of our gauge theory presented above
contains “surplus structure,” which must be eliminated—either at the level of
formalism or the level of interpretation—if we are to have a physically sensible
understanding of the theory.9 We consider each of these alternatives in turn.

If we wish to stick with our literal interpretation of our gauge theory, then
we have to explain how it is that the theory is used to make determinate predic-
tions despite its indeterminism. The most obvious way of doing so is to claim

9See Redhead 1975 for the notion of surplus structure, and its relevance to the interpretative
enterprise.
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that some physically real quantities are not measurable. In order to produce
determinate predictions, we need to work with physical quantities whose initial
value problems are well-posed. A function on phase space has a well posed
initial value problem iff it is gauge-invariant. So we will want to stipulate that
only gauge-invariant quantities are measurable. This allows us to maintain pre-
dictability, even in the face of indeterminism. In the case of electromagnetism,
implementing this strategy will mean accepting gauge-invariant quantities like
the electric field, E, and the magnetic field, B, as measurable, while denying
the vector potential, A, is directly measurable. Nonetheless, the vector potential
will be a physically real quantity: since every point of phase space corresponds
to a distinct physically possible situation, (A,E) and (A′, E′) will represent dis-
tinct situations in virtue of disagreeing as to the value of the quantity A—even
if [A] = [A′] so that the two states of affairs are not empirically distinguishable.

This sort of ploy is likely to seem rather desperate, however. It seems far
more natural to insist that the only physically real quantities are gauge-invariant
quantities (call this strategy the adoption of a gauge-invariant interpretation).
In this case, one needn’t resort to a tricky account of measurement: one can stick
to the orthodox position that every classical physical quantity is (in principle)
measurable with arbitrary accuracy. Furthermore, the interpretation renders the
theory deterministic, since specifying the initial state determines the future and
past values of the physically real quantities. In the case of electromagnetism, for
instance, it is natural to maintain that E and B taken together encode all of the
structure of the electromagnetic field. When physical space is simply connected,
the divergence free magnetic fields are in one-to-one correspondence with the
gauge orbits of vector potentials, so that this move is tantamount to taking [A]
rather than A as the physically real quantity. The resulting interpretation is
fully deterministic, and supports an orthodox account of measurement. Notice
that this establishes that determinism cannot be a formal property of theories:
to ask whether electromagnetism is deterministic or not is not to ask a technical
question about the formalism of example (4); rather it is to ask whether one
prefers a literal or gauge-invariant interpretation of this formalism.

There is a formal move which is associated with the interpretative move
from literal to gauge-invariant interpretations: reduction. As it stands, our
formalism is good at predicting which gauge orbit we will end up in, but lousy
at predicting which point we will end up at. This suggests that what we really
need is a theory of gauge orbits rather than points. Thus we attempt to do the
following: we build a new manifold, M̃ , whose points are the gauge orbits of
(N,σ); we then use σ to construct a form ω̃ on M̃ ; finally, we use H to induce
a Hamiltonian H̃ on (M̃, ω̃). This is called the reduced phase space. It is not
always possible to carry out this construction: the set of gauge orbits will not
be a manifold, even locally, unless there exist sufficiently many gauge-invariant
quantities to fix a gauge orbit. If not, it will of course be impossible to construct
a symplectic form on M̃ . But when M̃ is well behaved, ω̃ is a symplectic form
so that (M̃, ω̃, H̃) is a genuine Hamiltonian system rather than a gauge system.
This Hamiltonian system describes the way in which the trajectories of the
original gauge system travel through gauge orbits. Giving a gauge-invariant
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interpretation of the original gauge theory is the same thing as giving a literal
interpretation of the reduced phase space. In a sense, then, it is always easy
to find a gauge-invariant interpretation, barring technical difficulties: simply
construct the reduced phase space and adopt a literal interpretation. It can
happen, however, that the reduced phase space doesn’t admit any physically
attractive literal interpretations—it needn’t, for instance, have the structure of
a cotangent bundle over configuration space for reasonable particles or fields.
Something like this actually happens in the case of electromagnetism when space
is multiply connected.10

Gauge systems differ from Hamiltonian systems in that their equations of
motion fail to determine the evolution of all of their variables. In the classical
context, it is reasonable to regard this fact as reflecting a shortcoming of the
formalism (the inclusion of excess variables) rather than a genuine ontological
indeterminism. That is: it is preferable to look for interpretations in which
only those variables whose evolution is determined by the equations of motion
are taken to correspond to physically real quantities. If we can find a large
enough set of such quantities to fix the gauge orbit of the system, and which
can be taken to correspond to plausible physical quantities, then we have found
an acceptable interpretation. In the case of ordinary vacuum electromagnetism
on a simply connected spacetime, E and B serve this function admirably. In
what follows, we will see that many foundational issues in classical and quantum
gravity turn upon the difficulty of finding a complete set of physically reasonable
gauge-invariant quantities for general relativity.

2.4 Quantizing Gauge Theories

A quantization of a Hamiltonian system (M,ω,H) consists of a Hilbert space,
H, equipped with a Hamiltonian operator, Ĥ, and a representation of an appro-
priate subalgebra of the Poisson algebra of classical observables as an algebra
of self-adjoint operators on H. If M can be written as T ∗Q for some natural
configuration space Q , then one normally chooses H to be L2(Q,µ), the space
of complex functions on Q which are square-integrable with respect to some
physically relevant measure µ.

How does one quantize a gauge theory? There are two main routes. The first
is to construct the reduced phase space and apply canonical technique to the
resulting Hamiltonian system. This tends to be impracticable, however—even
when the reduced phase space exists, its structure is often difficult to determine.
The alternative is to quantize the gauge system directly, employing a technique
due to Dirac.11

10When space is multiply connected, the correspondence between gauge orbits and magnetic
fields in many-to-one. This means that there is additional structure that is not captured by
B—structure which is empirically accessible via the Aharonov-Bohm effect. See Belot 1998
for an account of how this complication forces the would-be interpreter of electromagnetism
to choose between non-locality and indeterminism. The moral is that it is not always easy to
find a gauge-invariant interpretation of a given gauge theory.

11Again, Dirac 1964 remains one of the best sources. See also Chapter 13 of Henneaux
and Teitelboim 1992. The following description, although accurate enough for present pur-
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Suppose that one has a gauge system (N,σ,H) where (N,σ) is the subman-
ifold of a symplectic geometry (M,ω) determined by the first class constraint γ
given by C ≡ 0. Then one chooses a set of coordinates on M , and finds a vector
space, V , which carries a representation of their Poisson algebra as linear opera-
tors: if (p, q) are canonical coordinates on M , then one looks for operators q̂ and
p̂ satisfying [q̂, p̂] = −ih̄. One then looks for a quantum analog, Ĉ, of the classi-
cal constraint—e.g., if C = p2 then Ĉ = p̂2.12 Next, one imposes the quantum
constraint to construct the space of physical states: Vphys = {ψ ∈ V : Ĉψ = 0}.
This ensures that the quantum states are gauge-invariant: if a given degree of
freedom, q, is gauge (i.e. physically irrelevant) at the classical level, then it
should be gauge at the quantum level.

Suppose, for example, that the classical constraint is C = p. Then we know
from example (3) that the classical degree of freedom, q, is gauge. Thus gauge-
invariant functions are independent of q. Working in the standard Schrödinger
representation, we have that

Ĉ = p̂ = i
∂

∂q

so that stipulating that Ĉψ = 0 amounts to requiring that the quantum wave
functions be independent of the gauge degree of freedom, q. Similarly, imposing
the quantum constraint corresponding to div E = 0 forces the states ψ(A)
of quantum electrodynamics to be independent of the choice of gauge (i.e. if
A′ = A+grad Λ, then ψ(A) = ψ(A′)).

Finally, one looks for an appropriate inner product to make Vphys into a

Hilbert space, and for an appropriate quantum Hamiltonian, Ĥ, which deter-
mines the quantum dynamics via Schrödinger’s equation.

3 General Relativity as a Gauge Theory

In its standard version, the hole argument looks something like the following
(see Earman and Norton 1987). Let M = (M, g) be a model of general rela-
tivity, and let d : M → M be a diffeomorphism (called a hole diffeomorphism)
which differs from the identity only on some small open set, U . The general
covariance of the theory implies that M′ = (M,d∗g) is also a model. If one
views M and M′ as representing distinct physically possible worlds, then one
is committed to believing that general relativity is an indeterministic theory—
specifying the state of the gravitational field on a Cauchy surface prior to U fails

poses, glosses over a large number of technicalities. One would hope, of course, that the two
techniques of quantization would lead to the same results in cases where they can both be
carried out. Unfortunately, this is not always the case; see Plyuschay and Razumov 1995. See
Landsman 1995 and 1998 for an alternative to Dirac quantization.

12Note that operator ordering problems introduce considerable ambiguity at this stage. We
ignore these below. In general, it is safe to assume that quantum gravity is beset by all of
the problems of ordinary quantum field theories—operator ordering problems, divergences,
anomalies, problems of renormalization and regularization—and then some.
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to determine the state of the field inside U . Furthermore, it is claimed, if one
is a substantivalist about the spacetime points of general relativity, then, prima

facie, one is committed to viewing M and M′ as representing distinct states
of affairs. The conclusion is that substantivalists are prima facie committed to
the doctrine that general relativity is an indeterministic theory.

In this section we will show that the hole argument is a special case of the
observation made in the previous section: a gauge theory is indeterministic
under a literal interpretation. We sketch the formulation of general relativity
as a gauge theory and then argue that certain forms of substantivalism are, in
fact, literal interpretations of this formalism.

3.1 Formalism

We begin our search for a gauge-theoretic formulation of general relativity by
considering how to represent an instantaneous state of a general relativistic
world, since we will want to work with the set of such representations as our
phase space. To this end, we fix for of the remainder of this section a compact
three manifold, Σ. Now consider a globally hyperbolic vacuum solution of the
Einstein field equations, (M, g), whose Cauchy surfaces are diffeomorphic to Σ.13

We embed Σ in (M, g) via a diffeomorphism φ : Σ → M such that S = φ(Σ) is a
Cauchy surface of (M, g), and we study the geometry which g induces on S. We
will take this geometry to represent an instantaneous state of the gravitational
field.14 This geometry is characterized by two symmetric tensors on S, qab and
Kab. Here q is the Riemannian metric on S, called the first fundamental form,
which results from restricting to TxS (for x ∈ S) the inner product which g
induces on TxM . K is the second fundamental form, or extrinsic curvature,
which encodes information about how S is embedded in (M, g). Very roughly,
the extrinsic curvature of S is the time derivative of q (see equation 10.2.13 of
Wald 1984). We use φ to pull these tensors back to Σ, and henceforth regard

13We limit discussion to globally hyperbolic vacuum solutions of general relativity with
compact Cauchy surfaces. As a rule of thumb, one can think of the content of these restric-
tions as follows. The restriction to globally hyperbolic spacetimes is substantive—much of
what follows is simply false, or poorly understood in the non-globally hyperbolic case. The
restriction to vacuum solutions, on the other hand, is largely for convenience’s sake. Much
of what will be said is true when matter fields are taken into consideration—although the
formalism involved is often more unwieldy if matter is included. The restriction to spatially
compact spacetimes lies somewhere between these two extremes. There are some interesting
and important differences between the compact and the asymptotically flat cases. But, for
the most part, taking these differences into account would involve adding many qualifications
to our technical treatment, without substantially altering the interpretative theses defended
below.

14There are two ways to proceed here. We follow that more familiar route, and characterize
the geometry of S using a metric tensor (geometrodynamics). It is also possible to work in
terms of connections (connection dynamics). This approach, pioneered by Ashtekar, is in
many ways more tractable and has led to many significant results in recent years. The best
intuitive introductions to connection dynamics are contained in Baez and Munian 1994 and
Kuchař 1993a; see Ashtekar 1995 for a more detailed presentation. We believe that at the
level of detail of the present paper, nothing is lost by focusing on geometrodynamics to the
exclusion of connection dynamics.
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them as being defined on Σ rather than on S.
This tells us what sort of geometric structure Σ inherits when viewed as a

submanifold of (M, g). Now suppose that we imagine Σ to come equipped with
symmetric tensors q and K, with q a Riemannian metric. It is natural to wonder
under what circumstances we can view (Σ, q,K) as being the geometry of a
Cauchy surface of some model (M, g). The answer is that Σ may be embedded in
some (M, g) in such a way that q and K arise as the first and second fundamental
forms of Σ iff the following two relations—known as the Gauss and Codazzi

constraints respectively—hold:

R + (Ka
a)2 − KabKab = 0

∇aKab −∇bK
a
a = 0.

Here the metric q on Σ is used to define the scalar curvature, R, and the covariant
derivative, ∇. Note that these conditions make reference only to q and K—they
do not mention g.

All of this suggests that we should regard a pair (q,K) as representing the
dynamical state of gravitational field at a given time iff it satisfies the Gauss
and Codazzi constraints. The metric q describes the geometry of a Cauchy
surface; the symmetric tensor K describes the embedding of the slice in the
ambient spacetime and corresponds roughly to the time derivative of q. Thus,
we can regard q as the “position” of the gravitational field. The natural starting
point for writing down general relativity as a constrained Hamiltonian system
is Riem(Σ), the space of Riemannian metrics on Σ. We regard this as the
configuration space, Q, of our theory of gravity. In order to construct the phase
space, we first construct T ∗Q, and then endow it with the canonical symplectic
structure, ω. The momentum canonically conjugate to q is given not by K but
by

pab ≡
√

det q(Kab − Kc
cq

ab).

The phase space of general relativity is the constraint surface N ⊂ T ∗Q given by
the following first class constraints, known as the scalar and vector constraints
(or, alternatively, as the Hamiltonian and momentum constraints):

h ≡
√

det q(pabpab −
1

2
(pa

a)2 − R) = 0

ha ≡ ∇bp
b
a = 0.

Each of these equations actually determines an infinite dimensional family of
constraints, since each of them must hold at every point of Σ. Notice that
the scalar and vector constraints are just the Gauss and Codazzi constraints,
rewritten in terms of p rather than K. Let σ = ω |N , and let H ≡ 0. Then
general relativity is the gauge theory (N,σ,H).15

15See Appendix E of Wald 1984 for a more complete treatment. Note that most formulations
of general relativity as a gauge theory make use of the lapse and shift as Lagrange multipliers.
In order to avoid this complication, we have followed Beig 1994 in adopting a more geometric
approach in which the lapse and shift are eliminated.
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At each point x ∈ N , the gauge orbit of (N,σ,H) is infinite dimensional.
These orbits have the following structure. Fix x = (q, p) and x′ = (q′, p′) in N .
Then x and x′ lie in the same gauge orbit iff there is a solution to the Einstein
field equations, (M, g), and embeddings, φ, φ′ : Σ → M , such that: (i) φ(Σ)
and φ′(Σ) are Cauchy surfaces of (M, g); (ii) q and q′ are the first fundamental
forms of φ(Σ) and φ′(Σ); (iii) p and p′ are the second fundamental forms of
φ(Σ) and φ′(Σ). That is, two points are gauge related iff they describe spatial
geometries of the same model of general relativity. Thus each gauge orbit can
be viewed as being the space embeddings of Σ as a Cauchy surface of some
model (M, g) (it could, of course, equally well be viewed as being the space of
such embeddings for any other model isometric to (M, g)). This means that
each dynamical trajectory lies in a single gauge orbit: as the gravitational field
evolves, it always stays in the same gauge orbit. This is, in fact, the significance
of setting H ≡ 0: the vanishing of the Hamiltonian means that the dynamical
trajectories are always tangent to the gauge orbits, which is just to say that
once a dynamical trajectory is in a given gauge orbit, it never leaves. As we will
see below, a zero Hamiltonian is closely related to the lack of a preferred time
parameter.

Given a model M = (M, g), we can find a dynamical trajectory of (N,σ,H)
corresponding to M as follows. We first choose a foliation of M by Cauchy
surfaces (which are, of course, all diffeomorphic to Σ). We then choose a time
function τ : M → ℜ , which is compatible with the foliation in the sense that the
level surfaces of τ are the Cauchy surfaces of the foliation. Finally, we choose a
diffeomorphism Φ : M → Σ ×ℜ such that each Cauchy surface of the foliation,
S, is mapped onto a set of the form Σ× {t}. We call such a diffeomorphism an
identification map, since it gives us a way of identifying the leaves of the foliation
with Σ. We use Φ to push forward g, so that M′ = (Σ × ℜ,Φ∗g) is isometric
to M; the surfaces Σ× {t} in M′ are Cauchy surfaces isometric to the Cauchy
surfaces of our preferred foliation of M. Now let qab(t) and pab(t) characterize
the geometry of the Cauchy surface Σ × {t} in M′. As t varies, (qab(t), p

ab(t))
sweeps out a curve in N —the points on this curve representing a sequence of
Cauchy surfaces. This curve is a dynamical trajectory of (N,σ,H). Choosing a
different foliation, time function or identification map gives us a new dynamical
trajectory, which will be related to the first by a gauge transformation—i.e.,
one can map one dynamical trajectory on to the other via a transformation of
phase space which preserves gauge orbits.

The trajectories which correspond to the models M and M′ which appear
in the hole argument are so related. This shows that our approach respects
the general covariance of general relativity in the sense that it is indifferent to
changes of foliation, time function, and identification map. Changing any of
these simply carries us from one dynamical trajectory to a gauge related one.16

16Actually, this glosses over an interesting detail: it could be argued that our formalism fails

to be diffeomorphism invariant, since our phase space only contains spacelike geometries. This
is closely related to the fact, emphasized to us by Steve Weinstein, that it is far from trivial
to see how the group of four dimensional diffeomorphisms acts on the phase space of three-
geometries. See Kuchař 1986, Isham 1991, and Weinstein 1998 for illuminating discussions of
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Now suppose that we look at two points x = (q, p) and x′ = (q′, p′) which
lie in the same gauge orbit, and which can be joined by an integral curve of a
vector field generated by the vector constraint. Then we find that there is a
diffeomorphism d : Σ → Σ such that d∗q = q′ and d∗p = p′. That is, we can
regard x and x′ as agreeing on the geometrical structure of Σ, and disagreeing
only as to how the underlying geometrical properties are shared out over the
points of Σ—x and x′ may represent, for example, a geometry on Σ which has
a single point of maximum scalar curvature, but according to x this point is
z ∈ Σ, whereas according to x′ it is z′ ∈ Σ. Thus we can view the gauge
transformations generated by the vector constraint as shuffling the geometrical
roles played by the points of Σ.

Unfortunately, the gauge transformations generated by the scalar constraint
are considerably more complex. Very roughly, they can be thought of as corre-
sponding to time evolution—two points differ by a gauge transformation gener-
ated by the scalar constraint if they can be seen as representing distinct Cauchy
surfaces in a given model. In a generic spacetime, distinct Cauchy surfaces can
be expected to have very different geometries, so that points in N which are
related by a gauge transformation generated by the scalar constraint will not
in general represent the same geometry. In general, of course, a given gauge
transformation is generated by a combination of both sorts of constraint.

Next, suppose that we have two dynamical trajectories which correspond
to the same model (M, g). Suppose, further, that the trajectories differ by a
gauge transformation generated by the vector constraint. Then, in terms of
the construction above which establishes a correspondence between models and
dynamical trajectories: we can use the same foliation by Cauchy surfaces and
the same time function τ to generate both dynamical trajectories; the difference
between the trajectories can be attributed solely to the freedom available in the
choice of an identification map. If, on the other hand, the trajectories differ by
a gauge transformation generated by the scalar constraint, then the difference
can be traced to the freedom in the choice of foliation and time function on
(M, g).

Modulo technical difficulties to be discussed in §4, we can convert this gauge
theory into a true Hamiltonian system by factoring out the action of the gauge
transformations to construct the reduced phase space. It is illuminating to
proceed in two steps: we first partially reduce the phase space by factoring by
the action of the gauge transformations generated by the vector constraint; we
then complete the reduction by removing the gauge freedom associated with the
scalar constraint.

At the first stage, we identify any two points in N which are related by a
gauge transformation generated by the vector constraint. The partially reduced
phase space which results can be constructed as follows. We return to the be-
ginning of our construction of (N,σ,H), and replace the configuration space
Q =Riem(Σ) of metrics on Σ by Q0 =Riem(Σ)/Diff(Σ), the set of equivalence

this problem in the classical and quantum theories. The results announced in Gotay, Isenberg,
and Marsden 1998 promise to shed a great deal of light on this problem.
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classes of diffeomorphically related metrics on Σ. We call Q0 superspace. We
now construct T ∗Q0 and impose the scalar constraint, to construct the presym-
plectic geometry (Ñ , σ̃). The gauge theory (Ñ , σ̃,H ≡ 0) is the partially reduced
phase space formulation of general relativity. By identifying diffeomorphically
related three metrics from the start, we have eliminated the need for the vector
constraint.

The gauge orbits remain infinite dimensional even after this partial reduction
has been carried out. If we now identify points in Ñ which are related by a
gauge transformation generated by the scalar constraint, then we end up with a
Hamiltonian system (M̃, ω̃,H ≡ 0), where points in the phase space correspond
to equivalence classes of diffeomorphically related models of general relativity.

3.2 Interpretation

Classical substantivalists and relationalists about space agree with one another
that space exists and that it has some fixed geometrical structure. They are
divided over the question of the nature of the existence of this peculiar entity.
Substantivalists hold that it consists of parts which maintain their identity over
time, and that these parts stand directly in geometrical relations to one another,
while material objects stand in spatial relations only in virtue of the relations
obtaining between those parts of space which they occupy. Relationalists deny
the substantivalist claim that space has genidentical parts. They maintain that
space is best thought of as the structure of possible spatial relations between
bodies. Such relations are to be taken as primitive, rather than being reduced
to relations holding among the points of an underlying substratum. There are
a couple of vivid ways of putting the issue between the two factions. Substan-
tivalists, but not relationalists, believe in genidentical points. This means that
substantivalists, but not relationalists, can help themselves to a straightforward
account of the nature of absolute motion—it is motion relative to the genidenti-
cal parts of space.17 In addition, substantivalists will follow Clarke in affirming,
while relationalists will follow Leibniz in denying, that two possible worlds could
instantiate all of the same spatial relations, but differ in virtue of which point
of space plays which role (I occupy this point rather than that one).

Relativistic physics, however, seems to demand that one think in terms of
spacetime rather than space. Thus, the traditional doctrines are often trans-
lated into the four dimensional context. Substantivalists and relationalists will
again agree that the world has some given geometrical structure. Substanti-
valists understand the existence of spacetime in terms of the existence of its
pointlike parts, and gloss spatiotemporal relations between material events in
terms of the spatiotemporal relations between points at which the events occur.
Relationalists will deny that spacetime points enjoy this robust sort of existence,
and will accept spatiotemporal relations between events as primitive. It is now
somewhat more difficult to specify the nature of the disagreement between the

17There are, however, some more sophisticated ploys which relationalists can adopt to make
sense of inertial effects. See Barbour 1982, Belot 1999, and Lynden-Bell 1995.
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two parties. It is no longer possible to cash out the disagreement in terms of the
nature of absolute motion (absolute acceleration will be defined in terms of the
four dimensional geometrical structure that substantivalists and relationalists
agree about). We can, however, still look to possibilia for a way of putting the
issue. Some substantivalists, at least, will affirm, while all relationalists will
deny, that there are distinct possible worlds in which the same geometries are
instantiated, but which are nonetheless distinct in virtue of the fact that differ-
ent roles are played by different spacetime points (in this world, the maximum
curvature occurs at this point, while it occurs at that point in the other world).
We will call substantivalists who go along with these sort of counterfactuals
straightforward substantivalists. Not all substantivalists are straightforward:
recent years have seen a proliferation of sophisticated substantivalists who ape
relationalists’ denial of the relevant counterfactuals (see Brighouse 1994, But-
terfield 1989, Field 1985, and Maudlin 1990). For the time being, however, we
will bracket this option. We will address the virtues and vices of sophisticated
substantivalism in §7.

It is easy to see that (straightforward) substantivalists are committed to
giving a literal interpretation of general relativity. Consider two models, M =
(M, g) and M′ = (M,d∗g), which are related by a hole diffeomorphism, d. Fix
a foliation, time function, and identification map, and use them to construct
dynamical trajectories x(t) and x′(t) in the phase space of general relativity
which correspond to M and M′. Because d is a hole diffeomorphism, we can
assume that x(t) = x′(t) for t ≤ 0, but x(1) 6= x′(1). Substantivalists will view
x(t) and x′(t) as representing distinct physically possible histories: although
they represent the same spatiotemporal geometry (lying as they do in the same
gauge orbit), they represent different distributions of their shared set of geo-
metrical properties over the points of spacetime (if x is a point on the spacelike
surface t = 1, then x represents it as having these properties while x′ represents
it as having those). Indeed whenever x and x′ are distinct points in the phase
space of general relativity, a substantivalist will view them as representing dis-
tinct physical situations: either they represent distinct possible geometries for
a given spacelike hypersurface, or they represent the same pattern of geometric
relations differently instantiated. This is just to say that substantivalists are
committed to a literal construal of the gauge-theoretic formulation of general
relativity. And, like any literal interpretation of a gauge theory, substantivalism
implies that the theory is indeterministic: if x(1) and x′(1) correspond to dis-
tinct possible situations, then the state corresponding to x0 = x(0) = x′(0) has
multiple physically possible futures. This is the content of the hole argument.

As in §2, the best way to avoid this sort of indeterminism is to adopt a
gauge-invariant interpretation of the theory. We can do this by giving a lit-
eral interpretation of the reduced phase space formulation of general relativity.
Recall from above that the points of the reduced phase space are just the equiva-
lence classes of diffeomorphic models of general relativity. Thus in order to avoid
the indeterminism of the hole argument, we have to accept that diffeomorphic
models always represent the same physically possible situation (this proposition
is known as Leibniz equivalence in the literature on the hole argument). And
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this, of course, is just to deny that there could be two possible worlds with
the same geometry which differ only in virtue of the way that this geometry is
shared out over existent spacetime points. Thus, modulo the existence of an
attractive form of sophisticated substantivalism, one must be a relationalist in
order to give a deterministic interpretation of general relativity.

There is another, closely related, motive for adopting a gauge invariant in-
terpretation of general relativity. As was noted at the end of §2, the existence
of gauge degrees of freedom in a theory seems to tell us that the theory contains
excess variables. The natural response is to seek an interpretation in which all
and only the variables which correspond to physical degrees of freedom are taken
seriously. Typically, we will want to say that it is just those variables whose
evolution is determined by the differential equations of the theory that should be
taken seriously in this way. Recently, a number of philosophers have joined the
majority of physicists in advocating such gauge-invariant interpretations of gen-
eral relativity—although almost all philosophers opt for a form of sophisticated
substantivalism, while many physicists adhere to a strict relationalism.

At this point a potential technical problem looms. Relatively little is presently
known about the structure of the reduced phase space of general relativity. It is
known that this space has singularities corresponding to models of general rel-
ativity with symmetries, and is smooth elsewhere (Marsden 1981). Interesting
and extensive smooth open sets have been constructed (Fischer and Moncrief
1996; see fn. 25 below). But the concern is sometimes expressed that the
structure of generic regions of this space may not be smooth (see p. 141 of
Kuchař 1993a, p. 267 of Unruh 1991, and p. 2600 of Unruh and Wald 1989).
Equivalently, one can wonder whether there exists a full set of gauge-invariant
quantities on the unreduced phase space of general relativity. In fact, very
few such quantities are known (see Goldberg et al 1992 for a rare example).
Furthermore, it is known that there are no local gauge-invariant quantities.18

Until some progress is made on these technical questions, a dark cloud hangs
over the program of providing gauge-invariant interpretations of general rela-
tivity. The problem is this. One knows that the reduced phase space of general
relativity exists as a mathematical set with some topology (although this topol-
ogy may not be well enough behaved to support any interesting global geometric
structure). And one knows that one can characterize the points of the reduced
phase space as equivalence classes of models of general relativity. Philosophers
who have advocated gauge-invariant interpretations have been satisfied with
this sort of approach, which we dub extrinsic, since the characterization of the
points of the reduced phase space is in terms of the gauge orbits of the original
phase space. Such an extrinsic approach may, indeed, yield some sort of inter-
pretation of general relativity. But we feel that something is lacking from an
interpretation which stops at this point. Ideally, one would like an interpretation

18See Torre 1993. Here a quantity is local if it is an integral over Σ of the canonical variables,
p and q, and a finite number of their derivatives. The situation is slightly more encouraging
if we work with asymptotically flat spacetime, rather than spatially compact spacetimes. In
that case, their are a finite number of known local gauge-invariant quantities, such as the
ADM momenta.
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of general relativity which was underwritten by some intrinsic characterization
of the points of reduced phase space. Indeed, in order to formulate a gauge
invariant quantum theory, one would like to be able to find a set of coordinates
on the reduced phase space—or, equivalently, a full set of gauge invariant quan-
tities on the original phase space. This would amount to isolating the true (i.e.,
gauge invariant) degrees of freedom of the theory. Although this is not essen-
tial for Dirac quantization, it nonetheless seems to us that it is the approach
to the theory which yields the deepest understanding, since it underwrites an
explicit characterization of the classical and quantum degrees of freedom of the
system.19

Thus we conclude that the present state of ignorance concerning the struc-
ture of the reduced phase space of general relativity—and the lingering worry
that this structure may be monstrous—should give pause to advocates of gauge-
invariant interpretations of the theory. We will, however, bracket this technical
objection to gauge invariant interpretations, and move on to discuss the two
other sorts of problem which plague such interpretations.

(1) It appears to be a consequence of any gauge-invariant interpretation of
general relativity that change does not exist, since any such interpretation re-
quires us to regard two points, x and x′, of the phase space of general relativity
which correspond to distinct Cauchy surfaces of the same model as representing
the same state of affairs, since they are related by a gauge transformation gen-
erated by the scalar constraint. Equivalently, if the only physical quantities are
gauge-invariant, then there is no such quantity which allows us to distinguish
between two such Cauchy surfaces.

(2) Accepting a gauge-invariant interpretation of general relativity, and thus
treating the general covariance of general relativity as analogous to the gauge
invariance of electromagnetism, leads to nasty technical and interpretative prob-
lems when one attempts to quantize the theory. These problems are so in-
tractable that some have called for a re-evaluation of the standard understand-
ing of general covariance.

We will discuss these problems for advocates of gauge-invariant interpreta-
tions in §§4 and 5. In §6, we will survey some interpretations which lie outside of
the gauge-invariant orthodoxy. All of these options will be seen to have serious
shortcomings, as well as distinctive attractive features.

4 Gauge Invariance and Change

Is there room for time or change when general covariance is understood as a
principle of gauge invariance? Prima facie, a gauge-invariant interpretation of
general relativity is descriptively inadequate because it cannot accommodate

19This is, we believe, part of the explanation of the current vogue for non-local interpre-
tations of electromagnetism and its nonabelian cousins; see Baez and Munian 1994 for a
nice introduction to these issues. It also justifies the demand, expressed in Earman 1989,
that relationalists should produce formulations of physical theories which can be expressed in
relationally pure vocabulary.
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real change.

To maintain that the only observable quantities are those that
commute with all the constraints [i.e. the gauge invariant quantities]
seems to imply that the Universe cannot change. For this reason, this
standpoint on observables was dubbed the frozen time formalism.
The frozen time formalism never successfully explained the evolution
we see all around us. (Kuchař 1992, p. 293)

How can changes in time be described in terms of objects which
are completely time independent? In particular, since the only phys-
ical, and thus measurable quantities are those which are time inde-
pendent, how can we describe the rich set of time dependent obser-
vations we make of the world around us? ... The time independent
quantities in General Relativity alone are simply insufficient to de-
scribe time dependent relations we wish to describe with the theory.
(Unruh 1991, p. 266)

Kuchař and Unruh are putting their fingers on an important question about
the nature of time. It will be helpful in what follows to be clear on the rela-
tion between their question and questions about the nature of time which are
currently at the center of philosophical discussion. Kuchař and Unruh are not

interested in: (i) the direction of time; (ii) the objectivity of the metric struc-
ture of time; (iii) the reducibility of temporal relations to causal relations; or
(iv) the existence of a moving now or flow of time. Rather they are interested
in whether or not change itself exists. And, of course, to the extent that the
existence of time and that of change are closely related, they are interested in
the existence, or lack thereof, of time as well. Thus, it is tempting to see them
as engaging the same problematic about time, change, and flux that so occupied
the Ancients.

In the quotations above, Kuchař and Unruh are driving at the following
point. If we accept that the only physically real quantities of general relativity
are gauge-invariant, then it follows that for any given model there is no phys-
ically real quantity which takes on different values when evaluated on Cauchy
surfaces corresponding to distinct times. Which is, they claim, just to say that
there is no change when general relativity is understood in this fashion: there is
no evolution in time of the values of the physically real quantities. Prima facie,
people who hold such a view have a very simple view of the nature of change:
it is illusory. For this reason, Kuchař associates the reading of the general co-
variance of general relativity as a principle of gauge invariance with the name
of Parmenides (1993a, p. 139).

Both Kuchař and Unruh denounce this Parmenidean view. They maintain
that it flies in the face of our experience of time and change, and are skeptical
that any coherent conceptual framework for the articulation of a quantum the-
ory of gravity can be built upon such a foundation. Many physicists working
on quantum gravity seem to be swayed by these arguments. But if the Par-
menidean view of change is to be rejected as descriptively inadequate, what
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sort of account should be erected in its place? This is clearly a philosophi-
cal problem. Now, the vast majority of contemporary philosophical discussion
about the nature of change is concerned with the existence of a moving now.
This literature, whatever its merits as metaphysics, seems to be entirely irrele-
vant to the physical problems with which we are here concerned—since it almost
always presupposes a pre-relativistic world view, and turns upon a question (the
viability of the tenseless view of time) which is likely to appear long-since settled
to relativistically-minded physicists.

Philosophers come closest to the physicists’ questions when they attempt to
motivate the idea of a moving now. In introducing philosophical theses related
to this latter problem, Le Poidevin and MacBeath comment that:

It is a commonplace that time, not space, is the dimension of
change. There is a wholly uncontroversial sense in which this is
true: genuine change involves temporal variation in the ordinary
properties of things: a hot liquid cools, a tree blossoms, an iron
gate rusts. Purely spatial variation, for example the distribution
of colours in patterned rug, does not count as a genuine change.
Uncontroversial as this is, it requires explanation. What is special
about time? (1993, p. 1)

In fact, it is not uncommon to introduce the moving now as a solution to
this problem, before going on to consider whether it is a coherent notion (see,
e.g., Mellor 1993, p. 163). Unfortunately, philosophers seem to have all too
little to say about what distinguishes change from mere variation.

Unruh, however, has made a very interesting and influential suggestion along
these lines—one which is clearly motivated by physical concerns, but which
strikes us as being philosophically provocative. He calls his view Heraclitean,
in honor of Heraclitus’ characterization of time as a war of opposites. The
fundamental insight is that “Time is that which allows contradictory things to
occur”:

At any one time, the statement that a cup is both green and red
makes no sense; these are mutually contradictory attributes. At any
one time, a single particle can have only one position. However, at
different times a particle can have many different positions, as can
the cup have many different colours. (Unruh 1988, pp. 254–55; see
also p. 2602 of Unruh and Wald 1989)

Time sets the values of the other variables, in the sense that at any given
time each object takes on exactly one property from any exhaustive and mutu-
ally exclusive set (such as position or color), although the property assumed is
allowed to vary as the time parameter varies. This is suggestive, but ultimately
inadequate. After all, the patterned carpet is allowed to take on different colors
in different regions of its spatial extension, just as the colored cup assumes dif-
ferent colors in different parts of its temporal extension. Furthermore, Unruh’s
proposal is unsatisfactory at the classical level because it depends on a primitive
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notion of genidentity, which is unlikely to be attractive in the context of field
theories.

But he goes on to make a suggestion about how to understand the Hera-
clitean aspect of time in the context of quantum theories which seems to provide
a means to distinguish the spatial from the temporal. Let’s suppose that we are
given a two dimensional spacetime continuum and a complex function ψ on this
continuum which we take to represent the wave function of some quantum par-
ticle. Can we distinguish the temporal dimension from the spatial dimensions?
Well, let {x, y} be an arbitrary set of coordinates. Suppose that we want to
calculate the probability of finding the particle in a given region. In order for
this to make sense, we will need the total probability to be normalized. But,
if ψ is really the wave function, then we expect

∫ ∞

−∞

∫ ∞

−∞
| ψ(x, y) |2 dx dy

to be infinite—at each time, the particle must be somewhere, so the integral
over the temporal dimension diverges. The solution is obvious: we should be
looking at

∫ ∞

−∞
| ψ(x, y0) |2 dx and

∫ ∞

−∞
| ψ(x0, y) |2 dy, for fixed x0 and

y0. If we find that the former is constant for all values of y0, while the latter
is extremely badly behaved, then this licenses us to conclude that y is a time
variable: integrating over surfaces of constant y gives us normalized probability
densities. In this situation, we can view y but not x as setting the conditions for
the other variables in the following sense: fixing a value of the time parameter
allows us to formulate a quantum theory in which we can interpret the square
of the wavefunction as a probability for measurement outcomes for the other
variable. This is the Heraclitean role of time in a quantum world.

Of course, it is not straightforward to implement this strategy in the case
of quantum gravity. Our discussion above presupposed that we were simply
handed the measures dx and dy. But this is to tantamount to knowing the
physically relevant inner product on our space of quantum states. And, in
fact, to identify the correct inner product is to go a long way towards solving
the problem of time in quantum gravity (see especially Kuchař 1993a on this
question). Nonetheless, Unruh’s suggestion provides a framework in which to
talk about the notions of change and time in quantum theories. As such, it
has been influential in shaping discussion of the problem of time in quantum
gravity, and provides a useful point of departure for our own discussion.

In the next two sections we will sketch some of the most important Par-
menidean and Heraclitean approaches to classical and quantum gravity, as well
as some of the most telling objections to these proposals. We will begin by
sketching a timeless approach to general relativity and quantum gravity in §5,
before turning to the details of a couple of Heraclitean approaches in §6.

In what follows, it will be helpful to keep in mind the following picture of
the dispute. All parties seem to agree that understanding what the general
covariance of general relativity is telling us about change and time is a precon-
dition for the formulation of a theory of quantum gravity. It is true, of course,
that in the context of general relativity, we can always cash out talk about time
and change in terms Cauchy surfaces in models of general relativity. But, it is
maintained, for anyone interested in canonical quantization of general relativ-
ity the resources to speak about time and change in quantum gravity must be
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found in (or imposed upon) the structure intrinsic to the phase space of gen-
eral relativity. Here one has two options, neither of which is entirely attractive:
(a) to embrace the Parmenidean view and attempt to make sense of quantum
and classical theories of gravity which are prima facie without change or time;
or (b) to turn away from gauge invariant interpretations of general relativity,
and thus to base one’s theories of gravity upon some other interpretation of the
significance of the general covariance of the classical theory.

5 Life Without Change

For the Parmenidean, the challenge provided by the general covariance of general
relativity is to give an account of the theory in which time and change are not
fundamental, but which (i) is consistent with our experience, and (ii) motivates
a viable program for quantization. We will begin with (i) before turning to (ii).

5.1 The Classical Theory

Even if it is granted that change is not a fundamental reality, we are never-
theless owed an account of how we can understand the observations of exper-
imental physics and everyday life—observations which would naively seem to
involve recording the presence of different properties at different moments of
time. Unruh attributes to Bryce DeWitt the suggestion that the accommoda-
tion is afforded by time-independent correlations between non-gauge-invariant
quantities, a suggestion Unruh himself rejects:

The problem is that all of our observations must be expressed in
terms of the physically measurable quantities of the theory, namely
those combinations of the dynamical variables which are indepen-
dent of time. One cannot try to phrase the problem by saying that
one measures gauge dependent variables, and then looks for time
independent correlations between them, since the gauge dependent
variables are not measurable quantities within the context of the
theory.

For example, Bryce DeWitt has stated that one could express
measurements in the form of correlations. As an example, one could
define an instant of time by the correlation between Bryce DeWitt
talking to Bill Unruh in front of a large crowd of people, and some
event in the outside world one wished to measure. To do so however,
one would have to express the sentence “Bryce DeWitt talking to
Bill Unruh in front of a large crowd of people” in terms of physical
variables of the theory which is supposed to include Bryce DeWitt,
Bill Unruh, and the crowd of people. However, in the type of theory
we are interested in here, those physical variables are all time inde-
pendent, they cannot distinguish between “Bryce DeWitt talking to
Bill Unruh in front of a large crowd of people” and “Bryce DeWitt
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and Bill Unruh and the crowd having grown old and died and rotted
in their graves.” The complete future time development of any set
of variables is described in this theory by exactly the same phys-
ical variables. The physical variables, those which commute with
all the constraints, can distinguish only between different complete
spacetimes, not between different places or times within any single
spacetime . . . The subtle assumption in a statement like the one as-
cribed to DeWitt, is that the individual parts of the correlation, e.g.,
DeWitt talking, are measurable, when they are not. (1991, p. 267).

We think that there is a more charitable interpretation to DeWitt’s proposal:
take it not as a way of trying to smuggle real change through the backdoor but
as a way of explaining the illusion of change in a changeless world. The idea is
that we measure hyphenated relative observables, such as clock-1-reads-t1-when-
and-where-clock-2-reads-t2. Such relative observables can be gauge-invariant
and hence measurable according to the theory. We then get the illusion of
change because we think that we can dehyphenate these hyphenated relative
observables and treat each of the component variables as a genuine observable.

Rovelli’s proposal for constructing “evolving constants” is the most sophis-
ticated and cogent way of fleshing out this suggestion.20 In order to avoid the
complications of general relativity we illustrate the proposal by means of a toy
Newtonian example, which is concocted in such a way to resemble, in relevant
features, general relativity as a constrained Hamiltonian system (see the Ap-
pendix for a general construction). Consider the Newtonian account of the
motion of a free particle on a line. We model this using a Hamiltonian system
(T ∗ℜ, ω,H) where T ∗ℜ = {(x, px)} is the cotangent bundle of the configuration
space ℜ, ω is the canonical symplectic structure, and H is the kinetic energy,
1
2p 2

x . We now employ the following formal trick, known as parameterization.
We enlarge the phase space, by adding the time, t, and its canonically conju-
gate momentum, pt, and we impose the constraint 0 = pt + 1

2p 2
x ≡ C. We also

take H ′ ≡ C = 0 as our Hamiltonian. We solve Hamilton’s equations to find
that our dynamical trajectories (x(τ), t(τ); px(τ), pt(τ)) are determined by the
equations ṗt = 0, ṗx = −ṫ∂H

∂x
= 0, and ẋ = ṫ ∂H

∂px

= ṫpx, where ṫ is arbitrary
and the overdot indicates differentiation with respect to the arbitrary time pa-
rameter τ . These equations are equivalent to our original equations of motion,
px =constant and x = pxt + x0. Thus, each gauge orbit of the parameter-
ized system corresponds to a dynamical trajectory of the original Hamiltonian
system.

Since H ′ = 0, we expect that the parameterized system will display some of
the same peculiar features as general relativity. The vanishing of the Hamilto-
nian means that the dynamical trajectories lie in gauge orbits. This means that
there are no gauge-invariant quantities which distinguish between two points ly-
ing on the same dynamical trajectory. Most strikingly, the position of the parti-
cle, x, fails to commute with the constraint, and hence is not gauge-invariant—

20See Rovelli 1991a,b,c. For criticism and discussion, see Cosgrove 1996, Hájiček 1991,
Hartle 1996, §6.4 of Isham 1993, and §15 of Kuchař 1992.
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and so is not measurable under the standard reading of gauge invariance. Thus
the parameterized system seems to describe a Parmenidean world in which there
is no change—and, in particular, no motion.

This is paradoxical: after all, the parameterized system is empirically equiva-
lent to the original Hamiltonian system, which can be thought of as describing an
ordinary Newtonian world. How can we account for this? The obvious response
is that we can deparameterize in a preferred way since t, which is supposed to
represent the absolute time of Newtonian mechanics, is in principle observable
(say, by reading an idealized clock). But suppose we didn’t know this, or that
we wished to eschew absolute time. How might we describe change, or some-
thing enough like change to explain ordinary observations, in the parameterized
system?

Choose a global time function on the augmented phase space: a function
T (x, t; px, pt) whose level surfaces are oblique to the gauge orbits. Consider any
phase function F , not necessarily a constant of motion. Define an associated one-
parameter family of phase functions {Fτ}τ∈ℜ by the following two requirements:

(R1) {Fτ , C} = 0

(R2) Fτ=T (x,t; px,pt) = F (x, t; px, pt).

Here {, } is the Poisson bracket on the augmented phase space. The first re-
quirement says that each Fτ is constant along the gauge orbits—so that the Fτ ,
unlike F , are gauge-invariant. In the case at hand, that means that the Fτ are
constants of motion . The second requirement says that the value of Fτ is equal
to the value of the phase function F when the phase point (x, t; px, pt) lies on the
level surface T (x, t; px, pt) = τ . The Fτ are then the evolving constants which
can be used to describe change. In our toy example, take F (x, t; px, pt) = x.
F does not commute with the constraint, so it is not gauge-invariant. Take
T (x, t; px, pt) = t. Then using R2, Fτ = x − p − x(t − τ). The value of Fτ on
an orbit with initial x0 is pxτ + x0. It is easy to verify that R1 holds: the Fτ ’s
are gauge-invariant. Being constants of the motion, the Fτ do not change. But
the family {Fτ} can be said to “evolve.” In our example, the law of evolution
is dFτ

dτ
= px. Our tendency to group gauge-invariant quantities into families

which can be viewed as “evolving” is supposed to account for our experience of
change.

Kuchař (1993a) interprets Rovelli’s proposal as saying that change in a non-
gauge-invariant quantity can be observed, at least indirectly, by observing the
gauge independent quantities Fτ1

and Fτ2
(say) and then inferring the change

∆x in x from t = τ1 to t = τ2 to be Fτ1
−Fτ2

= px(τ1 − τ2). Kuchař’s objection
is that we are not told how to observe τ—we can’t do it by observing that the
value of t is τ , for t is not an observable in the theory (this echoes the objection
of Unruh discussed above).

A possible response is that we don’t have to observe τ . The Fτ are constants
of the motion so it doesn’t matter when they are observed—in principle, all the
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Fτ could be observed at once. This doesn’t make Kuchař happy either: “If
all τ is eternally present, all time is irredeemable” (1993a, p. 139). Perhaps
another way to put the criticism is to observe that it is hard to see how one
would know which Fτ one is measuring without measuring τ , which brings us
back to Unruh’s objection.

These criticisms are misplaced if, as we suggested above, the evolving con-
stants proposal is construed modestly as explaining the illusion of change. Each
Fτ is to be taken as a hyphenated relative observable: the-position-x-of-the-
particle-when-the-t-clock-reads-τ . We think that there is real change because
we (mistakenly) think that we can dehyphenate for various values of the “time”
to get differences in the particle position—but the resulting “observable” would
fail to be gauge invariant. To be satisfying this line has to be extended to hook
up with actual perceptions. Here one might worry that the Kuchař-Unruh chal-
lenge comes back to haunt us at the level of neurophysiology if, as the theory
seems to demands, all explanations must ultimately be stated in terms of gauge-
invariant quantities. But one has to be careful here: we certainly cannot expect
the theory to recapitulate our full phenomenology of time—to do so would be
to demand that the theory contain a moving now, a demand which physics left
behind long ago. But it surely is reasonable to demand that there be a place
in the theory for models of human beings. In particular, it is reasonable to de-
mand that the theory explain the illusion of change—any gravitational theory
which cannot save such basic phenomena as the expansion of the universe will
be empirically inadequate.21

Kuchař himself seems to admit that the evolving constants framework does
meet this latter challenge, and thus does provide a way to make sense of time
and change in the context of general relativity (see his comments on pp. 138–
40 of Ashtekar and Stachel 1991). But even if this is granted, there remain
problems with the quantization of general relativity within the evolving con-
stants framework. If these cannot be overcome, this will be a severe blow to the
credibility of Parmenidean interpretations of general relativity.

5.2 Quantum Gravity

One of the signal virtues of the Parmenidean approach is that it underwrites
an approach to quantizing general relativity which is very clear in its broad
outlines (although it is, like every other approach to quantum gravity, extremely
difficult in its details). If one regards the general covariance of general relativity
as being strictly analogous to the gauge invariance of electromagnetism, then
one will treat the quantum constraints of quantum gravity just as one treats
the constraints of the quantum theory of the electromagnetic field: one imposes
quantum constraints ĥψ = 0 and ĥaψ = 0—corresponding to the scalar and

21One must also face the challenge posed by nonlocality: in (spatially compact) general
relativity, each gauge-invariant quantity—and hence each member of some family which we
want to view as an evolving constant—is a nonlocal quantity, while we are accustomed to
believe that the quantities which we measure are local.
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vector constraints of the classical theory—on the space of physical states of
quantum gravity.

Heuristically, we proceed as follows. We work in the Schrödinger represen-
tation, so that the quantum states, ψ(q), are elements of L2(Riem(Σ), µ), and
we represent our canonical coordinates, qab and pab, via q̂ab(x)(ψ(q)) = qabψ(q)
and p̂ab(x)(ψ(q)) = i ∂

∂qab(x)ψ(q). Then, again heuristically, writing the quantum

vector constraint as ĥa ≡ ∇̂bp̂
b

a , we can show that imposing this constraint
amounts to requiring that the quantum wavefunctions be invariant under three
dimensional diffeomorphisms. Formally, we can write ĥψ = 0 as

√

det q((qabqcd − 1

2
qacqbd)

∂2

∂qac∂qbd

ψ[q] − R(q)ψ(q)) = 0,

where R is the scalar curvature of q. In this form, the quantum scalar constraint
is known as the Wheeler-DeWitt equation. One then seeks a representation of
an appropriate set of observables on the space of physical states, and looks for
an appropriate inner product. Proponents of evolving constants hope to find an
appropriate representation of the algebra of classical evolving constants as a set
of linear operators on the space of physical states such that: (i) the quantum
evolving constants are in fact constants of motion (i.e. they commute with the
quantum Hamiltonian); and (ii) there is a unique inner product on the space
of physical states which makes the quantum evolving constants self-adjoint (see
Ashtekar and Tate 1994 and Ashtekar 1995). Finally, one must construct a
quantum Hamiltonian, Ĥ. The classical Hamiltonian can be written as a sum
of the classical constraints, so that it is identically zero on the constraint surface
which forms the phase space of general relativity. Thus, it is natural to write
the quantum Hamiltonian as a sum of the quantum constraints. But since these
constraints annihilate the physical states, one concludes that Ĥψ = 0.

This quantization program faces some daunting technical problems (see
Hájiček 1991, §6.4 of Isham 1991, and §15 of Kuchař 1992 for critical discussion).
But there are also conceptual problems. The foremost is, of course, the problem
of time: since the quantum Hamiltonian is zero, there is no equation which gov-
erns the dynamical evolution of the physical state. Thus there appears to be no
change in quantum gravity. Now, we have seen above that the vanishing of the
Hamiltonian is a direct consequence of requiring that the quantum constraints
should annihilate the physical states. Parmenideans claim that this move is
justified by analogy with the successful quantization of other gauge theories. If
q and q′ are related by a classical gauge transformation, then we expect that
ψ(q) = ψ(q′). This principle is particularly plausible when q and q′ are related
by a gauge transformation generated by the vector constraint—demanding that
ĥaψ = 0 is equivalent to demanding that ψ(q) = ψ(q′) whenever q′ = d∗q for
some diffeomorphism d : Σ → Σ. And this is surely mandatory, since oth-
erwise we could use quantum gravity to distinguish between the (classically)
empirically indistinguishable spatial geometries (Σ, q) and (Σ, q′).

In the case of the scalar constraint, no such direct geometric justification is
available. Here, the Parmenidean must rely upon the general analogy between
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general relativity and other gauge theories, and upon the following considera-
tion. The scalar constraint of general relativity implements time evolution, just
as the constraint imposed on the parameterized Newtonian particle does. Now,
we can apply our quantization algorithm to the parameterized particle. The con-
figuration space of the particle is Newtonian spacetime, so the quantum states
are wavefunctions on spacetime, subject to the constraint (p̂t + 1

2 p̂ 2
x )ψ(x, t) = 0.

In the Schrödinger representation, in which p̂t = −ih̄ ∂
∂t

, the constraint becomes
the familiar Schrödinger equation—modulo the fact that the wavefunctions of
the parameterized particle are defined on spacetime rather than space.22

Thus, the quantum theory of the parameterized particle is intimately re-
lated to the quantum theory of the ordinary unparameterized particle. Now,
the scalar constraint of general relativity is quadratic in momentum, whereas the
constraint of the parameterized particle is linear in pt, so the Wheeler-DeWitt
equation is not even formally a Schrödinger equation—it cannot be solved for the
time rate of change of the quantum state. Nonetheless, Parmenideans maintain,
one may view the Wheeler-DeWitt equation as encoding all of the information
about time and change that is relevant to quantum gravity, in analogy with
the quantum constraint of the parameterized particle (since both of them, in-
tuitively, are the quantum versions of classical constraints which generate time
evolution).

But, if the Wheeler-DeWitt equation encodes this information, where is the
key which will grant us access to it? This is where the evolving constants
come in. One presumes that there is, for instance, a quantum evolving constant
which corresponds to the classical evolving constant which measures the volume
of the universe at different times. By asking for the expectation value of this
quantum evolving constant, we can find evolution and change in the prima facie

changeless world of quantum gravity.
It is at this point that the objections raised by Kuchař and Unruh return

with redoubled force. Our discussion of the (classical) evolving constants of
parameterized Newtonian particle proceeded smoothly only because we were
working with a system in which Newtonian absolute time was merely hidden,
and not absent from the beginning. But suppose that we are given a gauge
system with a vanishing Hamiltonian, and that this system, like general relativ-
ity itself, does not arise via parameterization from a Hamiltonian system. Then
there will be considerable arbitrariness in the selection of our evolving constants.
In particular, we will not have any natural criterion to appeal to in place of R2

above: we will not know which foliations of our phase space count as foliations
by surfaces of constant time, and so our choice of evolving constants will be
vastly underdetermined. In particular, we will have no way of guaranteeing
that the foliation chosen corresponds to time rather than space—intuitively our
family {Fτ} may correspond to the family {the-mass-of-the-object-at-the-point-

22Heracliteans will object that this is a crucial caveat: by their lights, the choice of a correct
inner product for wavefunctions on spacetime is equivalent to the choice of a Heraclitean time
variable. Parmenideans hope to finesse this objection by showing that their approach singles
out a unique candidate for the correct inner product for quantum gravity. See Ashtekar and
Tate 1994.
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xτ -of-space-at-time-t0} rather than to {the-mass-of-the-rocket-at-time-t = τ}.
And here we are back to the problem discussed in §4: If one doesn’t take time
and change as fundamental realities, how is one to distinguish between mere
spatial variation and true temporal change?

Rovelli himself takes a hard line on this question, and argues that, prior
to quantization, any set of evolving constants is as good as any other. One
expects, however, that different sets of evolving constants will lead to different
quantizations, and that experiment will eventually allow one to determine which
sets of evolving constants are viable. Indeed, this situation already arises in the
context of quantum mechanics. Hartle (1996) discusses the quantum mechanics
of a parameterized Newtonian description which results when non-standard time
functions are employed. He finds that predictions that depart from those of
standard non-relativistic quantum mechanics can result. This embarrassment
can be overcome by restricting to “good” time functions. Of course, it is not
evident how such restrictions could be implemented in quantum gravity—so one
expects to be faced with a highly ambiguous recipe for quantization. Whether
this counts as a strength or a weakness will be a matter of taste.

Here we reach an impasse of a sort which is quite typical of debates con-
cerning the conceptual foundations of classical and quantum gravity. On our
reading, the heart of Kuchař and Unruh’s objections to the Parmenidean view
is to be found at this point. They both possess an intuition which runs directly
counter to Rovelli’s. They see the distinction between change and variation as
fundamental, and doubt that one will be able to formulate a fruitful approach
to quantizing general relativity which is blind to this distinction. Thus they
see Rovelli’s willingness to accept any evolving constants as a sign of the con-
ceptual bankruptcy of the Parmenidean approach. Rovelli, of course, rejects
this interpretation. For him, tolerance of the radical underdetermination of the
evolving constants is part of an attempt to shrug off outmoded classical intu-
itions about time and change. Indeed, one of the strengths of the Parmenidean
approach has been its hints at the discrete structure of quantum spacetime.23

Both sides agree that the proof will be in the pudding: vindication, if it comes
at all, if will come in the guise of a viable theory of quantum gravity. In the
mean time, arguments about the proper way forward will continue to be cast in
terms of disagreements concerning the nature of change—debates about content
and method are inextricably intertwined.

23Recent work in Ashtekar’s connection-dynamical formulation of general relativity, has
produced area and volume operators for quantum gravity which have discrete spectra (see
Ashtekar 1995 and 1998 for a survey of these results). This is indeed exciting. But the
reader is urged to take these results with a grain of salt: (i) the operators in question do not
commute with all of the constraints, and hence are not observables within the Parmenidean
framework; (ii) although these operators have discrete spectra, the family of such operators
is parameterized by the family of volumes and areas in Σ, so that an underlying continuum
remains. Furthermore, there appears to be some difficulty in defining a physically reasonable
version of the quantum scalar constraint for the Ashtekar variables.
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6 Vive le Change!

Not everyone accepts the Parmenidean approach. Some believe that the analogy
between the general covariance of general relativity and principles of gauge
invariance of theories like electromagnetism is profoundly misleading. These
physicists are skeptical that the Parmenidean approach sketched in the previous
section is either mathematically feasible (since they doubt that one will be able
to find an appropriate inner product without appealing to a Heraclitean notion
of time) or physically meaningful (since they doubt that one would be able
to derive sensible physical predictions from a timeless theory). They believe
that a Heraclitean time must be found within (or grafted on to) the conceptual
structure of general relativity prior to quantization. In this section, we attempt
to give the flavor of this approach.

Heracliteans comes in two varieties. They concur that Parmenideans pro-
foundly misunderstand the nature of the general covariance of general relativity,
but they disagree as to the correct account. On the one hand, there is a radical
wing which forsakes a cornerstone of the traditional reading of general covari-
ance: that in general relativity there is no preferred splitting of spacetime into
space and time. On the other hand, there is a more conservative faction which
attempts to hew to a traditional understanding of the general covariance of
general relativity, while denying that it is a principle of gauge invariance.24

There are a number of varieties of radical Heracliteanism (see 6-8 of Kuchař
1992 for an overview). The most straightforward is probably the doctrine that
the mean extrinsic curvature is a good time variable for classical and quantum
gravity (the mean extrinsic curvature at a point x ∈ Σ of a Cauchy surface with
geometry (q, p) is τ = qabp

ab/
√

q). The point of departure is the observation
that there is a large open subset of the space of models of general relativity
consisting of spacetimes which admit a unique foliation by surfaces of constant
mean curvature (CMC surfaces).25 If (M, g) is a model which is CMC sliceable,
then the mean extrinsic curvature, τ , varies monotonically within the CMC
foliation. This observation motivates the following program (see Beig 1994 and
Fischer and Moncrief 1996). We restrict attention to that subset of the phase
space of general relativity which corresponds to CMC sliceable models. We then
solve the vector constraint, by moving to superspace. At this point, we have a
gauge system in which the gauge orbits are infinite dimensional. We transform
this into a gauge system with one dimensional gauge orbits by stipulating that
we are only interested in those points of phase space which represent CMC
slices.26 In effect, we have chosen a foliation for every model, and finessed the

24The proposal developed by Unruh and Wald (Unruh 1988 and Unruh and Wald 1989)
doesn’t quite fit into this classification, since their unimodular time introduces a preferred
volume element rather than a preferred slicing. Nonetheless, it is very similar to radical
proposals. See §4 of Kuchař 1993b or §4.4 of Isham 1993 for discussion.

25The extent of this open set is an open question. See Isenberg and Moncrief 1996 for a
recent discussion. Fischer and Moncrief 1996 show that there are three manifold topologies
such that if we look at the phase space of CMC sliceable solutions with Cauchy surfaces of
such a topology, we find that the reduced phase space is a manifold with no singularities.

26This is a variety of gauge fixing. In completely fixing the gauge, one kills off gauge freedom
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necessity to choose an identification map by working in superspace. The only
remnant of the original general covariance of general relativity is the freedom to
reparameterize the time parameter, τ . Furthermore, the remaining constraint
is linear in the momentum conjugate to τ . Thus, general relativity is now
written in the form of a parameterized system: by choosing a distinguished
parameterization of τ , one can construct a time-dependent Hamiltonian system
whose parameterization is the CMC-reduced form of general relativity. The
Hamiltonian, H(τ), measures the volume of the Cauchy surface of mean extrinsic
curvature τ . As noted by Isham (1991, p. 200), it is quite strange to have
a theory of the entire universe in which the dynamics is driven by a time-
dependent Hamiltonian—usually such Hamiltonians are employed to model the
influence of the environment on the system. (This observation also applies to
the internal time framework sketched below.)

One hopes that canonical quantization of this Hamiltonian system would
lead to a quantum field theory of gravity, complete with a time variable and
a (time-dependent) Hamiltonian which governs the evolution of the quantum
state via an ordinary Schrödinger equation, and that the expectation value of
the volume of the universe, 〈Ĥ(τ)〉, would vary with time. This quantization
program has been successfully carried out for 2+1 general relativity, and is being
actively developed in the full 3+1 case (see Carlip 1998 for the 2+1 case). One
of the remarkable results obtained is that the CMC method of quantization is
equivalent to some Parmenidean constructions of 2 + 1 quantum gravity. But,
of course, all models of 2 + 1 general relativity are flat, so that the phase space
of the classical theory is finite dimensional, and the quantum theory is a variety
of quantum mechanics. One does not expect this sort of equivalence to arise in
the 3 + 1 case, where the classical phase space is infinite dimensional and the
quantum theory is a quantum field theory.

Other radical Heraclitean proposals have similar structures. One much-
discussed method is to postulate the existence of a form of matter which allows
one to introduce a preferred foliation. For instance, one can postulate the ex-
istence of a cloud of dust, each mote of which is a clock. This fixes a reference
frame and a time parameter.27 One then uses this additional structure to reduce
general relativity to a parameterized system, which, upon quantization, yields
an ordinary Schrödinger equation. Breaking the general covariance of general
relativity by introducing preferred frames allows one to introduce a time vari-
able, t, at the classical level which is carried over to quantum gravity. This time

by adding further constraints in such a way that the expanded set of constraints are all second
class and the new system is strictly Hamiltonian rather than being gauge; see fn. 8 above. In
electromagnetism, one can impose the Lorentz gauge condition, ∂aAa = 0. This completely
fixes the gauge, in the sense that the resulting second class constraint surface intersects each
gauge orbit exactly once. The CMC gauge choice only partially fixes the gauge: the resulting
constraint surface still has a one dimensional intersection with each of the original gauge
orbits.

27These will depend upon the Lagrangian which governs the dynamics of the matter: postu-
lating four non-interacting massless scalar fields privileges a system of harmonic coordinates;
introducing a cloud of non-rotating and heat conducting dust leads to Gaussian coordinates.
See Kuchař 1993b.
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variable is Heraclitean: the wave function describing the state of the gravita-
tional field depends on t, and one is able to find an inner product on the space
of instantaneous quantum states which is conserved in t. This allows one to
make intelligible time-dependent predictions of measurement outcomes.

Such radical approaches view the general covariance of general relativity as
an artifact of a particular formulation of the theory. Under this reading, it is
true that general relativity can be given a Diff(M)-invariant formulation. But,
it is contended, this formulation is by no means the most perspicacious. By
using our preferred coordinates to fix the gauge, we can bring to the fore the
true physical content of the theory—just as the content of Newtonian physics is
most clear when the theory is written in its traditional, non-generally covariant,
form. Of course, this reading is vulnerable to the accusation that it betrays the
spirit of general relativity:

foliation fixing prevents one from asking what would happen if
one attempted to measure the gravitational degrees of freedom on
an arbitrary hypersurface. Such a solution ... amounts to conceding
that one can quantize gravity only by giving up general relativity:
to say that quantum gravity makes sense only when one fixes the fo-
liation is essentially the same as saying that quantum gravity makes
sense only in one coordinate system. (Kuchař 1992, p. 228)

This criticism is extremely telling. To forsake the conventional reading of
general covariance as ruling out the existence of preferred coordinate systems is
to abandon one of the central tenets of modern physics. Unsurprisingly, radical
Heracliteanism has few adherents—such approaches are explored because they
are technically tractable, not because they are physically plausible.

Kuchař advocates a more conservative—and ambitious—brand of Heracliteanism..
He articulates a subtle reading of general covariance which differs from both that
of the Parmenideans and that of the radical Heracliteans: he denies that general
covariance is a principle of gauge invariance, without countenancing the exis-
tence of a preferred foliation or a preferred set of coordinates (see Kuchař 1972
for the original proposal, and Kuchař 1992 and 1993a for recent discussions). A
good starting point for understanding his approach is to consider the dual role
that time plays in a Newtonian world. On the one hand, we can construct a
time function, t(x), which assigns a time to each point in Newtonian spacetime.
In this guise, time is a scalar function on spacetime. However, we can also think
of time as a collection of instants. Because simultaneity is absolute in New-
tonian physics, this collection can be thought of as a one-dimensional family,
parameterized by t. Equivalently, the real numbers parameterize the ways in
which one can embed an instant (surface of simultaneity) into spacetime. Of
course, a time function on spacetime suffices to model this role of time as well:
the permissible embeddings of instants are just the level surfaces of t(x).

In the context of special relativity one doesn’t have a preferred notion of
simultaneity, and the two roles of time are no longer so tightly intertwined. One
is still often interested in time functions, t(x), on spacetime—especially the
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time functions associated with inertial observers. But in its guise as the space
of instants, time can no longer be thought of as a one-parameter family, since the
spirit of special relativity forbids us from identifying the possible embeddings of
the instants with the level surfaces of the time function associated with any one
inertial observer. In this context there is considerable ambiguity in the notion
of an instant. For definiteness, let’s fix upon surfaces of simultaneity relative to
inertial observers. Then the family of instants will be four dimensional: if we fix
a fiducial instant, Σ0,then an arbitrary instant, Σ, can be reached by applying a
time translation and/or Lorentz boost to Σ0. So we can think of time as being
four dimensional in Minkowski spacetime.28

Let’s now consider a generic model, M = (M, g), of general relativity. As
in the previous cases, it is easy to write down a time function, t(x), on M.
One simply requires that its level surfaces be Cauchy surfaces. Let’s fix such a
time function—and the corresponding foliation of M by Cauchy surfaces—and
enquire after a coherent notion of ‘instant’ in general relativity. Here, in order
to respect the traditional understanding of general covariance, we will want our
set of instants to include all Cauchy surfaces of M. Thus, time, qua the set of
instants, becomes infinite dimensional. We are interested in examining the role
that these two notions of time play in the phase space of general relativity.

To this end, we focus our attention on the gauge orbit in the phase space
of general relativity which corresponds to M. For a generic M admitting no
symmetries we expect that a given point (q, p) of the phase space represents
a three geometry which occurs only once as a Cauchy surface of M. That is,
we expect that specifying the tensors q and p on Σ is sufficient to determine a
map X : Σ → M which tells us how Σ must be embedded in M in order to
induce the geometry (q, p). Fixing an arbitrary coordinate system on Σ and a
coordinate system on M of the form {xµ} = {t, xa}, we find that specifying the
twelve independent components of qab(x) and pab(x) on Σ determines four real
functions on Σ, {XA(x)} = {T (x),Xa(x)}, which tell us how Σ is embedded in
M.

We can think of these maps as functions on the phase space of general
relativity: for each point (q, p) of the phase space, XA(x) is a real number.
Following Kuchař we use the notation XA(x; q, p] to emphasize that each XA

is a function on Σ and a functional (in the physicist’s sense) on phase space.
This suggests that we could use the XA and their conjugate momenta, PB, as
coordinates on the phase space, in place of the qab(x) and pab(x). Now, of course,
knowing the qab(x) and pab(x) for a given point of the phase space gives us more
information than just the way that the instant is embedded in spacetime—it
also tells us about the state of the gravitational field at that instant. Thus,
the geometric variables, the qab(x) and pab(x) , contain information beyond
that which is contained in the embedding variables, XA(x; p, q] and PB(x; p, q].
Indeed, qab(x) and pab(x) contain twelve independent components. So specifying

28Different notions of ‘instant’ in Minkowski spacetime produce families of instants of dif-
ferent dimensionalities. See Hájiček 1994 for an analysis and comparison of the distinct
varieties of relativistic quantum mechanics which correspond to different notions of instant in
Minkowski spacetime.
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the geometrical data gives us twelve functions on Σ, whereas specifying the
embedding variables gives us only eight. One surmises that there must exist
additional variables which represent the true physical degrees of freedom of the
gravitational field relative to any given instant (i.e., relative to any fixed values
of the embedding variables). Thus, we postulate that the dynamical state of the
gravitational field at a given instant is represented by gravitational configuration
variables, φr(x) (r = 1, 2), on Σ, together with their momentum variables, πs(x)
(s = 1, 2).

So far, we have been restricting our attention to a single gauge orbit of
the phase space of general relativity, and depending upon a particular set of
coordinates for the corresponding model. More ambitiously, we could look for
embedding variables, XA(x; q, p] and PB(x; q, p], defined globally on the phase
space of general relativity. We then look for a canonical transformation of the
phase space of general relativity of the form

{qab(x), pab(x) 7→ {XA(x), PB(x); φr(x), πs(x)}

(i.e., we are looking for a change of coordinates which preserves the presym-
plectic structure). Each of these new canonical variables associates a map from
Σ to the real numbers with each point of phase space. We require that the
embedding variables satisfy the following two desiderata.

(I) Global Time. Each gauge orbit of general relativity contains
exactly one point corresponding to a given fixed value of the embed-
ding variables.

(II) Spacetime Interpretation. If (q, p) and (q′, p′) correspond
to intersecting Cauchy surfaces of a given model, then we demand
that XA(x; q, p] = XA(x; q′, p′] for points x ∈ Σ which lie in their
intersection.

The first condition guarantees that the values assumed by the embedding
variables at a given point of phase space do indeed single out a single instant
in any given model of general relativity. The second condition guarantees the
notion of time as a collection of instants is compatible with the notion of time
as represented by a spacetime scalar: the time, T = X0(x; q, p] assigned to
a given point x of a relativistic spacetime is the same for all Cauchy surfaces
(q, p) passing through that point.29 If we can find a canonical transformation
satisfying these two desiderata, then we proceed to rewrite the constraints in
terms of the new coordinates, where they will assume the form CA ≡ PA(x) +
hA(x; X,φ, π] = 0.

29It may help to consider how the CMC time fits into this scheme. If we attempt to
define T (x; q, p] as the extrinsic curvature of (q, p) at x, then we run afoul of the requirement
Spacetime Interpretation: if we look at two Cauchy surfaces passing through the same point
of spacetime, we expect them to have different extrinsic curvatures at that point. We could,
in accord with the CMC proposal discussed above, attempt to define T (x; q, p] to be the value
of the extrinsic curvature of the CMC slice through x. This satisfies Spacetime Interpretation.
But it requires solving the Einstein equations in order to define the time variable on phase
space. See §6 of Kuchař 1992 or §4.2.4 of Isham 1993 for discussion.
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If all this can be achieved, then we have rewritten general relativity in the
internal time formulation (time is said to be internal in this formalism because
it depends only on phase space variables). It would allow us to reconcile the
two roles of time. The internal time on phase space admits an interpretation
as a spacetime scalar for any particular model. But general covariance is not
broken: there are no preferred foliations or coordinate systems.30 One can, if
one likes, pay special attention to the level surfaces of the time function which
the internal time induces on models. But the formalism itself does not privilege
these level surfaces: the constraints can be viewed as governing the evolution of
the gravitational degrees of freedom between arbitrary instants.

One could go on to apply the Dirac quantization algorithm to the internal
time formulation of general relativity. Here the configuration variables are the
embedding variables, XA, and the gravitational variables, φr. Thus the quan-
tum states will be wavefunctions over the classical configurations of X and φ,
of the form ψ(X,φ). We will want to impose the constraints, ĈAψ[X,φ] = 0.
Because the classical constraints are linear in the momentum, the quantum
constraints become Schrödinger equations:

−i
∂ψ(X,φ)

∂XA(x)
= ĥA(x; X, φ̂, π̂]ψ(X,φ),

which govern the change in all of the configuration variables under small vari-
ations in the embedding variables. Let us denote the space of wavefunctions
satisfying these constraints by V0. At this point, one could proceed as in the
Parmenidean program of 5: complete the quantum theory by finding quantum
evolving constants, and find an inner product on V0 which renders them self-
adjoint.

Kuchař however, rejects the Parmenidean reading of the significance of the
quantum constraints and as a result, he denies that the observables of quantum
gravity are self-adjoint operators on V0 which commute with the constraints.
His objections concerning the quantum constraints can be traced back to a sub-
tle difference between his reading of the significance of the general covariance
of general relativity, and that of the Parmenideans. As we saw above, his pro-
gram for quantization takes as its point of departure a formulation of general
relativity which fully respects the general covariance of the theory. Kuchař does
not, however, subscribe to the Parmenidean dogma that the constraints of gen-
eral relativity should be understood as the generators of gauge transformations.
Rather he draws a sharp distinction between the role of the vector constraint,
and that of the scalar constraint. In particular, he holds that the observable
quantities of general relativity must commute with the vector constraint, but
that they need not commute with the scalar constraint.

The rationale is as follows. In the case of the vector constraint, we can say
that “[t]wo metric fields, qab(x) and q′ab(x), that differ only by the action of

30Indeed, Kuchař 1986 argues that the Diff(M)-invariance of general relativity is hidden in
the ordinary Hamiltonian formulation of general relativity, but is manifest in the internal time
formulation.
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Diff(Σ), i.e., which lie on the same orbit of ha(x), are physically indistinguish-
able. This is due to the fact that we have no direct way of observing the points
x ∈ Σ.”31 The difference between two geometries, qab(x) and q′ab(x), related
by a transformation generated by the vector constraint is unobservable: it is
the difference between identical spatial geometries, which differ only in virtue of
which point of Σ plays which geometrical role. The role of the scalar constraint,
h, is very different:

it generates the dynamical change of the data from one hypersur-
face to another. The hypersurface itself is not directly observable,
just as the points x ∈ Σ are not directly observable. However, the
collection of the canonical data (qab(x), pab(x)) on the first hyper-
surface is clearly distinguishable from the collection (q′ab(x), p′ab(x))
of the evolved data on the second hypersurface. If we could not dis-
tinguish between those two sets of data, we would never be able to
observe dynamical evolution. (1993a, p. 137)

Or, again, “[t]wo points on the same orbit of [the scalar constraint] are
two events in the dynamical evolution of the system. Such events are physically
distinguishable rather than being descriptions of the same physical state” (1992,
p. 293). Thus, Kuchař believes that there are physically real quantities which
do not commute with the scalar constraint of general relativity.

In the internal time formulation, this point will take the following form.
T = X0(x; q, p] has a different status from the Xa(x; q, p] for a = 1, 2, 3. The
former can be thought of as specifying the instant corresponding to (q, p), while
the latter specify how Σ is mapped on to this instant. That is, T specifies a
Cauchy surface while the Xa tell us how Σ is mapped on to this Cauchy surface.
Thus, the constraint CT ≡ PT (x) + hT (x; X,φ, π] = 0 should be thought of as
governing time evolution, while the Ca ≡ Pa(x) + ha(x; X,φ, π] = 0 generate
gauge transformations which correspond to altering the way that Σ is mapped
on to a given Cauchy surface.

Thus, according to Kuchař’s analysis, the quantum constraints should not be
treated uniformly, as they are within the Parmenidean approach. The quantum
constraints Ĉaψ = 0 should be imposed as in the standard approach. This
will, as usual, ensure that the theory is indifferent to diffeomorphisms acting
on Σ. But the quantum constraint ĈT demands a different approach. Kuchař
recommends the following procedure. Begin by arbitrarily fixing values T (x) =
X0(x) for all x ∈ Σ. This specifies an instant in general relativity. Fixing
the state of the gravitational field now amounts to fixing the values of φr(x)
and πs(x) on Σ, and the classical observables at this instant are just functions
of these field variables. It is natural to think of an instantaneous state of the
gravitational fields as a wave function Ψ(φ1, φ2) over field configurations over
Σ (with configurations identified if they are related by a diffeomorphism of Σ).

An observable will then be any (diffeomorphism-invariant) function of φ̂r(x) and

31Kuchař 1993a, p. 136. Here and below, we have slightly altered Kuchař’s notation to
conform to our own.
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π̂s(x). In order to bring dynamics into the picture, we impose the constraint
ĈT Ψ(X,φ) = 0. This gives us the Schrödinger equation,

−i
∂Ψ(T, φ)

∂T (x)
= ĥT (x; X, φ̂, π̂]Ψ(T, φ),

which tells us how the quantum states change under infinitesimal changes of our
instant. Now one attempts to find an inner product on the space of instanta-
neous states which is preserved under the evolution induced by the constraints.
If one is successful, then one has a quantum theory of gravity: a Hilbert space,
observables, and dynamics. Notice that although the states are gauge-invariant
(since they satisfy the quantum constraints), the observables need not be: in
general, one expects the expectation values of a function of φr(x) and πs(x)
to vary from embedding to embedding (i.e. from instant to instant). Hence,
Kuchař’s proposal leads to a theory of quantum gravity in which the infinite
dimensional internal time plays the role of a Heraclitean time variable.

This quantization procedure has been successfully applied to a number of
theories which arise from general relativity by killing infinitely many degrees
of freedom (see §6 of Kuchař 1992). Before it can be applied to full general
relativity, however, a number of severe technical difficulties must be overcome—
including the fact that it appears to be impossible to satisfy Global Time for full
general relativity, and the fact that no one has yet been able to write down in
closed form an internal time variable which satisfies Spacetime Interpretation.32

Nonetheless, work continues on the program, in the hope that it is possible to
overcome these difficulties (perhaps by modifying the original program).

There are also a number of potential difficulties in interpreting the formalism.
The great advantage of the internal time proposal is that it casts quantum
gravity into a familiar form: one has a quantum field theory whose states are
wave functions over the classical configuration space, and a Hamiltonian which
determines the temporal evolution of these states. The chief novelty is that
time is now an infinite dimensional parameter, since there are as many ways of
specifying an instant as there are Cauchy surfaces in a model.33 Thus, it seems
that the interpretation of such a quantum theory of gravity should be no more
(or less) difficult a task than the interpretation of a standard quantum field
theory. But this is not quite the case, for three reasons. (i) The fact that the
observables are not required to commute with the constraints complicates the
measurement problem. If Ô is an observable which does not commute with the
constraint Ĉ, then we can find a state, Ψ, of quantum gravity such that ĈÔΨ 6=
ÔĈΨ = 0. Thus, ÔΨ is not a state of quantum gravity (if it were, it would
be annihilated by the constraint Ĉ). So, naively carrying over the formalism
of quantum mechanics, it appears that measurement can throw states out of
the space of physically possible states. (ii) Since general relativity is a theory

32See Schön and Hájiček 1990 and Torre 1992 for the former, and §§1, 2, and 6 of Kuchař
1992 and §§3.4, 4.4, and 4.2 of Isham 1993 for the latter.

33But see Hájiček and Isham 1996a,b for formulations of classical and quantum field theories
in terms of embedding variables. Also see Torre and Varadarajan 1998 for a problem with
unitarity in this context.
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of the structure of spacetime, one expects to be able to recover spatiotemporal
information from states of quantum gravity, at least approximately. But this
appears to be an extremely difficult problem: one expects that the relationship
between the geometric data (q, p) and the gravitational degrees of freedom (φ, π)
is highly nonlocal at the classical level. The inversion of this relationship at the
quantum level presents a formidable problem. (iii) One also has to wonder
how to make sense of quantum states which are defined as wavefunctions on
classical instants—since these instants originally derived their significance from
the classical structure of spacetime.

Each of these problems is potentially very serious. By attempting to cast
quantum gravity into a familiar quantum field theoretic form, the advocates
of internal time may be creating an unintelligible formalism, rather than one
whose interpretation is straightforward. Such a turn of affairs would come as no
surprise to Parmenideans. On their view, Kuchař’s proposal is an attempt to
carry classical notions of time over to quantum gravity. From the Parmenidean
perspective, it might be possible to formulate a consistent theory along these
lines, but one shouldn’t expect it to be a full theory of quantum gravity—since,
by all rights, quantum gravity should be a quantum theory of space and time,
as well as a quantum field theory of gravity. (As noted above, Parmenideans
claim, with some justice, that their discrete-spectra area and volume operators
are the first hints of the quantum nature of space and time at the Planck length;
see fn. 23 above.) Here we again reach an impasse: Parmenideans and Her-
acliteans have divergent intuitions about the nature of time and change, and
these intuitions condition their taste in approaches to quantizing gravity.

7 The Status of Spacetime

In the preceding sections, we sketched three proposals for quantizing general
relativity: evolving constants, CMC gauge fixing, and internal time. These
proposals are underwritten by three very different attitudes towards the general
covariance of general relativity, and lead to three very different approaches to
quantum gravity. Most notably, differences of opinion about general covariance
are directly linked to differences of opinion about the existence and nature of
change at both the classical and the quantum level. This divergence of opinion
cannot be dismissed as merely philosophical: it has important ramifications
for questions about which quantities are physically real and/or observable in
classical and quantum gravity. Indeed, one has every reason to expect that these
proposals, if successfully executed, would lead to three inequivalent theories
of quantum gravity, which would make very different predictions about the
quantum behavior of the gravitational fields.

Before bringing this discussion to a close, we would like to return to the
question of the status of the spacetime of general relativity. We proceed by
constructing the most plausible interpretation of general relativity which would
underwrite each of our quantization procedures.34 The underlying presumption

34We note that among the many proposals for quantum gravity which we have not touched
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is that if a given proposal, and no other, were to lead to a successful quantum
theory of gravity, that would be a reason to prefer the corresponding interpre-
tation of general relativity over its rivals.

(a) Rovelli’s evolving Constants
The motivation for this program is the conviction that general covariance

should be understood as a principle of gauge invariance. Thus, one is led to
deny that there are any physically real quantities in general relativity which
fail to commute with the constraints. As we argued in §3, this drives one
towards a relationalist understanding of general relativity—or, perhaps, towards
a sophisticated form of substantivalism (more on this below). If spacetime points
enjoy existence, then it seems reasonable that a quantity like “the curvature at
x” should be physically real. But such quantities do not commute with the
constraints, and hence cannot be physically real.35 Therefore: spacetime points
do not exist. Rovelli himself enthusiastically embraces the relationalism which
follows from this line of thought.36

(b) Constant Mean Curvature as Time
Under this proposal, any admissible model of general relativity comes equipped

with a preferred foliation by Cauchy surfaces, as well as a preferred parameter-
ization of the time variable which labels these Cauchy surfaces. The CMC time
is absolute in some respects, but not others. There is a preferred notion of si-
multaneity, and a preferred parameterization of time. But this parameterization
is determined by the dynamics of the theory rather than being imposed from
outside. Thus, the time which results in this case certainly isn’t the absolute
time of Newton. Using this time variable, we can write general relativity as a
Hamiltonian system whose configuration space is a subset of superspace (the
space of equivalence classes of metrics on Σ). Thus, general relativity becomes
a theory of the evolution in time of the geometry of space. Here space is best
conceived of in relationalist terms: because we take Riem(Σ)/Diff(Σ), rather
than Riem(Σ), as our configuration space, we cannot imagine two identical ge-
ometries, differently instantiated.

(c) Internal Time
The core of Kuchař’s reading of general covariance is that, properly un-

derstood, the observables of general relativity should commute with the vector
constraint, but not with the scalar constraint—the qualification being essen-
tial since, as noted above, Kuchař explicitly allows that the evolving constants

upon, there are a number which areparticularly rich in connections to the substantival-
relationaldebate. See especially the discussions of Barbour 1994a,b and Smolin 1991.

35But recall that the quantities which do commute with the constraints are non-local. So
today’s relationalists find themselves in a somewhat uncomfortable position: there appears to
be a mismatch between their relationalist ontology and the non-local ideology which is forced
upon them. Traditional substantivalists and relationalists had no such problems—there was a
perfect match between their ontology and ideology (spacetime points and the relations between
them or bodies and the relations between them)

36See Rovelli 1997 and his contribution to this volume. See also his 1991d, where he discusses
in some detail the relationship between the hole argument and the view that general covariance
is a principle of gauge invariance.
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proposal provides a coherent framework for understanding observables in the
classical theory. The following interpretative stance underlies this approach.37

In 3, we argued that straightforward substantivalists are committed to the doc-
trine that each point of the phase space of general relativity represents a distinct
physically possible state. This implies that there are physically real quantities
which do not commute with any of the constraints of general relativity: pre-
sumably, for any two points of phase space which represent distinct physically
possible states there must exist a physically real quantity which takes on differ-
ent values when evaluated at these two points; we could take these quantities
to be of the form ‘the curvature at point x of spacetime.’ Now let (q, p), (q′, p′),
and (q′′, p′′) be three points which lie in the same gauge orbit of the phase space
of general relativity, and suppose that (q, p) is related to (q′, p′) by a gauge
transformation generated by the vector constraint, and is related to (q′′, p′′)
by a gauge transformation generated by the scalar constraint. Then (q, p) and
(q′, p′) represent the same geometry of Σ—they differ merely as to how this
geometry is instantiated by the points of Σ—while (q, p) and (q′′, p′′) repre-
sent distinct geometries. Thus, although (q, p) and (q′, p′) represent distinct
states of affairs for the substantivalists, they represent states of affairs which
are empirically indistinguishable. Although there are, according to substanti-
valists, physically real quantities which distinguish between (q, p) and (q′, p′),
these quantities are not observables in any literal sense. On the other hand, the
states represented by (q, p) and (q′′, p′′) are distinguishable—otherwise we could
not observe change. Thus, the physically real quantities which distinguish be-
tween (q, p) and (q′′, p′′) should be empirically accessible. If we now grant that
quantum observables correspond to classical quantities which are not only phys-
ically real, but also empirically observable (i.e. they do not distinguish between
empirically indistinguishable states of affairs), then we see that substantivalists
can provide a coherent motivation for the internal time approach.

Do the points of the spacetime of general relativity, then, exist, or not?
Given that general relativity is almost certainly false—since it appears to be
impossible to marry a quantum account of the other three forces with a classical
account of gravity—the only sense that we can make of this question is whether,
given our total physics, the best interpretation of general relativity postulates
the existence of spacetime. This question will remain open until the nature
of quantum gravity is clarified: if distinct interpretations of general relativity
mandate distinct quantizations of gravity, then the empirical success of one or
another theory of quantum gravity will have repercussions for our understanding
of the spacetime of general relativity.

Even at the present stage, however, we can say something about the lessons
of the hole argument for our understanding of classical spacetime. (1) Despite
widespread skepticism among philosophers, physicists are correct in seeing the
hole argument as pointing up a knot of problems concerning: the existence of

37We believe that Kuchař himself is committed to this interpretative stance. We do not
argue in favor of this claim here. But note the similarity between the reasons adduced below,
and the considerations which Kuchař uses to motivate the internal time approach.
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spacetime points; the difficult notion of ‘observable’ in classical and quantum
gravity; and the nature of time and change in physical theory.38 (2) There is
no easy solution to the hole argument. We have seen that both traditional re-
lationalism and traditional substantivalism are associated with some extremely
difficult technical and conceptual problems when one turns one’s attention to
quantum gravity—and that these difficulties arise directly out of the doctrines’
respective pronouncements on the nature of general covariance. Ultimately, one
of the other of these positions may triumph. But it will be because physical
and mathematical ingenuity show how the attendant problems can be over-
come, not because either position can be ruled out on strictly philosophical
grounds internal to general relativity. (3) That being said, we maintain that
there is one sort of response to the hole argument which is clearly undesirable:
the sort of sophisticated substantivalism which mimics relationalism’s denial of
the Leibniz-Clarke counterfactuals. It would require considerable ingenuity to
construct an (intrinsic) gauge-invariant substantivalist interpretation of general
relativity. And if one were to accomplish this, one’s reward would be to occupy
a conceptual space already occupied by relationalism. Meanwhile, one would
forego the most exciting aspect of substantivalism: its link to approaches to
quantum gravity, such as the internal time approach. To the extent that such
links depend upon the traditional substantivalists’ commitment to the existence
of physically real quantities which do not commute with the constraints, such
approaches are clearly unavailable to relationalists. Seen in this light, sophis-
ticated substantivalism, far from being the savior of substantivalism, is in fact
a pallid imitation of relationalism, fit only for those substantivalists who are
unwilling to let their beliefs about the existence of space and time face the
challenges posed by contemporary physics.

We conclude that there is indeed a tight connection between the interpre-
tative questions of classical and quantum gravity. There is a correspondence
between interpretations of the general covariance of general relativity and ap-
proaches to—and interpretations of—quantum gravity. This correspondence
turns upon the general covariance of the classical theory and is mediated via
the processes of quantization and the taking of classical limits. One demands
that one’s interpretation of general relativity should underwrite an approach
to quantization which leads to a viable theory of quantum gravity, and that
one’s understanding of quantum gravity should lead to a way of viewing general
relativity as an appropriate classical limit. This provides a cardinal reason to
take the interpretative problems surrounding the general covariance of general
relativity seriously—at the very least, one wants to know which interpretative
approaches to general relativity mandate, open up, or close off which approaches
to quantum gravity. More ambitiously, one can hope that clarity concerning the
general covariance of the classical theory will provide insights which prove help-

38Some physicists might balk at these claim. But, we believe, almost all would agree with
the following statement: “the question as to what should be the correct notion of observables
in canonical G.R., which is clearly important for any quantum theory of gravity, is not fully
understood even on the classical level” (Beig 1994, p. 77). We maintain that once the claim
about observables is granted, the others follow.
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ful in the quest for a quantum theory of gravity.

A Appendix

In this Appendix we provide a few details about the definitions and constructions
mentioned in the text. It falls into four sections, corresponding to material
supporting §2.1, 2.2, 2.3, and 5.1, respectively.

A.1 Hamiltonian Systems

Our phase spaces will always be manifolds. These may be either finite dimen-
sional or infinite dimensional. In the latter case, we require that our space
be locally homeomorphic to a Banach space rather than to ℜn. For details
and for the infinite dimensional versions of the material discussed below, see
Choquet-Bruhat et al 1982 or Schmid 1987.

Definition: Nondegenerate Forms. A two form, ω, on a manifold, M , nonde-

generate if for each x ∈ M the map v ∈ TxM 7→ ωx(v, ·) ∈ T ∗
x M is one-to-one.

If this map fails to be one-to-one, then there will be non-trivial v ∈ TxM with
ωx(v, ·) = 0. These are called the null vectors of ω.

Definition: Symplectic Form. A symplectic form on a manifold, M , is a
closed, nondegenerate, two form, ω, on M .

Definition: Hamiltonian Vector Field. The Hamiltonian vector field, Xf ,
of f in (M,ω) is the solution of the equation ω(Xf , ·) = dH. When H is the
Hamiltonian, we call the integral curves of XH the dynamical trajectories of the
system.

Definition: Poisson Brackets. {f, g} = ω(Xf ,Xg) = Xf (g).

Construction: Canonical Coordinates. When M is finite dimensional, we
can find local coordinates (q1, . . . , qn; p1, . . . , pn) such that ω can be written as
ω = dqi ∧ dpi.

39 Equivalently, in such coordinates we have:

ω =

∣

∣

∣

∣

0 I
−I 0

∣

∣

∣

∣

,

where I is the n × n identity matrix. Coordinates of this kind are known as
canonical coordinates; we speak of the qi as being canonically conjugate to the
pi. In canonical coordinates the equations for our dynamical trajectories assume
their familiar form: q̇ = {q,H} and ṗ = {p,H}. Notice that conservation of
energy is a trivial consequence of the formalism: {H,H} = ω(XH ,XH) = 0
since ω is antisymmetric; so H is a constant of motion (i.e. H is constant along
each dynamical trajectory).

39Many infinite dimensional symplectic geometries admit (suitably generalized) canonical
coordinates.
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Construction: Cotangent Symplectic Structure. Let (q1, . . . , qn) be a set of
local coordinates on Q. We then construct a coordinate system on T ∗Q of the
form (q1, . . . , qn; p1, . . . , pn), where the pi are just the components of covectors
relative to our coordinate system. We can now construct the canonical sym-
plectic form, ω = dqi ∧ dpi. That is: the qi and pi are canonically conjugate
coordinates. This construction is independent of the original coordinate system
on Q, (q1, . . . , qn), and can be extended to construct a unique symplectic form
for all of T ∗Q. Thus the cotangent bundle structure singles out a preferred sym-
plectic structure on T ∗Q. This construction can be generalized to the infinite
dimensional case.

A.2 Gauge Systems

Definition: Presymplectic Form. A presymplectic form on a manifold, N , is a
closed two form, σ, with the property that its space of null vectors has the same
dimensionality at each point in N .

Definition: Gauge orbit. Two points lie in the same gauge orbit iff they can
be connected by a curve, all of whose tangent vectors are null vectors of σ.

Construction: Gauge Orbits. The gauge orbits are constructed by integrat-
ing the null distribution of σ. That they are manifolds follows from Frobenius’
theorem together with the following fact: [Xf ,Xg] = X[f,g], where [·, ·] is the
Lie bracket, so that the map f 7→ Xf is a Lie algebra homomorphism of C∞(N)
into Ξ(N), the algebra of vector fields on N . Since the dimensionality of the
null space is constant on N , our phase space is foliated by gauge orbits of a
fixed dimensionality.

Definition: Dynamical Trajectories. Again, we look at the integral curves of
vector fields, Xf , which solve σ(Xf , ·) = dH.

Discussion: Dynamical Trajectories on Constraint Surfaces. If we are think-
ing of (N,σ,H) as being imbedded in (M,ω), it is natural to wonder about the
relationship between the dynamical trajectories of (N,σ,H) and the restriction
to N of the Hamiltonian vector fields of (M,ω). We call h ∈ C∞(M) an ex-

tension of H to (M,ω) if: (i) h |N= H; (ii) {h, c} ∼= 0 for all constraints c.
The latter condition means that flow generated by h carries points on N to
points on N , since the Hamiltonian vector field of h is everywhere tangent to
N . If h is an extension of H, and Xh is the Hamiltonian vector field of h in
(M,ω), then Xh |N is a Hamiltonian vector field of H in (N,σ). Conversely,
every Hamiltonian vector field of H in (N,σ) arises in this manner, for some
extension h of H. It is not difficult to prove that any two extensions, h and h′

of H differ by a linear combination of first class constraints. It follows that the
transformation h 7→ h + uaγa carries us from one set of dynamical trajectories
of (N,σ,H) to another, where the ua are arbitrary functions on M ; conversely,
every pair of sets of dynamical trajectories are so related.

Whereas in the Hamiltonian case Hamilton’s equations q̇ = {q, h} and ṗ =
{p, h} determine a unique dynamical trajectory of the form (qi(t); pi(t)) through
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each x ∈ M , we see that in the case of a constrained Hamiltonian system,
Hamilton’s equations determine a different set of dynamical trajectories for each
h which extends H. Given our freedom to replace h by h′ = h + uaγa, we
can write Hamilton’s equations as q̇ = {q, h} + ua{q, γa} and ṗ = {p, h} +
ua{p, γa}. Thus the solutions of Hamilton’s equations which determine the
dynamical trajectories of (N,σ,H) contain as many arbitrary functions of time
as there are first class constraints. (Here, for convenience, we have chosen a set
of canonical coordinates on (M,ω)).

A.3 Reduced Phase Spaces

Construction: Reduced Phase Space. The points of the reduced phase space,
M̃ , are the gauge orbits [x] of (N,σ), equipped with the projection topology
induced by the projection π : N → M̃ . The symplectic form ω̃ is given by π∗σ.
Since H is gauge-invariant, M̃ is well defined by M̃([x]) = H(x). The set of
dynamical trajectories of (N,σ,H) which pass through x ∈ N projects down to
the single dynamical trajectory of (M̃, ω̃, H̃) which passes through [x].

Example: Bad Topology. Here is one way in which this problem can arise.
One can construct a constrained Hamiltonian system by starting with a Hamil-
tonian system (M,ω,H) and imposing the constraint H = c. That is, one looks
at a surface of constant energy. This is a presymplectic manifold since it has
an odd number of dimensions. The gauge orbits of the resulting presymplectic
geometry are just the dynamical trajectories of the original Hamiltonian sys-
tem. Imposing the Hamiltonian h = 0 leads to a gauge theory with these gauge
orbits as its dynamical trajectories. We can go on to construct the reduced
phase space. We simply identify all the points which lie on the same trajec-
tory, and impose the projection topology on the resulting space of dynamical
trajectories. What is this reduced phase space like? This depends on the de-
tails of the system we started with. If it is integrable, we can find constants
of motion (=gauge-invariant quantities) which project down to coordinates on
the reduced phase space—the latter will, therefore be a manifold. If, however,
our original Hamiltonian system was chaotic, the phase space will be a mess. If
our system is ergodic then we will be unable to find constants of motion other
than the Hamiltonian, and each trajectory will wander over the entire energy
surface. Thus we will be unable to find a sufficient number of gauge-invariant
quantities to coordinatize the reduced phase space. Indeed, the topology of the
reduced phase space will not even be Hausdorff: since each trajectory of the
gauge system approaches every other arbitrarily closely, it will be impossible to
separate points of the reduced phase space by open sets.

A.4 Parametrized Systems

Construction: Parameterization. Let (M,ω, h) be a Hamiltonian system. We
construct M ′ = ℜ2×M by adding to M the canonically conjugate variables t and
u. Let the symplectic form on M ′ be given by ω′ = ω−du∧dt. Let H = h+u and
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let N be the submanifold of M ′ determined by the constraint H ≡ 0 (we extend
h to M ′ in the obvious way, by making it independent of t and u). Then the
constrained Hamiltonian system (N,σ,H), with σ = ω′ |N and the Hamiltonian
given by H = 0, is called the parameterization of (M,ω, h). We can think
of (N,σ,H) as the result of including time among the position variables of the
system, with the energy h as its canonically conjugate momentum (since h = −u
on N). Notice that (N,σ) is presymplectic (in the finite dimensional case this
is obvious since dimN is odd). The gauge orbits are one dimensional and
coincide with the dynamical trajectories since H ≡ 0 (so that the solutions of
XH are just the null vector fields of σ). Each dynamical trajectory on (M,ω, h)
corresponds to a gauge orbit on (N,σ,H). Pick a time t and a point x ∈ M ,
and look at the dynamical trajectory (q(t), p(t)) on M . Then the dynamical
trajectories through (t, x) ∈ N will be of the form (τ, (q(t), p(t))), where τ(t)
is some re-parameterization of time. The gauge orbit in N which corresponds
to the trajectory (q(τ), p(τ)) in M will include all the points in N which are
images of the maps (τ, (q(t), p(t))), for all parameters τ . Thus the loss of the
preferred parameterization of time is the price of including time among the
canonical variables. The reduced phase space of a parameterized system is just
the original Hamiltonian system.
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Figure 1: Hamiltonian Systems
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Figure 2: Gauge Systems

x

H

x(1)

x'(1)

x"(1)

[x]

phase space


