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E
arly detection of infectious disease is important to mitigate the 
spread of disease by increasing self-isolation and early treat-
ments. Presently, most diagnostic methods involve sampling 

nasal fluids, saliva or blood, followed by nucleic acid-based tests 
for detecting active infections or blood-based serological detec-
tion for past infections. Although they are highly sensitive, nucleic 
acid-based diagnostics may require samples gathered several days 
post-exposure for unambiguous positive detection1. Moreover, they 
cannot be implemented routinely at low cost and are constrained by 
emerging shortages in key reagents.

Consumer wearable devices are an accurate and widely deployed 
technology to establish individual baseline parameters of health, 
which may be used to detect substantial deviations from baseline 
physiology at the onset of infection2–4. We have previously shown 
that smartwatches and simple pulse oximeters can be used for the 
early detection of Lyme disease, and in retrospective studies, heart 
rate and skin temperature can be used to detect viral respiratory 
infections, including asymptomatic infections5. Wearable sensors 
have also been used to detect atrial fibrillation6. Other recent stud-
ies have shown that elevated heart rate measurements from smart-
watches can be used in epidemiological studies to track the spread 
of respiratory viruses7,8.

The use of wearable devices has ample potential to mitigate the 
coronavirus disease 2019 (COVID-19) pandemic. To date, the pan-
demic has infected tens of millions of individuals and caused over one 
million deaths worldwide (https://covid19.who.int). There is a sub-
stantial need for improved infection tracking, and population-scale 
technology solutions provide a promising avenue to identify cases 
in real time for infection detection and tracking9. Active infections 
are currently identified using PCR assays, which may require up to 
3 d after infection for a reliable positive signal1. In addition, PCR 

tests are not widely used on a daily basis. Moreover, since most 
infections become apparent only upon symptom onset, the current 
methods of testing are unlikely to identify pre-symptomatic car-
riers, which is a considerable challenge for the implementation of 
early-stage interventions that reduce transmission. It is believed that 
as many as 50% of individuals with COVID-19 are asymptomatic, 
facilitating further viral spread10,11. As such, accessible and inexpen-
sive methods for the early detection of COVID-19 in real time are 
urgently needed.

Smartwatches and other wearable devices are already used by 
tens of millions of people worldwide and measure many physio-
logical parameters, such as heart rate, skin temperature and sleep12. 
Here, we investigate the use of wearable devices for the early detec-
tion of COVID-19 in a retrospective manner, and also present an 
approach for using wearable device-detected physiological param-
eters for real-time health monitoring and surveillance. Using heart 
rate and steps data from a large cohort of 5,262 individuals, we show 
that heart rate signals from fitness trackers can be used to retrospec-
tively detect COVID-19 infection well in advance of symptom onset 
(offline detection). In addition, we developed an online detection 
algorithm to identify early stages of infection by real-time heart rate 
monitoring. We also examine the association between symptom 
type and severity, heart rate signals and the effect of infection on 
activity and sleep.

Results
Study design and overview. We investigated whether smartwatches 
could be used to detect COVID-19 at an early, pre-symptomatic 
stage. We enrolled a cohort of participants who had self-reported 
COVID-19 or other infections, as well as a wearable device capable 
of detecting heart rate, steps and other physiological measurements 
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(Fig. 1). We then examined whether physiological deviations from 
baseline were detected around the period of illness, as well as the 
detection frequency and timing of onset of the event, and associa-
tions with symptoms. Finally, we used retrospectively collected data 
to develop an online method for potential real-time, early detection 
of illness onset.

Under protocol number 55577, approved by the Stanford 
University Institutional Review Board, we enrolled 5,262 par-
ticipants who completed surveys of illness, diagnosis and symp-
tom dates, illness severity and symptom type (Figs.  1 and 2a and 
Supplementary Tables 1–5) through a secure REDCap system. Of 
these participants, 4,642 reported wearing a smartwatch: 3,325 wore 
Fitbits, 984 wore Apple watches, 428 wore a Garmin device and the 
remaining wore other devices (Supplementary Fig. 1). Of these, 114 
individuals reported COVID-19 illness with symptom and diagno-
sis dates, and another 47 individuals reported a different respira-
tory infection with symptom and diagnosis dates for an identified 
pathogen. We were not able to acquire wearable device data near the 
symptom date from many of these. Since most people wore Fitbits, 
we focused on this group. Thirty-two COVID-19-positive partici-
pants (27 confirmed; see Methods) had Fitbit data spanning and 
adjacent to the COVID-19 disease dates, as well as symptom dates 

and diagnosis dates. Four of these individuals with Fitbit devices 
lacked either a reported symptom date or a diagnosis date. Of note, 
at least five participants in our study had wearable device data but 
lacked measurements at or shortly after the time of infection, sug-
gesting that some participants do not habitually wear their devices 
when ill (for example, participant AV2GF3B in Supplementary 
Fig. 3a).

We also analysed data from two classes of control individu-
als with Fitbit data: (1) 15 individuals with confirmed illness that 
was not due to severe acute respiratory syndrome coronavirus 2  
(SARS-CoV-2) for whom wearable device data were available 
(see Methods) (one case was associated with influenza B, another  
was associated with rhinovirus and the remainder were of  
unknown cause; Supplementary Tables 3 and 4); and (2) 73 healthy 
individuals who did not report any illness or symptoms during the 
same period when we collected data from the COVID-19-positive 
individuals.

Abnormal resting heart rate (RHR) and heart rate-to-steps 
ratio are associated with COVID-19 illness. First, we deter-
mined whether abnormal physiological events are associated with 
SARS-CoV-2 infection and whether these can be detected using 
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Fig. 1 | Overview of the study design, cohort and data. A total of 5,262 participants were recruited, including individuals who were: (1) sick and tested 

positive for COVID-19 (dark red); (2) sick and tested positive for other illnesses (gold); (3) sick without a confirmed diagnosis (dark grey); and (4) not 

sick but were at high risk of exposure (light grey). Participants were asked to log daily symptoms and to share their fitness tracker data via the study app, 

MyPHD. The data types collected included heart rate, steps and sleep over a period of several months. Two infection detection algorithms were developed 

(RHR-Diff and HROS-AD). The bottom two panels represent derived heart rate metrics from the two algorithms over a period of months in one individual, 

centred around the onset of symptoms (day 0). The earliest detected abnormal heart rate elevations are marked by red stars. The anomaly periods 

detected by RHR-Diff are spanned by red arrows. The anomaly time points detected by HROS-AD are marked by red dots. The symptom onset day and 

diagnosis day are indicated by vertical dashed red and purple lines, respectively.
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a smartwatch at or near the time of infection. Several parameters 
were investigated: elevated RHR relative to a previous healthy win-
dow; an increased heart rate relative to number of steps (that is, the 
RHR-to-steps ratio); and sleep (see Methods). We focused primarily 
on early-onset events since participants often take medications or 
undergo other treatments once symptomatic.

We developed two methods for detecting aberrant physiology. 
(1) Using the RHR difference (RHR-Diff) method, we detected 
and identified elevated RHR time intervals based on the standard-
ized residuals (see Methods). The standardized residuals were 
constructed at 1-h resolution by comparing each interval with 
the average daily curve using a 28-d sliding window. We applied 
a non-parametric approach13 to test whether the sequence of stan-
dardized residuals was a homogeneous process. Using a significance 
level of 0.05, the elevated regions were reported as abnormal RHR 
periods (Supplementary Table 6). (2) Using the heart rate over steps 
anomaly detection (HROS-AD) method, we created a new feature 
known as heart rate over steps (HROS) by dividing heart rate by 
steps data and comparing the HROS value at each hourly interval 
with the rest of the intervals using Gaussian density estimation14,15. 
We smoothed and standardized the HROS value (see Methods). 
Using Gaussian density estimation, we computed an anomaly 
score for each observation and classified them as normal (1) or an 
anomaly (−1) with an outlier threshold of 0.1 (see Methods and 
Supplementary Table 7). Analyses were performed on all of the data 
available for each individual, including data collected before, during 
and after the reported illness. A method similar to HROS-AD, the 
RHR anomaly detector (RHR-AD; see Methods) produced similar 
results (Supplementary Table 8).

Using dates of symptom onset and diagnosis to define sick peri-
ods, we then defined a sickness detection window for each individ-
ual based on the symptom onset date wherever available (14 d before 
to 7 d after), and the diagnosis date when the symptom date was not 
available (two cases). The timeframe of 14 d was chosen since this 
has been suggested to cover the duration of the COVID-19 incu-
bation period in most cases16,17. We scored both of our detection 
methods based on the interval (RHR-Diff) or HROS-AD period 
that overlapped with the sickness detection window. In all of the 26 
individuals detected (100%; groups I and II; see below for details), 
we found outlying periods near the time of infection using either 
RHR-Diff or HROS-AD, with 22 identified using both methods 
(Supplementary Tables  9–12). RHR-Diff detected two high-signal 
regions not identified by HROS-AD, and HROS-AD detected one 
high-signal region not identified by RHR-Diff. Interestingly, we 
observed that neither method detected stable signal regions specifi-
cally at COVID-19-infected regions in six individuals, as described 
below.

The 32 individuals fell into three types of patterns (Supplementary 
Fig.  2a and Fig.  2b). Group I included 16 individuals for whom  
we were able to detect disease primarily as a single elevated period 

or a tight cluster of elevated periods before or overlapping with 
the disease period. Two examples are shown in Fig. 3a,b in which  
we detected elevated heart rates starting 15 and 4 d before  
symptom onset, respectively. In cases where a tight cluster of  
elevated periods was observed, it is possible that the normal  
physio logical periods reflect times of self-medication or, less likely, 
disease remission.

Group II comprised ten individuals and formed a cluster where 
we were able to detect a symptom-associated peak as well as an ear-
lier significant heart rate elevation period within 28 d of the symp-
tom onset based on RHR-Diff (−21/+7 d). An example is shown in 
Fig. 3c. In some cases, this affected our ability to clearly differenti-
ate physiological changes associated with the COVID-19 infection 
since it merged with the earlier elevations in heart rate. Three of 
these individuals had a self-reported stress period (either illness or 
other), raising the possibility that the stress-associated event may 
have contributed to COVID-19 illness onset.

Group III consisted of the six individuals for whom a single stable 
elevated period could not be easily discerned at or before symptom 
onset; these individuals often had many signals distributed across a 
substantial period of time (Fig. 3d is an example) or no significant 
signal. Interestingly, two of these individuals had respiratory lung 
disease and another had severe allergies, and it is likely that these 
conditions and/or the pharmacological therapies used to treat them 
interfered with outlier detection. However, not all individuals with 
respiratory conditions are missed using a Fitbit; three other indi-
viduals with these conditions gave high RHR-Diff (Supplementary 
Fig. 3a) and HROS-AD (Supplementary Fig. 3b) signals associated 
with illness.

For groups I and II, the number of days between the beginning 
of the aberrant signal and the date of symptom onset (when avail-
able), as well as the date of diagnosis, were distributed as shown 
in Fig.  4a,b (Supplementary Table  13). Of the 26 detected cases, 
24 had both a symptom onset date and a diagnosis date, and the 
remaining two cases had either one, but not both dates. In total, 
88% (22 out of 25) and 100% (25 out of 25) of individuals with a 
symptom onset date (n = 25 cases) or a diagnosis date (n = 25 cases) 
showed elevated signals in advance or at the time of symptom onset 
or diagnosis, respectively. Signals were detected several days ahead 
of symptom onset and diagnosis, with median values of 4 and 7 d 
in advance, respectively. The median heart rate increase in the 
first period of onset was 7 beats per minute, with a broad range 
(Fig. 4d and Supplementary Table 14). Overall, these results indi-
cate that altered physiology is associated with COVID-19 illness, 
often in advance of symptoms, and that this can be detected with a  
wearable device.

To determine whether the increased RHR signal was specific for 
COVID-19, we also analysed the 15 cases where individuals reported 
non-COVID-19 illness. For 14 cases in which the first symptom  
was reported, increased RHR was evident near symptom onset in 

Fig. 2 | Association of heart rate with COVID-19 illness. a, Summary of data collected from 32 study participants who reported a confirmed diagnosis 

of COVID-19 with a symptom onset and/or test date. each row along the y axis represents one participant, with prediction groups labelled to the left. 

The plot shows sick periods for COVID-19 (between black arrows, with dashed lines for unknown bounds where the symptom onset or recovery day 

was unclear), COVID-19 test dates (red crosses), sick periods for other illnesses (between orange arrows) and the days for which participants filled 

in the daily survey (diamonds), with purple diamonds representing days when symptoms were reported and blue diamonds representing days when 

symptoms were not reported. b, Overlapping bar plots depicting heart rate metrics and timings of infection detection from RHR-Diff and HROS-AD with 

respect to the infection detection window for COVID-19-positive participants. The plots are manually grouped into three groups: group I (single region; 

blue); group II (early and multiple regions; red); and group III (other; gold), focusing mainly on the single-region group. One additional participant who 

reported a diagnosis of influenza B is also shown for comparison (purple). Summary plots for all COVID-19-positive participants from all three groups are 

shown in Supplementary Fig. 2a, and all participants with other illnesses are shown in Supplementary Fig. 2b. The x axis shows days during the infection 

detection window and the y axis shows standardized residual values from RHR-Diff (brown bars) and standardized (0 to −1) HROS values from HROS-AD 

(transparent green bars) in the intervals during which COVID-19 infection was detected by each algorithm. These values are plotted separately for each 

participant. This window is a period of time centred around symptom onset at day 0 (substituted by the diagnosis day wherever the day of symptom onset 

was unavailable). The infection detection window spans a period of 15 d before day 0 and 7 d after day 0.
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nine instances; moreover, in these nine cases, increased RHR was 
apparent before or at the time of symptom onset (Supplementary 
Figs.  2b and 3a,b and Supplementary Tables  6 and 15–17). One 
example for an influenza B infection is shown in Fig.  2b. The 
median time of signal onset relative to symptoms was 2 d (Fig. 4c). 
These results indicate that the elevated heart rates that occur before 
disease also provide utility as a general signal of respiratory illness, 
consistent with our previous results5.

Sleep and activity alterations associated with COVID-19 ill-
ness. Having established aberrant physiological signals associated 
with COVID-19 illness, we investigated whether COVID-19 also 
affected behaviour, specifically steps and sleep duration (Fig. 5a–d 
and Supplementary Tables  18–23; see Methods). Although Fitbit 
devices are not considered gold standards for many sleep param-
eters, they most accurately measure sleep duration and are widely 
used18,19. They are less accurate for the sleep stages (for example, 
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Fig. 3 | Examples of heart rate metrics during COVID-19 illness. a–d, examples of heart rate metrics during COVID-19 infection for four individual 

participants, two from group I (a and b) and one each from group II (c) and group III (d). Red and purple vertical dashed lines indicate the days of 

symptom onset and diagnosis, respectively. Shown are the standardized HROS from the HROS-AD method (bottom plot in each panel; dark blue lines) 

and the standardized heart rate residuals from the RHR-Diff method (top plot in each panel; black lines). For RHR-Diff, the green dashed line is at 0. Gold 

solid triangles mark the infection detection window used to score detections as a hit or a miss. Also indicated are time intervals when the heart rate 

residuals were significantly elevated from RHR-Diff (red arrows in the top plots of each panel) and times when anomalies were detected by HROS-AD (red 

dots in the bottom plots of each panel).

NATuRE BIOMEDICAL ENGINEERING | VOL 4 | DeCeMBeR 2020 | 1208–1220 | www.nature.com/natbiomedeng1212

http://www.nature.com/natbiomedeng


ARTICLESNATURE BIOMEDICAL ENGINEERING

rapid eye movement (REM) and deep sleep) and this was not pur-
sued. We examined the parameters reported by the manufacturer 
(see Methods) and found that steps (with missing data imputa-
tion and without) significantly decreased at the onset of the out-
lying RHR-Diff signal associated with COVID-19 illness (linear 
mixed model (LMM); P = 8.71 × 10−33; Fig. 5a,b and Supplementary 
Fig.  4a). Sleep duration significantly increased after the onset of 
the outlying RHR-Diff signal, but only with missing data imputa-
tion (LMM; P = 0.003; Fig. 5c,d and Supplementary Fig. 4b). These 
results indicate that COVID-19 illness alters steps and sleep pat-
terns, which can be tracked using a wearable device.

Association between heart rate signals and symptoms. A subset of 
participants filled out daily logs before or during their COVID-19 
illness, providing a detailed time course of symptom severity, pro-
gression and relapse (Fig. 6a–d), while others filled out detailed past 
illness surveys that summarized their symptoms over the entire ill-
ness period (Fig. 6e). The first individual, APGIB2T, (Fig. 6a) had 
an early RHR-Diff signal 1 week before symptom onset. The dis-
ease progressed quickly into severe diarrhoea, fatigue, headaches, 
elevated temperature and positive COVID-19, peaking in sever-

ity and then declining over 2 weeks. In total, 18 d of initial illness 
were followed by 12 d when the participant felt recovered, before 
a relapse characterized by elevated temperature, fatigue, diarrhoea 
and elevated heart metric signals. A second participant, AQC0L71, 
(Fig. 6b) began daily logs when symptoms developed, reporting a 
22-d period of mild-to-moderate coughing, fatigue and aches and 
pains that was anticipated by both the RHR-Diff and HROS-AD 
heart rate metrics. Symptoms then deteriorated rapidly, coupled 
with abnormal physiological signals suggested by both algorithms, 
elevated temperature and a positive COVID-19 test. The participant 
was admitted to hospital 5 days later and the time from symptom 
onset to recovery was 41 d. A third participant, A0VFT1N, reported 
COVID-19 illness lasting 13 d (Fig. 6c) that was led by an RHR-Diff 
alarm, followed by ongoing symptoms of fatigue and occasional 
chest pains. Heart rate metrics alarms accompanied the return of 
shortness of breath, for which the participant was hospitalized 35 d 
after initial symptom onset. Daily logs began at symptom onset for 
A1K5DRI, the fourth participant (Fig.  6d), 3 d after an RHR-Diff 
alarm. Illness progressed over 23 d, with a rapid rise in temperature 
and HROS-AD alarms accompanied by severe fatigue, aches and 
pains and slow recovery.
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Fig. 4 | Summary of detection timing and heart rate during COVID-19 illness. a,b, Histograms summarizing the distribution of early-detected COVID-

19 events compared with the first day of self-reported symptoms (a) and the reported diagnosis day (b). If multiple RHR-Diff intervals existed within 

or intersecting the COVID-19 event (−14/+7 d versus the symptom day), the first day of the closest interval ahead of this event was used. If no interval 

before the event was observed, the closest interval after the event was used. If the symptom day was not available or there was no interval detected within 

the 21 d surrounding the symptom onset, the closest interval within 28 d of the diagnosis onset (−21/+7 d) was used. The colours represent the number 

of individuals in each group (group I: blue; group II: red; group III: gold). The purple line shows the kernel probability density estimate. Also shown are 

individuals for whom the algorithm missed detecting COVID-19 infection (separated from the quantitative part of the graph by grey dashed lines). c, As 

in a, but for participants with other illnesses. d, Boxplots summarizing the hourly ΔRHR of the detected COVID-19 or other illness interval compared with 

the baseline RHR of the same individual. These boxplots exclude individuals for whom the RHR-Diff algorithm missed detecting infection. Central lines 

represent median values, box limits represent upper (third) and lower (first) quartiles, whiskers represent 1.5× the interquartile range above and below the 

upper and lower quartiles, respectively, and red crosses represent outliers. The number above each boxplot represents the median value of ΔRHR for the 

indicated individual.
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Lastly, in addition to the daily survey, we also examined symp-
toms reported post-illness (that is, retrospectively). In this limited 
sample, we did not detect any obvious association between the 
magnitude of RHR differences during alarm periods and symptom 
type or number, illness length or temperature (Fig.  6e). Overall, 
at the individual level, COVID-19 progression and severity were 
generally concordant with heart rate metrics, but these cases high-
light temporal and individual variation more widely observed  
with the illness11,20.

An approach to detect early COVID-19 onset in real time. The 
ability to detect altered physiology in advance of symptoms raises 
the possibility that an online method can be developed to detect 
early stages of COVID-19 illness in advance of symptoms using a 

smartwatch. To test this possibility, we developed an online detec-
tion method called CuSum (see Methods). This detection was based 
on cumulative statistics21–23 that cumulate the deviations of the ele-
vated residual RHRs. The test statistics from the previous 28 d of 
baseline records built an empirical null distribution.

We report a warning alarm as the first time we observed a test 
statistic more extreme compared with the null distribution, with a 
P value generated from comparing the current test statistics with 
the baseline measurements. To reduce the number of alarms, a 
two-tiered warning system was developed. The first time the P value 
was less than 0.01 (usually in the first few hours), an initial warn-
ing alarm (yellow alert) signalled. Monitoring continued, and if it 
remained elevated over 24 h, it signalled a positive event (red alert; 
see Methods).
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Fig. 5 | Summary of steps and sleep during COVID-19 illness. a, Heatmap showing standardized daily steps per participant (that is, z scores of daily steps) 

for the 22 participants we have steps data for, and for whom RHR-Diff detected a change of RHR any day between 14 d before the symptom onset date 

and 2 d after. Tile colours indicate the z score and asterisks represent the first day of detection for each participant. b, Boxplot showing the change in daily 

steps between days before and after the detection start date in a window of −21 d before to +7 d after the symptom onset date. c, Heatmap showing the 

standardized sleep duration per participant (that is, z scores of total sleep duration) for the 13 participants we have sleep data for and for whom RHR-Diff 

detected a change of RHR any day between 14 d before the symptom onset date and 2 d after. d, Boxplot showing the change in total sleep duration 

between days before and after the detection start date in a window of −21 d before to +7 d after the date of symptom onset. For the heatmaps in a and c, 

black rectangles highlight the period after symptom onset. The boxplots in b and d include data with imputation (see Methods). Data without imputation 

are shown in Supplementary Figs. 4a,b. For both b and d, central lines represent median values, box limits represent upper (third) and lower (first) 
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We tested this method initially on four individuals for whom 
we had collected >6 months of wearable device data (Fig.  7a,b, 
Supplementary Fig.  5 and Supplementary Table  24). In addition 
to the annotated COVID-19 infection, other strong elevated sig-
nals were identified, as well as smaller signals. Some of these cor-
responded to annotated infections. Others were not annotated but 
occurred at periods that might be associated with increased heart 
rate. For example, three of the four individuals had high heart rates 
in the November to December holiday period (‘holiday bump’,  
Fig. 7b and Supplementary Fig. 5), which is commonly associated 
with air travel, alcohol and stress, as well as illness. A number of 
alarms of lower duration or signal were also observed.

We also examined 24 individuals who had at least 28 d of  
data ahead of symptom onset (Supplementary Fig. 3a and Supple-
mentary Table  25). In total, 62.5% (15/24) had an alarm on or  
before COVID-19 symptom onset using the CuSum alarm model. 
Four more people had an alarm 1 d after self-reported symptoms.  
Of the remainder, two individuals had previously been missed  
in offline detection and three had respiratory illnesses that had  
been difficult to detect in our initial retrospective study. As shown  
in Fig.  7e, 11 individuals had non-COVID-19 alarms before  
COVID-19 infections ranging from 0.14 to 1 alarms per month. 
Interestingly, the number of alarms increased considerably post- 
COVID-19 infection, suggesting the possibility of lingering  
physiological sequelae of COVID-19 illness (Fig.  7e and Supple-
mentary Table 26).

We compared our online detection results with those observed 
using the RHR-Diff approach and found overall good agreement 
(either less than 1 d difference or both missed) in 13 of the cases 
(Fig.  7f and Supplementary Table  27). However, one case was 
only detected using the online CuSum approach and another was 
only detected by the RHR-Diff approach (this individual had a 
pre-existing chronic respiratory condition. Nine cases were detected 
2–6 d later than offline (see Supplementary Fig. 3a for examples). 
RHR-Diff is more sensitive since it detects significant intervals 
based on the global dataset, whereas the detection by CuSum was 
solely based on the data received in advance of infection.

As controls, we used the CuSum online detection method to 
examine wearable device data for: (1) the 73 individuals who did 
not report illness during the same period as the COVID-19-positive 
individuals; and (2) the 13 individuals with 15 non-COVID-19  
illnesses (Supplementary Table  25; examples in Fig.  7c,d). The 
healthy individuals also had alarms (Fig.  7d and Supplementary 
Fig.  6), although the alarm durations and peaks were generally 
shorter and smaller, respectively, than those of the COVID-19 
and other illnesses (Fig. 7g,h and Supplementary Table 28). There 
were also signals that were similar to those for infections, pos-
sibly representing asymptomatic illnesses. The holiday bump was 
also observed in one of three other individuals whose data covered  

that period. The 15 individuals with other illnesses gave a signal  
at or before the illness in nine of 15 cases (Supplementary Fig. 3a). 
The presence of alarms was expected during healthy periods for all 
individuals, since the alarming method was set to identify signals 
that lay near the end of the normal distribution; these will have 
occurred by statistical chance, as well as by triggers other than the 
identified illness.

Discussion
From a sizable cohort, we identified a number of individuals who 
tested positive for COVID-19 and other illnesses and who wore 
a smartwatch. Using these data, we developed algorithms that 
detected elevated RHRs and outlying heart rate/steps measure-
ments, usually in advance of symptoms. The early times of detection 
were generally consistent with the latent period of pre-symptomatic 
illness reported previously10. In two group I individuals, the signal 
was observed nine or more days preceding symptoms. Because the 
actual timing of infection in these cases was not known, it is pos-
sible that these and other events represented early stress events that 
merged into the COVID-19 illness (for example, Fig. 6b). Indeed, 
in ten group II individuals, a discrete early event was observed, and 
in three individuals, this was associated with a self-reported illness 
or family stress event. It is possible that early stress events increased 
individuals’ vulnerability to COVID-19, resulting in illness.

We used the information learned from the retrospective analy-
sis to design a prototype approach for the real-time, early detection  
of COVID-19 illness (CuSum). In addition to detection of the 
COVID-19 events, other events were identified, of which some prob-
ably reflect illnesses, including asymptomatic cases, as we observed 
previously5. Many of the other events could reflect situations that 
stimulate sustained increased heart rate, such as medication, alcohol, 
travel and emotional or other stress inducers. Indeed, four of seven 
cases with data covering the December holidays showed significant 
elevations of long duration. Those events short in duration (for 
example, due to watching a scary movie) will probably go off after 
a brief period of time. Thus, using our proposed two-tiered con-
tinuous alarm system, early events can be acted on by self-isolation  
and, if an increased signal ensues, can be escalated to physician  
consultation and/or direct viral diagnostics. The alarming para-
meters can also be adjusted to increase or decrease sensitivity  
with a concomitant increase or decrease in the number of alarms. 
This adjustment may be valuable depending on the person’s prefer-
ence or risk. In the version presented here, we were able to detect 
63% of known COVID-19 infections with an alarming frequency 
of 0.66 per month in the healthy individuals; 63% is likely to be 
an overestimate for COVID-19 as asymptomatic cases are not 
accounted for, but an underestimate for all infections as many sig-
nals may represent such illnesses (both unreported symptomatic 
and asymptomatic).

Fig. 6 | Association of COVID-19 symptoms with heart rate signal. a–d, Plots of four individual participants (APGIB2T (a), AQC0L71 (b), A0VFT1N (c) 

and A1K5DRI (d)) over the course of COVID-19 infection. Vertical columns along the x axes each represent a single day of symptoms (from early illness 

(leftmost) to late illness) and are aligned with the heart rate metrics below. Columns showing symptoms are only present for the days when the daily 

survey was completed, while heart rate metrics progress continually below. ‘Overall feeling’ indicates how the participants reported feeling on a particular 

day, with a bar plot above indicating the measured temperature if reported, and specific symptoms highlighted below as a heatmap depicting the severity. 

Black vertical lines below the symptoms and descending into the heart rate metrics are labelled to highlight significant days during the illness course, 

and align with the symptoms above. The RHR-Diff plots show standardized heart rate residuals from RHR-Diff (black lines) and time intervals when the 

heart rate residuals were significantly elevated (red lines with arrowheads). The bottom plots in each panel show standardized HROS using the HROS-AD 

method (black line), and each detected anomaly is indicated by a red oval. e, Summary of symptoms data for individuals who provided surveys on a past 

COVID-19 illness. each column represents a study participant, as labelled below. Shown are (from top to bottom): a bar plot of average temperatures in °C 

reported during illness; overall feelings (see legend above); total duration between reported symptom onset and recovery (if provided); a boxplot (showing 

numerical median values) of ΔRHR in beats per minute when heart rate residual alarms were raised; and a plot of individual symptoms (where black 

boxes indicate reported symptoms and white boxes indicate no reported symptoms). For the boxplot, central lines represent median values, box limits 

represent the upper (third) and lower (first) quartiles, the whiskers represent 1.5× the interquartile range above and below the upper and lower quartiles, 

respectively, and red crosses are outliers.
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It should be noted that the wearable devices used in our study have 
not yet been approved by the US Food and Drug Administration for 
early illness detection and our study is still modest in size. Another 
limitation we observed is that some individuals do not wear their 

devices (or let their charge expire) when symptomatic, which may 
affect monitoring patterns. Patterns of non-use were not Fitbit spe-
cific, and we expect that devices requiring daily charging will also 
have more missing data. Nonetheless, devices whose charge lasts for 

0

20

40

60

80

100

120

ASFODQR (COVID-19 positive)

AJWW3IY (COVID-19 positive)

Day

Day

Day Day

0

20

40

60

80

C
u

S
u
m

s
ta

ti
s
ti
c

A
la

rm
 c

o
u

n
t

A
la

rm
 t

o
ta

l 
d
u
ra

ti
o
n
 (

h
)

A
la

rm
 p

e
a
k
 h

e
ig

h
t 

(a
.u

.)

C
u

S
u

m

s
ta

ti
s
ti
c

C
u

S
u

m

s
ta

ti
s
ti
c

0

10

20

30

40

0

10

20

30

40

a

b

c d

e f

g h

AR4FPCC (other illness) AFEFA29 (healthy)

0

AX62
81

V

AYW
IE

KR

AQ
C
0L

71

AH
YIJ

D
V

AAXAA7Z

A7E
M

0B
6

AA2K
P1S

AKXN
5Z

Z

AV2G
F3B

A0V
FT1N

A0N
VTR

V

A4E
0D

03

A3O
U
18

3

AYEFC
W

Q

AM
V7E

Q
F

AS2M
VD

L

APG
IB

2T

AO
YM

4K
G

A4G
00

44

AJW
W

3I
Y

A1K
5D

R
I

ASFO
D
Q
R

AIF
D
JZ

B

1

0

250

500

750

1,000

2

3

After

Before

COVID-19

positive

Other

illness

Potentially

healthy

P = 0.01612

P = 0.01236

P = 5.39 × 10–3

P = 0.006557

200

400

600 P = 0.00087

P = 0.001367

P = 5.16 × 10–6

COVID-19

positive

Other

illness

Potentially 

healthy

During-sickness

Post-sickness

Potentially healthy

Pre-sickness

E
a

rl
y
 d

e
te

c
ti
o

n
 v

e
rs

u
s
 s

y
m

p
to

m
 d

a
y

(C
u

S
u

m
)

–25 –20 –15 –10 –5 0 Missed

Holiday bump

A4E0D03

A1K5DRI

ASFODQR

AYEFCWQ

AIFDJZB

AJ7TSV9

–25

–20

–15

–10

–5

0

Missed

Early detection versus symptom day

(RHR-Diff)

NATuRE BIOMEDICAL ENGINEERING | VOL 4 | DeCeMBeR 2020 | 1208–1220 | www.nature.com/natbiomedeng 1217

http://www.nature.com/natbiomedeng


ARTICLES NATURE BIOMEDICAL ENGINEERING

several days should be powerful enough for early detection before 
loss of device function.

Our approach is a general detection method and presently 
cannot distinguish infections with SARS-COV-2 from those 
caused by other viruses (other than pre-symptomatic duration), 
since increased RHR is common to many respiratory infections. 
Regardless, any illness onset information is valuable, especially dur-
ing a pandemic, and can be followed up with appropriate testing. 
It is also likely that other types of physiological measurements that 
are obtainable from wearable devices (for example, heart rate vari-
ability, respiration rate, skin temperature, blood oxygen saturation 
and electrocardiogram readings) will be valuable for distinguishing 
illnesses caused by different infectious agents and could be used 
to increase diagnostic sensitivity and perhaps even predict illness 
severity and symptoms24–27. Data on reported respiratory rates and 
blood oxygen saturation are expected to be particularly useful in 
COVID-19 prediction28, although the disease is quite heteroge-
neous in its physiological presentation29,30, as observed in our study. 
At the time of writing, such data were not available to us; how-
ever, these data, especially when combined with machine learning 
approaches, as well as an increased number of study participants, 
will greatly improve diagnostics. Regardless, this continuous moni-
toring approach is expected to be powerful for early infectious ill-
ness detection and offers many advantages that may help increase 
disease detection during the current global pandemic. Specifically, 
wearable device-based disease detection does not require testing 
infrastructure, materials or personnel that can be overburdened by 
global supply chain shortages. In addition, real-time monitoring 
by smartwatches is a passive form of testing that does not burden 
patient schedules and can serve as a high-resolution continuous 
screening to inform follow-up testing and self-isolation. We hope 
that ongoing screening for COVID-19 risk using wearable devices 
can provide a scalable solution to help overcome current barriers 
with testing, and inform early diagnosis and treatment to mitigate 
the spread of the disease. Such information will inform patients for 
self-isolation, diagnosis confirmation and early treatment.

Methods
Participant recruitment. We recruited 5,262 adult individuals for this study 
under protocol number 55577 approved by the Stanford University Institutional 
Review Board. Participants were recruited using REDCap and informed electronic 
consent was obtained from all participants31. Recruitment was done through social 
media, word of mouth, COVID-19 registries and presentations, as well as via 
referrals from Stanford Health Care. We recruited participants with a con�rmed 
or suspected COVID-19 infection, as well as those at high risk of exposure to 
COVID-19 (for example, via family members or relevant occupation), individuals 
with unknown respiratory illness and individuals who did not report any illness. 
Participants were asked to wear their �tness tracker daily, as much as possible, and 
to download a study app called MyPHD (see ‘MyPHD app for wearable device 
data collection’ below) with which to share their wearable device data. In addition, 
long-term wearable device data collected during periods before the COVID-19 

pandemic (2019 or before) from seven individuals enrolled in our iPOP study32 
were also extracted and analysed. �e iPOP study was approved by the Stanford 
University Institutional Review Board under protocol number 23602.

Metadata collection and surveys. Study metadata, such as demographic 
information, reports of past illnesses, daily symptom tracking and so on, were 
collected via REDCap. At enrollment, participants were asked to provide: (1) 
demographic information, such as age, sex, ethnicity, height and weight; (2) 
medical history, including chronic illnesses, routinely taken medications and so 
on; and (3) COVID-19 illness status (that is, whether they had a confirmed or 
suspected COVID-19 infection and, if tested, the test date, results and symptom 
onset date).

In addition, all participants were asked to complete a daily symptom 
tracking survey, which tracked the symptoms experienced and their severity 
on a scale of 1–5 (mild, mild to moderate, moderate, severe or worst possible), 
body temperature (if recorded), new tests or diagnoses of COVID-19 or other 
respiratory illnesses, test results, recovery dates and so on. Finally, participants 
were also asked to fill out a one-time past illness survey, where they could report 
past sickness periods (up to five illnesses in total) since 1 November 2019. The 
past illnesses survey recorded the length of the sickness period and other elements 
similar to the daily survey: diagnoses (if any) of COVID-19 or other respiratory 
illnesses, any symptoms they reported experiencing during this period, as well as 
body temperature and symptom severity on a scale of 1–5.

For this study, we restricted our analyses to a dataset of 32 individuals who 
reported a positive COVID-19 diagnosis, a diagnosis date and/or symptom 
onset date (usually both; n = 28) and wearable device data appropriate for the 
analyses. Five of these individuals also reported other non-COVID-19 respiratory 
infections, including four individuals who reported two other illnesses since 
October 2019. Nearly all (n = 27) provided diagnosis confirmation: 23 of the 
participants provided written documentation of their test result and four others 
provided verbal confirmation. We also analysed data for 15 non-COVID-19 
illness events from 13 other participants; one was diagnosed with influenza B, 
another with a rhinovirus infection and four with non-COVID-19 infections 
(type unknown). Long-term (>1 year) data during periods before the COVID-
19 pandemic (2019 or before) from seven additional participants from the iPOP 
study with a total of nine infections were also analysed. Illness was confirmed 
for six of these events by elevated C-reactive protein levels (as determined by 
high-sensitivity C-reactive protein test; Supplementary Table 30). Data from 
February 2020 until June 2020 were also analysed from 73 healthy participants 
who did not report any illness.

MyPHD app for wearable device data collection. After participants enrolled on 
REDCap, they were directed to download MyPHD, a smartphone app developed 
by our study team, to collect their wearable device data in a de-identified and 
encrypted manner. The MyPHD app was made available to study participants 
for both Android and iOS platforms. For Fitbit watches, the data were accessed 
through the Fitbit application programming interfaces, and for wearable devices 
with Apple HealthKit integration, we obtained the data via HealthKit. Data transfer 
was done from the source to a Health Insurance Portability and Accountability 
Act-compliant Google Cloud Platform project in an encrypted form, then the 
data were decrypted for pre-processing and analysis in a controlled-access, secure 
environment.

Wearable devices and data types collected. Participants wore Fitbit smartwatches, 
including different versions, such as Fitbit Ionic, Charge 4 and Charge 3. The data 
types collected included heart rate, steps and sleep. Raw heart rate, steps and sleep 
data were collected in JavaScript Object Notation format. Heart rate data were 
retrieved at 15-s resolution, steps values at a resolution of 1 min and sleep data as 
sleep stage intervals (wake, light, deep and REM).

Fig. 7 | Online detection of COVID-19 infection. a–d, examples of online prediction performance during COVID-19 infection for two participants with 

long-term data (a and b), one example of other (non-COVID-19) illness (c) and one example from the healthy group (d; note the smaller scale compared 

with a–c). For each plot, the x axis is the number of days pre- or post-symptom onset. The red and purple vertical dashed lines indicate days of symptom 

onset and diagnosis, respectively, and the blue dashed vertical lines indicate the alarming time from online detection (see Methods). e, Alarm counts per 

30 d for participants with COVID-19. The blue and red bars indicate the alarm counts before and after the COVID-19 event. Average alarm counts are 0.29 

versus 1.35 before and after infection, respectively. f, early detection comparison between offline detection (RHR-Diff) and online detection (CuSum). 

Detection days are compared with the symptom day. each red circle indicates one participant. The black dashed line is the identity line and the blue 

dashed lines surrounding it are at a distance of ±1 d from the identity line. The grey dotted lines separate the quantitative part of the graph from the missed 

cases. g, Comparison of the total alarm duration across the COVID-19 positive group, other illness group and potentially healthy group. h, Comparison of 

the alarm peak height across the different groups described in g. For each sickness case in g and h, the alarms are further assigned to three categories: 

pre-sickness, during sickness and post-sickness. Only P values with a significance of <0.05 are shown. In addition, a slight increase in alarm frequency 

was observed, but it did not achieve significance (Supplementary Fig. 7 and Supplementary Table 29). For the boxplots in g and h, central lines represent 

median values, box limits represent the upper (third) and lower (first) quartiles, whiskers represent 1.5× the interquartile range above and below the upper 

and lower quartiles, respectively and black dots represent outliers.
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Wearable device data pre-processing. The retrieved raw heart rate, sleep and 
steps data from Fitbit were processed and integrated using a systematic workflow 
to produce a uniform format among different retrieval protocols. First, heart rate 
outliers (heart rate > 200 and heart rate < 30) were removed, as were all duplicates 
in the heart rate, steps and sleep data. Time stamps were unified to a standard time 
zone to be able to match different types of wearable device data with metadata. Heart 
rate features were extracted, such as median heart rate per minute, average heart rate 
per minute, night-time RHR and so on. Additionally, daily steps were calculated. For 
sleep features, total sleep duration per night, as well as wake, light, deep and REM 
stage durations and their corresponding percentages for each night, were calculated.

Symptoms and other metadata processing. Participant metadata and symptom 
surveys were downloaded and processed using a custom R and Python script. A 
total of 136 participants reported a positive COVID-19 diagnosis, but many were 
lacking a clear diagnosis or symptom date or appropriate wearable device data for 
the analyses. Height was converted to centimetres (Supplementary Tables 1 and 2), 
weight was converted to kilograms (Supplementary Tables 1 and 2) and reported 
temperature was converted to Celsius (Fig. 6) for all participants.

RHR-Diff offline anomaly detection. The RHRs were obtained using the same 
approach as in Li et al.5. For each person, the RHRs were then standardized in 
1-h resolution based on the average of daily curves from a 28-d sliding window. 
The missing values in the RHRs were imputed as zeroes before the detection. We 
applied anomaly time-interval detection based on rank scans from the work of 
Arias-Castro et al.13 on the standardized residuals. Under a significance level of 
0.05, the detected elevated time intervals were reported. To reduce possible false 
positives, short detected intervals of <24 h were removed. If there was a gap of two 
days or less near the symptoms onset date, it was treated as a single signal.

HROS-AD offline anomaly detection. HROS-AD is an unsupervised anomaly 
detection model consisting of two major steps:

 1. In the data pre-processing step, we combined heart rate and step data from 
each user to compute a new feature known as HROS. HROSi is a feature of 
a user i’s HROS (a value of 1 is added to all steps to avoid the zero-division 
problem). Next, we used moving averages (mean = 400 h) and down-sampling 
(mean = 1 h) to smoothen the time-series data and standardized further with 
a Z score transformation.

 2. In the anomaly detection step, when a HROS data point deviated mark-
edly from others in a sample, it was called an anomaly or outlier. Any other 
expected observation was labelled as an inlier.

We used the covariance.EllipticEnvelope class from the scikit-learn package in 
Python14,15,33 to fit a Gaussian distribution of the data, pointing out the anomalies 
that might be contaminating our dataset because they are extreme points in the 
general distribution of the dataset. For simplicity, we call this method HROS-AD 
when the input data are HROS. Within the HROS-AD method, EllipticEnvelope 
is a function that calculates the distance of each HROS observation with respect 
to the grand mean that takes into account all of the observations in the data and 
detects both univariate and multivariate outliers.

HROS-AD uses a key parameter called contamination that provides 
information about the proportion of the HROS outliers present in each dataset 
and can take a value up to 0.5 (Supplementary Table 31). We start with a value 
of 0.01 because 0.01 is the percentage of observations that should fall over 
the absolute value 3 in the Z score distance from the mean in a standardized 
Gaussian distribution. If we do not detect any anomalies, we gradually increase 
the contamination value from 0.01 until we find an anomaly. If we find too 
many anomalies with a 0.01 contamination score, we gradually decrease the 
contamination value. The predictions contain a vector of values between 1 and −1 
(1 being normal and −1 being anomalous).

We deleted the predictions if they were overlapping daytime (6:00–00:00) 
or missing steps in the alert window of 21 d before symptom onset and 7 d 
post-symptom onset. There were five participants who had missing step data for 
at least one day in the alert window, and three of the participants had at least one 
prediction overlapping daytime or missing steps in the alert window.

We also used resting heart rate (RHR) instead of HROS to check the model 
performance. We call this method RHR-AD. It uses the same pipeline as 
HROS-AD except the input is RHR, which is the heart rate at a given time point 
where the step count for the previous 12 min was 0. Overall, the results between 
HROS-AD and RHR-AD were very similar (Supplementary Tables 7, 8, and 15).

Activity and sleep analysis. In our analysis, we only considered individuals who 
had detectable changes in RHR between −14 d before symptom onset and 2 d 
after, using our RHR-Diff algorithm. We also removed individuals with more than 
50% of steps or sleep (each individually) data missing in a window of 21 d before 
symptom onset and 7 d after. This resulted in 22 individuals for the steps analysis, 
and 13 individuals for the sleep analysis. Following this filtration criteria, missing 
values were imputed using the last observation carried forward (LOCF) method. 
Afterward, daily steps and total sleep duration were Z score normalized for each 
person independently.

Since wearable device data tend to have missing values (especially sleep, since 
some participants do not wear the watch every night), we evaluated the change 
in daily steps and total sleep duration without imputing the missing values. In a 
separate analysis (Supplementary Fig. 4), we compared daily steps and total sleep 
pre- and post-detection without the imputation process. We only considered 7 d 
pre-detection and 7 d post-detection.

LMMs were conducted for daily steps and total sleep duration using the nlme 
package (version 3.1-142) in R. In our model, we included day annotation as a 
fixed effect and subject ID as a random effect. An analysis of variance test was 
applied on the fitted model to retrieve a P value for the tested hypothesis.

CuSum online detection. CuSum statistics were calculated based on the work of 
Levin and Kline13,23. The values of CuSum statistics in the previous baseline days 
were used to construct a null distribution for each hour, and a sliding 1 h interval 
was then interrogated for residuals compared with the baseline distribution for 
that hour. The baseline window was set to 28 d. The threshold parameter in the 
CuSum statistic was set as half of the 90% quantile of the baseline residuals for 
the short-term data and half of the 99% quantile for the long-term data. Under 
the significance level 0.01, an alarm candidate was recorded the first time that the 
CuSum statistic was significantly higher than the values from the null distribution. 
We tracked the records of CuSum statistics for 48 h. To reduce possible false 
positives, we started monitoring the statistic when it rose above the threshold in 
the second hour. In cases where the CuSum statistic stopped increasing within 24 h 
or returned to zero within 48 h, the initial alarm was removed.

Visualization methods. We used ggplot2, Matplotlib and MATLAB to plot most of 
the figures34,35.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The de-identified raw heart rate, steps and sleep data used in this study can be 
downloaded from the study data repository (https://storage.googleapis.com/
gbsc-gcp-project-ipop_public/COVID-19/COVID-19-Wearables.zip). Processed 
data, including algorithm outputs and the data used for plotting the figures are 
provided as Supplementary Data 1.

Code availability
Code for the algorithms used in this manuscript is available at https://github.com/
mwgrassgreen/WearableDetection (RHR-Diff and CuSum) and https://github.
com/gireeshkbogu/AnomalyDetect (HROS-AD).
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Life sciences study design
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Sample size The most crucial aspect of the study was to compare the participant's continuous time-series data in sliding time windows or intervals to their 

own baseline to detect COVID-19 infection. Significance statistics and p-values were calculated for successive time intervals within an 

individual. Thus, in terms of sample size, the crucial aspect was to ensure maximal high-frequency sampling within an individual before and 

around the time of COVID-19 infection. For analysis, we only used individuals who had (1) confirmed COVID-19 diagnoses, (2) were able to 

provide symptom onset and/or diagnosis dates, and (3) had data recorded from wearables spanning and adjacent to the dates of the 

COVID-19 infection. We recruited as broadly as possible, and tried to maximize the number of individuals who fit these criteria, but were 

limited by the infection rates during the recruitment period of the study. Out of the 5,262 individuals enrolled, and 4,642 who were wearing 

fitness trackers, we identified 114 individuals with COVID-19 infection. Of these, 32 individuals were wearing the devices around the infection 

time; hence, this subset of individuals was chosen for analysis. We also added 73 potentially healthy participants as a 'control' dataset, and 13 

participants with 15 other non-COVID-19 illnesses for comparison.

Data exclusions All available data were used for analyses. There were no data excluded from the analyses, except in cases where data from the werables was 

missing during or just prior to a self-reported COVID-19 infection.

Replication This was an observational study in which we did not perform experiments.

Randomization Participants were not randomized. There was no allocation to groups. We recruited individuals from 3 groups, COVID-19 positive, self-

reported healthy, and individuals with other non-COVID-19 illnesses, but the only group-based analysis was to compare alarm duration and 

intensity in each group. The main detection algorithms were run on each individual participant's data separately. Each participant's 

longitudinal data as used to construct participant-specific heart-rate baselines, and deviations from the baseline were calculated in a 

participant-specific manner. In some analyses (mainly mixed effects models for sleep and steps analysis) we controlled for participant ID and 

day of annotation.

Blinding Blinding was not relevant to the study (that is, there was no allocation to groups or interventions).
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Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics The mean age of the 5,262 participants at time of enrollment was 44 (range, 18–88); 55.3% were women. However, out of 

the 32 individuals analysed, 25 (78.1%) were women. The self-reported ethnic distribution of the full cohort was 74.9% 

European, 3.9% East Asian, 2.9% African American, 19.2% Mixed/Other/Undeclared. The most common self-reported health 

conditions at entry were respiratory lung disease, high blood pressure, high cholesterol, and allergy/immune disease.

Recruitment Participants were recruited by social media, word of mouth, and through Stanford Healthcare. Our inclusion criteria screened 

for people who either had a COVID-19 infection or were at high risk through living situation or employment, and were 

wearing fitness trackers. Since social media was one of the recruitment methods used, there could be a bias towards people 
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who use social media. The use of wearable devices likely biases our study cohort towards individuals of higher socioeconomic 

strata, who are more likely to be able to afford the devices. It is also possible that individuals who own wearables devices are 

more interested in using wearable devices to monitor both activity and health. However, we do not think that the results of 

our algorithm are affected by interest in wearables devices.

Ethics oversight Stanford University Institutional Review Board (IRB 55577, IRB 23602).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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