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ABSTRACT Deep learning-based methods for predicting spatial-temporal data such as crowd flows

need to consider both spatial dependency and temporal dependency. Previous research mainly focused

on modeling spatial dependency, whereas studies on temporal dependency are few. Existing finite deep

learning-based methods for temporal dependency modeling can be divided into RNN-based methods and

domain knowledge-based methods. However, RNN-basedmethods are hard to learn very long-term temporal

dependency, and domain knowledge-based methods cannot model temporal dependency automatically,

depending on data pre-processing based on prior knowledge. In view of the problem, crowd flows prediction

in regular gridded regions are studied and a model called Pre-trained Bidirectional Temporal Representation

(PBTR) based on Transformer encoder is proposed capable of modeling very long-term temporal depen-

dency automatically. PBTR is simple, scalable, and can be combined with any other spatial component.

Furthermore, we introduce Crowd Flows Prediction based on PBTR (CPPBTR) to form a Transformer based

encoder-decoder framework. There are two decode stages in the proposed model. At decoder-stage 1, ‘draft’

sequence is generated. At decoder-stage 2, each timestep of the ‘draft’ sequence is masked and fed into

PBTR to predict the refined flow for each masked position. Experiment results demonstrate that our method

outperforms RNN-based methods and domain knowledge-based methods.

INDEX TERMS Traffic prediction, neural networks, transformer, bidirectional temporal representation, very

long-term temporal dependency.

I. INTRODUCTION

In this paper, crowd flows prediction in regular gridded

regions is studied [1], [2], [7]. Traffic flow predicting is a

very important component of urban computing, however, it is

a very challenging task, affected by a complex of factors:

spatial dependencies (or spatial representation), temporal

dependencies (or temporal representation) and external influ-

ences (weather conditions, events and so on). Deep learning

has been successful in many fields [19]. Recently, many

researchers have tried to use neural networks for many types

of traffic flow prediction including taxi demand prediction

[6], crowd flows prediction [1], [2], [7], speed prediction [8]

and so on [20]. Crowd flow is a typical spatial-temporal data.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongxiang Li.

Researchers have considered temporal and spatial properties

of crowd flows when applying deep neural networks (DNNs)

[8]. In order to model the spatial dependency of crowd flows,

a popular way is to treat the flow data at each timestep as

an image and, utilize convolutional neural network (CNNs)

to model spatial correlation [1], [2], [21]. However, not all

traffic data can be represented by images with time series.

With the rise of graph neural networks, an increasing number

of researchers uses graphs to describe traffic data and applies

graph neural networks (GNNs) to learn spatial representation.

In terms of modeling temporal dependency, it remains very

challenging because there are multiple types of temporal

dependencies:

• Closeness: the flows are affected by recent timesteps.

Taking a example, a congestion occurring at 7pm will

affect traffic flow at 7pm.
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FIGURE 1. Regular gridded map(8 × 8) of Beijing. In this illustration,
Beijing is divided into 64 regular grids.

• Periods: the crowd flows have many types of periods:

daily, weekly, etc. For example, flows at 6pm on every

working day demonstrate a relatively high consistency,

but a big difference expected between flows at 4pm and

flows at 6 pm even on a same day (daily period) and

the conditions on this Monday is similar to last Monday

(weekly period).

To tackle this challenge, scholars usually utilize recurrent

neural networks (RNNs) and its variants such as LSTM,

GRU, etc. [6], [8] to model temporal dependencies. Although

RNNs are capable to model time series such as crowd flows

data, it is difficult to learn the multiple types of temporal

dependencies of crowd flows because the main deficit of

RNNs is that RNNs cannot model very long-term temporal

dependency. For example, assuming a time interval to be

1 hour in this study, there are 24 intervals per day. The

crowd flows are predicted every half an hour/one hour in

advance. To guarantee the data amount for training, it is

necessary to use at least data of one month so that the neural

networks could learn the periodicity and trend of crowd flows

data. In this case, the length of the input sequence is at

least 672. Such long-range sequence induces optimization

difficulty for RNNs, making them infeasible in applications.

Therefore, some scholars proposed domain knowledge-based

method by manually selecting the data of key moments as

input according to the periodicity, trend of traffic. [1], [2],

[6], [7]. However, these approaches rely heavily on prior

knowledge with main focus on modeling spatial dependency,

and research effort into automatic modeling of very long-

temporal dependency is yet to be thoroughly investigated.

Recently, transformer is widely used in sequence model-

ing, and both BERT [12] and GPT-2 [13] have demon-

strated that transformer-based architecture can model very

long sequences (512 in BERT and 1024 in GPT-2). Therefore,

we adopt Transformer [3] as the main structure of the model

to be established in this study.

Further, pretraining has achieved great success in computer

vision, natural language processing, video understanding and

so on. It is also introduced to traffic prediction. Different

unsupervised pretraining methods of learning traffic rep-

resentation has been explored. The most two successful

pretraining methods are autoregressive (AR) modeling and

autoencoding. Lv et al. used sparse stacked autoencoder

(SAE) to learn traffic representation [8]. On the top of the

pre-trained SAE, a logistic layer is applied to predict traffic.

The experimental results demonstrate the effectiveness of the

pre-trainingmodel. Furthermore, the pre-training approach of

learning video representation also provide ideas for traffic

prediction since that video understanding is a similar task

to the prediction of crowd flows (crowd flows are treated

as a sequence of images, just like video). Srivastava et al.

introduced an unsupervised method consisting of a LSTM

autoencoder model and a LSTM future predictor model

(AR modeling) to learn both forward and backward repre-

sentations of video. This method achieved an improvement

on supervised task. Sun et al. used Srivastava’s approach to

predict traffic and achieved remarkable results [14].

BERT is a notable example of denoising autoencod-

ing (DAE), it is allowed to utilize bidirectional informa-

tion for reconstruction. It achieved remarkable performance

in language understanding task. Inspired by BERT, many

researchers introduced DAE into sequence task. For instance,

Sun et.al. Proposed BERT4Rec [22] for sequential recom-

mendation. BERT4Rec applied DAE for modeling behavior

sequence. In general, bidirectional representation learning

has been successful in multiple types of sequence. However,

the bidirectional representation learning has not been applied

in traffic prediction. Previous works were AR modeling and

performed training and inference in a left-to-right (L2R)man-

ner. They predicted the current flow conditioned on previous

flow, whether it is domain knowledge-based or RNN-based.

We believe that bidirectional representation learning is help-

ful in learning a good temporal representation. Motivated by

this, a bidirectional temporal representation model known

as Pre-trained Bidirectional Temporal Representation model

(PBTR) based on Transformer is designed. It is a kind

of denoise autoencoder modeling, which is different from

autoregressive modeling based on Bi-RNNs. It is easy to

use, capable and can be treated as a component to combine

with any model utilized to learn spatial representation (or

capture spatial structure), learning spatial-temporal represen-

tation simultaneously. Then, we introduce CPPBTR, which

stands for Crowds flow Prediction based on Bidirectional

Temporal Representation. There are two decode stages in

our model. The decoder-stage 1 generates ‘draft’ sequence.

At decoder-stage 2, we mask flow of each step of the ‘draft’

sequence and feed it into PBTR to predict the refined flow

for each masked position. The contributions of our work are

three-fold:

• We propose a pre-train deep bidirectional temporal rep-

resentation model called PBTR. To the best of our

knowledge, this is the first bidirectional spatial-temporal

representation model.
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• We design a novel crowd flows prediction algorithm

(CPPBTR) based on PBTR.

• We conduct experiment on three datasets (Beijing taxi-

cabs’ trajectory, NYC bike trajectory and NYC taxi

trajectory). The result of experiment demonstrates the

performance of our model is superior to state-of-the-art

methods.

II. PRELIMINARY

In this section, the crowd flows prediction problem is briefly

introduced. Then, we revisit the transformer.

A. CROWD FLOWS PREDICTION

Definition 1 (Region) [1]: In this study, a city is partitioned

into an grid map M ∈ R
I×J based on the longitude and

latitude where a grid is denoted as a region. Please see [1]

for more details.

M =



m11 · · · m1J

...
. . .

...

mI1 · · · mIJ


 (1)

Definition 2 (Inflow/Outflow) [1]: Let P be a collection of

trajectories at the t th timestep. For a grid (i, j) that lies at the

ith row and the jth cloumn, the inflow and outflow of the rows

at the timestep t are defined respectively as:

x
in,i,j
t =

∑

Tr∈P
|{t > 1|gt−1 /∈ (i, j) ∧ gt ∈ (i, j)}| (2)

x
out,i,j
t =

∑

Tr∈P
|{t > 1|gt ∈ (i, j) ∧ gt+1 /∈ (i, j)}| (3)

Problem (Region): The goal is to predict the future crowd

flows given historical observations of flow. Let xt ∈ R
2×m×n

represent the flows observed at timestep t . The crowd flows

prediction problem aims to learn a function that maps histor-

ical observations of flows X = {xt |t = 1, 2, . . . , n− 1} to xn
at next timestep.

B. TRANSFORMER

Transformer [3] is a powerful sequence modeling tool, it is a

stack of several identical layers. The identical layer is called

Transformer Block. A Transformer Block consists of a multi-

head attention sub-layer and a position-wise fully connected

feed-forward network sub-layer, a residual and layernorm

connection is added between all sub-layers as shown as Fig. 2.

1) MULTI-HEAD ATTENTION

Mathematically, given query matrix Q, key matrix K , and

value matrix V , the matrix of outputs is calculated as follow:

Attention (Q,K ,V ) = softmax

(
QKT

√
dk

)
V

MultiHead (Q,K ,V ) = Concat (head 1, . . . , head h)W
O

where head i = Attention
(
QW

Q
i ,KWK

i ,VWV
i

)

(4)

2) POSITION-WISE FULLY CONNECTED FEED-FORWARD

NETWORK

After obtaining outputs by the multi-head attention mecha-

nism, a position-wise fully connected feed-forward network

sub-layer is added. This forward network is defined as fol-

lows:

FeedForward (x) = max (0, xW1 + b1)W2 + b2 (5)

where W1, W2, b1 and b2 are learnable parameters.

III. RELATED WORK

In this section, we introduce some deep learning methods for

traffic prediction, as well as attention mechanisms that are

widely used in various deep learning frameworks and tasks,

including traffic prediction.

A. TEMPORAL DEPENDENCY MODELING

The current neural networks models for modeling the tempo-

ral dependency of spatial-temporal data such as crowd flows

can be classified into two categories: RNN-based methods

and Domain Knowledge-based methods.

RNN-based methods usually apply long-short-term mem-

ory (LSTM) network to model temporal dependency. Yu

et al. [20] applied LSTM to capture the temporal dependency

for forecasting the traffic under extreme conditions. How-

ever, they did not consider the spatial dependency. DMVST-

Net (Multi-View Spatial-Temporal Network) [6] is a LSTM-

based model for taxi demand prediction, considering both

spatial dependency and temporal dependency in a joint deep

neural network model. It proposed Local-CNN model that

captures local characteristics of regions in relation to their

neighbors, then applied LSTM to model temporal depen-

dency. Li et al. [10] introduced Diffusion Convolutional

Recurrent Neural Network (DCRNN), using DCGRU to

implement an encoder-decoder architecture for forecasting

traffic, which can model both temporal dependency and spa-

tial dependency. It proposed Diffusion Convolutional Gated

Recurrent Unit (DCGRU) to replace the matrix multiplica-

tions in GRU with diffusion convolution. However, the fore-

mentioned methods cannot model very long-term temporal

dependency.

Domain Knowledge-based methods believe that the tem-

poral dependency mainly contains multiple views accord-

ing to the temporal closeness (recent segment) [1], [2], [7],

[15], period [1], [2], [7], [14], [15] and trend [1], [2], [7],

[14]. Guo et al. [15] considered the recent segment and

two types of period (daily and weekly). Zhang et al. [14]

considered not only the period, but also considered the trend

(monthly and quarterly). The corresponding recent, daily,

weekly, monthly, and quarterly timesteps are selected as

the key timesteps, to construct five views. [14] achieved

state-of-the art performance on predicting citywide crowd

flows in irregular regions. Domain knowledge-basedmethods

depend on the prior knowledge. We believe that the core of

domain knowledge-based method is feature selection. It is

based on prior knowledge to select corresponding timesteps,
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that is, manually selecting the temporal feature from spatial-

temporal data such as traffic. As mentioned in section 1,

we believe that traffic data delivers essential information.

Therefore, the prior knowledge of traffic is easy to obtain

and effective for traffic prediction of human behavior since

the regularity of human behavior. However, not all prior

knowledge of spatial-temporal data has such advantages.

In summary, although RNN-based method can automat-

ically learn the temporal representation, it cannot learn the

very long-term temporal dependency. Domain knowledge-

based methods are unable to learn temporal dependency

automatically. Our approach is capable of learning very

long-term dependency automatically and not rely on domain

knowledge.

FIGURE 2. The structure of a Transformer Block.

B. ATTENTION MECHANISM

Recently, attention mechanisms have been widely used in

various tasks such as natural language generation, speech

recognition, image caption and so on. Bahdanau et al.

[16] proposed soft attention and applied it to machine

translation, greatly improve the performance of neural

machine translation. V. Ashish et al. [3] proposed multi-

head attention and self-attention to model sequence, achiev-

ing significant success in machine translation. Compared

with RNNs, self-attention mechanism is easier to cap-

ture very long-term co-dependency and increase the paral-

lelism of computing. Furthermore, attention mechanisms are

widely applied to various fields, including traffic prediction.

DeepTransport [9] uses attention mechanism to quantify

the spatial-temporal relations. It focused on graph with

time series, using LSTM to capture temporal dependency.

ATSGCN (Attention based Spatial-Temporal Graph Convo-

lution Network) [15] is another attention based model which

applied graph convolutional network (GCN) to learn the spa-

tial dependency of graph-based traffic data. It utilized a novel

spatial-temporal attention mechanism to capture the dynamic

spatial and temporal dependency on the graph-based traffic

network.

IV. OUR APPROACH

In this section, we introduce our proposed approach. In

general, it contains two components: Pre-train Bidirectional

Temporal Representation model (PBTR) as well as Crowds

flow Predicton based on PBTR (CPPBTR).

A. PRE-TRAIN BIDIRECTIONAL TEMPORAL

REPRESENTATION MODEL

1) LOSS FUNCTION

Let x and x̂ be the ground-truth flow matrix and predicted

flow matrix respectively. The objective function we employ

here is mean squared error:

L(xt , x̂t ) = ‖xt − x̂t‖22 (6)

2) ARCHITECTURE OF PBTR

PBTR consists of multi-layer Transformer encoder. Please

see [16] for more details. PBTR and Spatial Components such

as residual block [1], [2], Local-CNN [6] or any other neural

networks can be combined to create a composited model

which is able to learn temporal representation and spatial

representation as shown in Fig. 2.

FNN (Fully Connected Network) is the external com-

ponent for external representation learning, a two-layer

neural network consisting of an embedding layer and a

fully connected layer. The external information we consid-

ered is weather, holiday and metadata (i.e. DayOfWeek,

WeekDay/Weekend).

3) BIDIRECTIONAL TEMPORAL REPRESENTATION LEARNING

TASK

Inspired by BERT, we design a task like Masked Language

Model (LM) to learn bidirectional temporal representation.

The training data generator chooses 7% of frames (a frame is

the crowd flow at one timestep) at random, e.g. in Fig. 2, xt
and xt+4 are chosen. The data generator performs the follow

procedure:

• 90% of the time, mask the chosen frame with zeros.

• 10% of the time, keep the chosen frame.

On the top of PBTR is a linear layer (the prediction layer

in Fig. 2) used to predict crowd flows. Let ht be the represen-

tation produced by PBTR at timestep t . The prediction value

is denoted as follow:

x̂t = tanh (w1ht + b1) (7)

where w1 and b1 are learnable parameters of the prediction

layer. Tanh is the activation function, defined as the following

equation.

tanh(x) = ex − e−x
ex + e−x (8)

We only predict themasked frames, and the learning objective

of PBTR is to minimize mean squared error between the

predicted flow matrix and the true flow matrix:

loss =
∑

t∈J
L

(
x̂t , xt

)
(9)
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FIGURE 3. The structure of PBTR. Trm stands for Transformer block. The temporal representations are jointly
conditioned on both left and right flow in all layers.

Algorithm 1 Pre-Training Processing of PBTR

Input: D: training dataset

Input: 5θ : PBTR model to be trained with parameters θ

Input: θ0: Initial parameters

t ← 0 (Initialize timestep)

1: repeat

2: t ← t + 1

3: Sample a crow flow sequence X ∼ D

4: Randomly mask xt in X according to the generator

performing.

5: Calculate the reconstruction X̂

6: Calculate loss(X̂ ,X ) according to Eq. 6.

7: θt ← θt−1 −∇θ loss(X̂ ,X )

8: until converge

Output: 5θ with trained parameters θt

where xt is the ground-truth at timestep t , J is all available

timestep.

4) WHY BIDIRECTIONAL REPRESENTATION LEARNING

We believe that such Left-to-right learning (auto-regressive

modeling) restricts the power of transformer. In terms of L2R

learning, the leftward flow need to be prevented to preserve

the auto-regressive property. Usually, researchers implement

this inside of scaled dot-product attention by masking out

all values in the input softmax which correspond to illegal

connections [3].

As claimed in introduction of this paper, we need length

of 720 (one month) or more to learning the periodicity of tem-

poral representation. However, to preserve the auto-regressive

property, scaled dot-product attention cannot fully learn the

periodicity of temporal representation. For auto-regressive

modeling: xt = a1x1+ a2x2+· · · ,+at−1xt−1+ ε. In partic-

ular, xt = f (MultiHead (x1:t−1, x1:t−1, xt−1)), where x1:t is
{x1, x2, . . . , xt−1}, f (x) is a non-linear function. This means

the information flow after timestep t cannot attend to the

information flow before timestep t (See Fig. 4(a)). Thus, even

if the sequence is long enough, the attention layer cannot fully

learn the periodicity of temporal representation (Nearly half

of the elements in the matrix are masked). And PBTR, each

timestep can attend to all timesteps (See Fig.4(b)). So PBTR

can fully learn the periodicity of temporal representation.

FIGURE 4. The attention matrix of left to right learning and bidirectional
learning. Gray block means the value is masked.

B. CROWDS FLOW PREDICTOR BASED ON PBTR

In this sub-section, we will demonstrate how to predict flows

by utilizing PBTR. The predictor is based on Transformer,

consisting of PBTR as the encoder and a decoder with two

stages.

1) ENCODER

The encoder consists of a spatial module S and a PBTR.

It computes the spatial-temporal representation H , denoted
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FIGURE 5. The architecture of CPPBTR.The PBTR is utilized as the encoder and the second stage decoder. The first
stage decoder is a multi-head attention decoder.

by following equation.

H = PBRT (S (x1, x2, . . . xt−1)) (10)

2) DECODER-STAGE 1

The attention mechanism makes the model focus on criti-

cal information, but it also limits the interaction of infor-

mation. The multi-head attention mechanism can increase

the space of the network and allow more information to

be transmitted without increasing the time complextiy. So,

in the decoder-stage 1, we introduce a N multi-head attention

layer Transformer decoder to predict crowds flow. At the tth
timestep, the decoder-stage 1 predicts flow conditioned on

previous flow, the spatial-temporal representation and exter-

nal information Et at timestep t as shown in Fig. 2.

x̂t = Decoder1
(
x̂<t ,H ,Et

)
(11)

The objective of decoder-stage 1 is to minimize the mean

squared error, in which X is the ground truth.

loss1 = L(X̂ ,X ) (12)

However, the experimental results demonstrated that if the

encoder of transformer is initialized with the parameters of

PBTR, and the direct application of a L2R decoder is not

feasible enough. If PBTR is utilized in decoder, the decoder

would be negatively impacted by the incomplete sequence

since that PBTR is a kind of DAE modeling, but the trans-

former decoder is a kind of autoregressive modeling. To

tackle this problem, we introduce another decoder called

decoder-stage 2 to mitigate it in the predictor which will be

detailed in the next sub-section.

3) DECODER-STAGE 2

The main reason to introduce the decoder-stage 2 is to

enhance the decoder utilizing the spatial-temporal represen-

tation of PBTR, so we reuse the encoder and its parameters

are fixed during training. The decoder-stage 2 receives a

flow sequence generated by decoder-stage 1 X̂ as input and

generated the final output X̄ . The process of decoder-stage

2 is as shown in algorithm 2.

The decoding of stage 2 process provides a complete input

sequence such that the process of decoder stage 2 is similar

to the bidirectional temporal representation learning task.

Therefore, decoder-stage 2 can benefit from the representa-

tion of the PBTR.

The learning objective of this process is shown as follow:

loss2 = L(X̄ ,X ) (13)

The objective of our model during training is the sum of

loss1 and loss2:

loss = loss1 + loss2 (14)

Algorithm 2 Processing of Decoder-Stage 2

Input: intermediate output generated by decoder-stage X̂ ={
x̂t , x̂t+1, . . . , x̂t+T

}

Output: final output X̄

1: for timestep i (t ≤ i ≤ t + T ) do
2: mask x̂i ∈ X̂
3: feed into decoder-stage 2

4: generate x̄i
5: replace x̂i in X̄ with x̄i
6: end for

7: return final output X̄
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FIGURE 6. An example of decoding process. The process of predicting xt is illustrated. On the left side of the red dotted line is deocder-stage 1, on right
side of the red dotted line is decoder-stage 2. In stage 1, model generated intermediate output. In stage 2, xt is masked. After that, the masked sequence
and historical observation sequence are concatenated into a new sequence. Then the new sequence is fed into PBTR to generate the final output x̄t .

TABLE 1. Details of datasets.

V. EXPERIMENT

A. SETTINGS

1) DATASETS

TaxiBJ: Dataset I comes from taxicab GPS data and meteo-

rology data in Beijing from four time spans. The data from the

last four weeks is chosen as testing data, and all data before

that as training data.

FIGURE 7. The only difference between ASTCNN (Fig. a) and ASTGCN
(Fig. b) is that ST block in ASTCNN doesn’t have GCN layer.

BikeNYC:Dataset II taken from theNewYork City (NYC)

Bike system in 2014. The last 10 days are chosen as testing

data, and the others as training data.

TaxiNYC: Dataset III is taxi GPS data for NYC from 1st

Jan. 2011 to 30th Jun. 2016. The last four weeks of dataset is

test set, and all data before that is the training set.

2) BASELINES

Historical average (HA): The historical average predicts the

inflow and outflow using the average value of historical flows

in the corresponding timestep (i.e., 11:30am-12:00am on

VOLUME 7, 2019 143861
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TABLE 2. Comparison of baselines, the best results are bolded.

Monday, its corresponding periods are all historical timesteps

from 11:30am-12:00am on)

LSTM [4]: Long-short-term-memory network, which can

learn temporal dependency. The best performance of RNN is

reported.

GRU [17]: Gated-recurrent-unit network. The setting is as

same as LSTM.

FC-LSTM [5]: Encoder-decoder framework utilizing

LSTM. Encoder firstly encodes the previous flows, then the

decoder predicts crowd flows.

ST-ResNet [2]: A typical domain knowledge-based deep

learning method. It extracts three types (trend, period and

closeness) of keyframes as input based on domain knowledge

to learn temporal representation. CNN with residual block is

used to learn spatial representation.

DMVST-Net [6]: A deep learning model consists of three

views: temporal view (via LSTM), spatial view (via local

CNN), semantic view (modeling correlation among regions

sharing similar temporal patterns). It achieves state-of-the art

results on predicting taxi demand. We directly used the code

provided by [6].

ASTCNN [15]: Attention based Spatial-Temporal Graph

Convolutional Networks (ASTGCN) is a method of handling

graph series. ASTGCN is a stack of ST-Block, we removed

GCN layers in ST-Block so that it can handle gridded data.

The variant of ASTGCN is called ASTCNN.

3) VARIANTS OF CPPBTR

CPPBTR aims to learn an effective temporal representation

and can be combined with any spatial components. Hence,

to make fair comparison, three variants of CPPBTR are intro-

duced in this sub-section.

CPPBTR + residual unit: This variant is mainly com-

paredwith ST-ResNet.We used residual unit which is as same

as ST-ResNet as the spatial component.

CPPBTR + Local-CNN: This variant is mainly com-

pared with DMVST-net, the spatial component is as same as

DMVST-net.

CPPBTRpure: This variant is manly compared with

LSTM, GRU and FC-LSTM. We only use CPPBTR without

any spatial component since that LSTM andGRU do not have

any spatial component.

4) HYPERPARAMTERS

We set the layer of PBTR and decoder-stage 2 to 3, set the

model dim to 1024 (512 on BikeNYC). Due to insufficient

data and limited GPU, no more layers are implemented. An

Adam optimizer [11] with a learning rate of 2e-4 is applied

to train our model. The length of training data used when

training PBTR add CPPBTR is 720 (30days in terms of

BikeNYC, 15days in terms of TaxiBJ).

During training, batch size is 128. Due to GPU memory

limitation that the local CNN’s GPU memory cost is huge,

we use gradient accumulation, set accumulate step to 4 and

feeds 32 samples at each step. All these experiments were

run on 2 NVIDIA P100 GPUs, Keras [18] is used to build our

model.

5) EVALUATION METRIC

We employ Rooted Mean Square Error (RMSE) and Mean

absolute Percentage Error (MAPE) to evaluate our model:

RMSE =
√

1

N

∑

i

(
xi − x̂i

)2
, MAPE = 1

N

∑

i

∣∣∣∣
xi − x̂i
xi

∣∣∣∣

B. RESULTS

Table 2 summarizes the results. We can see that our method

significantly outperforms all the other baseline methods. In

particular, we have the following findings:

1) CPPBTR + residual unit achieves better perfor-

mance than ST-ResNet. Our model outperforms

it by 2.6%/10.3% (RMSE/MAPE) on TaxiBJ,

by 24.0%/12.0% (RMSE/MAPE) on BikeNYC and by

12.1%/13.5% (RMSE/MAPE) on TaxiNYC.

2) CPPBTR + Local-CNN works better than all base-

lines, outperforming DMVST-Net by 4.3%/5.2%

(RMSE/MAPE) in terms of TaixBJ, by 24.5%/3.4%

(RMSE/MAPE) in terms of BikeNYC and by

4.59%/2.23% (RMSE/MAPE) in terms of TaxiNYC.

3) CPPBTRpure outperforms all the RNN-based mod-

els which don’t have spatial component. This implies

that Transformer-based model is more effective than

RNN-based model for capturing temporal dependency

of traffic data.
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FIGURE 8. The performance of CPPBTR and baselines with different sequence lengths, which include: the RMSE of
the CPPBTR and baselines on TaxiBJ (Fig. a); the RMSE of the CPPBTR and baselines on BikeNYC (Fig. b); the RMSE of
the CPPBTR and baselines on TaxiNYC (Fig. c).

4) ASTCNN is the best performing domain-based knowl-

edge model. It achieves the best performance on both

RMSE and MAPE in terms of TaxiBJ, but our methods

achieve performances comparable to ASTCNN. The

results illustrate that attention mechanism is effective.

We can see that PBTR + residual unit and PBTR

+ Local-CNN achieve the lowest RMSE and MAPE on

BikeNYC and TaxiNYC, only a bit higher RMSE and MAPE

than ASTCNN. The reason is that the time granularity of

BikeNYC and TaxiBJ are different. The time interval of

TaxiBJ is 1 hour, whereas BikeNYC has a time interval of

half an hour. Assuming we use data of 28days (4weeks),

the length of flow sequnece is 672 in terms of BikeNYC.

However, if the sequence length is 672, we can only use

data of 14 days (2weeks) in terms of TaxiBJ to train our

model. It is hard for our model to learn periodicity and trend

of temporal dependency since that the data of 14 days are

not enough. However, knowledge-based methods (DeepST,

ST-ResNet&ASTCNN) don’t suffer from time granularity.

VI. ANALYSIS

In this section, we conduct experiments to further analyze our

model.

A. THE ABILITY OF MODELING VERY LONG-TERM

TEMPORAL DEPENDENCY

In this experiment, CPPBTR is compared to RNNs (vanilla

RNN, LSTM and GRU). The comparison is aimed to demon-

strate that CPPBTR can model very long-term temporal

dependency better than RNNs. The length of input sequence

is fixed as one of {3, 6, 12, 24, 48, 120, 336, 720}. We don’t

try a sequence longer than 720 since that the GPU resources

are limited. From Fig. 7, we can see that as the sequence

length goes longer, the RMSE of our model in terms of

both datasets decreases. When the sequence length is short

(3, 6, 12, 24), the three variants of RNN perform better

than CPPBTR, indicating that RNNs can model closeness of

temporal dependency very well. However, when the length of

TABLE 3. Performance comparison of Transformer-based methods,
the best results are bolded.

input sequence is greater than 120, RNN, LSTM and GRU

have very bad performance. This demonstrates that RNNs

cannot learn very long-term temporal dependencies of crowd

flows, whereas our model can.

B. EFFECTIVE OF BIDIRECTIONAL TEMPORAL

REPRESENTATION

Recall that in our model, we introduce Pre-trained Bidirec-

tional Temporal Representation model (PBTR). To illustrate

the effectiveness of the PBTR, we compare the performance

of CPPBTR and following methods:

1) Vanilla Transformer: a standard transformer, the set-

tings are as same as CPPBTR, consisting of a 3-layer

encoder and a 3-layer decoder.

2) Transformer-Pretrained : its model structure is as same

as Vanilla Transformer. The encoder is pre-trained via

forward auto-regressive modeling.

3) BiLSTM-Pretrained: a LSTM based encoder-decoder

model. The encoder is a pre-trained Bi-LSTM model.

Different from PBTR, Bi-LSTMhave two LSTMunits.

One performs forward auto-regressive modeling, and

the other performs backward auto-regressive modeling.

We observe that CPPBTR significantly outperforms other

models, demonstrating the effectiveness of the bidirectional

temporal representation.

C. VISUALIZATION OF ATTENTION

A sequence of length 672 (data of 4 weeks) is selected from

BikeNYC as input to predict the flow of the 673th timestep.
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FIGURE 9. Visualization of the attention distribution.

Then, we visualized the attention distribution of the decoding

side of CPPBTR. Fig. 5 indicates that the time dependency

learned by our method is in some respects consistent with

domain-based methods, some aspects are inconsistent. We

have the following findings:

• Consistent aspect: Fig. 8(a) demonstrates that the

attention distribution is sparse. The weights of most

frames are zero. This is consistent with the domain

knowledge-based method, where only a small number

of frames (keyframes) contributes to traffic prediction.

From Fig. 8(b), we also notice that frames close to the

673th timestep are more weighted. It demonstrates that

the recent flows are of the great importance to predic-

tion. This is consistent with domain knowledge-based

methods. This also shows that our model can model the

closeness of temporal dependency.

• Inconsistent aspect: Fig. 8(a) shows that the change

of attention distribution has regularity and periodicity.

It also proves that the proposed method can learn reg-

ularity and periodicity of temporal dependency auto-

matically. However, Fig. 8(a) demonstrates that the

period of attention weight is approximately 2 days,

whereas domain knowledge-based methods assume that

the period of flows is one day or one week. The temporal

dependency our method learned is not consistent with

the domain knowledge.

D. PREDICTING CROWDS FLOW USING PBTR

CPPBTR achieved good performance. However, the number

of parameters of CPPBTR is much more than PBTR. In this

sub-sectionwe explore how to use PBTR for traffic prediction

directly. The observation of training PBTR shows that the

loss of PBTR’s on the training set is very small, but the

results of test are poor. We believe that this phenomenon is

caused by inconsistent testing and training process. During

training, PBTR can observe the future information. However,

FIGURE 10. Effect of lengths of l based on RMSE using the dataset
TaxiNYC.

TABLE 4. Performance comparison of PBTR and PBRT + HA, HA-based
data augmentation achieves remarkable results.

only previous crowd flows can be used as input data during

inference.

We proposed a data augment method (PBTR + HA)

based on historical average (HA) that makes training and

test process consistent. Given a previous input sequence (left

sequence) XL = {xt−l, xt−l+1, · · · , xt−1}, predict the flow xt
at timestep t . According to HA, input sequence on the right

side of xt is calculated as follow:

XR =
1

N

N∑

i=1

{
xt+1−N∗p, xt+2−N∗p, · · · , xt+l−N∗p

}
(15)

where l = |XL |, p is weekly period. Denote masked xt asMt

Then we concatenate XL , Mt and XR to construct the input:

I = concat [XL ,Mt ,XR] (16)

Then PBTR predict the crowd flow at timestep t , computed

as follow:

x̂t = PBTR (I) (17)

Table 4 demonstrates that PBTR + HA significantly out-

performs PBTR. We believe that PBTR + HA is effective

because of two reasons:

• HA makes the process of training consistent with the

process of inference.

• HA is suitable because of properties of crowd flows.

Crowd flows have regularity and periodicity, and thus,

the data generated by HA is a good simulation of future

data.

Further, we explored how traffic and history traffic affect

predicted value. For a predicted value xt at timestep t ,

we have: xt = at−lxt−l + at−l+1xt−l+1 + · · · + at−1xt−1 +
atx

mask
t + at+1xt+1 + · · · + at+l−1 + ε, where ε is bias,

At = {at−l, at−l+1, . . . , at+l} is the attention distribution of

xt calculated by the attention mechanism.
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l is a hyperparameter. A larger l means more data. In gen-

eral, more data yield the better performance. However, our

experiments find that the length of l has a conditionally

positive relation with performance. The results demonstrate

that PBTR + HA achieves the best performance when l = 7

and l = 14. We think this is consistent with the results in

subsection VI.C and the views of knowledge-based meth-

ods that attention distribution has periodicity and is sparse,

Keyframes have the greatest impact on predicated value. For

instance, when l = 10, the data D10 ( D10 represents data

with a sequence length of 10 days) is more than D7. But

the performance is reduced. This phenomenon indicates that

D[8,10] is not critical, and it makes no contribution to traffic

prediction. It can be reargued as noise.

VII. CONCLUSION

In this paper, we proposed a general framework called PBTR

(Pre-trained Bidirectional Temporal Representation) to learn

the temporal dependency of spatial-temporal data. We also

proposed a sequence to sequence framework to predict crowd

flows in regular region based on Transformer, including

PBTR as the encoder. Experiment results demonstrate that

PBTR is capable ofmodeling very long-term temporal depen-

dency and CPPBTR outperforms all baselines.

In the future, we plan to combine our method with Graph

neural networks (GNN), applying PBTR on spatial-temporal

graphs such as crowd flows in irregular regions, vehicle speed

prediction on road route.
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