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ABSTRACT

The core of information retrieval (IR) is to identify relevant
information from large-scale resources and return it as a
ranked list to respond to the user’s information need. In
recent years, the resurgence of deep learning has greatly
advanced this field and leads to a hot topic named NeuIR
(i.e., neural information retrieval), especially the paradigm
of pre-training methods (PTMs). Owing to sophisticated
pre-training objectives and huge model size, pre-trained
models can learn universal language representations from
massive textual data, which are beneficial to the ranking
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task of IR. Recently, a large number of works, which are
dedicated to the application of PTMs in IR, have been intro-
duced to promote the retrieval performance. Considering the
rapid progress of this direction, this survey aims to provide
a systematic review of pre-training methods in IR. To be
specific, we present an overview of PTMs applied in different
components of an IR system, including the retrieval compo-
nent, the re-ranking component, and other components. In
addition, we also introduce PTMs specifically designed for
IR, and summarize available datasets as well as benchmark
leaderboards. Moreover, we discuss some open challenges
and highlight several promising directions, with the hope
of inspiring and facilitating more works on these topics for
future research.



1
Introduction

Information retrieval (IR) is a fundamental task in many real-world
applications, such as Web search, question answering systems, digital
libraries, and so on. The core of IR is to identify information resources
relevant to user’s information need (e.g., query or question) from a large
collection. Since there might be more than one relevant resource, the
returned result is often organized as a ranked list of documents (e.g.,
Web pages, answers, or responses) according to their relevance degree
against the information need. Such ranking property of IR makes it
different from other tasks, and researchers have devoted substantial
efforts to develop a variety of ranking models in IR.

Over the past decades, many different ranking models have been
introduced and studied, including vector space models (Salton et al.,
1975), probabilistic ranking models (Robertson and Jones, 1976), and
learning to rank (LTR) models (Li, 2014). These methods have been
successfully applied in many different IR applications, such as Web
search engines like Google, news recommender systems like Toutiao,
community question answering platforms like Quora, to name a few.
More recently, a large variety of neural ranking models have been
proposed, leading to a hot topic named NeuIR (Craswell et al., 2017)

3



4 Introduction

(i.e., neural information retrieval). Different from previous non-neural
ranking models that rely on elaborately-designed features and manually-
designed functions, neural ranking models can automatically learn
low-level dense representations from data as ranking features. Despite
the success of neural models in IR, a major performance bottleneck lies
in the availability of large scale, high-quality and labeled datasets as
deep neural models often have a large number of parameters to learn
(Dehghani et al., 2017b).

In recent years, PTMs have brought a storm and fueled a paradigm
shift in Nature Language Processing (NLP) (Qiu et al., 2020). The idea
is to firstly pre-train models with self-supervised language modeling,
e.g., predicting the probability of a masked token, and then adapt the
pre-trained model to downstream tasks by introducing a small number of
additional parameters and fine-tuning them with some task-specific ob-
jectives. As is demonstrated in recent works (Peters et al., 2018; Howard
and Ruder, 2018), these pre-trained models are able to capture a decent
amount of linguistic knowledge as well as factual knowledge, which are
beneficial for downstream tasks and can avoid learning such knowledge
from scratch. Moreover, with the increasing amount of computational
power and the emergence of the Transformer architecture (Vaswani
et al., 2017), we can further improve the capacity of pre-trained models
by updating the parameter scale, e.g., from million-level to billion-level
(e.g., BERT (Devlin et al., 2019) and GPT-3 (Brown et al., 2020)) and
even trillion-level (e.g., Switch-Transformers (Fedus et al., 2021)). Both
of these are desirable properties for modeling the relevance in IR. On
one hand, pre-trained embeddings, which are learned on huge textual
corpus with self-supervised modeling objectives, are able to capture
intrinsic semantics inside queries and documents. On the other hand,
large-scale pre-trained models with deeply stacked Transformers have
sufficient modeling capacities to learn complicated relevance patterns
between queries and documents. Owing to these potential benefits, we
have witnessed explosive growth of research interest in exploiting PTMs
in IR (Onal et al., 2017; Lin et al., 2021a). Note that in this survey, we
focus on PTMs in text retrieval, which is central to IR. Readers who
are interested in PTMs in content-based image retrieval or multi-modal
retrieval could refer to (Dubey, 2020; Fei et al., 2021).
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Up to now, numerous studies have been devoted to the application
of PTMs in IR. In academia, researchers have carried out a variety of
innovation and initiative in the usage of PTMs in IR. For example, earlier
attempts tried to leverage pre-trained word embeddings to promote
ranking models, and have achieved some notable results (Onal et al.,
2017). More recent works proposed to improve existing pre-trained
models by either reforming the model architecture (MacAvaney et al.,
2020; Khattab and Zaharia, 2020; Gao and Callan, 2021a) or considering
novel pre-training objectives (Chang et al., 2020; Ma et al., 2021b; Ma
et al., 2021c), which better meet the requirements of IR. Meanwhile, in
industry, Google’s October 2019 blog post1 and Bing’s November 2019
blog post2 both showed that pre-trained ranking models (e.g., BERT-
based models) can better understand the query intent and deliver a
more useful result in practical search systems. Besides, looking at the
ranking leaderboard3 today, we can see that most top-ranked methods
are built on PTMs, just by looking at the names of these submissions.
Considering the increasing number of studies on PTMs in IR, we believe
that it is the right time to survey the current literature, highlight
advantages and limitations of existing methods, and gain some insights
for future development.

In this survey, we aim to provide a systematic and comprehensive
review of works about PTMs in IR. It covers PTMs published in major
conferences (e.g., SIGIR, TheWebConf, ICLR, WSDM, CIKM, AAAI,
ACL, and ECIR) and journals (e.g., TOIS, TKDE, TIST, IP&M, and
TACL) in the fields of deep learning, natural language processing, and
information retrieval from the year 2016 to 2021. There exists some
previous works discussing related topics. For example, both Onal et al.
(2017) and Guo et al. (2020) reviewed the landscape of neural retrieval
models used in three major IR tasks. They also discussed early usage
of pre-trained embeddings in neural ranking models, but did not cover
every aspect of PTMs in IR. Guo et al. (2022) reviewed semantic models
for the first-stage retrieval, including early semantic retrieval models,
neural retrieval models, and retrieval models based on PTMs. More

1https://www.blog.google/products/search/search-language-understanding-bert/
2https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
3https://microsoft.github.io/msmarco/#docranking

https://www.blog.google/products/search/search-language-understanding-bert/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://microsoft.github.io/msmarco/#docranking
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recently, Lin et al. (2021a) provided a thorough survey of transformer-
based models for IR, which reviews existing literature on the application
of pre-trained contextual embedding in text ranking. Different from
these works, we make a comprehensive overview of PTMs applied in
IR, including the usage of pre-trained word embeddings as well as the
application of pre-trained transformers. More specifically, we reviewed
the application of PTMs in different components of an IR system,
including the first-stage retrieval component, the re-ranking component,
and other components. We also describe PTMs specifically designed for
IR tasks, as well as resources for pre-training or fine-tuning ranking
models. In addition to the model discussion, we also introduce some
open challenges and suggest potentially research directions for future
works.

The structure of this survey is organized as follows. We will firstly
provide a systematic overview of IR in Section 2. Following this, we
then review works about PTMs applied in the retrieval component,
the re-ranking component, and other components in Sections 3 to 5,
respectively. In Section 6, we present works in designing novel PTMs
tailored for IR. We also summarize available large-scale datasets as well
as popular benchmark leaderboards in Section 7. Finally, we conclude
this paper in Section 8 and raise some promising directions for future
research.



2
Background

In this section, we describe basic concepts and definitions of IR in a
hierarchical manner and briefly review PTMs in IR. This background
overview can help readers gain basic ideas of IR and lead to a better
understanding on how PTMs can be beneficial for IR.

2.1 A Hierarchical View of IR

As is shown in Figure 2.1, we illustrate IR by decomposing the search
process with a hierarchical view, from the core problem to the framework,
to the system. Specifically, we use capital letters Q, D, F to denote a
set of queries, documents and retrieval functions, and lower-case letters
q, d, f denote a specific instance respectively. rel refers to the relevance
estimation model which calculate the relevance scores sij for each (qi, dj)
pair. Rq denotes returned search results against an issued query q.

2.1.1 The Core Problem View of IR

The basic objective of the IR system is to provide relevant information to
users in response to their information need. Thus, the most fundamental
problem is to estimate the degree of relevance between a query q and

7
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The System View

The Framework View

The Core Problem View

Relevance Estimation

Retrieval Process

Search Engine
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Figure 2.1: A Hierarchical View of IR

a document d. In practice, search begins with the emergence of a user
intent which is the main goal a user has when issuing a query into
a search engine. To some extent, the query can be regarded as the
representative of the search intent. Then the mission of the search
engine is to return the most “relevant” results related to the given query
and display these results as a ranked list to the user. Thus, the better
performance of the search engine in terms of estimating the relevance
level between q and d the better the user satisfaction. To evaluate the
relevance score of a pair of q and d, existing works construct models to
consider the correlation between the content of q and d on the basis of
different strategies. There are three typical groups of these models:

• Classical retrieval models: The key idea of these models is
to utilize exact matching signals to design a relevance scoring
function. Specifically, these models consider easily computed statis-
tics (e.g., term frequency, document length, and inverse document
frequency) of normalized terms matched exactly between q and d.
And the sum of contributions from each query term that appears
in the document is used to derive the relevance score. Among
these models, BM25 (Robertson et al., 1994) is shown to be ef-
fective and is still regarded as a strong baseline of many retrieval
models nowadays. Besides BM25 and its variants, there are other
representative retrieval functions, such as PIV (Singhal et al.,
2017) derived from vector space model, DIR (Zhai and Lafferty,
2004) derived using the language modeling approach, PL2 (Amati
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and Rijsbergen, 2002) based on the divergence from randomness
framework, etc. However, these models may encounter the “vo-
cabulary mismatch problem” due to “hard” and exact matching
requirements.

• Learning to Rank (LTR) Models: The key idea of these mod-
els is to apply supervised machine learning techniques to solve
ranking problems using hand-crafted, manually-engineered fea-
tures. Effective features include query-based features (e.g., query
type and query length), document-based features (e.g., PageRank,
document length, number of in-links and number of clicks) and
query-document matching features (e.g., number of occurrences,
BM25, N-gram BM25 and edit distance). According to the number
of documents considered in loss functions, LTR models can be
grouped into three basic types: 1) Pointwise approaches which
consider individual documents and regard the retrieval problem
as classification or regression problem. Example models include
PRank (Perceptron Ranking) (Crammer and Singer, 2001) and
McRank (Li et al., 2007). 2) Pairwise approaches which take pairs
of documents into consideration. For example, RankNet (Burges
et al., 2005) is a pairwise method which adopts Cross Entropy as
loss function in learning and RankSVM (Herbrich, 1999) which
performs ranking as a pairwise classification problem and employ
the SVM technique to perform the learning task. 3) Listwise ap-
proaches which consider the entire list of documents. For example,
LambdaMart (Burges et al., 2006) trains a ranking function by
employing Gradient Descent to minimize a listwise loss function.
Please refer to another survey (Li, 2014) on LTR models for IR
for more details.

• Neural Retrieval Models: The key idea of these models is
to utilize neural networks to abstract relevance signals for rele-
vance estimation. These models use the embedding of q and d

as the input and are usually trained in an end-to-end manner
with relevance labels. Compared to non-neural models, these mod-
els can be trained without handcrafted features. Without loss
of generality, these models can be grouped into representation-
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focused models, interaction-focused models, and mixed models.
1) Representation-focused models aims at learning dense vector
representations of queries and documents independently. Then
metrics such as cosine similarity and inner products are used to
calculate the “distance” between queries and documents to esti-
mate the relevance score. Example representation-focused models
include DSSM (Huang et al., 2013) and CDSSM (Shen et al., 2014),
etc. 2) Interaction-focused models capture “interactions” between
queries and documents. These models utilize a similarity matrix A
in which each entry Aij refers to the similarity between embedding
of the i-th query term and the embedding of the j-th document
term. After constructing the similarity matrix, interaction-based
models apply different approaches to extract features that are
adopted to produce the query-document relevance score. Example
interaction-focused models include DRMM (Guo et al., 2016) and
convKNRM (Xiong et al., 2017b), etc. 3) Mixed models com-
bine the design of the representation-focused component and the
interaction-focused component, Duet (Mitra et al., 2017) and
CEDR (MacAvaney et al., 2019) for example. For more detailed
information please refer to these earlier surveys (Onal et al., 2017;
Guo et al., 2020) on NeuIR models for IR

2.1.2 The Framework View of IR

Given a document collection D, the aim of IR is to provide a search
result list Rq where results are ordered in terms of their relevance levels
given a query q. Since the document collection is massive, besides consid-
ering effectiveness, a practical IR system needs to give consideration to
efficiency as well (Frieder et al., 2000). In that regard, in a conventional
retrieval architecture, several stages with different focuses on effective-
ness and efficiency are built. We depict a retrieval architecture (f in
Figure 2.1) in Figure 2.2. As shown in Figure 2.2, an initial retriever is
involved to recall relevant results from a large document collection. In
terms of relevance scores given by the retriever, these initial results are
ranked to form an initial result list. Then this initial result list is passed
through n re-rankers to generate the final ranked list which is provided
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to users. Each re-ranker receives a ranked list from the previous stage
and in turn provides a re-ranked list that contains the same number of
or fewer results. Although both aiming at estimating relevance levels of
query-document pairs, retrievers and re-rankers usually adopt different
models. Since retrievers need to recall relevant documents from a mas-
sive document pool, efficiency should be given priority. In that regard,
traditional models such as BM25 (Robertson et al., 1994) are used
to construct initial retrievers. As to re-rankers, according to the stage
wherein they play a role, re-rankers can be further categorized into early-
stage re-rankers and later-stage re-rankers. Compared to later-stage
re-rankers, early-stage re-rankers will focus more on efficiency but will
pay more attention to effectiveness than retrievers. Since the number
of documents considered by later-stage re-rankers is small, later-stage
re-rankers will focus more on effectiveness. Conventional re-ranking
models include learning to rank models (e.g., RankNet (Burges et al.,
2005) and LambdaMart (Burges et al., 2006)) and neural models (e.g.,
DRMM (Guo et al., 2016) and Duet (Mitra et al., 2017)).

According to the number of re-rankers, the retrieval process can be
defined in the following manner (n is the number of re-rankers):

• Single-stage Retrieval (n = 0): the ranked list recalled by the
initial retrieval is presented to users without passing through
any re-ranker. This type of retrieval is applied in early retrieval
frameworks such as boolean retrieval and scenarios in which the
exact matching is sufficient and preferential.

• Two-stage Retrieval (n = 1): besides the first-stage retrieval,
existing IR frameworks also utilize a reranker to further improve
the quality of the ranked list. Features that are not involved in
the first-stage retrieval, such as multi-modal features, collected
user behaviors and knowledge graphs, are also considered in the
re-ranking stage.

• Multi-stage Retrieval (n ≥ 2): a multi-stage retrieval architec-
ture comprises more than one reranking stage. Different re-rankers
may adopt diverse structures and take advantage of different in-
formation sources.
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query

Initial
Retriever Reranker Reranker

n Reranker(s)

…Document
Collection

Figure 2.2: The retrieval architecture. According to the number of re-rankers,
this retrieval process can be defined as Single-stage Retrieval (n = 0), Two-stage
Retrieval (n = 1) and Multi-stage Retrieval (n ≥ 2).

2.1.3 The System View of IR

As a practical system, the search system enables end users to perform
IR tasks. Besides considering effectiveness and efficiency, a good search
system should also be user-friendly. Hence, a good search system needs
to deal with different issues existing in the real-world usage which re-
quire different components to cooperate. We depict the conventional
framework of a search system in Figure 2.3. The search query issued
by a user may be short, ambiguous and sometimes miss-spelt. In that
regard, a query parser is needed to operate the original query and
convert it to a query representation which can reveal the user’s true
intent to some extent. The operations on the original query may include
rewriting, expansion and so on. From the document side, since different
web documents have different page structures to organize the content,
a document parser/encoder is then essential to process and index web
pages. A document parser/encoder can also secure the speed in finding
relevant documents for a given search query. Without the document
index, the search system would need to scan every document in the
corpus, which is time-consuming and requires considerable computing
power. Besides the query parser and document parser/encoder, the re-
trieval & ranking component which is described above is used to provide
most relevant results to the user. In the framework of a search system,
the core parts are data structure and storage which are considered in
the document component. Delving into the history of the document
index, we observe a paradigm shift from the symbolic search system
to the neural search system. In the following, we briefly introduce how
these two systems index documents and also their pros and cons.
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• Symbolic search system: In a symbolic search system, rules
are required to build the document parser which indexes, filters
and sorts documents by a variety of criteria, and then translate
this data into symbols that the system can understand. Hence
the name, symbolic search. Especially, symbolic search system
will index documents to build an inverted index which consists
of two parts: a dictionary and postings. The dictionary contains
all terms that appear in the document collection. Then for each
term, a list that records which documents the term occurs in
is generated. Each item in the list is called a posting (or post).
The list is conventionally called a posting list (or inverted list).
The pros of symbolic search systems are the fast retrieval ability
and the provided result is interpretable while the cons are that
these systems are stuck using one language and require high
maintenance cost (Manning et al., 2008).

• Neural search system: While the symbolic search system fo-
cuses more on “exact match”, a neural search system attempts
to capture “semantic match”. Instead of designing a set of rules,
the neural search system applies pre-trained models to obtain
low-dimensional dense representations of documents, which de-
velops a generalized ability of the search system to find relevant
results. The document index in neural search systems is called
vector index. Compared to symbolic search systems, neural search
systems are more resilient to noise and easy to extend and scale
which are the pros. The cons of neural search systems include less
explainability and the need of lots of data for training (Mitra and
Craswell, 2018).

After building the document index (inverted index or vector index),
the search query and documents will be fed into retrieval and re-ranking
stages which are elaborated in the above. In the retrieval and re-ranking
stages, symbolic search systems prefer term-based models and learning
to rank models, while neural search systems adopt more dense retrieval
models and neural ranking models.
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Search Query

Search Result
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Figure 2.3: The framework of a practical search system.

2.2 A Brief Overview of PTMs in IR

Deep learning models are data-hungry. Especially for models with
a massive number of parameters, large datasets are needed to fully
learn model parameters and circumvent overfitting issues. However,
building a large-scale labeled dataset for IR is a laborious, expensive
and time-taking task. In contrast, constructing large-scale yet unlabeled
corpora (e.g., crawled web pages and search logs) is much easier. Thus,
an intuitive way is to employ PTMs to exploit the corpora to learn a
better initialization of model parameters. Then, the workflow becomes:
1) PTMs are first applied to learn either good representations of texts
or better interaction between text-pairs based on unlabeled datasets; 2)
the learned representations/interactions are then fine-tuning and used
for downstream tasks. Specifically, depending on the target downstream
task, there exist different options for the fine-tuning: 1) Full fine-tuning:
fine-tuning all weights with the data from the downstream task; 2)
Partial fine-tuning: fine-tuning partial weights that are specific to the
downstream task while freezing the other weights; 3) Freezing the
weights: using the representation from the frozen weight to solve the
downstream task. Existing works show that learned representations or
interactions extracted from the PTMs are beneficial for many IR tasks
such as document retrieval and re-ranking (Guo et al., 2016; Lin et al.,
2021a). In this Section, we briefly overview typical PTMs in IR and
introduce how they benefit IR in different stages of the search system.
The purpose of this section is to help readers to gain basic knowledge
of pre-training methods designed for IR tasks.

The development of PTMs in IR has roughly gone through two
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phases. During the 2010s, in the first phase, word embedding methods
have been investigated to develop meaningful representations of words.
While recently, in the second phase, transformer-based methods are
proposed to gain better representations or interactions of texts by con-
sidering more sophisticated model structures and pre-training objectives.
We briefly overview these two methods and their relationship to IR.

2.2.1 Word Embedding Methods

An embedding refers to a representation of items in a new space where
the properties of items and the relationship between these items are
preserved. Then the relatedness of items can be computed based on
the notion of similarity in this new space. In that regard, if the item
representations are close to one another means that those items are close
to one another. Word embedding methods learn word representation by
setting up an unsupervised prediction task which enables pre-training
in a large corpus before using the representation in downstream tasks.
Specifically, the objective is to have words with similar contexts occupy
close spatial positions in the new space. This section briefly overviews
classical word embedding methods and their usages in IR tasks. Classical
word embedding methods can be categorized into the following groups:

• Word2vec: In Word2vec approaches (Mikolov et al., 2013a; Mikolov
et al., 2013b; Mikolov et al., 2013c), the word embedding of a
term is learned by considering its neighbours within a fixed size
window over the text. There are two architectures, i.e., skip-gram
and continuous bag-of-words (CBOW). Both architectures apply
a shallow neural model with one hidden states. For the skip-gram
architecture, given a center word, the model learns to predict
the most likely words in a fixed-sized window around it. For the
CBOW architecture, in contrast, the model learns to predict the
center word based on the context words. Since the skip-gram
architecture creates more training samples from the same window
of text, it trains slower than the CBOW model during training
phase (Mikolov et al., 2013a).

• GloVe: Pennington et al. (2014) proposed GloVe that generates
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global vectors for word representation. Unlike training on indi-
vidual term-neighbor pairs as in word2vec approaches, GloVe
performs training on aggregated global word-word co-occurrence
statistics from a corpus. Different from applying a feedforward
neural model, GloVe constructs a word-context matrix, i.e., for
each “word”, how frequently we see this word in some “context”
can be counted. Then the matrix factorization technique is utilized
to yield a lower-dimensional matrix (embedding matrix) where
each row refers to a vector representation (word embedding) for a
corresponding word.

• Paragraph2vec: Paragraph2vec (Le and Mikolov, 2014), also
known as Doc2vec, is another widely used technique that creates an
embedding of a generic block of text, such as sentences, paragraphs
and documents. Expanding upon the Word2vec, Paragraph2vec
adds another vector that represents the paragraph ID to the
input. In that regard, while training the word embedding, the
numeric representation of the paragraph can also be obtained. In
the context of IR tasks, Ai et al. (2016a) and Ai et al. (2016b)
proposed a number of changes tailored for IR to the original
Paragraph2vec, i.e., document frequency based negative sampling
and document length based regularization.

Unsupervised and pre-trained word embeddings can be incorporated
into IR models and enhance the performance of these models due to
their great abilities in capturing semantic and syntactic properties of the
input texts. word embeddings are used to refine term weight-
ing schemes in the inverted index. For example, Zheng and Callan
(2015) proposed DeepTR that leverages pre-trained word embeddings
learned by the CBOW-based Word2vec. DeepTR can estimate the term
importance and replaces classical term weighting schemes, such as Term
Frequency (TF), in the inverted index so as to improve the retrieval
performance. Moreover, word embeddings are applied to better
estimate the matching levels of queries and documents. For
example, Zamani et al. (2018b) proposed SNRM that learns sparse
representation for each query and document based on pre-trained word
embeddings to better capture semantic relationships between them.
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They then constructed an inverted index based on the learned sparse
representation which enhances the performance of retrieval. Gysel et al.
(2018) proposed the Neural Vector Space Model (NVSM) that is a
pre-trained word embeddings method tailored for IR. In the NVSM
paradigm, they learn low-dimensional representations of words and
documents from scratch using gradient descent and rank documents
according to their similarity with query representations that are com-
posed of word representations. Furthermore, word embeddings are
adopted to benefit crucial IR-related tasks, e.g., query sugges-
tion and document summarization. For example, Dehghani et al.
(2017a) used word2vec as an input to encode queries and then feed the
query representations into a customized sequence-to-sequence model
to deal with the session-based query suggestion problem. Yin and Pei
(2015) bulit a CNN-based summarizer, named DivSelect+CNNLM, to
enhance the performance of the extractive summarization. Specifically,
the CNNLM module is pre-trained on a large corpus to learn better
sentence representations by capturing more internal semantic features.

2.2.2 Transformer-based Methods

Although word embedding methods are demonstrated to be beneficial for
IR tasks, they can not deal with the context-dependent nature of words
and the issue of polysemous. This motivates attempt at constructing pre-
training methods that can learn context-aware representations of words
or interactions between words. Among them, Transformer (Vaswani
et al., 2017) is a successful instance and has been widely adopted in
IR scenarios. This section briefly overviews typical transformer-based
methods, including the structures and pre-training objectives. We also
provide examples of using transformer-based methods in IR tasks.

Vaswani et al. (2017) proposed transformer, an encoder-decoder
architecture that consists of stacked self-attention and point-wise, fully
connected layers and supplement modules including positional embed-
dings, layer normalization and residual connections. Specifically, in the
encoding phase, the transformer first calculates an attention score by
comparing a given word with each other word in the input sequence. The
attention score indicates that how much each of the other words should
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contribute to the next representation of the given word. Transformer
then utilizes these attention scores to compute a weighted average of
the representations of all the words in the input sequence. The attention
mechanism of the decoding phase is similar to the encoding phase. The
difference is that the attention mechanism in the decoding phase only
decodes one representation from left to right at a time and each step of
the decoding phase takes into account results decoded in the previous
step. Due to the parallel modeling capabilities of the self-attention
mechanism, transformer is able to train big models with extensive pa-
rameters using advanced computing devices. In that regard, transformer
has served as the backbone neural structure for the subsequently derived
PTMs.

GPT (Radford et al., 2018) and BERT (Devlin et al., 2019) are two
landmark models of transformer-based pre-training methods. Among
them, GPT uses auto-regressive language modeling as the pre-training
objective. In particular, the objective is to maximize the conditional
probabilities of all the words in the context of their corresponding
previous words. Hence, GPT is good at generation tasks. And BERT
applies auto-encoding language modeling as the pre-training objective
and focus more on language understanding and discriminative tasks.
More specifically, two pre-training objectives word together to optimize
the parameters of BERT in the pre-training phase: 1) Masked language
modeling (MLM): tokens are randomly masked with a special token
[MASK] and the objective is to predict words at the masked positions
in the context of other words; 2) Next sentence prediction (NSP): the
objective is to predict whether two sentences are coherent with a binary
classifier.

Due to their great ability on capturing polysemous disambigua-
tion, syntactic and lexical structures, also the factual knowledge con-
tained in the text, GPT, BERT and their successors have achieved
success in IR scenarios. Transformer-based methods are used to
estimate the relevance level between the query and the docu-
ment. These PTMs also have different high-level architectures, such
as representation-focused (e.g., DPR (Karpukhin et al., 2020), Col-
BERT (Khattab and Zaharia, 2020) and ME-BERT (Luan et al., 2021))
and interaction-focused (e.g., MonoBERT (Nogueira and Cho, 2019),
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Figure 2.4: Recent PTMs in IR. “Orange”, “Green” and “Blue” refer to the “Query
Parser”, “Retrieval and Rerank”, and “Doc Parser & Encoder” stages for which
PTMs target respectively.

CEDR (MacAvaney et al., 2019) and duoBERT (Pradeep et al., 2021)).
For example, DPR (representation-focused) learns dense embeddings
for the document with a BERT-based encoder, and queries are encoded
with another independent BERT-based encoder. The outputs of the
two encoders are then fed into a “similarity” function to obtain the rel-
evance score. MonoBERT (interaction-focused) takes the concatenation
of the query and document as the input and feeds the [CLS] vector
output by BERT to a feed-forward network to obtain the relevance
score of the given query and document. Moreover, transformer-based
methods also considers the trade-off between efficiency and
effectiveness according to the stages (retrieval or reranking)
they targets. Especially, for the retrieval stage which focuses more
on efficiency, PTMs are used to improve the performance of retrieval
models (sparse, dense or hybrid). For example, ColBERT (Khattab and
Zaharia, 2020) generates contextualized term embeddings for queries
and documents with a BERT-based dual-encoder and executes two
orders-of-magnitude faster per query compared to other baseline models.
In contrast for the re-ranking stage, PTMs need to deal with a small set
of documents and capture more fine-grained relevance signals. For exam-
ple, CEDR (MacAvaney et al., 2019) leverages the contextualized word
embeddings of BERT to build a similarity matrix and then feed into an
existing interaction-focused neural ranking model such as DRMM and
KNRM. The [CLS] vector is also incorporated in CEDR to enhance
the model’s signals. Different transformer-based methods are
tailored for different components, i.e., “Query parser”, “Doc
Parser & Encoder”, and “Retrieval and Rerank” in the search
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system. For example, BERT-QE (Zheng et al., 2020) leverages BERT
as the backbone network to expand queries and MeshBART (Chen and
Lee, 2020) leverages user behavioral patterns such as clicks for genera-
tive query suggestion in the “Query Parser” component. DeepCT (Dai
and Callan, 2019a) maps contextualized embeddings learned by BERT
to term weights. Then the predicted term weights are used to replace
the original TF field in the inverted index, which refines the “Doc Parser
& Encoder” component. Compared to the “Query Parser” and “Doc
Parser & Encoder” component, the “Retrieval and Rerank” component
receives much more attention in the sense that there exist lots of PTMs
designed for this component. We show more recent examples in Fig-
ure 2.4 where different colors refer to different components on which
these PTMs focus. Especially, “Orange” refers to the “Query Parser”
component, “Green” refers to the “Retrieval and Rerank” component
and “Blue” refers to the “Doc Parser & Encoder” component as shown
in Figure 2.3.



3
Pre-training Methods Applied in the Retrieval

Component

Traditional search engines rely on term-based retrieval models like
BM25 (Robertson and Zaragoza, 2009) for effective and efficient retrieval.
Recently, with the rapid progress in representation learning (Bengio
et al., 2013) and pre-training methods (Devlin et al., 2019; Yang et
al., 2019; Radford et al., 2019), PTMs-based retrieval models have
become the popular paradigm to improve retrieval effectiveness. While
equipped with PTMs, retrieval models have achieved great progress in
terms of effectiveness (Yan et al., 2021; Karpukhin et al., 2020). In this
section, we briefly review pre-training methods applied in the retrieval
component. Firstly, we give a comprehensive summary of pre-trained
retrieval models in terms of model structures. Then, we discuss several
challenges and promising topics in terms of the learning of retrieval
models.

3.1 Basic Model Structure

From the perspective of representation type and index mode, PTMs-
based retrieval models can be devided into three categories (Guo et
al., 2022): 1) Sparse Retrieval Models: improve retrieval by obtaining
semantic augmented sparse representations and index them with the

21
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inverted index for efficient retrieval; 2) Dense Retrieval Models: project
input texts (i.e., queries and documents) into standalone dense repre-
sentations and turn to approximate nearest neighbor search algorithms
for fast retrieval; 3) Hybrid Retrieval Models: build sparse and dense re-
trieval models concurrently to absorb merits of both for better retrieval
performance.

3.1.1 Sparse Retrieval Models

Sparse retrieval models focus on improving retrieval performance by
either enhancing the bag-of-words (BoW) representations in classical
term-based methods or mapping input texts into the “latent word”
space. In this framework, queries and documents are represented with
high-dimensional sparse embeddings so that the inverted index can be
still used for efficient retrieval (Dai and Callan, 2019a; Bai et al., 2020).

With the development of PTMs, pre-trained models have been
widely employed to improve the capacity of sparse retrieval models. We
summarize existing works that apply PTMs in sparse retrieval models
into four classes, including term re-weighting, document expansion,
expansion + re-weighting, and sparse representation learning.

Term Re-weighting One of the most direct ways to improve the term-
based retrieval is to measure term weights with contextual semantics,
instead of term frequency (TF) (Figure 3.1 (a)). Originally, there have
been works utilizing pre-trained word embeddings to estimate term
importance. Earliest, Zheng and Callan (2015) leveraged term weights
estimated by pre-trained word embeddings to replace TF in the inverted
index to improve the retrieval effectiveness. Later, Frej et al. (2020)
utilized FastText (Bojanowski et al., 2017) to estimate the IDF field
in the inverted index. For the above models, the pre-trained word
embeddings could be fixed or fine-tuned during the retrieval models
training. Recently, with the development of pre-trained models, there
are also explorations to utilize them to estimate term weights. For
example, Dai and Callan (2020a) used BERT to obtain contextualized
token embeddings, and then mapped them to term weights, instead of
TF, to build the inverted index. Later, Dai and Callan (2020b) adapted
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Figure 3.1: Four architectures of sparse retrieval models.

DeepCT (Dai and Callan, 2020a) to estimate term weights for long
documents and proposed the HDCT model. It firstly estimates passage-
level term weights as the DeepCT does, and then uses a weighted sum
to combine them into document-level term weights.

Document Expansion Besides explicitly predicting term weights, aug-
menting the document with semantically related terms is another prac-
tical method (Figure 3.1 (b)). Based on this, the vocabulary mismatch
problem can be alleviated to some extent, and elite terms in the docu-
ment are promoted at the same time. In fact, compared with extensive
works on query expansion based on PTMs, document expansion are
less popular in the IR field. Different from early methods that expand
documents by mining information from external resources (Sherman
and Efron, 2017; Agirre et al., 2010) or the collection itself (Efron et al.,
2012; Liu and Croft, 2004; Kurland and Lee, 2004), Nogueira et al.
(2019a) firstly fine-tuned a pre-trained language model T5 (Raffel et al.,
2020) with relevant query-document pairs. The learned model generates
multiple queries for each document and appends them to the original doc-
ument. Then, they used BM25 to retrieve relevant documents based on
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the expanded document collection. Later, based on the assumption that
document ranking and document expansion tasks share certain inherent
relations and can benefit from each other, Yan et al. (2021) used the
document ranking task to enhance the training of document expansion
task. They firstly pre-trained the Transformer encoder-decoder architec-
ture (Vaswani et al., 2017), where the encoder is pre-trained to support
document re-ranking and the decoder is pre-trained for query generation.
Then, they conducted a joint fine-tuning process, where a mini-batch is
constructed with equal probability from the training data of document
ranking or query generation tasks. Finally, the learned Seq2Seq model is
used to expand documents as docTTTTTquery (Nogueira et al., 2019a)
does.

Expansion + Re-weighting Based on the above two methods, a more
optimal method is to combine the idea of term re-weighting and doc-
ument expansion, learning term weights in the whole vocabulary in-
stead of existing tokens in the document (Figure 3.1 (c)). For example,
SparTerm (Bai et al., 2020) predicts the term importance distribution
in the vocabulary space based on contextual token embeddings got
by BERT. Based on this, it re-weights existing and expand terms si-
multaneously. Moreover, it includes a gating controller to ensure the
sparsity of the final representation. Later, Formal et al. (2021) proposed
SPALDE to improve SparTerm (Bai et al., 2020), which used a saturate
function to prevent some terms from dominating the representation and
employs a FLOPS loss to enable the end-to-end learning. In addition
to doing the expansion and re-weighting simultaneously in a unified
framework, Mallia et al. (2021) proposed a simple but effective model
called DeepImpact, which leverages docTTTTTquery (Nogueira et al.,
2019a) to expand documents firstly, and then uses BERT to estimate
term importance for appeared terms.

Sparse Representation Learning Different from the above methods
to improve document representations in explicit symbolic space, sparse
representation learning methods learn sparse embeddings for queries and
documents in the latent word space (Figure 3.1 (d)). SNRM (Zamani
et al., 2018b) is the pioneer to learn sparse representations for ad-hoc
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retrieval. Based on the pre-trained word embeddings, SNRM learns
standalone sparse representations for each query and document to cap-
ture semantic relationships between them, which shows better retrieval
effectiveness over baselines. Recently, Jang et al. (2021) proposed UHD-
BERT, which learns extremely high dimensional representations with
controllable sparsity based on pre-trained language models. More specif-
ically, it firstly obtains dense token embeddings for queries/documents
by BERT and maps them to high-dimensional vectors with a linear
layer. Then, the Winner-Take-All mechanism is employed to remain
top-k dimensions in the dense token embeddings and get the sparse
token embeddings. Finally, it generates the sparse query/document rep-
resentation by token-wise max pooling. Besides, Yamada et al. (2021)
integrated the learning-to-hash technique into DPR (Karpukhin et al.,
2020) to represent input texts with binary codes. BPR is learned with
a multi-task objective, which trains the BERT-based dual-encoder and
the hash function in an end-to-end manner. Based on the binary codes of
queries and documents, BPR drastically reduces the memory cost of the
document index and obtains comparable accuracy on two benchmarks.

3.1.2 Dense Retrieval Models

Another research line, namely dense retrieval models, turns to dense rep-
resentations from sparse representations. Dense retrieval models employ
the dual-encoder architecture, also known as Siamese network (Bromley
et al., 1993), to learn low-dimensional dense embeddings for queries and
documents. Afterward, the learned dense representations are indexed
via approximate nearest neighbor (ANN) search algorithms to support
online search.

Dense retrieval models usually consist of two encoders to learn
standalone dense embeddings for queries and documents independently.
Then, a simple matching function (e.g., dot product or cosine similarity)
is used to calculate the relevance scores based on the learned represen-
tations. In this way, the basic architecture of dense retrieval models can
be formulated as:

rel(q, d) = f(φP T M (q), ϕP T M (d)), (3.1)
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where φP T M and ϕP T M are query and document encoders based on
pre-training methods, and f is the similarity function. In the literature,
two dense retrieval families have emerged: single-vector representations
(Figure 3.2 (a)), where the entire input text is represented by a single
embedding, and multi-vector representations (Figure 3.2 (b)), where
the input text is represented by multiple contextual embeddings.

Single-vector Representation Initially, some works used simple heuris-
tic functions to aggregate pre-trained word embeddings and obtained
dense representations for queries and documents. For example, Clin-
chant and Perronnin (2013) presented a document representation model
based on pre-trained word embeddings. They used the fisher kernel
framework to transform word embeddings into a high-dimensional space
and then aggregated them to generate the document representation.
Afterwards, Gillick et al. (2018) obtained query and document represen-
tations with the average of pre-trained word embeddings. The surprising
experimental results indicate that dense retrieval is a practical alterna-
tive to the symbolic-based retrieval models. Besieds, Gysel et al. (2018)
and Agosti et al. (2020) proposed word-embedding learning methods
tailored for IR (see Section 6 for details). However, it is easy to find that
obtaining query/document representations by directly aggregating word
embeddings would lose contextual semantics and word orders informa-
tion. To address this problem, Le and Mikolov (2014) proposed the
Paragraph Vector (PV) algorithm to learn fixed-length representations
from variable-length texts. Later, Ai et al. (2016b) found the unstable
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performance and limited improvements of PV representations for ad-hoc
retrieval and produced modifications to it for IR tasks.

Except for obtaining dense query/document representations based
on pre-trained embeddings, existing attempts at improving the quality
of dense retrieval models focuses on finding more powerful representation
learning functions. This is typically achieved by using a pre-trained
language model as the encoder. One of the representatives that apply
pre-trained models for dense retrieval is DPR (Karpukhin et al., 2020),
which is proposed for OpenQA tasks. DPR learns dense embeddings for
queries and passages with two independent BERT-based encoder. Then,
relevance scores are calculated with the inner product operation between
query and document representations. The results on several OpenQA
datasets show that DPR outperforms BM25 and is beneficial for the
downstream QA performance. For ad-hoc retrieval tasks, Zhan et al.
(2020b) proposed RepBERT to replace BM25 for the retrieval component.
The model architecture of RepBERT is similar to DPR (Karpukhin
et al., 2020) except that RepBERT uses a shared BERT-based encoder
for queries and documents. Similarly, the PTMs-based dense retrieval
method also improves conversational search. For example, Yu et al.
(2021) presented ConvDR to learn contextualized BERT embeddings for
multi-turn conversational queries and documents respectively, and then
retrieves relevant documents using dot products. Another approach
to building a strong dense retriever is to distill the learned knowledge
from a more complex model (Tahami et al., 2020; Lin et al., 2021b;
Choi et al., 2021; Hofstätter et al., 2020). For example, Tahami et al.
(2020) utilized the knowledge distillation (KD) technique to distillate the
BERT-based cross-encoder network to the dual-encoder model, which
heavily increases the retrieval effectiveness.

Multi-vector Representation Besides learning a single global repre-
sentation for queries and documents, another approach is to obtain
multiple vectors for them. A natural method is to take pre-trained
word embeddings as term-level representations for queries and docu-
ments. Earliest, Kenter and Rijke (2015) proposed to rely only on
pre-trained word embeddings for short texts retrieval. They took the
cosine similarity between the query word embedding document word
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embedding to replace the TF field in BM25 for retrieval, which shows
better performance than baselines. Later, Mitra et al. (2016) proposed
to retain dual word embedding spaces. Based on the learned pre-trained
word2vec embedding model, query words are mapped into the input
space and document words are mapped into the output space. The final
relevance score is calculated with aggregated cosine similarities between
all query-document word pairs.

Except for the pre-trained word embeddings, there are also a number
of works that employ pre-trained models to learn query/document
representations for IR. ColBERT (Khattab and Zaharia, 2020) generates
contextualized term embeddings for queries and documents with a
BERT-based dual-encoder, and then employs the MaxSim operator
to obtain the matching score. Later, Gao et al. (2021a) proposed
a similar method, but only calculating similarities between exactly
matched terms for queries and documents in the MaxSim operator.
Besides, an alternative way is to employ different encoders for queries
and documents based on the heterogeneity between documents and
queries. For example, Luan et al. (2021) proposed ME-BERT, which
takes the contextualized embedding of CLS as the single-vector query
representation and the first m contextualized token embeddings as the
multi-vector document representation. Finally, the largest inner product
between each document vector with the query vector is token as the
relevance score. Recently, Tang et al. (2021) proposed a novel multi-
vector representation method, which clusters BERT-based document
term embeddings with k-means to generate multiple representations for
each document. Experimental results show that the model can improve
retrieval results significantly on several QA datasets .

3.1.3 Hybrid Retrieval Models

Sparse retrieval models take a (latent) word as the unit of representa-
tions, which can calculate the matching score based on exact matching
signals. On the other hand, dense retrieval methods learn dense embed-
dings for queries and documents and the relevance is evaluated with
soft matching signals. To benefit from both of them, hybrid retrieval
models learn sparse and dense representations for queries and docu-
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ments simultaneously and calculate the final relevance scores with a
merging method (Figure 3.3).

To begin with, there are a number of works proposing to combine
pre-trained word embeddings with term-based models for the retrieval
component. For example, Vulić and Moens (2015) combined word
embeddings with the language model for monolingual and bilingual
retrieval and obtained better results. Besides, Roy et al. (2016a) also
proposed to inject pre-trained word embeddings into the standard
query likelihood model (QL) for document retrieval. However, most of
these works got the conclusion that only relying on pre-trained word
embeddings to build the retrieval model always shows poor performance,
unless combining it with the term-based retrieval method.

With the boosting development of pre-trained models, they are natu-
rally combined with term-based models to enhance retrieval effectiveness.
Seo et al. (2019) proposed to learn dense and sparse representations for
each phrase in the collection concurrently for OpenQA tasks, where the
dense vector is constructed by BERT-based embeddings, and the sparse
embedding is the tf-idf representation of the phrase. Afterwards, Lee
et al. (2020) proposed to replace the TF-based sparse representation
in DenSPI (Seo et al., 2019) with a learned contextual sparse repre-
sentation based on BERT. A more simple and direct way to build a
hybrid retrieval model is to linearly combine matching scores of a sparse
retrieval system and a dense retrieval system using a single trainable
weight (Lin and Ma, 2021; Luan et al., 2021). For example, Luan
et al. (2021) proposed to linearly combine BM25 and ME-BERT (Luan
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et al., 2021) to produce strong performance. There are also works using
more sophisticated merging methods. For example, Kuzi et al. (2020)
leveraged a hybrid approach (BM25 + DE-BERT) with RM3 (Jaleel
et al., 2004) as the merger for document retrieval, and Gao et al. (2020c)
proposed CLEAR to learn the BERT-based dense retriever with the
residual of a sparse retrieval model (BM25).

3.2 Advanced Topics

Along with the development and achievement of PTMs-based retrieval
models, researchers begin to explore more challenging but promising
topics.

3.2.1 Negative Sampling Strategy

The negative sampling strategy is a key factor for determining the per-
formance of learned retrieval models. Generally, hard negative examples
are considered as informative negatives, because they can improve the
ability of the model to differentiate similar examples. Thus, how to
integrate hard negatives into the learning of PTMs-based retrievers is a
widely concerned topic.

One of exemplary methods is the ANCE training method (Xiong
et al., 2021), which firstly warms up the RoBERTa-based (Liu et al.,
2019) dense retriever with BM25 negatives, and then continues the dual-
encoder training with the periodically refreshed ANN index for hard
negative sampling. Experimental results indicate that ANCE elevates
dense retrievers and convincingly surpasses baselines on several bench-
marks. Later, Zhan et al. (2020a) and Zhan et al. (2021b) proposed a
novel technique for dense retriever training, which constructs the docu-
ment index based on a warmed-up dense retriever (e.g., ANCE (Xiong
et al., 2021) or STAR (Zhan et al., 2021b)). Then, at each training
step, they performed full retrieval based on the fixed document index
and updated the query encoder with top retrieved documents as neg-
atives. Experimental results on both passage ranking and document
ranking tasks show that the proposed method significantly outperforms
all competitive sparse and dense retrieval models. Recently, Hofstätter
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et al. (2021a) argued that previous methods select the training batch
with random queries, making in-batch negatives with little information
for dense retrievers training. Based on this observation, they proposed
to train dense retrievers with TAS-Balanced batches, which composes
training batches with topic-aware query sampling and margin-balanced
negative sampling.

3.2.2 Joint Learning with Other Components

To improve retrieval performance, PTMs-based retrieval models can be
learned jointly with the index module. Besides, for different applications,
the retrieval component can be learned with downstream components
end-to-end, e.g., re-rankers for ad-hoc retrieval and readers for OpenQA.

Joint Learning with Index As mentioned above, efficiency is one of
the core considerations for the retrieval component. To support rapid
online search, retrieval systems usually build an index for all documents
in the collection. Specially, for dense retrieval methods described in
Section 3.1.2, they usually rely on ANN search algorithms (Aumüller
et al., 2020; Echihabi et al., 2019; Li et al., 2020c) to perform efficient
retrieval. Existing works always separate the dual-encoder learning
and ANN index building (Khattab and Zaharia, 2020; Zhan et al.,
2021b), which suffer from degraded retrieval performance. To address
the problem, Zhang et al. (2021a) explored the joint training of the
dual-encoder and the Product Quantization (PQ) (Jégou et al., 2011)
index. They introduced a trainable indexing layer, which is composed
of space rotation, coarse quantization and product quantization opera-
tions. Later, Zhan et al. (2021a) proposed JPQ, which firstly utilizes
K-Means to generate fixed discrete codes for documents and then only
trains the query encoder and PQ Centroid Embeddings jointly. However,
this method suffers from a degree of performance loss. Further, Zhan
et al. (2022) proposed RepCONC, which is capacity to optimize index
assignments of document embeddings with a constrained clustering pro-
cess. Experimental results show the RepCONC achieves better retrieval
effectiveness on two benchmarks.
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Joint Learning with Re-ranker On the basis of the pipeline architec-
ture, most existing works in the IR field focus only on one of components,
independently of all the others. However, separating each component
for IR systems building suffers from a few drawbacks and produces
sub-optimal performance. In fact, apart from separately training each
component (e.g., retrieval and re-ranking), it has shown that the re-
trieval and ranking tasks are related with each other (Huang et al.,
2020; Gao et al., 2020a; Khattab and Zaharia, 2020). Based on these
observations, Ren et al. (2021) proposed a joint training method for
dense retrieval and re-ranking, where the relevance information can be
transferred between the two components with a unified list-wise training
approach. Different from this work, Zhang et al. (2021b) considered to
jointly train the two components within an adversarial retriever-ranker
(AR2) framework. Within the framework, the retriever aims to recall
hard negatives to confuse the re-ranker, and the re-ranker learns to
differentiate positives and hard negatives. In this way, the retriever and
re-ranker can be enhanced iteratively.

Joint Learning with Reader Some studies set about the end-to-end
learning of dense retrievers and downstream tasks (e.g., machine read-
ing comprehension (MRC)). For example, RAG (Lewis et al., 2020b)
combines a pre-trained dual-encoder (DPR (Karpukhin et al., 2020)) as
the retriever with a pre-trained Seq2Seq model (BART (Lewis et al.,
2020a)) as the generator for OpenQA tasks. The query encoder and
the generator are fine-tuned end-to-end with the fixed document en-
coder. The model evaluation on three OpenQA tasks demonstrates the
state-of-the-art performance. Recently, Sachan et al. (2021) presented
an end-to-end training method for retrieval-augmented OpenQA sys-
tems. They built the EMDR2 model, which initializes the dual-encoder
retriever with BERT and builds the reader on top of T5. Compared
with the stage-wise training, their method allows training signals to
flow between the reader and the retriever. Experimental results demon-
strate that their method achieves new state-of-the-art results on three
benchmarks.
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3.2.3 Generalization Ability

In many scenarios outside commercial web search, obtaining training
labels is difficult and sometimes infeasible due to privacy constraints
(e.g, the medical domain). Thus, the generalization ability of retrieval
models is important in real-world scenarios. However, many PTMs-
based retrieval models have been observed diminishing advantages over
term-based retrieval models like BM25 in various benchmarks if they are
not fine-tuned with adequate labels (i.e., the zero-shot setup). Specially,
Thakur et al. (2021) studied whether the retriever models can generalize
to other domains and concluded that the generalization ability of PTMs-
based retrieval models is significantly worse than PTMs-based re-ranking
models.

Some early works show great improvement under the zero-shot
setting for dual encoders by leveraging strong training losses (Hofstätter
et al., 2021a) or synthetic data generation (Liang et al., 2020; Ma et al.,
2021a; Reddy et al., 2021). For example, TAS-B model (Hofstätter et al.,
2021a) with the training loss function based on knowledge distillation
shows strong generalization capacity and better out-of-distribution
performances. Ma et al. (2021a) proposed a data augmentation approach
to leverage existing QA datasets to train a question generation model
given the paired document. Then, the model can be applied to target-
domain documents and generates queries for them. Then, these synthetic
query-document pairs can be used to train a retrieval model. Recently,
Ni et al. (2021a) challenged the belief in Thakur et al. (2021) that
models with more interactions between queries and documents have
better generalization ability. They explored the generalization ability
of dual-encoder models by scaling up the model size while keeping the
bottleneck embedding size fixed. Experimental results on the BEIR
dataset (Thakur et al., 2021) show that scaling up the model size brings
significant improvement on a variety of retrieval tasks, especially for out-
of-domain generalization. Besides, Xin et al. (2021) proposed MoDIR
to improve the generalization ability of dense retrievers. Concretely,
they introduced an auxiliary domain classifier into the dense retriever
training to learn domain-invariant representations, where the retrieval
model is not only optimized for the retrieval-orient objective, but also
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trained to confuse the domain classifier.

3.3 Summary

This chapter presents how pre-training methods are applied in the
retrieval component.

Firstly, we review existing works within three basic model structures,
including sparse retrieval models, dense retrieval models, and hybrid
retrieval models. Sparse retrieval models employ pre-training methods to
re-weight terms based on semantic features or map queries/documents
into a latent word space to enhance term-based retrieval methods. Due
to the sparsity of the representation obtained by sparse retrieval models,
they can still utilize the existing inverted index for efficient retrieval.
Dense retrieval models employ PTMs-based dual-encoder architecture
to learn standalone low-dimensional dense representations for queries
and documents, and then use approximate nearest neighbor search
algorithms for fast retrieval. Equipped with pre-training methods, these
models often show promising results and naturally obtain increasing
research interests in this community. Hybrid retrieval models are com-
posed of sparse retrieval models and dense retrieval models to absorb
merits of both. As expected, these hybrid models usually show better re-
trieval performance, and at the cost, they require much higher retrieval
complexity.

Secondly, we discuss several advanced topics of wide concern to
researchers in this community, including negative sampling strategy,
joint learning with other components, and generalization ability. For
PTMs-based retrieval models, negative sampling is one of the most
important elements for efficient and effective model learning. There
have been extensive works focusing on exploring various negative mining
methods. Moreover, the application of PTMs in the retrieval component
makes the joint learning of other modules (e.g., index) or downstream
tasks possible. Currently, there have been some preliminary works for
this topic and it would be a promising direction for the future work. Al-
though these PTMs-based retrival models have shown inspiring results
on several popular benchmarks (e.g., MS MARCO and Natural Ques-
tions (Kwiatkowski et al., 2019)), they are observed reduced advantages
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if are not fine-tuned with abundant task-specific labeled data. With the
release of BEIR(Thakur et al., 2021) benchmark, researchers begin to
focus on improving the generalization ability of PTMs-based retrieval
models. However, it is still in its infancy stage and worthy of further
exploration.



4
Pre-training Methods Applied in the Re-ranking

Component

In this section, we review previous works applying PTMs in the re-
ranking component. After the efficient first-stage retriever, there can be
a stack of complex re-rankers in the re-ranking stage where the input of
each re-ranker comes from the previous one. Such a multi-stage cascaded
architecture is commonly-used both in the industry (Yin et al., 2016;
Liu et al., 2021g; Li and Xu, 2014) and the ranking leaderboard in the
academia (Craswell et al., 2021). Generally, PTMs are often employed to
re-rank a small set of candidates provided from the first-stage retriever.
By learning powerful representations or modeling complex interactions
between queries and documents, PTMs have achieved great success
compared with previous methods (Mikolov et al., 2013a; Lin et al.,
2021a; Nogueira et al., 2019b).

4.1 Basic Model Architecture

According to the two schools of relevance modeling, i.e., discriminative
modeling or generative modeling, in the IR literature (Ponte and Croft,
2017; Robertson and Zaragoza, 2009), the methods applying PTMs
in the re-ranking component can be categorized into three classes: 1)
Discriminative Ranking Models: model P (r, d|q) by directly learning a

36
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(a) Discriminative ranker: Representation-focused vs. Interaction-focused
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Figure 4.1: Two categories of re-ranker.

relevance “classifier” from labeled data; 2) Generative Ranking Models:
approximate the true relevance distribution P (r|q, d) by modeling the
generative process between queries and documents; 3) Hybrid Retrieval
Models: joint learn the discriminative model and generative model to
leverage merits of both for better ranking performance.

4.1.1 Discriminative Ranking Models

From the very beginning (about 2015-2018), applying PTMs in the
re-ranking component focused on leveraging the pre-trained word em-
bedding such as word2vec (Mikolov et al., 2013a) and GloVe (Penning-
ton et al., 2014) into discriminative ranking models (Guo et al., 2016).
These word embeddings are mainly used to initialize the embedding
layer of ranking models, and other components are usually learned
from scratch. Start with BERT, which pre-trains a Transformer model
using self-supervised objectives on large-scale unlabeled corpora, both
pre-trained word representations and interactions can be “transferred”
to the ranking model. The former can be used in the same way as
previous static word embeddings like word2vec, or like the latter that
fine-tunes the whole pre-trained model and only a lightweight task-
specific classification layer is learned from scratch. This is also known as
the “pre-train and fine-tune” paradigm. It’s more convenient to fine-tune
the whole model on downstream tasks as there is no need to design com-
plicated model architectures for each task. BERT and its successors have
achieved great success when applied in the re-ranking component in this
way. This type of PTMs are generally pre-trained with self-supervised
language modeling tasks, and the encoder is employed to build the
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(a) monoBERT (b) CEDR (c) duoBERT
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Figure 4.2: Three typical interaction-focused discriminative ranking models.

discriminative ranking model (Devlin et al., 2019; Yang et al., 2019).
We term this type of PTMs as discriminative PTMs. Following the
recipe of NeuIR (Guo et al., 2020), there are also two ways in applying
PTMs as the discriminative ranking model on the re-rank component,
namely representation-focused models and interaction-focused models.
We introduce them in detail in the following.

Representation-focused Models Representation-focused models (Fig-
ure 4.1 (a) left) usually adopt a bi-encoder architecture and encode
queries and documents separately, and then the relevance score is com-
puted with simple similarity functions between representations of queries
and documents. Without loss of generality, the representation-focused
method could be also abstracted by Eq. 3.1. φP T M and ϕP T M are PTMs
which take the raw text of the query or the document as the input, and
output one dense representation for each, respectively. φP T M and ϕP T M

could share the parameters or not. Then, the relevance is computed by
simple similarity functions f like cosine or MLP.

In the early days, representation-focused methods often employ pre-
trained word embeddings to initialize the representation of input tokens,
and the remaining parameters are all randomly initialized. For example,
ARC-I (Hu et al., 2014) trained 50-dimensional word embeddings on
Wikipedia and Weibo data using the Word2Vec. The word embeddings
are then fed into convolutional neural networks to obtain text sequence
representations, and the relevance score is computed using a MLP based
on the two text sequence representations. They found that fine-tuning
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the word embedding can further improve the performance compared
with fixing them. More details about the word embedding based ranking
model are referred to this survey (Mitra and Craswell, 2018).

More recently, the Transformer-based PTMs are introduced to fine-
tune the entire model on downstream tasks, rather than just initializing
the word embedding layer. For example, Qiao et al. (2019) proposed to
utilize the BERT to encode the query and the document separately, and
take the [CLS] embedding of the last layer as their representations and
then calculate the ranking score via cosine similarity. Other studies have
shown that using mean pooling on contextual embeddings of the whole
input sequence performs better than the [CLS] embedding (Reimers
and Gurevych, 2019). Qiao et al. (2019) have shown that representation-
based architectures are less effective than interaction-based architectures,
but they can be more efficient by utilizing approximate nearest neighbor
(ANN) techniques to search from the pre-computed representations.
Thus, the representation-based model architectures are usually applied
to the first-stage retrieval phase (see Section 3.1.2).

In general, discriminative ranking models can be fine-tuned using the
pointwise, pairwise, or listwise learning objectives following the learning
to rank literature (Liu, 2007). However, the Transformer-based PTMs
usually limit their input length to 512 due to the quadratic time and
memory complexity of self-attention (Devlin et al., 2019; Brown et al.,
2020). Therefore, long documents that contained more than 512 tokens
will be truncated before being fed into the model, and more techniques
about handling long documents for Transformer-based PTMs will be
introduced in Section 4.2.1.

Interaction-focused Models Interaction-focused models (Figure 4.1
(a) right) aim to capture low-level interactions between terms in query-
document pairs, and then calculate the relevance score based on their
interaction features. For the usage of pre-trained word embeddings in
interaction-focused models, they are also used to initialize the repre-
sentation of input tokens as in representation-focused models (Mitra
and Craswell, 2018). In this section, we mainly introduce how the
Transformer-based PTMs are used as the interaction-focused model.
Without loss of generality, the interaction-focused method could be
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abstracted as:
rel(q, d) = f(ηP T M (q, d)) (4.1)

where ηP T M is the interaction function based on PTMs, and f is the
scoring function that estimates the relevance score according to the
interaction features. The input for ηP T M is a concatenation of the query
and the document. In this way, the interaction of the query and the
document could be modeled inside the ηP T M with the self-attention
mechanism. Note that the interaction cannot be pre-calculated until
the query comes, which implies that it’s better to use these models
re-rank a small set of documents due to the large cost of computing all
query-document pairs in the collection.

The most immediate usage of pre-trained Transformers in the
interaction-focused model is MonoBERT (Nogueira and Cho, 2019).
It takes the concatenation of the query and the passage as inputs of
the BERT, and feeds the [CLS] vector to a feed-forward network to
obtain the relevance score. They take the pointwise loss function, i.e.,
the cross-entropy loss, to fine-tune the BERT model on the MS MARCO
passage ranking task (Craswell et al., 2021). It is interesting to see that
such a direct use of BERT showed outstanding performances compared
with previous NeuIR models. CEDR (MacAvaney et al., 2019) stacks a
traditional neural interaction model upon monoBERT, that is, it lever-
ages the contextualized word embeddings of BERT to build a similarity
matrix and then feed into an existing interaction-focused neural ranking
model such as DRMM (Guo et al., 2016) and KNRM (Xiong et al.,
2017a). The [CLS] vector is also incorporated in CEDR to enhance the
model’s signals. CEDR is trained using pairwise hinge loss (Dehghani
et al., 2017b). By combining BERT and NeuIR models, CEDR is sig-
nificantly better than the Vanilla BERT on Robust04 and WebTrack
2012–14. DuoBERT (Pradeep et al., 2021) takes a sequence comprised
of a query and two passages as input and is trained to estimate the
positive candidate is more relevant than the negative. The advantage of
DuoBERT is that it can explicitly model the document comparison for
pairwise learning objectives. However, due to the length limitation of the
BERT, the whole sequence is truncated to 512 tokens and each passage
can have at most 223 tokens. Though its effectiveness as shown in the
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Figure 4.3: Two categories of generative ranking models.

passage ranking, the length restrictions largely hinders the application
of duoBERT in document ranking tasks.

4.1.2 Generative Ranking Models

In addition to discriminative ranking models, researchers have also
explored the usage of PTMs as generative ranking models (Roy et al.,
2016b; Santos et al., 2020; Nogueira et al., 2020). The generative ranking
model, which aims to approximate the true relevance distribution, has
studied a lot in last century such as statistical language models (Ponte
and Croft, 2017), and classic probabilistic relevance models (Robertson
and Jones, 1976). Statistical language models like the query likelihood
model consider the query generation process which ranks documents ac-
cording to how likely query terms are generated from a document (Ponte
and Croft, 2017; Zhai, 2007). Classic probabilistic relevance models like
Binary Independence Model focuse on describing how a document is
generated from a given query (Lafferty and Zhai, 2003; Robertson and
Jones, 1976).

For word embedding-based PTMs, they can be easily incorporated
into statistical generative retrieval models to compute the semantic
similarity between terms (Ganguly et al., 2015; Zuccon et al., 2015).
For example, word embeddings can be used to augment the language
modeling (Zamani and Croft, 2016) or the translation modeling (Zuc-
con et al., 2015) in the generative ranking model by computing the
semantic similarity between terms. For Transformer-based PTMs, they
pre-train the decoder of the Transformer or the whole Transformer
(i.e., encoder-decoder) with autoregressive language modeling tasks like
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causal language modeling (Brown et al., 2020). Then, the pre-trained
generative model can be applied to either generate the query or the
relevance label. We term this type of PTMs as generative PTMs. Recent
works on applying generative PTMs to re-ranking are mainly based
on the 1) Query Generation process, which is inspired by the query
likelihood model. Another line of researches studied the 2) Relevance
Generation process which generates a specified relevance token given
the query and the document.

Query Generation The first type of generative ranking models is based
on the query generation process. The basic idea is to rank documents
by the likelihood of generating the query from documents using gen-
erative PTMs like GPT (Brown et al., 2020) and BART (Lewis et al.,
2020a). Without loss of generality, the query generative models could
be abstracted as

rel(q, d) = f(φP T M (q|d)) =
|q|∏

i=1
φP T M (qi|d), (4.2)

where φP T M is the generative PTMs and f is a multiplication function∏
. Given the document d, each query term qi is generated one by one

and the relevance score is thus obtained by multiplying their normalized
probabilities. The usual approach to train such generative models is
to use maximum likelihood estimation (MLE). Note that, at inference
time, the model also uses the Teacher Forcing strategy like the training
process. That is, for each generation, the oracle query term (i.e., ground
truth) is used as input for generating the next, instead of model output
from a prior time step.

A direct usage of pre-training methods in query generation is to
take generative PTMs like GPT and BART to estimate the probability
in generating queries. Santos et al. (2020) proposed a query generative
model for ranking answer passages in QA. They take the conditional
likelihood of generating a question against a passage as the relevance
score following Eq. 4.2. Two types of loss function is proposed to take
advantage of both the positive and negative examples: 1) likelihood
and unlikelihood loss (LUL) based on MLE; 2) a pairwise ranking loss
(RLL) such as a margin loss based on their likelihood. Experiments
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results showed that RLL loss is very helpful for training query generative
ranking models. In addition, they also observed that the generative
ranking models can generate fluent questions. Finally, they found that
the query generative models are as effective as simple discriminative
ranking models for answer selection.

Relevance Generation Relevance generation is focused on generating
specified relevance tokens by feeding the concatenation of the docu-
ment and the query into the generative PTMs, and the probabilities of
these relevance labels are treated as relevance scores. Without loss of
generality, the relevance generative models could be reformulated as:

rel(q, d) = f(φP T M (t|q, d)), (4.3)

where t is the relevance tokens. In essence, the relevance generation
is a classification task as the model is trained using pointwise loss
function on relevance tokens and ranks documents by the probability
of predicting the target relevance token.

Considering the relevance token generation is more like a classifica-
tion task, it can be modeled by both generative PTMs and discriminative
PTMs. Nogueira et al. (2020) proposed to use the generative PTMs T5
for modeling relevance generation. As T5 is a unified text-to-text lan-
guage models, they also devised a text-to-text template for the ranking
task where the input is “Query: [q] Document: [d] Relevant:” and the
output is “true” or “false”. T5 is fine-tuned to generate the target tokens
instead of directly producing relevance probabilities. The probability
of the “true” token is used to represent the document relevance score,
which is normalized with softmax function over the logits of “true” and
“false” tokens . Other target tokens like “yes/no” perform worse than the
“true/false” tokens. Experiments show T5-3B, which was firstly trained
on MS MARCO passage ranking task, outperforms some supervised
training models like Birch, BERT-maxP and PARADE, in a zero-shot
manner on Robust04.

Moreover, the above method is similar to the prompt learning where
the model is guided to predict the “label” based on prompts (Schick and
Schütze, 2021a; Schick and Schütze, 2021b). A template and a verbalizer
are needed to design first for a given task, where the template is used to
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transform the original text to a specific form, and the verbalizer is used
to project original labels to some words which are fit for the template.
Take a sentiment classification task as an example, assume the template
is “[text] It is [mask]” in which the token [text] represents the original
text, and the token [mask] stands for the verbalized words such as
“great” and “terrible”. These two words are mapped from the positive
label and the negative label, respectively. The PTMs are trained to
predict the probability distribution on the [mask] position given the
text with a specific form. On some NLP tasks, the prompt learning has
shown exciting results under the few-shot setting. It might be that the
reformatted task is almost identical to MLM, which makes it a better
usage of pre-trained knowledge (Lester et al., 2021; Li and Liang, 2021).
However, how to leverage the prompt learning to improve the few-shot
learning in IR has not been explored at this point.

4.1.3 Hybrid models

Combining the generative and the discriminative modeling leads to
the hybrid models. Liu et al. (2021a) proposed a multi-task learning
approach to jointly learn the discriminative and the generative relevance
modeling in a unified pre-trained model. They assumed that joint these
two different types of retrieval modeling leads to better generalized,
and hence more effective retrieval model. To verify this hypothesis,
they leveraged the generative PTMs (i.e., BART) or the discriminative
PTMs (i.e., BERT) to learn discriminative ranking tasks as well as other
language generation tasks, such as query generation task, questions
generation task, and anchor text generation task. For the generative
PTMs, they fed the document and the query into the encoder and the
decoder respectively. Then, the query is generated in a sequence-to-
sequence manner and the relevance score is calculated by the last token
of the entire sequence using a feedforward layer. Since the bidirectional
attentions in BERT cannot fully adapt to the sequence-to-sequence
training strategy, they implemented a mix of attention mechanisms
including bidirectional attention, unidirectional attention and cross
attention to support sequence-to-sequence tasks. Their experiments
showed that jointly learning discriminative tasks and generative tasks
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leads to significant improvement on the MS MARCO passage ranking
task.

4.2 Advanced Topics

In addition to the direct application of PTMs in IR, researchers have also
developed a considerable amount of studies to address the IR-specific
challenges. On one hand, the document length varies significantly across
different domains, where PTMs often fail to address the long document
due to the length restriction of the input. On the other hand, PTMs
often consist of a large number of parameters which would increase
the search latency. In what follows, we will introduce researches in
addressing these two problems.

4.2.1 Long Document Processing Techniques

In the traditional ad-hoc retrieval, documents always contain thousand
of tokens in standard TREC datasets (Voorhees, 2004; Dietz et al.,
2017). However, due to the quadratic time and memory complexity
of self-attention mechanism in modern Transformer-based (Vaswani
et al., 2017) PTMs, the length limit of input is always up to 512.
A majority of applications are to segment the long document text
into smaller chunks that can be processed by the PTMs and then
do an aggregation over chunks. Based on the aggregation type, these
methods can be broadly categorized into two classes: 1) Passage Score
Aggregation: aggregate the relevance score of the query and segmented
passage; and 2) Passage Representation Aggregation: aggregate the
representations of segmented passages to document representations first
and then compute the relevance between query and the aggregated
document representations.

Passage Score Aggregation Passage score aggregation is a postpro-
cessing method that only aggregates the relevance score between the
query and the segmented passages provided by the PTMs. Different
methods focus on designing document segmenting and aggregate func-
tion (Dai and Callan, 2019b; Hofstätter et al., 2021b).
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Figure 4.4: Two categories of passage aggregation methods.

Dai and Callan (2019b) proposed to split a document into overlap-
ping passages using a 150-word sliding window. Each passage will be
concatenated with the query to input to the BERT, and the relevance
of each passage is predicted independently. Three methods are proposed
to aggregate the relevance scores of passages: 1) BERT-firstP that only
uses the score of the first passage; 2) BERT-maxP that uses the maxi-
mum score of the passages; 3) BERT-sumP that sums all the relevance
scores of passages. The relevance judgments of segmented passages are
consistent with the document, that is, if the document is relevant to
a query, all the segmented passages are also relevant to the query and
vice versa. However, according to the Scope Hypothesis (Robertson and
Walker, 1994), the document could be partially relevant to a query and
thus not all passages are relevant to a query. There will be noise in
the data if we treat all the passages as positive to the query. BERT-
maxP and BERT-sumP perform better than BERT-firstP on traditional
ad-hoc retrieval tasks including Robust04 and ClueWeb09-B in their
experiments since all passages are taken into account. But these two
methods require more computational cost as all the query-passage pairs
need to be trained and predicted while BERT-firstP only considers
the first passage of each document. IDCM (Hofstätter et al., 2021b)
divides the document into multiple fixed-size windows of 64 words with
overlapping of 7 words for both the previous and latter, respectively.
The basic idea is to firstly take a lightweight and fast selection model
namely ETM, e.g. Conv-KNRM (CK), to learn to select top-k passages.
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And it then takes a slow model like BERT namely ESM to estimate the
passage-level relevance score independently and uses a fully-connected
network to aggregate the top-k passage score. Since some operations
in the IDCM framework are not differentiable like passage selection
module, therefore, they adopts a three-stage optimization pipeline to
training the model. Specifically, ETM and ESM are trained separately
where ETM is first optimized on passages and then on full documents
by aggregating the score of top passages, ESM is distilled from ETM.
IDCM achieves comparable effectiveness to the BERT-based ranker on
two benchmarks including TREC DL 2019 and MS MARCO passage
ranking, but with lower computation cost and query latency. The main
restriction is that this method is a little bit complicated on the model
framework and the training process. Although aggregating passage score
is simple and effective, it loses the long-range dependence over the whole
document as it uses one passage to estimate the relevance independently
every time.

Passage Representation Aggregation Instead of only aggregating
the passage score, aggregating the passage representation seems more
convincing in which the relevance score is estimated by considering all
the passages together.

PARADE (Li et al., 2020a) segments the long document into a
fixed number of overlapping chunks using 225-word sliding windows.
Then all passage representations from a document are aggregated for
estimating the document relevance score. They proposed two types of
passage aggregation method: using a mathematical operation such as
the elementwise mean, max and sum on the representation vectors; or
using a deep neural network including MLP, convolutional neural net-
works and Transformer layers. By aggregating the representations with
more complicated architectures, PARADET ransformer can significantly
improve the performance over passage score aggregation methods like
BERT-maxP and other passage representation aggregation methods
like PARADEmax. PCGM (Wu et al., 2020) focuses on predicting the
sequence of passage-level relevance judgments to avoid splitting a docu-
ment into independent passages. It shows the superiority of capturing
the context-aware fine-grained passage-level relevance signals. To be
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more specific, they first studied the accumulation process of patterns
of the passage-level information from a user’s information seeking per-
spective. They show the sequence of passage-level cumulative gain can
be effectively predicted as a sequence prediction task. Then, BERT
is employed to learn representations of each query-passage pair and
then a LSTM network is adopted to aggregate passage representations
and predict the passage cumulative gain. The cumulative gain of the
last passage is treated as the document-level gain or the document-
level relevance score. The model is trained on graded passage-level
relevance judgments to predict the cumulative gain of previous pas-
sages. Experiments on two Chinese datasets show its effectiveness in
improving ranking performance. The main limitation is that labeling
the passage-level relevance judgments is too expensive.

4.2.2 Model Acceleration

Efficiency is one of the major concerns for applying PTMs in IR as
there is always a large-scale data in the real search scenario. Since
the Transformer-based PTMs often consist of tremendous amount of
parameters ranging from millions to billions, this greatly increase the
computational cost and memory storage. So it’s hard to deploy these
PTMs on the online service in real-world applications or on resource-
restricted devices considering their requirement of low latency. To
address this issue, researches have explored several methods to reduce
the high computational cost in the re-ranking stage including decoupling
the interaction of the query and the document, model distillation,
dynamic modeling, and lightweight fine-tuning.

Decouple the Interaction One of the bottlenecks that limits the effi-
ciency of the Transformer-based PTMs comes from the self-attention
mechanism. In the re-ranking stage, the interaction-focused ranking mod-
els that apply Transformer-based PTMs are widely-used and more effec-
tive than representation-focused ranking models. But the representation-
focused models are more efficient as they can pre-compute the document
representations to reduce the online inference time. Researchers have
studied to incorporate the advantage of the representation-focused
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architectures into the interaction-focused architectures.
PreTTR (MacAvaney et al., 2020) employed the BERT model and

proposed to decouple the low-level interaction of the query and the
document via encoding them separately and then interacting in the late
BERT layers. Thus, the document representations can be pre-computed
offline and only the query needs to be encoded online. So most compu-
tational budget comes from the interaction of the last few layers now.
When merging the query representation and document representation
on layer 11 of BERT, PreTTR achieved a 42X speedup on TREC Web-
Track while not significantly reducing the ranking performance. But
merging them at layer 11 performs poorly on the Robust04 dataset. This
indicates that merging the representation of queries and documents at
which layer depends on the datasets. When the query and the document
encoding is totally decoupled, it degrades to the representation-focused
architecture. Thus, it’s a trade-off between efficiency and effectiveness.
MORES (Gao et al., 2020a) proposed a similar idea to improve the
efficiency of the BERT-based re-ranker in which they modularize the
Transformer-based neural re-ranker into two separate modules, i.e.,
text representation module and interaction module. One of the main
differences is that the interaction module in MORES is not a fully
cross-attention mechanism. It canceled the document-to-query atten-
tion, and only query-to-document attention is performed followed by
query self-attention. In this way, the document representation is kept
unchanged for all queries. Experiments on MS MARCO passage ranking
and TREC 2019 passage ranking showed that 2 layers of lightweight
interaction module can achieve ranking performance competitive with
a fully interaction-focused architecture while achieving tens or hundred
of speedup.

Model Distillation Knowledge distillation is a widely used method for
reducing the computational cost by transferring knowledge from the
teacher to the student. The basic idea is to learn a smaller model from
the outputs of a larger teacher model (Hinton et al., 2015; Sanh et al.,
2019). Hinton et al. (2015) proposed a simple yet effective method that
transfers the final logits of the teacher on labeled data and unlabeled
data to the student where the teacher is first trained on supervised data.
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Other studies also investigate to transfer the intermediate hidden states
or the attention matrix (Jiao et al., 2020). For the Transformer-based
PTMs, there are many studies to verify its effectiveness on various tasks
including in IR.

Gao et al. (2020b) investigated three methods to distill BERT for
ranking, including only distilling the ranking information of the search
task (Ranker Distill), distilling the MLM information over a large
text corpus followed by a normal fine-tuning on the search task (LM
Distill+Fine-tuning), and distilling both (LM Distill+Ranker Distill).
The teacher model uses BERT-base which contains 12 layers of Trans-
former, and the student model uses a 4 or 6 layers of Transformer.
Experiments on MS MARCO passage ranking task showed that distill-
ing the ranker behavior alone is not sufficient and LM Distill+Ranker
Distill method performs best across all datasets and different size of
models. The 6-layer distilled BERT ranker(2X speedup) using the LM
Distill+Fine-tuning method is able to achieve comparable performance
to the original BERT, while the performance of the 4-layer distillation
BERT ranker (9X speedup) drops significantly. On top of the TinyBERT
model (Jiao et al., 2020), Chen et al. (2021c) explored to distill the
student model with three other kinds of internal weights of the teacher
model simultaneously only in the fine-tuning stage, i.e., the attention
weight, the hidden state weight, and the embedding weight. Experiments
show that distilling more knowledge from the teacher model can also
benefit the ranking.

Dynamic Modeling Dynamic modeling which can adapt the model
structures or parameters to different inputs is another promising method
that can improve the efficiency of big models (Han et al., 2021b).
Dynamic modeling can selectively activate some model components of
the whole model, such as some layers or a sub-network, conditioned
on different inputs, and thus allocate computations on demand at the
inference stage. For example, easy samples will have less computation
as they can be predicted quickly with a high confidence. Early exit
is a representative method in this line of research, which allows the
examples to exit at early layers of the model without passing through
the entire model.
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It is natural to apply the idea of early exit to PTMs on ranking tasks,
since most irrelevant documents can be easily predicted given the query.
Xin et al. (2020a) employed such idea from DeeBERT (Xin et al., 2020b)
to the document ranking task. Specially, extra classification layers are
attached to transformer layers of a pre-trained BERT model and then
fine-tune the model by simply minimizing the sum of loss functions
of all classifiers. During inference, if the classifier of the ith layer is
confident about the prediction of the sample, early exiting is performed
and subsequent transformer layers are skipped. Note that the positive
confidence threshold and the negative threshold in their paper are set to
different values as they assume that positive (relevant) documents need
more computations and the confidence score of positive documents is not
only the exiting criterion but also the score for re-ranking. Experiments
on the MS MARCO passage ranking dataset showed early exiting is able
to accelerate inference by about 2.5X while maintaining the effectiveness
of the original model. Cascade Transformer (Soldaini and Moschitti,
2020) is a sequence of re-rankers built on top of RoBERTa, that is, each
re-ranker is a sub-network contained several Transformer layers and a
new classification layer, one after another. When a batch is fed into the
Cascade Transformer, each re-ranker will prune a subset of candidates
and input the rest to the next until meet the last re-ranker. In this
way, only a small set of candidates in one batch is passed through the
whole model and most are pruned early. To enable this approach, the
parameters of all re-rankers are trained in a multi-task learning fashion,
in which one of the re-rankers is sampled to train and update the layers
below the selected re-ranker for every mini-batch. Experiments showed
that the Cascade Transformer can get competitive performance to the
original RoBERTa while largely reducing the computational cost (over
37% per batch).

Lightweight Fine-tuning The most common way to apply PTMs is
to fine-tune all the parameters given the data from the downstream
task. For the word embeddings, they can be fixed alone or fine-tuned
along with the whole neural model without adding too much com-
putation. However, for the Transformer-based PTMs, fine-tuning the
whole model parameters often requires large computation costs and also
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storage spaces, especially when serving a large number of tasks with
different big models. With the ever-increasing size of Transformer-based
PTMs, ranging from millions (Devlin et al., 2019; Brown et al., 2020)
to billions (Brown et al., 2020) or even trillions of parameters (Fedus
et al., 2021), fully fine-tuning gradually became impossible for a regu-
lar community. To mitigate this issue, researchers investigate several
lightweight fine-tuning strategies that updates only a small number of
extra parameters of PTMs while keeping most pre-trained parameters
frozen. In this way, we can not only reduce the computation cost to
improve the efficiency but also store only one big model and many
tunable extra parameters for various tasks.

The intuitive method of lightweight fine-tuning is to freeze some or
all pre-trained parameters, but this will hurt the performance greatly
without some specific designs (Houlsby et al., 2019). Another line of
research studied to insert small neural modules into existing models
and only these inserted modules are fine-tuned on the downstream task.
For example, Houlsby et al. (2019) proposed to insert adapters at each
layer, which is a MLP with a non-linear function that projects the input
vectors down first and then up. Li and Liang (2021) proposed prefix
tuning that prepends several additional prefix tokens to the input or
hidden layers, and only these prefix tokens are fine-tuned on downstream
tasks. Hu et al. (2021) proposed LoRA that learns low-rank matrices for
the attention matrix to approximate parameter updates. Researchers
have also explored these methods into IR tasks. Jung et al. (2021)
examined the above lightweight fine-tuning methods in the PTMs-based
ranking models. They used a BERT-based bi-encoder architecture for
the re-ranking stage. Experiments on three standard ad-hoc retrieval
tasks, including Robust04, ClueWeb09-B and MS MARCO document
ranking dataset, showed the effectiveness of these lightweight fine-tuning
methods. In addition, they also proposed a semi-Siamese bi-encoder
architecture to reflect the different characteristics of query and docu-
ment based on the lightweight fine-tuning methods. For example, when
applying prefix-tuning, they add different prefixes for query encoder and
document encoder besides a common prefix. Experiments also demon-
strate that such a design can enhance the ranking performance on these
datasets.
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4.3 Summary

In this chapter, we first review the basic usage of PTMs when applying
in the re-ranking component. According to the two schools of relevance
modeling in the IR literature, we categorize these works into three
classes, i.e., discriminative ranking models, generative ranking models
and hybrid ranking models. 1) The word embedding methods are either
used to initialize the embedding layer of discriminative neural ranking
models or incorporated into the traditional statistical generative models.
But the recent PTMs pre-train a very deep Transformer model and
then fine-tune the whole model on downstream tasks which is proven
to be more convenient and powerful. 2) The discriminative ranking
models with PTMs can be modeled with representation-focused archi-
tecture or interaction-focused architecture. The representation-focused
architecture is more efficient since it can pre-compute the document
representations and only the query is encoded online. The interaction-
focused architecture is more effective but with more computational
costs as it needs to encode every query-document pair. 3) The gener-
ative ranking models with PTMs considered two kinds of generation
processes, including the query generation and relevance token genera-
tion. The document generation hasn’t been studied due to the difficulty
of generating long texts conditioned on short texts. Inspired by the
model-based IR system (Metzler et al., 2021), the model may directly
generate the document identifier given the short query instead of the
whole document text. 4) The hybrid ranking models jointly learn dis-
criminative ranking objective and query generation using multi-task
learning. Existing approach does not show too much superiority and
requires further exploration. Compared with the generative ranking
models, the interaction-focused discriminative ranking models achieved
better results on the re-ranking stage (Santos et al., 2020). But the
document identifier generation is also worthy of further exploration
considering its efficiency and no needs to store documents.

We then introduced some advanced topics on applying PTMs in the
re-ranking component, such as the long document processing techniques
and various strategies to improve its efficiency. 1) Since the quadratic
time and memory complexity of self-attention mechanism in the Trans-
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former, most Transformer-based PTMs limit the input length up to 512
which is often not enough for web documents. Researchers have studied
two approaches to handle long documents including passage score aggre-
gation and passage representation aggregation, and the former is easy to
use while the latter performers better (Li et al., 2020a). 2) Although only
a small set of documents are re-ranked, efficiency is also one of the ma-
jor concerns of applying PTMs, especially the deep Transformer-based
PTMs. Recent studies mainly focused on decoupling the interaction of
the query and the document for the interaction-focused models, model
distillation, dynamic modeling and lightweight fine-tuning. But all exist-
ing works have made a compromise, such as increasing training budget
(e.g., model distillation and lightweight fine-tuning) or at the expense of
performance (e.g., decoupling the interaction and dynamic modeling).
In the future, model quantization an pruning (Ganesh et al., 2020) may
be worth trying as they can reduce both the model size and the training
cost without losing (too much) performance.



5
Pre-training Methods Applied in Other

Components

In this section, we review existing works in applying PTMs in other
components of a search system, such as query expansion, query rewriting,
document summarization, snippet generation, etc. To elaborate, we
divide these works into three categories: I) Query Processing, II) User
Intent Understanding, and III) Document Summarization. In the next,
we will introduce the pre-training methods applied in these components,
respectively.

5.1 Query Processing

To better bridge the gap between query text and document text, search
systems usually contain a query processing module to rephrase the input
queries. Generally, corresponding tasks include query expansion and
query rewriting.

5.1.1 Query Expansion

Query expansion can be considered as an auxiliary task of document
ranking, aiming to deal with the vocabulary mismatch problem or to
mitigate the gap between queries and documents for better retrieval

55
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performance. Earlier, a large body of work aimed at expanding the
original query with the pre-trained word embeddings (Kuzi et al., 2016;
Roy et al., 2016b; Diaz et al., 2016; Zamani and Croft, 2016). For
example, Zamani and Croft (2016) proposed to use word embeddings
to incorporate and weight terms that are semantically similar to the
query terms and further described two query expansion models which
are based on embeddings. Similarly, Kuzi et al. (2016) leveraged the
terms to expand the original query or incorporate them with the effective
pseudo feedback-based relevance model.

To combine BERT embeddings with probabilistic language models,
Naseri et al. (2021) developed an unsupervised contextualized query
expansion model, namely CEQE, which expands existing queries based
on keywords. Further experiments have demonstrated that CEQE can
enhance retrieval effectiveness on multiple standard test collections.
Besides, Padaki et al. (2020) proposed that query expansion should be
tailored for models like BERT. Compared to keywords, feeding queries
formatted in natural language into BERT-based models may achieve
better reranking performance. In this regard, queries should be expanded
with both a rich set of grammar structures and concepts to build word
relations. An intuitive approach is to segment top-ranked documents of
a specific query into text chunks and then rank these chunks (Zheng
et al., 2020; Zheng et al., 2021). For example, Zheng et al. (2020)
proposed BERT-QE which leverages BERT as the backbone network to
expand queries through three phases: I) rerank candidate documents, II)
select relevant text chunks from the top-ranked documents to expand
queries, and III) rerank the selected expansion chunks. These chunks
will then be concatenated with the original queries for scoring.

5.1.2 Query Rewriting

Query rewriting usually aims to 1) map long-tail queries or questions into
popular or frequent ones, 2) reformulate ambiguous input queries into
well-formed queries to improve retrieval performance. In the pre-BERT
age, some researchers proposed non-contextualized embedding-based
approaches for query rewriting (Grbovic et al., 2015; Grbovic et al.,
2016). By jointly modeling query content and the corresponding context
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within a search session, Grbovic et al. (2015) propose a novel rewriting
method based on a query embedding algorithm. Their approach maps
queries into vectors which are close in the embedding space to allow
query expansion via simple K-nearest neighbor search.

To enhance conversational search, Lin et al. (2020) utilized tra-
ditional IR query reformulation techniques to realize historical query
expansion (HQE) and then applied the T5-base (Raffel et al., 2020)
model for neural transfer reformulation (NTR), i.e., rewriting a raw
utterance into a natural language question without coreference and
omission. There also exists a body of work towards matching user
queries or questions to Frequently Asked Questions (FAQs) (Sakata
et al., 2019; Mass et al., 2020; McCreery et al., 2020). For instance,
Mass et al. (2020) first employed BERT to calculate the semantic simi-
larity between a query and the candidate FAQs. They further generated
question candidates by fine-tuning GPT-2 (Radford et al., 2019) in a
well-designed unsupervised process and then filtered some noisy candi-
dates according to the semantic similarity. Besides FAQ retrieval, query
rewriting is also applied in spoken language understanding systems
for friction reduction (Chen et al., 2020b), or in dialogue systems to
simplify the multi-turn dialogue (Liu et al., 2021b). To reduce the
requirement of high-quality query rewriting training pairs, Chen et al.
(2020b) proposed a pre-training process which constructs more training
objectives by making use of a large amount of readily available historical
queries and their Natural Language Understanding (NLU) hypotheses
(a serialized word sequence by concatenating domain, intent, slot type
and the slot value).

5.2 User Intent Understanding

In complex search scenarios, users may interact with the search system
for multiple rounds. During this process, search systems should under-
stand users’ evolving intent to better satisfy their information needs.
Besides modeling users’ short-term intent with historical signals, the
system can also forwardly provide assistance for search users. Related
tasks include query suggestion, search clarification, and personalized
search.
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5.2.1 Query Suggestion

As users’ search intents become complex nowadays, a single query usually
cannot fulfill their information needs. In this regard, query/question
suggestion techniques provide users with possible future query options,
aiming to help users complete their search tasks with less effort in
complex search scenarios, e.g., session search or conversational search.
Compared to most previous methods (e.g., HRED-qs (Sordoni et al.,
2015), ACG (Dehghani et al., 2017a), and HSCM (Chen et al., 2021a))
that used word2vec or GloVe vectors as an input to encode queries, Jiang
and Wang (2018) constructed a heterogeneous session-flow graph on the
AOL dataset and then applied the node2vec (Grover and Leskovec, 2016)
tool to learn the term embeddings. The pre-trained term embeddings
will then be fed into a reformulation inference network (RIN) to learn a
session-level representation. RIN encodes historical reformulating actions
with an RNN-based framework and achieves SOTA performances in
both discriminative and generative query suggestion tasks.

Some other methods have also attempted to employ Transformer-
based models for query suggestion (Mustar et al., 2020; Chen and Lee,
2020; Mitra et al., 2020; Rosset et al., 2020). For example, Chen and Lee
(2020) proposed MeshBART which leverages user behavioral pattern
such as clicks for generative query suggestion. To enhance conversa-
tional search, Rosset et al. (2020) focused on the usefulness of suggested
questions and presented two novel systems. The first system, namely
DeepSuggest, finetunes BERT to rank question candidates by jointly
optimizing four learning objectives. The second one, DeepSuggest-NLG,
adopts GPT-2 to generate question suggestions based on the maximum
log-likelihood training. Their approaches leverage the weak supervi-
sion signals in the search process, grounding the suggestions to users’
information-seeking trajectories and achieving significantly better per-
formance in the usefulness evaluation. Besides user interactions, Mitra
et al. (2020) also utilized search snippet text to recommend related
questions in web search.
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5.2.2 Search Clarification

As query suggestions are usually presented in a post-search manner,
systems can also proactively ask users questions to clarify their informa-
tion needs and reduce the uncertainty before returning the result list.
Recently, search clarification has attracted much attention in various
IR domains such as conversational search and dialogue systems. To
begin with, Habibi et al. (2016) utilized low-dimensional word embed-
dings learned by word2vec to clarify questions asked by users during
a meeting. From another point, Aliannejadi et al. (2019) proposed
BERT-LeaQuR to encode both a query as well as its corresponding
candidate questions and then employed a module called NeuQS to select
high-quality clarifying questions. They also presented a new dataset
named Qulac for conversational search, which collected clarifying ques-
tions via crowdsourcing based on the faceted or ambiguous topics in
the TREC Web track. Later, Hashemi et al. (2020) introduced Guided
Transformer (GT), which utilizes external information such as the top
retrieved documents and clarifying questions to learn better representa-
tions of input sequences by optimizing a multi-task learning objective.
Extensive experimental results on the Qulac dataset suggested that
GT substantially outperforms strong baselines in both next clarifying
question selection and document retrieval tasks. Besides, there are also
researches focusing on ranking clarifying questions based on natural
language inference (Kumar et al., 2020) and user engagement predic-
tion (Lotze et al., 2021). Recently, Bi et al. (2021a) combined BERT
with the maximum-marginal-relevance (MMR) criterion (Carbinell and
Goldstein, 2017) to clarify user intents with fewer questions as possible.
Their model, namely MMR-BERT, has shown promising efficacy in
asking users clarifying questions on the Qulac dataset.

5.2.3 Personalized Search

Due to the variety of user propensity, search engines need to provide
personalized search services by modeling individual preferences in appro-
priate scenarios. A common strategy for personalized search is encoding
the search history to capture user’s long-term and short-term interests.
Some researchers have attempted to use word embeddings to enhance
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the personalized search (Kuzi et al., 2017; Amer et al., 2016). For ex-
ample, Amer et al. (2016) realized the personalized query expansion
with the word embeddings learned on the user’s profile. Their work con-
cluded that personalized word embeddings fail to improve the ranking
results. However, Kuzi et al. (2017) found that using personalized word
embeddings can slightly improve the performance of E-mail search.

Aware of the remarkable learning power of the Transformer archi-
tecture, several recent studies have also focused on building frameworks
for personalized search with some Transformer layers (Bi et al., 2020; Bi
et al., 2021b; Chen et al., 2021a; Zhou et al., 2020). For example, Zhou
et al. (2021a) integrated transformer layers with Graph Attention Net-
works (GANs) and proposed a model named FNPS which considers
both search behavior and friend network of users. To jointly optimize
session-level document re-ranking and query suggestion, Chen et al.
(2021a) proposed a hybrid framework for session context modeling
(HSCM) which leverages both intra-session and cross-session contex-
tual information for personalization. Unlike general Web search, E-mail
search requires personalization in conditions such as recency, user occu-
pation, recipients, and attachments while protecting user privacy. To
this end, Bi et al. (2021c) leveraged Transformer layers to encode per-
sonal e-mail search history, which only contains pre-processed features
extracted from raw query and document text. As different features of
one item should be emphasized in various search contexts, a fine-grained
review-based transformer model RTM (Bi et al., 2021b) was further
proposed to enhance product search by dynamically encoding items at
the review level. Experiment results have indicated both the efficacy of
RTM in product search quality and its interpretability. Most existing
personalized approaches do not involve a well-designed pre-training or
self-supervised learning (SSL) process, merely utilizing the powerful
learning ability of Transformer-like architectures. Recently, some re-
searchers focused on designing pre-training objectives for personalized
search (Zhou et al., 2021b) or session search (Zhu et al., 2021). Their
work have shown the great potential of applying contrastive learning in
encoding user search history and the content.
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5.3 Document Summarization

As most documents contain complicated information, it may take search
users a long time to carefully comprehend the whole document. For
users’ convenience, modern search engines usually provide a specific
piece of text as the preview for a landing page, a.k.a., search snippet.
In some domains, keywords can also be given to enhance the search and
classification of the corpus.

5.3.1 Generic Document Summarization

Generic document summarization aims at automatically compressing
given documents into a piece of concise text while keeping salient in-
formation. The task is often generalized into two paradigms: extractive
summarization and abstractive summarization. In extractive summa-
rization, several sentences are selected from the original document and
then concatenated to form a summary, while abstractive methods usu-
ally rewrite or paraphrase the document by language generation. Each
paradigm has its own merits and limitations. For example, extractive
summaries are more faithful in content, while they may also have low
coherence or consistency between the selected sentences. Moreover,
previous work shows that extractive approaches tend to choose long
sentences. In contrast, abstractive summaries are more flexible while
uncontrollable.

Recently, PTMs have been proved effective to be applied in both
extractive (Zhang et al., 2019b; Liu and Lapata, 2019; Zhong et al., 2020;
Wang et al., 2019; Xu et al., 2020; Zhong et al., 2019) and abstractive
summarization (Zhang et al., 2020a; Dou et al., 2021; Lewis et al., 2020a;
Zou et al., 2020; Saito et al., 2020). Earlier, Yin and Pei (2015) built a
strong CNN-based summarizer, namely DivSelect+CNNLM, to enhance
extractive summarization by projecting sentences into dense distributed
representations (CNNLM ) and then constructing a diversified selection
process (DivSelect). The CNNLM module is pre-trained on a large
corpus and proved to learn better sentence representations by captur-
ing more internal semantic features. Their method outperforms many
traditional approaches such as LexRank (Erkan and Radev, 2004) and
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DivRank (Mei et al., 2010) on the DUC 2002/2004 datasets, which can
be considered as an early step in adapting PTMs in text summarization.
Besides CNN, pre-trained word embeddings have also been adopted for
document summarization (Kobayashi et al., 2015; Kågebäck et al., 2014;
Mohd et al., 2020). Generally, they aggregated the word embeddings
within a document to represent the whole document and then calculated
the semantic similarity at document-level to extract a summary.

These years have witnessed the superb performance of PTMs such
as BERT applied in various NLP tasks. Document summarization has
also been greatly improved with the widespread use of these PTMs. For
instance, Zhong et al. (2019) introduced BERT as external transferable
knowledge (contextualized word embeddings) for extractive summariza-
tion and reported its superiority compared to word2vec (Mikolov et al.,
2013a) and GloVe (Pennington et al., 2014). Zhang et al. (2019a) first
applied BERT into abstractive summarization via a two-stage decoding
process: 1) firstly, generate the draft summary using a left-context-only
decoder with copy mechanism; 2) then refine the summary using a
refining decoder. Moreover, Liu and Lapata (2019) proposed a gen-
eral framework called BERTSUM 1 for both extractive summarization
and abstractive summarization. Their experiments also indicated that
the loss of the extractive task could further improve the abstractive
task. To predict sentences instead of words, HIBERT (Zhang et al.,
2019b) maintains a hierarchical bidirectional transformer architecture
and masks documents at sentence-level during encoding. As most work
may cause a mismatch between the the evaluation metrics and the
training objective by merely optimizing sentence-level ROUGE, Bae
et al. (2019) presented a novel training approach that directly maximizes
summary-level ROUGE scores through reinforcement learning (RL).
Their method can achieve better performance in the abstractive summa-
rization task. To combine auto-encoding with partially auto-regressive
language modeling tasks, Bao et al. (2020) took Transformer as the
backbone network to pre-train a unified language model UniLMv2. They
designed a novel training procedure to jointly pre-train a bidirectional

1The variants include BERTSUMEXT, BERTSUMABS, and BERT-
SUMEXTABS (multi-task learning).
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language model (LM) for language understanding and a sequence-to-
sequence LM for language generation, namely pseudo-masked language
model (PMLM). Based on this technique, UniLMv2 performs better
than other base-size pre-trained models such as BERTSUMABS and
MASS in fine-tuning (Song et al., 2019).

While most approaches only involve pre-training tasks such as token
or sentence masking, BART (Lewis et al., 2020a) corrupts raw text
with more noising functions (such as token deletion, sentence permu-
tation, text infilling, and document rotation) and learns a model to
reconstruct the original text. Therefore, BART is particularly effective
when fine-tuned for abstractive summarization. It outperforms the best
BERTSUM model by roughly 6.0 points on all ROUGE metrics in both
CNN/DailyMail and XSum datasets. Unlike most previous approaches,
MatchSUM bypasses the difficulty of summary-level optimization based
on contrastive learning by taking extractive summarization as a seman-
tically text matching problem. The main point is that a good summary
should be more semantically similar to the source document than the
other candidates. Their approach borrows similar ideas from the IR do-
main and achieves considerable extractive summarization performance
on six datasets. More elaborately, Google proposed a novel framework
named PEGASUS (Zhang et al., 2020a), which adopts the gap-sentence
generation (GSG) task tailored for abstractive summarization while
pre-training. They hypothesized that exploiting a pre-training objective
that is more similar to the downstream task may lead to faster and bet-
ter performance when fine-tuned. To this end, gap sentences (indicates
the most informational or important sentences within a document) will
be selected and used as the target generation text for the remaining
content. As a result, PEGASUS achieves SOTA performance in abstrac-
tive summarization on most mainstream public summarization datasets.
Recently, some researchers also focused on I) improving the faithfulness
of abstractive summaries by using saliency models or adding some guid-
ances, i.e., CIT (Saito et al., 2020) and GSum (Dou et al., 2021), on
II) distilling large pre-trained Transformers for summarization (Shleifer
and Rush, 2020), or on III) legal domain related tasks (Huang et al.,
2021).



64 Pre-training Methods Applied in Other Components

5.3.2 Snippet Generation

Different from generic document summarization, search snippets should
highlight relevant points in the context of a given query. Therefore,
search snippet generation can be considered as one kind of Query-focused
Summarization (QFS). Similar to generic document summarization, this
body of work can also be divided into extractive approaches (Zhu et al.,
2019; Feigenblat et al., 2017; Roitman et al., 2020) and abstractive
approaches (Laskar et al., 2020a; Baumel et al., 2018; Chen et al.,
2020a; Su et al., 2020a; Laskar et al., 2020b). As some PTMs are
proved to be effective in text generation, most existing work adopted
PTMs to generate abstractive snippets. For instance, Laskar et al.
(2020a) proposed a transfer learning technique with Transformer for the
Query-Focused Abstractive Summarization (QFAS) task via a two-phase
process. In the first phase, the BERTSUM (mentioned in Sec §5.3.1)
model is pre-trained on a generic abstractive summarization corpus.
They further fine-tuned the pre-trained model for the QFAS task on a
target domain. During fine-tuning, they concatenated the query with
the document and then fed them into the encoder to incorporate the
query relevance. Baumel et al. (2018) presented RSA-QFS, which
incorporates relevance-aware attention into a pre-trained sequence-to-
sequence model (Nema et al., 2017) for multi-document summarization.
Despite that modern search engines usually present extractive snippets
to search users, less effort has been made in employing PTMs for
extractive snippet generation. One work may be (Zhu et al., 2019), which
developed a BERT-based query-focused summarization model. Based
on the model, they constructed massive query-focused summarization
examples to enhance the modeling of query relevance and sentence
context. One obstacle in query-focused document summarization may
be the lack of proper datasets. Some attention has also been paid on
constructing benchmark datasets of certain scale for this task, e.g.,
DUC 2005-2007 QF-MDS task (Dang, 2005; Fisher and Roark, 2006),
Debatepedia (IBM) (Nema et al., 2017), WikiRef (Microsoft) (Zhu et al.,
2019), qMDS (Google) (Kulkarni et al., 2020), etc. Besides retrieval
systems, some other approaches (Su et al., 2020a; Savery et al., 2020)
are more suitable for Question-Answering (QA) system as they combine
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reading comprehension with language modeling.

5.3.3 Keyphrase Extraction

Keyphrase extraction or identification aims at extracting a set of infor-
mational, topical, and salient phrases from a document. It can not only
provide users a quick view of result documents (similar to document
summarization) but may also benefit downstream tasks such as docu-
ment indexing, document recommendation, and query suggestion. Most
of the existing works formulated keyphrase extraction as a sequential
labeling task (Lim et al., 2020; Wu et al., 2021; Park and Caragea, 2020;
Sahrawat et al., 2020; Liu et al., 2021d). There exists a large body of
research aiming at leveraging pre-trained word vectors for keyphrase
extraction (Wang et al., 2014; Qiu et al., 2019; Papagiannopoulou and
Tsoumakas, 2018; Mahata et al., 2018). For instance, Wang et al. (2014)
proposed a graph-based ranking approach that uses information sup-
plied by word embedding vectors as the background knowledge. They
further performed keyphrase extraction by constructing a weighted
undirected graph for a document to compute the final scores of words.

From another angle, some work (Sahrawat et al., 2020; Park and
Caragea, 2020) adopted contextualized embeddings generated by BERT
or SciBERT (Beltagy et al., 2019) as the input of their BiLSTM-CRF
architecture for scientific keyphrase extraction. Tang et al. (2019)
used BERT with an attention layer to automatically extract keywords
from clinical notes. From another perspective, Sun et al. (2020) pro-
posed BERT-JointKPE which adopts multi-task learning to chunk
self-contained phrases within a document and then rank these phrases
by estimating their salience. Their method inherits the spirit of learning-
to-rank approaches and achieves promising keyphrase extraction perfor-
mance in both the web and scientific domains.



6
Pre-training Methods Designed for IR

In this section, we introduce another line of research on designing PTMs
tailored for IR (Zamani and Croft, 2017; Lee et al., 2019b; Chang et al.,
2020; Ma et al., 2021b; Ma et al., 2021d; Gao and Callan, 2021a; Chen
et al., 2022). Initially, PTMs were designed for NLP and the goal is to
learn good representations for words or texts. When applying original
PTMs in IR, studies have demonstrated that they can also benefit many
IR tasks, since it’s one of the basic requirements for IR to build good
representations for queries and documents. However, the core of IR is to
model the notion of relevance (Lavrenko and Croft, 2017; Saracevic,
2016; Fan et al., 2021), which is not considered in the existing PTMs
designed for NLP. To address this issue, researchers in the IR community
have also started rethinking and exploring new pre-training objectives
as well as architectures from the IR perspectives.

Without loss of generality, the general ranking function could be
further abstracted as

rel(q, d) = f(φ(q), ψ(d), η(q, d)), (6.1)

where φ and ψ are representation functions to extract representation
features, η is the interaction function to extract interaction features,
and f is the scoring function which is usually a simple function like
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cosine or a MLP. According to the role of the PTMs in the ranking
function, we divide them into two categories: 1) Pre-training Embed-
dings/Representation Models for IR; 2) Pre-training Interaction Models
for IR.

For example, traditional word embedding methods take a single
text sequence as input and output a fix-dimensional vector for each
word. So the output word embeddings are usually employed to model
the representation functions φ, ψ. The recent Transformer-based PTMs
have two kinds of pre-training methods based on the input format and
the pre-training objectives. The first one takes a single text sequence
as input and learns contextualized word representations with various
language modeling tasks (Liu et al., 2019; Yang et al., 2019), and this
type of PTMs can be categorized into pre-trained representation models
to model φ, ψ. The other one takes a text sequence pair as input to
directly learns their interactions (Devlin et al., 2019; Wang et al., 2020;
Lan et al., 2020), and this type of PTMs can be categorized into pre-
trained interaction models. Note that the pre-trained representation
models can also be applied to the interaction-focused architecture by
fine-tuning on labeled data, and vice versa. However, this will create the
pretrain-finetune discrepancy which may not activate their full power
of pre-training.

6.1 Pre-training Embeddings/Representation Models for IR

Pre-trained word embeddings (Mikolov et al., 2013b; Pennington et
al., 2014) are mainly used to initialize the word embedding layer of a
neural ranking model while pre-trained representation models (Liu et al.,
2021f; Brown et al., 2020; Liu et al., 2019) can be fully “transferred” to
the IR tasks without designing additional model architectures. That
is, we can fine-tune the entire pre-trained representation models with
supervised data on downstream tasks. Fine-tuning pre-trained models
has become the de facto learning paradigm in many fields including
NLP and CV. Methods in this category including word embeddings and
the representation models are all pre-trained with self-supervised tasks
on large-scale corpora. We introduce them next.
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6.1.1 Static Word Embeddings

Typical static embedding methods designed for NLP are trained based
on word co-occurrence, especially the word proximity, in a large cor-
pus. By predicting the adjacent word (words) given the context words
(word) occurring within a local window, they can capture some lexi-
cal, syntactic, and semantic features of words. Although these word
embedding methods have been widely used in neural ranking models
and demonstrated to be effective in a number of IR tasks, they are not
necessarily equivalent to the primary objective of IR. The main objec-
tive of IR is to predict the words observed in the documents relevant
to a particular information need (Zamani and Croft, 2017). Previous
studies investigated to design word embedding methods tailor for IR
mainly from two aspects: 1) Regularizing the Original Loss towards IR
characteristics; 2) Designing New Objectives to capture relevance. We
only briefly describe some representative methods in these two lines of
research.

Regularizing the Original Loss Some IR-specific characteristics are
not considered in the typical word embeddings designed for NLP, such
as document-level word frequency and text length, adding these clues
to the learning objectives can further improve its effectiveness on IR
tasks. Ai et al. (2016b) found the original paragraph vector (PV) (Le
and Mikolov, 2014) 1) could suppress the importance of frequent words
in a document excessively, 2) prone to over-fit short documents during
the training process, and 3) ignores to model word-context associations
in the learning objective. Thus, they proposed three modifications
to regularize the existing loss function including idf-based negative
sampling, introducing L2 to regularize document length, and adding
another objective for learning paradigmatic relations.

Designing New Objectives Besides regularizing the original loss func-
tions, researchers also explored to design new learning objectives for
word embeddings. Diaz et al. (2016) proposed to train local word em-
beddings in a query-specific manner, that is, using query and the top-k
documents retrieved by a statistical language model approach (Croft
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and Lafferty, 2003) to capture the nuances of topic-specific language.
But, this model needs to be trained during the query time and thus
is not always practical in real-word applications. Zamani and Croft
(2017) pre-trained unsupervised relevance-based word embeddings by
predicting the words that occurred in the top-k retrieved documents
given the query words under the word2vec framework. The difference is
that they use pseudo-relevance feedback (PRF) models, especially the
relevance based language model (Lavrenko and Croft, 2017), to retrieve
documents offline. They used a very shallow neural network which is a
feed-forward neural network with a single linear hidden layer, to train
the relevance word embeddings on millions of queries. Experiments on
query expansion task and query classification task showed that the
expansion terms chosen by their models are more related to the whole
query than word2vec. Gysel et al. (2018) proposed another unsupervised
model for document retrieval, called NVSM, in which the hypothesis
of the optimization objective is that word sequences (i.e., n-grams)
extracted from a document should be predictive of that document.
Specifically, multiple phrases of n contiguous words are sampled from a
document and then train the averaged word representations of phrases
to predict the corresponding document representations. Experiments
show that NVSM outperforms other latent vector space models like
word2vec. Encouraging the n-grams and the document to be close may
introduce noise as the randomly sampled n-grams may semantically
similar to many documents.

6.1.2 Representation Models

Static word embeddings cannot model polysemy as the use of these words
varies across linguistic contexts. To address this issue, previous methods
also proposed to learn context-dependent representations (Melamud
et al., 2016; McCann et al., 2017; Peters et al., 2018). With the develop-
ment of representation learning, researchers have studied pre-training a
whole deep neural model like Transformer (Vaswani et al., 2017) with
self-supervised tasks for the contextualized word representations, and
then transferring the entire model to the downstream tasks (Liu et al.,
2021f; Brown et al., 2020; Liu et al., 2019). The self-supervised tasks
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are mainly language modeling tasks, such as causal language model-
ing, masked language modeling and permuted language modeling (Qiu
et al., 2020). Although these PTMs can produce good contextualized
word representations, studies have shown that they yield rather bad
text sequence embeddings, often worse than averaging GloVe embed-
dings (Reimers and Gurevych, 2019). Hence, researchers investigate
to pre-train high-quality text sequence representations for queries and
documents. And the pre-trained representation models are often em-
ployed in the representation-focused ranking models. These works on
pre-training representation models for IR are mainly from two aspects:
1) Pre-training Objectives; 2) Model Architectures.

Pre-training Objectives According to the underlying hypothesis of
learning objectives, previous works can be categorized into two classes.
The first assumes that if the pre-training objective resembles the down-
stream task, PTMs can achieve faster and better performance in the
fine-tuning stage. Lee et al. (2019b) proposed a new pre-training task
for passage retrieval in open domain question answering (openQA), i.e.,
Inverse Cloze Task (ICT), where one sentence is randomly sampled from
a given passage as pseudo query and the rest sentences are treated as its
positive context. Inspired by ICT, Chang et al. (2020) proposed another
two tasks to better take advantage of Wikipedia documents. The first
is Body First Selection (BFS) where one sentence from the first section
of a Wikipedia page is randomly sampled and another passage from the
same page is considered as its positive context. The other is Wiki Link
Prediction (WLP) where the sentence is sampled the same way as in
BFS, but the passage is sampled from another hyperlinked Wikipedia
page. These paragraph-level pre-training tasks are pre-trained with a
bi-encoder architecture to support the embedding-based dense retrieval.
Experiments on several QA datasets showed that the pre-trained model
significantly outperform the widely used BM25 algorithm and the MLM
pre-trained models when fine-tuning with a limited number of labeled
data. However, BFS and WLP heavily rely on the special structures of
web documents (e.g., multiple paragraph segmentation and hyperlinks),
which may hinder their application on a general text corpus.

Another one borrows the idea of information bottleneck theory (Tishby
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and Zaslavsky, 2015) which says a good representation is a maximally
compressed mapping of the input on the output. The autoencoder ar-
chitecture, which performs the compress-then-reconstruct operation
to the input, naturally conforms the information bottleneck principle.
Specifically, the general autoencoder consists of an encoder and a de-
coder, where the encoder maps the input text to representations and
the decoder is trained to reconstruct the input text from the represen-
tations. Lu et al. (2021) found that the decoder may take shortcuts by
exploiting language patterns using its access to previous tokens. Thus,
the vanilla autoencoder is not able to provide high-quality sequence
representations. They proposed SEED which pre-trains autoencoder-
based language model with a weak decoder to avoid the bypass effect.
By restricting the model capacity and the attention flexibility of the
decoder, the encoder can provide better text representations for dense
retrieval. Experiments on three tasks, including web search, news rec-
ommendation, and openQA, demonstrate that SEED is able to boost
the effectiveness and few-shot ability significantly.

Model Architectures Due to the quadratic time and memory com-
plexity of self-attention mechanism in vanilla Transformer, the input
length of Transformer-based PTMs is always limited to 512. How-
ever, documents in IR collections are often longer than 512, so vanilla
Transformer-based PTMs are unsuitable to process long documents.
Some studies have investigated designing new architectures to adapt
to the IR scenario. For example, Longformer (Beltagy et al., 2020)
proposed to use a combination of a local self-attention and a global
attention to sparse the attention matrix. Sekulic et al. (2020) applied
Longformer-based pre-trained models to document ranking. Yang et al.
(2020) proposed Siamese Multi-depth Transformer-based Hierarchical
(SMITH) Encoder to handle long document matching tasks. SMITH
learns document representations by hierarchically aggregating the sen-
tence representations from bottom to top. SMITH is pre-trained with
a novel masked sentence block prediction task in addition to MLM
task. Experiments show SMITH outperforms BERT on two document
matching tasks by increasing maximum input text length from 512 to
2048.
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To learn better text sequence representations, Gao and Callan
(2021a) proposed Condenser which modifies the Transformer architec-
ture by adding a short circuit from the lower layer to the higher layers.
Specifically, for a Transformer model with 12 layers like BERT, they
added additional 2 layers on top of the model and also added a short
circuit from the 6th layer to the 13th layer. For the short circuit, the
token representations from the 6th layer are directly input to the 13th
layer and there is no input from the previous layer, i.e., the 12th layer,
except for the special [CLS] token. They claim that the [CLS] token in
the 7-12th layer will focus more on the global meaning of the input text
to provide enough information for the top layers to predict the original
tokens. Their experiments showed Condenser improves over standard
LM by large margins on various text retrieval and similarity tasks.

6.2 Pre-training Interaction Models for IR

The relevance estimation between a query and a document is to deter-
mine whether the information contained in the document satisfy the
information need behind the query. Such information could be either a
small piece of text span or a long passage, which makes the relevance
pattern varies significantly. The representation-focused models are hard
to capture such diverse matching patterns by relying on some simple
interaction functions in the last layer. An alternative way is to employ
PTMs to directly model complicated interaction patterns from low-level
features. Since existing PTMs pay more attention to the representation
learning rather than the interaction learning in original pre-training ob-
jectives, researchers proposed different learning strategies to capture the
query-document interactions by further pre-training PTMs in domain
data. According to the objective used in different pre-training models,
we divide them into two categories: 1) Weak Supervised Learning; 2)
Self-supervised Learning.

6.2.1 Weak Supervised Learning

Weak supervised learning aim to learn machine learning models on
noisy data. To be more specific, labels are automatically generated by
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other models not human beings. And the learning objective of weak
supervision is often the same as the objective of the downstream task,
that is, the learning objective of weak supervision in IR is the ranking
objective. Once the models are pre-trained on the generated noisy data,
they can also be fine-tuned with supervised training data on the target
IR tasks (Dehghani et al., 2017b; Luo et al., 2017b; Zamani and Croft,
2018; Zamani et al., 2018a; Zhang et al., 2020b).

After the rise of NeuIR, researchers explored to pre-train a simple
neural interaction model on weakly supervised data for ad-hoc retrieval
to verify its effectiveness. Dehghani et al. (2017b) first investigated the
weak supervised learning for IR. They train neural interaction models
on billions of noisy training data automatically generated by BM25. The
input is query-document pairs and the model architecture is a simple
feed-forward neural network. Both pointwise learning and pairwise learn-
ing are studied under weak supervised setting. Experiments showed the
trained neural model using weak supervision can outperform BM25. To
study the reason, Zamani and Croft (2018) theoretically analyzed weak
supervision from the perspective of the risk minimization framework
to verify its effectiveness. Recently, Zhang et al. (2020b) proposed a
reinforcement weak supervision method with BERT, called ReInfoSelect.
ReInfoSelect trains a selector model to select some constructed anchor-
document pairs for training the BERT-based ranker via reinforcement
learning. It takes the ranking performance (i.e., NDCG) as the reward.
Experiments showed the neural ranker trained by ReInfoSelect can
match the effectiveness of neural rankers trained on private commercial
search logs.

6.2.2 Self-supervised Learning

Self-supervised learning is somehow a blend of supervised learning and
unsupervised learning (Liu et al., 2021e; Qiu et al., 2020). The basic
idea of self-supervised learning is to predict any part of the input from
other parts in some form, whose learning objective is not the same as
the objective in the downstream tasks. So the labels of training data are
often from the data itself rather than the same as in a specific task, like
relevance judgments in IR. The learning paradigm of self-supervised
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learning is entirely the same as supervised learning. Recent PTMs on
pre-training interaction models such as BERT and StructBERT, aim to
learn the coherence relationship between two sentences by predicting
the sentence order. Specifically, they usually take two sentences as input
and pre-train the interaction model with Next Sentence Prediction
(NSP) task or Sentence Order Prediction (SOP) task. However, the
coherence relationship quite diverges from relevance, which is the most
important requirement of IR. So, researchers designing PTMs tailored
for IR mainly from the following two aspects: 1) Pre-training Objectives;
2) Model Architectures.

Pre-training Objectives Relevance is a vague notion in IR, so is there
any other object to be a good proxy of relevance? Inspired by the query
likelihood model (QL) (Ponte and Croft, 2017), Ma et al. (2021b) pro-
posed a novel pre-training task named Representative wOrds Prediction
(ROP) for ad-hoc retrieval, and the pre-trained model is called PROP.
QL assumes that the query is a piece of representative text generated
from the “ideal” document (Liu and Croft, 2006). Thus, modeling repre-
sentativeness may benefit to capture the relevance between the query
and the document. To verify this hypothesis, ROP samples pairs of
word sets according to the multinomial unigram language model (Zhai,
2007), and then pre-trains the Transformer to predict the pairwise pref-
erence. Experiments show PROP outperforms other pre-trained models
like BERT and ICT on a variety of ad-hoc retrieval tasks. Moreover,
under both the zero-shot and few-shot settings, PROP can achieve
surprising performance, and even outperform BM25 on Gov2 without
fine-tuning. Ma et al. (2021c) further proposed B-PROP by leveraging
BERT to replace the classical unigram language model for the ROP task
construction. Inspired by the divergence-from-randomness idea (Amati
and Rijsbergen, 2002), they proposed a contrastive method to leverage
BERT’s [CLS]-token attention to sample representative words. Experi-
ments show B-PROP performs better than PROP on the downstream
document ranking datasets. Ma et al. (2021d) proposed HARP with an-
chor texts and hyperlinks to replace the sampling method, as sampling
may introduce noise to the data. Experimental results show that HARP
can perform better than PROP on MS-MARCO Document Ranking
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and TREC DL. As most existing work adopts the two-stage training
paradigm, models’ off-the-shelf parameters can be largely updated in
the fine-tuning process. What knowledge on earth do these models
have learned still remains under-investigated. To this end, Chen et al.
(2022) aimed to incorporate IR axioms into model pre-training and
proposed a novel model named ARES. They generated training samples
with specific IR axioms or heuristics to guide the training of ARES.
Experimental results have shown the effectiveness of ARES, especially
in low-resource scenarios where supervision data is limited.

Model Architectures Those works in Section 6.1.2 on designing PTMs
for handling long texts can also be applied in pre-training interaction
models. There is less effort on designing new interaction model archi-
tectures for IR as the self-attention mechanism of the Transformer
architecture does provide a solution to do interaction between texts. In
the fine-tuning phase, MacAvaney et al. (2020) proposed to block the
attention flow between the query and the document at lower layers in a
cross-encoder architecture. Thus, they can pre-compute the document
representations and accelerate the inference for re-ranking.

6.3 Summary

Fine-tuning the Transformer-based PTMs has dominated almost every
component in IR due to its convenience and effectiveness in recent
years. However, the performance improvement on different IR tasks
was still limited since original pre-training objectives are designed to
learn the language coherence, e.g., predicting the masked token or the
sentence order (Devlin et al., 2019). To better leverage the pre-training
paradigm for IR, there are two main lines of researches which concentrate
effort on designing novel PTMs tailored for IR. The first one looks for
novel pre-training objectives that better resemble IR requirements, e.g.,
the Inverse Cloze Task (Lee et al., 2019b), the Wiki Link Prediction
Chang et al., 2020, and the representativeness of words prediction (Ma
et al., 2021b; Ma et al., 2021c). Though different learning objectives
are introduced and claimed to be beneficial to IR tasks. However, it
still remains unclear how good these learning objectives satisfy the IR
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requirements for lacking of theoretical basis. Moreover, some of the
pre-training objectives is strongly related to the weak learning since
both of them rely on heuristic rules of IR, and the difference between
this two learning strategies has been less studied. The second one
focuses on designing new model architectures which aim to satisfy the
heterogeneity structures in and between queries and documents, e.g.,
Longformer (Beltagy et al., 2020) and SEED (Lu et al., 2021). There
are still very few works in this direction, and most of them have only
made minor changes to original BERT model. This is due to the fact
that the BERT model has been well trained on a very large-scale corpus,
and a completely redesigned architecture leads to high model training
cost. Moreover, it also requires in-depth analysis on the basis of the
transformer architecture, and rethink the design criteria of architectures
from the view of IR. Finally, the fundamental question to the design
of both pre-training objectives and architectures lies at the concept of
the relevance in IR. Based on this view, it highlights the need for more
systematic research concerning the definition of the relevance instead of
heuristic hands-on learning objectives or model architectures.



7
Resources of Pre-training Methods in IR

In this section, we sort out some popular data repositories which have
potential for the pre-training and fine-tuning process of PTMs in IR.

7.1 Datasets for Pre-Training

As discussed in Section 6, pre-training objectives designed for IR are
mostly based on a (or more) large-scale collection(s). We thus consider
the collections for pre-training tasks in IR with the following properties:

• Large collection size: In a broad sense, collection size is a
necessity for pre-training tasks in any deep learning fields.

• Structured documents: The structures of a document include
title, passages, sub-title, html structure, entity extractions, etc.
These structures can be exploited in IR pre-training tasks to cap-
ture inter-page semantic relation. Moreover, hyperlinks between
the pages(e.g., anchor-page linking and page-page linking) pro-
vide intra-page semantic relations, which can also be used in IR
pre-training.

Specifically, we believe that the second property are not always
necessary for IR pre-training tasks. But if a collection owns these
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properties, the collection might be better for IR pre-training tasks.
Given the suggested properties of a IR pre-training dataset, we sort
out some public available datasets which are potentially useful for pre-
training tasks, as shown in Table 7.1. According to the closeness to
the IR, we categorize existing datasets into general text corpus and IR
related corpus:

• General text corpus: The general text corpus is widely used
in NLP researches for different tasks in different domains. These
datasets generally contain a large amount of documents and
provide implications for the classic pre-training tasks, e.g., masked
language modeling (MLM) and next sentence prediction (NSP).

– Books: This dataset aims to align books with the correspond-
ing movie releases by associating the visual information with
descriptive text. The text conveys both visual content (how a
character, an object or a scene looks like) as well as high-level
semantics (what someone is thinking, feeling and how these
states evolve through a story).

– C4 : Colossal Clean Crawled Corpus (C4) is a dataset consist-
ing of more than 300 GBs clean English text scraped from
the web, which can be used to pretrain language models and
word representations.

– Wikipedia: Wikipedia is a large-scale collection containing all
Wikimedia wikis in the form of wikitext source and metadata
in XML structure. It takes advantages in well-organized
document structures, entity links, and rich information, which
are suitable for pre-training tasks in IR.

– RealNews: RealNews is a large-scale corpus containing news
articles from Common Crawl. The documents are scraped
from Common Crawl, limited to more than 5000 news do-
mains indexed by Google News. News from Common Crawl
dumps from December 2016 to March 2019 were used as
training data; articles published in April 2019 were used for
evaluation.
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– Amazon Reviews: This dataset consists of Amazon shopping
reviews from amazon. The data spans a period of 18 years,
including more than 35 million reviews up to March 2013.
Reviews include user and product information, ratings, and
a plaintext review.

• IR related corpus: These kind of corpus contain documents
which are similar to downstream IR tasks. Pre-training on these
corpus can further minimize the gap between pre-training and
downstream IR tasks, providing a better opportunity to achieve
better ranking performance.

– WT10G: WT10G (Web Track 10Gigabytes) was collected by
CSIRO in Australia (Chiang et al., 2005). It is a crawl of web
pages in 1997 and applied in many web-based experiments.
The WT10G collection retains the properties of the 1997
web content which includes: the graph structure of web
links, server size distribution, inclusion of inter-domain links
and web pages on various subjects. The page content and
hyperlinks in this dataset can be used in pre-training tasks
by the methods discussed in Section 6.

– GOV2 : GOV2 is a crawl of .gov sites in the early of 2004
which includes html, text and the extracted text of pdf,
word and postscript. The collection is about 426GB and
contains 25 million documents. The large proportion of web
pages has potential for pre-training tasks with text-based
self-supervised learning objectives.

– CWP200T, SogouT : CWP200T and SogouT (Luo et al.,
2017a) are the web page collections in Chinese, which are
provided by China Computer Federation (CCF) and Sogou
search engine, respectively. Both collections are suitable for
pre-training tasks in Chinese IR.

– Clubweb: Clueweb is a large-scale web document collection
provided by CMU. The full collection of Clueweb09 contains
about 1 billion web pages in 10 languages which were collected
in January and February 2009. Clueweb12 was further created
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based Clueweb09 with several data cleaning strategies. Both
datasets are widely used in IR and several tracks of the
TREC conference.

– MS MARCO: MS MARCO (Craswell et al., 2021) is a popu-
lar large-scale document collection consisting of 3.2 million
available documents, which are from the Bing search engine.
Besides, 1 million non-question queries are also included in
this dataset for different retrieval tasks.

For general text corpus, we believe there are a number of corpus
which is not listed in our paper. We recommend readers to this link12

to further explore the available datasets for pre-training tasks. And, the
corpus with web pages mostly contain two important relations (i.e., inter-
document (e.g., html structure) and intra-document (e.g., hyperlinks,
anchor-page links) relations). These relations provides implications to
design different pre-training objectives for IR tasks.

7.2 Datasets for Fine-Tuning

We sort out some datasets for downstream fine-tuning tasks. These
tasks are categorized into document-oriented tasks and query-oriented
tasks. The abbreviations of these tasks are further used in Table 7.2 as
the potential tasks of different datasets. We introduce each specific task
as follows:

• Document-oriented

– First stage retrieval (FSR): Retrieval stage from the full
collection.

– Ad-hoc ranking (AR): Ranking a candidate list given a query.
– Session search (SS): Ranking a candidate list given a query

and historical interactions.
– Multi-modal ranking (MMR): Given a query, rank the can-

didate list where each item contains multiple heterogeneous
information such as text, picture and html structure.

12https://github.com/huggingface/datasets/tree/master/datasets

https://github.com/huggingface/datasets/tree/master/datasets
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– Personalized Search (PS): User-specific Ranking.

• Query-oriented

– Query reformulation (QR): Iiteratively modifying a query
to improve the quality of search engine results in order to
enhance user’s search satisfaction.

– Query suggestion (QS): Providing a suggestion which may
be a reformulated query to better represent a user’s search
intent.

– Query clarification (QC): Identifying user’s search intent
during a session.

• Others

– Document summarization (DS): The process of shortening a
document to create a subset (or a summary) that represents
the most important information in this document.

– Snippet generation (SG): Query-specific document summa-
rization.

– Keyphrase extraction (KE): It is also known as Keyword
Extraction, which aims to automatically extract the most
used and most important terms in a document.

The detailed description of each collection is as follows:

1. Robust track (Voorhees, 2004) is a classic ad-hoc retrieval task in
TREC which focuses on poorly performing topics. The released
annotated collection only includes 250 queries and 50 queries in
Robust04 and Robust05, respectively. This collection is used for
evaluation in most experimental settings.

2. TREC Million Query (MQ) Track conducts an ad-hoc retrieval
task over a large-scale collection of queries and documents. The
final released dataset contains a four-level relevance judgement
for each query-document pair.
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3. Clueweb is another large-scale web search dataset provided by
CMU. The “Category B” data set consists of the English pages,
which is roughly the first 50 million pages of the entire data set.

4. TREC web track exploits the documents from Clueweb. The
goal is to explore and evaluate specific aspects of Web retrieval,
including traditional ad-hoc retrieval task, risk-sensitive task and
diversity search task.

5. TREC Deep Learning Track studies IR in a large training data
regime. It contains two tasks: Passage ranking and document
ranking; Two subtasks are included in each case: full ranking and
reranking. Researchers usually take this dataset as an evaluation
set by training a retrieval model on a large-scale dataset such as
MSMARCO.

6. AOL is a public available query log released by the internet com-
pany AOL. The collection contains the query session, anonymized
user ids and clicked documents, which are suitable for ad-hoc rank-
ing, session search ranking, personalized search ranking, query
reformulation and suggestion.

7. Sogou-QCL, Sogou-SRR (Search Result Relevance) and Tiangong-
ST dataset were created from Sougou search engine to support
research on IR. The Sogou-QCL collection consists of 537,366
queries, more than 9 million Chinese web pages, and five kinds of
relevance labels assessed by click models. Meanwhile, the dataset
also includes 2,000 queries with four-level human assessed rele-
vance labels.

8. The Sogou-SRR dataset consists of 6,338 queries and correspond-
ing top 10 search results. Each search result contains the screen-
shot, title, snippet, HTML source code, parse tree, url as well
as a four-grade relevance score (1-4) and the result type. The
heterogeneous information provides opportunity for multi-modal
ranking.

9. Tiangong-ST provides 147,155 refined Web search sessions, 40,596
unique queries, 297,597 web pages, and six kinds of weak relevance
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labels assessed by click models. Different from Sogou-QCL and
Sogou-SRR, the session information provided in this dataset is
able to be used in session search ranking.

10. Qulac was collected through crowdsourcing in terms of the topics
in the TREC Web Track 2009-2012. It is a dataset on asking
Questions for Lack of Clarity in open-domain information-seeking
conversations. It contains 198 topics where each topic has recog-
nized as either “ambiguous” or “faceted”. The clarifying questions
are collected based on each topic through crowdsourcing. Based
on each topic-facet pair, the answers to each clarifying question
are collected. The average number of facets per topic is 3.85 ±
1.05. The facets and topics in this collection can be used for query
clarification task.

11. BEIR (Benchmarking IR) (Thakur et al., 2021) is a new hetero-
geneous benchmark containing different IR tasks. The benchmark
contains 18 datasets covering 9 IR tasks (Fact Checking, Citation
Prediction, Duplicate Question Retrieval, Argument Retrieval,
News Retrieval, Question Answering, Tweet Retrieval, Biomedical
IR, Entity Retrieval) from 17 different datasets. Through BEIR,
it is possible to systematically study the zero-shot generalization
capabilities of several neural retrieval methods.

12. MS MARCO (Craswell et al., 2021) is a popular large-scale docu-
ment collection which contains about 3.2 million available docu-
ments, which are from the Bing search engine. Besides, 1 million
non-question queries are also included in this dataset for different
retrieval tasks.

13. The TREC Complex Answer Retrieval (CAR) track uses top-
ics, outlines, and paragraphs that are extracted from English
Wikipedia. Wikipedia articles are split into the outline of sections
and the contained paragraphs. The complex topics are selected
from articles on open information needs, i.e., not people, not orga-
nizations, not events, etc. It contains a passage task and an entity
task, where the latter can be used in keyphrase extraction tasks.
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14. The CNN/Daily Mail dataset (See et al., 2017) is a large-scale
collection of news articles and further modified for summarization.
It consists of more than 280,000 training samples and 11,490
test set samples. The documents in the training set have 29.74
sentences with 766 words on average while the summaries consist
of 53 words and 3.72 sentences on average.

15. New York Times (NYT)16 is a large-scale document summariza-
tion dataset. It contains well curated articles from The New York
Times between 1987 and 2007. The summaries were written by
library scientists, making it particularly useful as an extractive
summarization dataset.

16. Debatepedia is collected from debatepedia.org. It is an encyclopedia
of pro and con arguments and quotes on critical debate topics.
There are totally 663 debates in the corpus, which belong to 53
overlapping categories such as Politics, Law, Crime, Environment,
Health, Morality, Religion, etc. The average number of queries
per debate and documents per query is 5 and 4, respectively.

17. The DUC dataset is a dataset for document summarization. In
most experiments, it is used for testing only. It consists of 500
news articles, each of the article is paired with four human written
summaries. In DUC2004, it consists of 50 clusters of Text REtrieval
Conference (TREC) documents from the following collections:
AP newswire, 1998-2000; New York Times newswire, 1998-2000;
Xinhua News Agency (English version), 1996-2000. Each cluster
contains on average 10 documents. For the details of other versions,
please refer to here17.

18. WIKIREF is a large query-focused summarization dataset from
Wikipedia which aims to generate summarization with a given
query. It contains more than 280,000 examples.

16https://catalog.ldc.upenn.edu/LDC2008T19
17https://duc.nist.gov/data.html

https://catalog.ldc.upenn.edu/LDC2008T19
https://duc.nist.gov/data.html


7.3. Leaderboards 87

7.3 Leaderboards

In this section, we list several public leaderboards for researchers to
understand the state-of-the-art methods in different tasks.

1. MS MARCO (Passage retrieval and document retrieval task):
https://microsoft.github.io/msmarco/

2. DuReader (Machine Reading Comprehension task):https://ai.
baidu.com/broad/leaderboard?dataset=dureader

3. Robust04 (Document retrieval task): https://paperswithcode.com/
sota/ad-hoc-information-retrieval-on-trec-robust04

4. CNN/Mail (Documents summarization task): https://paperswithcode.
com/sota/document-summarization-on-cnn-daily-mail

5. Baidu DuIE (Entity extraction task): https://ai.baidu.com/broad/
leaderboard?dataset=dureader

6. Benchmarking IR (BEIR) (Passage retrieval and document re-
trieval task): https://github.com/UKPLab/beir

https://microsoft.github.io/msmarco/
https://ai.baidu.com/broad/leaderboard?dataset=dureader
https://ai.baidu.com/broad/leaderboard?dataset=dureader
https://paperswithcode.com/sota/ad-hoc-information-retrieval-on-trec-robust04 
https://paperswithcode.com/sota/ad-hoc-information-retrieval-on-trec-robust04 
https://paperswithcode.com/sota/document-summarization-on-cnn-daily-mail
https://paperswithcode.com/sota/document-summarization-on-cnn-daily-mail
https://ai.baidu.com/broad/leaderboard?dataset=dureader
https://ai.baidu.com/broad/leaderboard?dataset=dureader
https://github.com/UKPLab/beir


8
Challenges and Future Work

In this chapter, we discuss current challenges and suggest some promising
directions for pre-training methods researching in the IR field.

8.1 New Objectives & Architectures Tailored for IR

Although the general-purpose pre-trained language models are suitable
for learning the universal language knowledge, designing the pre-training
and tuning methods that more closely resemble downstream tasks is
admittedly a more efficient way to obtain better performance on specific
tasks (Zhang et al., 2020a; Ke et al., 2019). From the aspect of pre-
training objectives, pre-training model architectures, and model tuning
methods for IR, there have been some preliminary works, but we believe
it deserves further exploration towards these directions.

New Pre-Training Objectives. As described in Section 6, there
have been some pioneer studies (Lee et al., 2019b; Chang et al., 2020;
Guu et al., 2020; Ma et al., 2021b; Ma et al., 2021c; Liu et al., 2021g; Ma
et al., 2021d) on the pre-training objectives tailored for IR. For example,
Lee et al. (2019b) proposed to pre-train with a large-scale document
collection with the Inverse Cloze Task (ICT) for retrieval tasks. Besides
ICT, Chang et al. (2020) also proposed to capture the inner-page and

88
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inter-page semantic relations with Body First Selection (BFS) and Wiki
Link Prediction (WLP) for passage retrieval in QA tasks. For the re-
ranking component, Ma et al. (2021b) and Ma et al. (2021c) proposed
the Representative Words Prediction (ROP) objective for pre-training,
which achieves significant improvement. In addition to constructing
pseudo query-document pairs from the raw text, some researches turned
to relying on certain corpus structures. For example, Ma et al. (2021d)
proposed to leverage the large-scale hyperlinks and anchor texts for
pre-training. Experimental results show that pre-training with four
objectives based on the hyperlinks (i.e., RQP, QDM, RDP, and ACM)
and the MLM objective jointly achieves state-of-the-art performance on
two ad-hoc retrieval datasets. On the whole, the underlying idea of all
these pre-training objectives tailored for IR is to simulate the relevance
relationship between queries and documents. However, it is still in the
preliminary stage to design more suitable pre-training objectives for IR.

New Architectures. Beyond designing new pre-training tasks for
IR, another research line is to design novel architectures according
to specific downstream tasks. For example, towards the dual-encoder
architecture for dense retrieval, Gao and Callan (2021b) argued that
language models like BERT have a non-optimal attention structure to
aggregate sophisticated information into a single dense representation
for retrieval tasks. Based on these observations, they introduced a
novel Transformer pre-training architecture, Condenser, to address
structural readiness during pre-training. Experimental results show that
Condenser yields stable improvement over standard LM and shows
comparable performance to strong task-specific PTMs. Similarly, in
order to obtain better document embeddings for dense retrieval, Lu
et al. (2021) presented a new auto-encoder architecture with restricted
attention flexibility. Based on this, the new architecture could create
an information bottleneck in the auto-encoder and force the encoder
to provide better document representations. However, compared with
attempts to investigate new pre-training objectives for IR, designing an
ingenious pre-training model architecture which is suitable for IR tasks
has not been well explored.

Beyond Fine-Tuning. Up to now, fine-tuning is the most dom-
inant method to apply PTMs to downstream tasks, but it has some
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undesired limitations: (1) it performs poorly on some downstream tasks
without enough supervision data to support fine-tuning; (2) it is in-
efficient to fine-tune parameters on every downstream task. Recently,
the emergence of GPT-3 (Brown et al., 2020) makes the prompt tun-
ing (Liu et al., 2021c) attract more research attention. Prompt tuning
needs to design discrete (Petroni et al., 2019; Gao et al., 2021c) or
continuous (Liu et al., 2021f; Lester et al., 2021) prompts for specific
downstream tasks. For now, it is a promising way to reduce the com-
putational cost of using pre-trained models for downstream tasks. In
fact, prompt tuning has achieved exciting results in some fields, such
as information extraction (Chen et al., 2021b; Han et al., 2021a), text
classification (Puri and Catanzaro, 2019; Schick and Schütze, 2021a),
and fact probing (Petroni et al., 2019; Jiang et al., 2020). However,
there has been no mature work on prompt tuning for IR tasks. From
another perspective, the design of most of existing PTMs is driven by
the fine-tuning paradigm, but it is unclear whether the exploring of
different PTMs will produce pre-trained models which are more effective
when they are used with prompt tuning to solve IR tasks.

8.2 Utilizing Multi-Source Data for Pre-training in IR

Developing PTMs based on multi-source heterogeneous data, including
multi-lingual, multi-modal, and external knowledge, for IR is another
promising direction. On one hand, abundant data resources are vital
significance for model pre-training, and on the other hand, incorporating
extra data has great potential to enhance document representations for
IR tasks.

Multi-modal Pre-Training for IR. Large-scale pre-training meth-
ods have been widely developed with diverse real-world modalities (e.g.,
text, image, audio, and video) and different practical applications. In
recent years, there has been an upsurging interest in cross-modal tasks,
e.g., image-text retrieval (Lee et al., 2018; Huo et al., 2021), visual
question answering (Alberti et al., 2019; Antol et al., 2015), and image
caption (Vinyals et al., 2015; Johnson et al., 2016). Meanwhile, PTMs
based on cross modalities also have improved research interests, such
as image-text (Lu et al., 2019; Li et al., 2020b), video-text (Sun et al.,



8.2. Utilizing Multi-Source Data for Pre-training in IR 91

2019a), or audio-text (Chuang et al., 2020). Among the Vision-and-
Language pre-training (VLP) research, most current works focus on the
interaction of images and texts (Li et al., 2020b; Su et al., 2020b; Lu
et al., 2019; Li et al., 2020d), expecting to have a joint understanding
of both to improve the performance on single-modal and multi-modal
tasks. Since 2019, many VLP models have been proposed and achieved
great success for various downstream tasks. Specially, Cao et al. (2020)
probed the pre-trained Vision-Language models over nine tasks in Sen-
tEval (Conneau and Kiela, 2018). Results show that the pre-trained
model indeed encodes richer linguistic knowledge to enhance NLP tasks.
Similarly, the unified-modal pre-training architecture UNIMO (Li et
al., 2021) models textual knowledge and visual knowledge in a unified
semantic space and results in improved performance for NLP tasks.
However, most of these works are not evaluated on IR tasks. Besides,
although multi-modal PTMs has made great progress in recent years,
Cao et al. (2020) proved that the textual modality is more dominant
than image during the multi-modal pre-training process. Based on this,
the benefits of cross-modal learning are mainly reflected on image-based
tasks. Thus, it is worth further exploring to design better vision-language
pre-training objectives pointing at IR tasks. On the other hand, utilizing
more modalities (e.g., audio or video) and more data is another problem
that needs to be further explored in the future.

Multi-lingual Pre-Training for IR. Despite the rapid progress
in PTMs, most prior work has been exclusively on English, where large-
scale annotations are easily available. However, due to the cost and
required dataset, pre-training large language models for each language
is not practical. Specially, the large-scale annotations are hard to ob-
tain for low-resource languages. Additionally, some empirical results
show that training one model with several languages could get better
performance on some tasks than training several monolingual models
independently (Conneau and Lample, 2019; Ni et al., 2021b). Hence,
training a language model based on multi-lingual data may be a good
attempt for IR tasks. In fact, some existing multi-lingual pre-trained
models, such as mBERT (Devlin et al., 2019), XLM (Conneau and
Lample, 2019), and Unicoder (Huang et al., 2019), have shown their
language transfer abilities over a wide range of tasks (Wu and Dredze,
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2019). For example, Shi et al. (2020) constructed the re-ranking model
for non-English corpus based on the mBERT, aiming to leverage the
relevance information learned in English. They found that this sig-
nificantly improves search quality for non-English retrieval. However,
most such works on multi-lingual PTMs focus on NLP tasks, and these
multi-lingual PTMs are not well designed for cross-lingual tasks in IR.

Knowledge-Enhanced Pre-Training for IR. It is generally ac-
cepted that external knowledge, such as knowledge graphs and domain-
specific data, can provide a good prior for model training. Thus, in-
troducing external knowledge into PTMs to get knowledge-enhanced
representations for IR is another research line. Based on knowledge
graphs, there have been many explorations to integrate entity and
relation embeddings or their alignments into pre-trained models train-
ing (Zhang et al., 2019c; Sun et al., 2019b; Wang et al., 2021). Different
from structured knowledge, unstructured knowledge, e.g., the domain-
specific data, is more abundant but also noisier. Several works (Beltagy
et al., 2019; Lee et al., 2019a) have attempted to further training the
general pre-trained models on these data to get better performance
for specific domains or tasks. However, most of these efforts are not
tailored for IR. In the future, how to effectively model these knowledge
for IR needs to be further explored. On the other hand, all existing
works store knowledge with model parameters implicitly. How to model
knowledge in a more interpretable way for downstream tasks has not
been explored.

8.3 End-to-End IR based on PTMs

Existing IR systems always follow a “index-retrieve-rank" manner and
separate three steps during training. However, this paradigm has some
disadvantages in practical scenarios, which will produce sub-optimal
performance. Recently, the application of PTMs in the retrieval com-
ponent makes the joint learning of multi-stages or end-to-end learning
possible.

Technically, the index building process in retrieval systems based on
the inverted index is hard to be trained jointly with the retrieval model.
However, advances in PTMs-based retrieval models resulting in a shift
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from the inverted index towards the dense vector-based index makes
the joint training possible. In fact, there have been studies (Zhang
et al., 2021a; Zhan et al., 2021a; Zhan et al., 2022) to explore the joint
training of retrieval models and the index module. In this way, the index
building can benefit from the relevance information between queries and
documents directly. In addition to the profits from the joint learning of
index and retrieval, there have been works finding that it is beneficial to
train retrievers and re-rankers in a correlated manner. For example, the
retriever can be improved by distilling knowledge from the re-ranker (Qu
et al., 2021; Hofstätter et al., 2020), and the re-ranker can be improved
with hard negatives generated from the retriever (Gao et al., 2021b;
Huang et al., 2020). Based on these observations, Ren et al. (2021)
proposed the dynamic listwise distillation to optimize two components
jointly and contribute to the final ranking performance. Nevertheless,
these works are only preliminary attempts in this direction. In fact,
the joint learning of two components, i.e., retrieval and re-ranking,
cannot be implemented trivially and many problems have not been
solved well. Besides, researchers in this field have not ventured into the
end-to-end learning of the whole pipeline, including indexing, retrieval,
and re-ranking.

8.4 Next Generation IR System: from Index-centric to Model-centric

Beyond the traditional multi-stage IR systems, the state-of-the-art
pre-trained models with huge model size are capable of encoding more
knowledge about the world, and based on this, they are probably able to
generate results to information needs directly. Thus, given the significant
progress in PTMs, it is possible to set about the next generation of IR
systems.

Metzler et al. (2021) proposed a vision to build model-based IR
system based on the powerful pre-trained models. Within the framework,
the index is embedded into the model itself during the model training
process, and retrieval and re-ranking components are implemented inte-
grately with model inference. However, this work only gives a beautiful
vision and vague framework. Recently, Tay et al. (2022) implemented
this new IR paradigm based on the T5 model. The significant perfor-
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mance is achieved by training the model with indexing (i.e., documents
to docids) and retrieval (i.e., queries to docids) in a multi-task setup. At
about the same time, Zhou et al. (2022) presented DynamicRetriever,
which builds the model-based IR system based on BERT. They firstly
fine-tuned the BERT-based dense retriever with query-document pairs,
and then initialized the model parameters, especially the projection
matrix with generated document embeddings. Finally, the model is
further fine-tuned with query-docid pairs. Nevertheless, these works are
only preliminary explorations and there are still many deficiencies to
be improved. For example, how to build the semantics-based document
identifications, and how to update the model when the document col-
lection changes? Besides, there are a number of challenges needing to
be solved before the model-based IR system can be applied in practice.
At present, the capacity of existing pre-trained models is limited. For
example, they do not have a real understanding of world knowledge,
and it is challenging for them to develop the reasoning ability (e.g.,
arithmetic, logic, etc). Moreover, it is desiderative that the model-based
IR system could be interpretable, debuggable and controllable. In fact,
this is a core issue that all neural-based models need to address before
they are applied.



9
Conclusion

In this paper, we present a comprehensive overview of PTMs in IR, and
gain some insights for future development. It includes the background
of IR, a detailed description of PTMs applied in different components
of IR, and a summary of related resources. Specifically, we describe the
concepts of IR in a hierarchical view, and review the major paradigms
of each stage. Then we thoroughly survey PTMs applied in different
components of IR systems, including the first-stage retrieval component,
the re-ranking component, and other components. In addition, we
describe works in designing novel PTMs tailored for IR. Finally, we
highlight several challenges on this topic and discuss potential research
directions in this area. We hope this survey can help researchers who
are interested in PTMs in IR, and will motivate new ideas to further
explore this promising field.
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