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ABSTRACT

Pre-trained language models (PTLM) have achieved impressive results in a range
of natural language understanding (NLU) and generation (NLG) tasks. However,
current pre-training objectives such as masked token prediction (for BERT-style
PTLMs) and masked span infilling (for T5-style PTLMs) do not explicitly model
the relational commonsense knowledge about everyday concepts, which is crucial
to many downstream tasks that need common sense to understand or generate. To
augment PTLMs with concept-centric commonsense knowledge, in this paper, we
propose both generative and contrastive objectives for learning common sense
from the text, and use them as intermediate self-supervised learning tasks for
incrementally pre-training PTLMs (before task-specific fine-tuning on downstream
datasets). Furthermore, we develop a joint pre-training framework to unify gen-
erative and contrastive objectives so that they can mutually reinforce each other.
Extensive experimental results show that our method, concept-aware language
model (CALM)1, can pack more commonsense knowledge into the parameters of
a pre-trained text-to-text transformer without relying on external knowledge graphs,
yielding better performance on both NLU and NLG tasks. We show that while only
incrementally pre-trained on a relatively small corpus for a few steps, CALM out-
performs baseline methods by a consistent margin and even comparable with some
larger PTLMs, which suggests that CALM can serve as a general, “plug-and-play”
method for improving the commonsense reasoning ability of a PTLM.

1 INTRODUCTION

Pre-trained language models (PLTMs) such as BERT (Devlin et al., 2018) and T5 (Raffel et al.,
2019) have revolutionized the field of NLP, yielding impressive performance on various conventional
natural language understanding (NLU) and generation (NLG) tasks. BERT and its novel variants
such as RoBERTa (Liu et al., 2019) and ALBERT (Lan et al., 2019) capture syntactical and semantic
knowledge mainly from the pre-training task of masked language modeling, while T5-style models
such as BART (Lewis et al., 2019) instead focus on masked span infilling tasks. Though yielding better
performance on many downstream tasks, these pre-training objectives, however, do not explicitly
guide the models to reason with concept-centric commonsense knowledge from language, including
the relation and composition of daily concepts in our lives. This leaves room for equipping current
PTLMs with richer commonsense reasoning ability.

For example, consider a multi-choice question “What do you fill with ink to write notes on a piece of
copy paper? (A) fountain pen (B) pencil case (C) printer (D) notepad”. The current state-of-the-art
question answering model, UnifiedQA (Khashabi et al., 2020), which was fine-tuned on T5-large
with multiple datasets, still predicts ‘(C) printer’ as its answer. The model may be overly sensitive to
the co-occurrence between phrases in question sentence like ‘ink’ and ‘copy paper’ and the answer
choice ‘printer’, but fails to reason with the concept-centric knowledge that ‘fountain pen’ is a writing
instrument that needs to be filled with ‘ink’. Such mistake in commonsense reasoning becomes a
bottleneck for current PTLMs (Davis & Marcus, 2015). Towards augmenting PTLMs with more
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knowledge, prior works mainly focus on training larger models (Brown et al., 2020), adding specific
architectures to exploit external knowledge (Peters et al., 2019), or incorporating knowledge bases
for pre-training (Xiong et al., 2020). In this paper, we instead look to explicitly teach pre-trained
models to write and reason with common concepts through novel pre-training strategies.

We present two kinds of self-supervised pre-training tasks: concept-to-sentence generation (C2S)
and concept order recovering (COR). C2S trains the pre-trained model to compose (“write")
sentences given a set of concepts, and expects the generated sentences to be fluent and plausible in
terms of commonsense. COR aims to teach models to detect and revise a corrupted sentence with
incorrect ordering of concepts. As illustrated in Figure 1, both tasks require a pre-trained model to
recall relevant commonsense facts about the concepts and to understand the underlying commonsense
relations between them. Both of the proposed objectives can explicitly encourage the model to capture
the relational concept-centric commonsense knowledge and perform compositional reasoning.

Specifically, we need a generative pre-training objective to encourage models to capture this genera-
tive commonsense reasoning ability, so that models can learn to generate sentences with common-
sense knowledge for both C2S and COR. Also, to teach modes to distinguish truth sentences from
less plausible ones, we need to teach models with discriminative commonsense through contrastive
self-training. To unify both generative and contrastive objectives within a joint learning framework
so that the model can learn both generative and discriminative commonsense knowledge at the same
time, we propose to use the sentences generated by the model itself as the distractors and train the
model to distinguish the generated sentences from real sentences. In this way, the model is forced
to acquire new commonsense knowledge in order to distinguish the distractors generated by itself,
which probably exploit the knowledge the model already possesses. Therefore, the model is trained
to iteratively improve upon itself in a self-play fashion. We share all the parameters between the
generator (trained with the generative objective) and the discriminator (trained with the contrastive
objective), then train multiple objectives with different prefixes. Compared to previous works (Peters
et al., 2019; Li et al., 2019; Xiong et al., 2020) that utilize external knowledge bases like Wikidata
or ConceptNet, our approach can directly improve the generative and discriminative commonsense
reasoning ability of PTLMs at the same time without relying on external knowledge bases.

To evaluate the effectiveness of our proposed method, we apply our method in an intermediate-task
transfer learning setting (Pruksachatkun et al., 2020) based on the pre-trained T5-base model to train
a Concept-Aware Language Model (CALM). While only continually pre-trained on a small dataset
for a relatively fewer number of updates (compared to conventional pre-training), CALM consistently
outperforms T5-base on four commonsense-related NLU datasets (i.e., COMMONSENSEQA, OPEN-
BOOKQA, PIQA, and ANLI) and COMMONGEN, a commonsense-related NLG dataset. Our results
and careful ablation studies demonstrate the potential of our method to serve as a “plug-and-play”
method for any pre-trained text-to-text transformer before fine-tuning on commonsense-related tasks.
To the best of our knowledge, our work is the first to investigate concept-centric self-supervised
objectives that improve both generative and discriminative commonsense reasoning ability of a
pre-trained language model.

2 SELF-SUPERVISED OBJECTIVES FOR CONCEPT-CENTRIC LEARNING

In this section, we first describe the proposed generative and contrastive objectives used for improving
the commonsense reasoning ability of pre-trained text-to-text transformers. Then, we introduce the
joint learning framework which unifies the proposed self-supervised objectives and learn a unified
text-to-text transformer based on pre-trained models such as T5.

2.1 GENERATIVE OBJECTIVES

Similar to many other pre-training tasks such as masked language modeling, we aim to teach models
to recover original sentences from corrupted inputs, which is often regarded as a denoising process.
We propose two generative self-supervised pre-training objectives: concept-to-sentence generation
(C2S) and concept order recovering (COR).

Concept Extraction. Given an input x = [x1, x2, . . . , xn], we first conduct part-of-speech tagging
with Spacy for the sentence and extract Verb, Noun, and Proper Nouns from the sentence to use as
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Concept-to-Sentence

Input: <c2s> Generate a sentence with the concepts: 

forward, Simpson, ignore, information, prosecutor

Output: The information was forwarded to 

Simpson 's prosecutors, but it was ignored.

Concept Order Recovering

Input: <cor> Correct the order of the given sentence:

Rahul stops him, fights his bar, and drives to a 
local performance.

Output: 
Rahul fights him, stops his performance, and 
drives to a local bar.

generative common sense 
Text-to-Text 
Transformer

Text-to-Text 
Transformer

Figure 1: Two self-supervised pre-training objectives that teach text-to-text transformers with
generative common sense: (1) Concept-to-Sentence Generation (C2S) pre-trains the model to
recover the original sentence with a shuffled concept set, e.g., {forward, Simpson, ignore, information,
prosecutor} → “The information was forwarded to Simpson’s prosecutors, but it was ignored.”
(2) Concept Order Recovering (COR), similarly, teaches the model to correct the mispositioned
concepts in the original sentence. For example, the concepts (stops, fights, bar, drives, performance),
are randomly reordered in the input, while the model should recover the original sentence.

concepts2. Next, we form concept-sets C = [v1, v2, . . . , vp, n1, n2 . . . , nq] where vi and ni denotes
the i-th verb or noun/proper noun concept (token) in x. We denote Cv and Cn as the set of verb and
noun/proper noun concepts respectively in C. (i.e. Cv = [v1, v2, . . . , vp] and Cn = [n1, n2, . . . , nq].)

Concept-to-Sentence Generation (C2S). The concept-to-sentence generation (C2S) objective re-
quires the text-to-text transformer to recover the original sentence given only a few unordered
keywords of the sentence. Specifically, given a sentence, we shuffle the extracted concept-set C to
create the perturbed source sequence and train the model to generate the original sentence with a
prefix (denoted as <c2s>) as described in Fig. 1. Formally, the C2S objective can be formulated as:

Lc2s = E
( n∑
i=1

− log p(xi|<c2s>; PERMUTE(C);x1:i−1)
)

(1)

where the PERMUTE() function randomly shuffle the concepts in the concept-set. This objective
requires the model to construct an acceptable commonsense sentence by adhering to and reasoning
over the commonsense relations between the given concepts. Therefore, relational commonsense
knowledge is implicitly injected into the parameters of the model. The C2S objective is motivated by
the task proposed in Lin et al. (2020). Compared to their work, the concept-set used in C2S covers
more concepts such as named entities, while the original task only includes the concepts appearing in
ConceptNet. We apply the task in a general domain and as a pre-training objective, instead of merely
serving as an evaluation task.

Concept Order Recovering (COR). As for the concept order recovering (COR) objective, we
shuffle the order of concept in a sentence and train the model to recover the original sentence. As
illustrated in Figure 1, given an input sentence “tree grows on the apple,”, the models would shuffle the
concepts including “tree”, “grow”, and “apple” to recover the original sentence “apple grows on the
tree.” The noise introduced by concept shuffling is different from that by traditional self-supervised
objectives like mask language modeling and mask span prediction because the corrupted source
sentences are in general complete (i.e., no tokens or spans are masked) and grammatically correct,
while not acceptable in terms of commonsense because the order and relation between concepts are
shuffled. By training the model to detect and correct the disorder of concepts in a sentence, the model
is expected to acquire some relational commonsense knowledge like “apple generally grows on a
tree” instead of “tree grows on an apple.”

Formally, the COR objective can be formulated as:

Lcor = E
( n∑
i=1

− log p(xi|<cor>; CONCEPT-PERMUTE(x, C);x1:i−1)
)
, (2)

2We split the concepts with multiple tokens (under Spacy tokenization) into single token to ensure the
concepts discussed afterwards all contain a single token.
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where <cor> is the prefix for the COR objective illustrated in Figure 1. The function CONCEPT-
PERMUTE() permutes the order between concepts in the same category (i.e. noun or verb) in the
sentence, which can be formally defined as:

CONCEPT-PERMUTE(x, C) = [x′1, x
′
2, . . . , x

′
n] where x′i =


xi xi /∈ C
PERMUTE(Cv)[j] xi = vj
PERMUTE(Cn)[j] xi = nj

(3)

Our proposed objectives require the model to capture the relational commonsense knowledge between
concepts and perform relational (COR) and compositional (C2S) commonsense reasoning in order to
successfully reconstruct the original sentence. Therefore, the model is encouraged to acquire concept-
centric commonsense knowledge more effectively. In contrast, conventional pre-training objectives
like masked language modeling and masked span infilling mainly focus on general token-level
co-occurrence patterns and thus are less effective for learning commonsense knowledge.

2.2 CONTRASTIVE OBJECTIVE

Generative QA
Input: <cont> Which sentence is correct?: options:
1. The increased number of male visitors inspired by 

the article raised security concerns
2. The increased article of male visitors raised by the 

number inspired security concerns

Output: 
The increased number of male visitors inspired by the 
article raised security concerns

discriminative common sense Text-to-Text 
Transformer

Figure 2: Overview of Contrastive self-supervised
pre-training objectives. Generative QA style con-
trastive objective requires the model to distinguish
truth sentences from less plausible ones.

The contrastive objective encourages the pre-
trained model to distinguish the real sen-
tence from a distractor sentence: a sentence
that is similar to the real sentence, gener-
ally grammatically correct, but may not fol-
low common sense. We expect it to im-
prove the pre-trained model’s discrimina-
tive commonsense reasoning ability so that
the model’s performance on commonsense-
reasoning-discriminative tasks, like Com-
monsenseQA, can be improved. We formu-
late the contrastive objective as a Generative
QA task: we take the concatenation of a pre-
fix <cont> (question / context), the real sen-
tence x (answer), and the distractor x′ (dis-
tractor) as the input and train the model to
output the real sentence x. Formally, we have
the loss function of the contrastive objective
defined as:

Lcont = E
(
− log p(x|<cont>; PERMUTE(x;x′))

)
, (4)

where the prefix <cont> is described in Figure 2. The distractor x′ is either constructed by concept
shuffling as described previously (i.e. x′ = CONCEPT-PERMUTE(x, C)) when used independently, or
generated by a generator trained with the aforementioned generative objectives when used in the joint
training framework, which will be described in the next section.

3 JOINT TRAINING WITH GENERATIVE AND CONTRASTIVE OBJECTIVES

Algorithm 1: Pre-training Concept-
Aware Language Model (CALM).
Input: Text-to-Text Transformer Tθ , Text

corpus X=[x1, x2,. . . , xn].
repeat

for each xi ∈ X do
Extract the concept-set Ci;
Construct the distractor sentence
x′ = CONCEPT-PERMUTE(xi, Ci);

Update Tθ with Eq.(1, 2, 4);
until maximum iterations reached;
repeat

for each xi ∈ X do
Update Tθ with Eq.(7)

until maximum iterations reached;

The aforementioned generative and contrastive self-
supervised objectives can be applied independently
or simply combined in a multi-task learning fashion.
We argue that these two objectives can mutually re-
inforce each other: the generated sentences from the
generative objective can help the contrastive mod-
ule learn to distinguish commonsense sentences from
less plausible ones.

Therefore, we propose a joint training framework
to unify generative objectives and contrastive objec-
tives by using the generator to produce distractors
for learning towards contrastive objective.

Specifically, we have a generator Gθ (trained with
the generative objectives) and a discriminator Dφ
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Original Sentence x

She was the first woman to hold the position
Discriminator (Text-to-Text Transformer)

Weight Sharing

Extracting Concept Set C

<cor> She was the first position to hold the woman  

<c2s> Hold Woman Position

CONCEPT-PERMUTE(x,C)

PERMUTE(C)

Distractor Sentence 1

Distractor Sentence 2

She was the first woman to position the hold

Woman holds the position

Generator
(Text-to-Text Transformer)

C2S

COR

Original Sentence x

Distractor Sentence  

Generative QA

Woman holds the position

She was the first woman to hold the position

She was the first woman to hold the position

Figure 3: Proposed Joint Training Framework. Given an input sentence x (“She was the first
woman to hold the position.”), we extract concept-set C (woman, hold, position). Given x and C,
we produce corrupted source sequence x′ either for C2S and COR. The generator trained with the
corresponding objective recovers sentences as distractors x′′ to the discriminator. The discriminator
is trained to distinguish truth sentences from randomly selected distractor among two objectives.
Parameters between the generator and discriminator are shared.

(trained with the contrastive objective). Given an input sentence x, we first use the method for either
C2S or COR to produce the corrupted source sequence x′. Then, we use the generator Gθ trained
with the corresponding objective to generate the recovered sentence x′′ = Gθ(x

′). We then take x′′

as the distractor to train the discriminator Dφ with the contrastive objective. The loss function of
the proposed joint training framework consists of two parts: the first part is the loss of generative
objectives, which is identical to the loss described in Eq.(1) and Eq.(2) and is used to update the
generator Gθ. The second part is the loss of the contrastive objective as described in Eq.(4), which
can be formulated as:

Lcont_joint_c2s = E
(
− logDφ(y|<cont>;x;Gθ(<c2s>; PERMUTE(C))

)
(5)

Lcont_joint_cor = E
(
− logDφ(y|<cont>;x;Gθ(<cor>; CONCEPT-PERMUTE(x, C))

)
(6)

where Lcont_joint_c2s and Lcont_joint_cor is the contrastive loss with the distractor generated with
either the C2S or the COR objective and y is the original sentence. We then have the overall objective
for the joint training framework defined as :

Ljoint = (Lc2s + Lcor) + β(Lcont_joint_c2s + Lcont_joint_cor). (7)

Lc2s and Lcor are defined in Eq.(1) and Eq.(2) respectively and β is a hyperparameter controlling
the relative weight between the generative and contrastive objectives. Note that since we would
like to inject both generative and discriminative commonsense reasoning ability into the parameters
of a single text-to-text transformer, we share the parameters between the generator Gθ and the
discriminator Dφ.

Finally, we describe the overall procedure to apply the proposed self-supervised objectives and the
joint training framework on a pre-trained text-to-text transformer. We apply a two-stage training strat-
egy. During the first stage, we apply our proposed generative and contrastive objectives individually
on the model in a multi-task learning fashion with different prefixes. This provides a good starting
point for the second stage where the joint training framework is applied. We summarize the workflow
of our method in Algorithm 1.

4 EXPERIMENTS

In this section, motivated by the observation of Pruksachatkun et al. (2020) that tasks requiring
commonsense reasoning ability generally serve as good intermediate task, we test our method in the
intermediate task transfer setting. Specifically, we initialize our model with T5-base, a pre-trained
text-to-text transformer model, and training the model with our proposed method as intermediate task
before fine-tuning and target downstream tasks. Another reason for adopting this setting is because
we expect our method to serve as a “plug-and-play” method that can be applied to any pre-trained
text-to-text transformer by simply continually training for a few steps.

Details for Pre-training and Fine-tuning CALM is continually pre-trained with our proposed
self-supervised objectives as intermediate tasks based on the pre-trained T5-base model following
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the setting in Pruksachatkun et al. (2020). We randomly sample 500K sentences from the English
Wikipedia corpus3, which is used for pre-training BERT and its variants, as the source dataset for our
proposed self-supervised objectives which serve as intermediate tasks. We then fine-tune the CALM
on each downstream task individually and report the average performance of three runs with different
random seeds for fine-tuning on each dataset since the performance is sensitive to different random
seeds. Training details and hyperparameter settings are presented in Appendix A.1 and A.2.

Datasets We consider five commonsense benchmark datasets as target tasks. We categorize these
datasets into discriminative and generative tasks. Discriminative tasks are classification tasks while
generative tasks are text generation tasks. We consider four datasets for discriminative task: Com-
monsenseQA (Talmor et al., 2018), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020),
aNLI (Bhagavatula et al., 2019) and one dataset for generative task: CommonGEN (Lin et al., 2020).
Details on datasets are discussed in Appendix A.3.

Compared Methods We compare our model with following models continually trained with different
intermediate tasks based on the pre-trained T5-base model: (1) T5-base is the pre-trained T5-base
model without continually training on any intermediate task. (2) T5-base w/ additional epochs
is continually pre-trained using the original pre-training objective of T5 with additional training
steps. The total number of additional training steps is equal to that of our final model. (3) T5-base
+ SSM is continual pre-trained with a variant of the salient span masking objective (Guu et al.,
2020; Roberts et al., 2020) objective that masks text spans of concepts extracted with POS tagging
instead of named entities extracted by a pre-trained NER model, which makes it more focused on
concepts. (4) CALM(Generative-Only) is continually pre-trained with the proposed generative
objectives including concept-to-sentence generation(C2S) and concept order recovering(COR) as
intermediate tasks. (5) CALM(Contrastive-Only) is continually pre-trained with the proposed
contrastive objective as described in section 2.2 using the distractor generated by concept shuffling. (6)
CALM(Mix-only) is continually pre-trained with both the generative objectives and the contrastive
objective, combined with a multi-task learning fashion with identical weights for each objective as the
intermediate task. (7) CALM (w/o Mix warmup) is continually pre-trained with the joint training
objective described in Eq (7) directly from the pre-trained T5-base model. (8) CALM is our main
model trained as described in Algorithm 1. The difference between CALM and CALM (Joint) is that
the former is initialized by the CALM(Mix). We also include the performance of the BERT-base
model and two knowledge enhanced PTLMs that have similar architecture to BERT-base.

Evaluation Metrics For discriminative tasks, we choose accuracy as our metric following other
conventional question answering tasks. For generative tasks, we report automated metrics including
BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), CIDEr (Vedantam et al., 2015),
and SPICE (Anderson et al., 2016) following the leaderboard of COMMONGEN (Lin et al., 2020).
Results for COMMONGEN are on the test set and others are on the official development set. We tune
the hyperparameters based on the models’ performance on a in-house split dev set.

4.1 EXPERIMENTAL RESULTS

The result is presented in Table 1. First, we can see that our CALM model consistently and
significantly (with p-value < 0.01) outperforms the backbone T5-base model on all five datasets by
a margin range from 1.5 to 2.9 accuracy on discriminative tasks and 1.5/0.6 BLEU/SPICE score
on CommonGEN. This is an impressive result since we are only performing intermediate training
on a relatively small dataset for only around 20k updates. It demonstrates the potential of our
method for serving as a “plug-and-play” method for packing more commonsense knowledge into a
pre-trained text-to-text transformer. Table 3 also shows that CALM performs comparably with several
large-size PTLMs like BART, T5-large, and GPT-2 on the COMMONGEN dataset. The performance
is worse than KG-BART (Liu et al., 2020), the current state-of-the-art on COMMONGEN, which is a
contemporary work that exploits external knowledge bases as additional information, and is based on
a larger backbone(i.e., BART (Lewis et al., 2019)).

In addition, we can observe that both the proposed generative and contrastive objective outperforms
the backbone T5-base model, as well as its variants that continually pre-trained with the original
masked span prediction objective and the concept-specific salient span masking scheme, when applied
independently. Note that we find the variant of salient span masking that focuses on concept is not

3https://dumps.wikimedia.org/enwiki/latest/
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Methods CSQA OBQA PIQA aNLI CommonGEN
Accuracy (official dev) BLEU-4 METEOR CIDEr SPICE

BERT-base 53.08(±0.16) 57.60(±0.8) 64.86(±0.52) 61.88(±0.56) - - - -
ERNIE 54.06(±0.12) 58.90(±0.9) 66.47(±0.58) 63.04(±0.46) - - - -
KnowBERT 53.88(±0.15) 58.50(±0.8) 66.61(±0.63) 63.18(±0.52) - - - -

T5-base 61.88(±0.08) 58.20(±1.0) 68.14(±0.73) 61.10(±0.38) 24.90 31.20 12.99 32.40
T5-base + cont. pretraining 61.92(±0.45) 58.10(±0.9) 68.19(±0.77) 61.15(±0.52) 25.10 31.00 13.12 32.40
T5-base + SSM 62.08(±0.41) 58.30(±0.8) 68.27(±0.71) 61.25(±0.51) 25.20 31.20 13.28 32.40

CALM (Generative-Only) 62.28(±0.36) 58.90(±0.4) 68.91(±0.88) 60.95(±0.46) 25.80 31.20 13.81 32.60
CALM (Contrastive-Only) 62.73(±0.41) 59.30(±0.3) 70.67(±0.98) 61.35(±0.06) 25.50 31.20 13.58 32.60
CALM (w/o Mix warmup) 62.18(±0.48) 59.00(±0.5) 69.21(±0.57) 61.25(±0.55) 25.80 31.20 13.77 32.60
CALM (Mix-only) 63.02(±0.47) 60.40(±0.4) 70.07(±0.98) 62.79(±0.55) 26.00 31.20 13.82 32.80
CALM 63.32(±0.35) 60.90(±0.4) 71.01(±0.61) 63.20(±0.52) 26.40 31.40 13.88 33.00

Table 1: Experimental results on commonsense reasoning datasets. The first group of models are
baselines. The models in the middle group and last group except the CALM model are trained with
the proposed objectives independently and the final CALM model is trained by joint training. Best
models are bold and second best ones are underlined within each metric.

Methods CSQA OBQA PIQA aNLI CommonGEN
Accuracy (official dev) BLEU-4 METEOR CIDEr SPICE

BERT-large 57.06(±0.12) 60.40(±0.6) 67.08(±0.61) 66.75(±0.61) - - - -
T5-large 69.81(±1.02) 61.40(±1.0) 72.19(±1.09) 75.54(±1.22) 28.60 30.10 14.96 31.60
CALM-large (Mix-only) 70.26(±0.23) 62.50(±1.0) 73.70(±1.09) 75.99(±1.26) 29.20 31.30 15.24 33.10
CALM-large 71.31(±0.04) 66.00(±1.0) 75.11(±1.65) 77.12(±0.34) 29.50 31.90 15.61 33.20

RoBERTa-large4 71.81(±0.25) 63.90(±0.8) 76.90(±0.62) 82.35(±0.54) - - - -

Table 2: Experimental results on large model. Comparison between large models of other PTLMs
and CALM. Best models are bold and second best ones are underlined within each metric.

very effective. We suspect this is because the resulting training data would be somewhat similar to
the original text infilling objective because concepts are very common in the corpus and we only train
for a few steps. The combination of the generative and contrastive objectives (i.e., CALM(Mix-only))
yields further improvement upon the model trained independently with either generative or contrastive
objectives. Also, we find that the CALM model consistently outperforms CALM(Mix), demonstrating
the effectiveness of the proposed joint training framework. Applying joint training directly on top
of a pre-trained model (i.e., CALM(w/o Mix warmup)) does not work very well, demonstrating the
necessity of applying mixed training to initialize the model before starting joint training.

Methods Params CommonGEN
BLEU-4 METEOR CIDEr SPICE

GPT-2 (Radford et al., 2019) 774M 21.10 26.20 12.15 25.90
UniLM (Dong et al., 2019) 340M 27.70 29.70 14.85 30.20
BART (Lewis et al., 2020) 406M 26.30 30.90 13.92 30.60
T5-base (Raffel et al., 2019) 220M 16.40 23.00 9.16 22.00
T5-large5 (Raffel et al., 2019) 770M 28.60 30.10 14.96 31.60
KG-BART6 (Liu et al., 2020) 406M 30.90 32.40 16.83 32.70

T5-base (our implementation) 220M 24.90 31.20 12.99 32.40
CALM-base 220M 26.40 31.40 13.88 33.00
CALM-large 774M 29.50 31.90 15.61 33.20

Table 3: Comparison between PTLMs on CommonGEN.
Above baselines are reported number in the leaderboard.
T5-base(our implementation) uses different hyperparme-
ter setting than that reported in the leaderboard.

To further confirm the effectiveness of
our approach, we also apply our method
to continually pre-train T5-large with the
same data and number of training steps.
We then compare the performance of the
resulting model with that of the original
T5-large model in Table 10. We find that
both the proposed training objectives and
the joint training framework consistently
and significantly (with p-value < 0.01)
improve upon the original T5-large, show-
ing our approach is effective for models
with different sizes. Our model also out-
performs BERT-large by a large margin.
However, our model performs slightly worse compared to RoBERTa-large. We suspect this is because
RoBERTa-large is optimized for more steps than T5-large and our CALM-large. This is also observed
in many other tasks and datasets.

4.2 PERFORMANCE ANALYSIS

Analysis on Generative objective To investigate the contribution of each generative objective, we
conduct an ablation study by continually pre-training three models from the same T5-base model with
C2S, COR, and text infilling, which is the original objective for pre-training T5, as the objective for
the intermediate task. We continually pre-train these models for the same number of steps and then
evaluate their performance by fine-tuning on different target tasks. The result is shown in Table 4.
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Methods CSQA PIQA CommonGEN

Accuracy BLEU-4 METEOR CIDEr SPICE

T5 - Text Infilling 61.92 68.19 25.10 31.00 13.13 32.40
CALM - COR 62.36 68.77 25.70 31.20 13.65 32.60
CALM - C2S 62.24 68.75 25.90 31.40 13.94 32.80

(a) Generative objectives

Methods CSQA PIQA CommonGEN

Accuracy BLEU-4 METEOR CIDEr SPICE

Multi-choice QA 62.21 68.82 25.00 31.20 13.28 32.60
True/False 62.24 67.81 25.10 31.20 13.41 32.60

Generative QA 62.73 70.67 25.50 31.20 13.58 32.60

(b) Contrastive objectives

Table 4: Analysis on Contrastive and Generative objectives. Left table shows the performance
on downstream tasks by pre-training with different generative objective (COR, C2S, and original
objective for pre-training T5). Right table shows the performance on downstream tasks by pre-training
with different task formats of contrastive objective.

We can see that both C2S and COR works better than the original masked span infilling objective
on itself. This confirms the effectiveness of our proposed generative objectives on improving the
commonsense reasoning ability of pre-trained text-to-text transformers.

Task Formulation of the Contrastive objectives For contrastive objectives, we test three different
task formats: Multi-choice QA, Generative QA, and True/False. Multi-choice QA and Generative
QA takes the concatenation of the real sentence and the distractor. Then, Multi-choice QA output the
index of the real sentence following other conventional Multi-choice QA tasks, and Generative QA
output the real sentence respectively. True/False takes either the real sentence or the distractor and
train the model to perform a binary classification problem of whether the input sentence makes sense.
The result is shown in Table 4. We could find that the format of Generative QA performs the best.
We suspect this is because the Generative QA format is closer to the format used during the original
pre-training stage of the T5 model and the format used for fine-tuning.
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Figure 4: Performance of compared models fine-tuned with
different fraction of the datasets.

Performance with fewer training
examples To investigate the effec-
tiveness of our objective in the low-
resource setting, we explore the per-
formance of our model and baselines
fine-tuning with different fractions of
the training data. From Figure 4, we
can see that the performance improve-
ment yielded by our models upon the
T5-base model is more significant in
the low-resource regime. This shows
that CALM may already pack some
commonsense knowledge in its parameters so that it does not require much data for fine-tuning before
obtaining a good performance. In contrast, the original T5 model requires much data for fine-tuning,
which suggests it may fail to encode much commonsense knowledge and must fit the correlation
patterns in the downstream datasets to get a good performance.

Comparison of Generated Data Table 5 shows the comparison of generated examples for the
COMMONGEN test set between T5-base and CALM. We can see that the sentences generated by
CALM are generally more acceptable in terms of commonsense plausibility while T5-base sometimes
generates sentences that do not make sense.

Concept-set T5-base CALM-base
Grass, Dog, Ball, Chase a dog is chased by a ball on the grass. dog chasing a ball in the grass.
Net, Cast, Boat, Water fishing boat casts a net in the water. fisherman casts a net into the water from a fishing boat.
Hole, Tree, Plant, Dig a man digs a hole in a tree to plant a new tree . he digs the man digging a hole to plant a tree.

Ingredient, Add, Pan, Fry a pan filled with ingredients adds a touch of spice to the fry . add the ingredients to a pan and fry.
Water, Hold, Hand, Walk A man holding a hand and walking in the water. A man is holding water. man holding a bottle of water in his hand as he walks down the street.

Place, Use, Metal tool A man uses a metal tool to make a piece of metal. woman uses a metal tool to make a piece of jewelry.

Table 5: Comparison of generated sentences with same concept-set.

Knowledge Probing To investigate how much concept-centric knowledge our model pack, we
conducted two probing methods with our model : Language Model Analysis (LAMA) probe (Petroni
et al., 2019), Knowledge Intensive Language Task (KILT) (Petroni et al., 2020). We summarize the
results on Table 6 and Appendix A.4. We could find that our model outperforms the baseline.

5 RELATED WORK

Self-Supervised Language Representation Pre-Training. Motivated by the fact that words can
have different meanings in different contexts, contextual language representation methods (McCann
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Methods MRR Precision@50 Precision@10 Precision@1

T5-Base 11.53 38.52 21.60 5.93
CALM (Mix-only) 11.77 38.93 21.92 6.10
CALM 12.09 39.69 22.53 6.46

(a) LAMA probe

Methods FEVER AY2

T5-base 76.65 74.97
CALM (Mix-only) 77.05 76.27

CALM 77.44 77.24
(b) KILT task

Table 6: Experimental results on Knowledge Probing. Left table shows the mean precision on
LAMA probing task of ConceptNET. Right table shows the performance on Fact checking and Entity
linking, which are from KILT task.

et al., 2017; Peters et al., 2018) have been developed and shown superior performance on downstream
tasks compared with static word embeddings Mikolov et al. (2013); Pennington et al. (2014). More
recently, large scale language models based on transformer architecture (Vaswani et al., 2017) pre-
trained with either mask language modeling objective (Devlin et al., 2018; Liu et al., 2019; Lan et al.,
2019) or mask span infilling objective (Lewis et al., 2019; Raffel et al., 2019) have been explored
further advanced the state-of-the-art on multiple NLU and NLG tasks. Our method is based on these
techniques and we focus on improving the commonsense reasoning ability of pre-trained text-to-text
transformers. More recently, Clark et al. (2020) propose a new self-supervised pre-training objective
called Replaced Token Detection (RTD). RTD uses a mask language model like BERT to fill in the
mask and train a discriminator to predict whether a token is generated or real. This pre-training
paradigm is related to our proposed joint training framework. Some major differences include that (1)
Our method employs sentence-level distractors that are in general grammatically correct but not in
line with commonsense, thus require the model to perform relational commonsense reasoning while
RTD is a token-level discrimination task and can often be solved with syntactic and shallow semantic
knowledge (Rosset et al., 2020); (2) Our method unifies generative and contrastive objectives with one
model, which can be applied to both NLU and NLG downstream tasks; and (3) The discriminator in
our framework is “contrastive”, takes both the real sentence and the distractor as input simultaneously.

Knowledge-augmented PTLMs. As standard pre-trained language models usually do not explicitly
model knowledge, a number of works have examined the problem of incorporating world knowledge
with the PTLMs. Recent work Zhang et al. (2019); Peters et al. (2019); Wang et al. (2020); Liu et al.
(2020) utilizes an external knowledge base to incorporate entity knowledge with PTLMs; however,
these approaches require specialized resources like knowledge bases, which limits the domain they
can be applied to. Xiong et al. (2020) proposes WikiLM that encodes world knowledge into the
parameters of a BERT(Devlin et al., 2018)-like pre-trained model with a novel entity replacement
detection objective that incorporates Wikipedia to form distractors. Their approach differs from
ours because it requires an external knowledge base (i.e., Wikipedia) which limits the domain it can
be applied, is limited to discriminative pre-training objectives and downstream tasks, and focuses
on world knowledge instead of relational commonsense knowledge. More recently, (Rosset et al.,
2020) propose KALM, an entity-aware language model with more world knowledge packed into its
parameters. Their method is restricted to the training of language models instead of masked language
models or text-to-text transformers which can be used for more downstream tasks. Also, all the
aforementioned work mainly focuses on world knowledge of named entities. In contrast, our work
mainly focuses on commonsense knowledge about quotidian concepts.

6 CONCLUSION

We propose novel self-supervised strategies that encourage the model to focus on concept-centric
information that is related to commonsense understanding and reasoning instead of simple word co-
ocurrence patterns so that the commonsense learning capability of pre-trained text-to-text transformers
can be improved. Despite merely continually pre-trained on a small dataset with only around 20k steps,
our CALM model consistently outperforms the T5-base model on all commonsense-related datasets,
and even yields better performance compared with some larger size PTLMs on the COMMONGEN
dataset. The performance gain is larger when we use fewer examples for fine-tuning on different
downstream tasks, indicating that CALM effectively encodes more commonsense knowledge and rely
less on fitting superficial patterns of datasets compared to traditional pre-trained language models. Our
work suggests that text-to-text models can be pre-trained with better parameter and sample efficiency
by carefully designed self-supervised objectives that focus more on the ability (e.g., commonsense
reasoning ability) required by target tasks.
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A APPENDIX

A.1 PRE-TRAINING DETAILS

The following details apply to both base architecture and joint-training architecture. We implement
our pre-train models using Pytorch-lightning (Falcon, 2019) and Hugginface’s Pytorch Transform-
ers (Wolf et al., 2019). For pre-training phase, we use the Adam optimizer with maximum sequence
length 256, train batch size 8, gradient accumulation 8, warmup steps 10000, weight decay 0.01 and
adam epsilon 1e-6. We train the models with 8 V100 GPUs and FP32 precision for 17 hours. The
model is pre-trained for at most 3 epochs to prevent overfitting. We searched for the best learning
rate for our model out of [1e-4, 2e-5, 2e-6, 5e-7].

A.2 FINE-TUNING DETAILS

For fine-tuning, we use 4 V100 GPUs and use FP32. For all discriminative tasks, we use the Adam
optimizer with maximum sequence length 256, batch size 4 and gradient accumulation 16. For
generative task, we use the Adam optimizer with maximum source length 32, maximum target length
32, batch size 8, gradient accumulation 16. For all tasks, we use warmup fraction 0.01. Learning
rates and train epochs are listed in Table 7.

Hyperparameter CommonsenseQA OpenbookQA PIQA aNLI CommonGEN

Learning rate [1e-4, 2e-4, 3e-4] [5e-5, 1e-4, 2e-4, 3e-4] [1e-4, 2e-4, 3e-4] [2e-5, 3e-5] [2e-5]
Train Epochs 20 20 20 10 20

Table 7: Fine-tuning hyperparameters.

A.3 DATASET PROPERTIES

• CommonsenseQA (Talmor et al., 2018) is a multiple-choice question answering task, which
picks the most appropriate answer on general commonsense questions.

• OpenbookQA (Mihaylov et al., 2018) is a multiple-choice question answering task, which
is modeled after open book exams on elementary-level core science questions. The task
requires open book fact and additional commonsense which is not contained in the book. To
test the commonsense reasoning ability, we do not use open book fact.

• PIQA (Bisk et al., 2020) is multiple-choice question answering task, which chooses the
most appropriate solution for physical commonsense questions.

• aNLI (Bhagavatula et al., 2019) is a binary-classification task, which picks the most plausible
explanatory hypothesis given two observations from narrative contexts.

• CommonGEN (Lin et al., 2020) is a constrained text generation task, which generates a
coherent sentence describing an everyday scenario using common concepts.

Dataset Train Development Test Source Example Target Example

CommonsenseQA 9,741 1,221 1,140
context: What home entertainment equipment requires cable?
options: 1: radio shack 2: substation 3: cabinet 4: television 5: desk 4

OpenbookQA 4,957 500 500
context: You can make a telescope with
options: 1: straw 2: glass 3: candle 4: mailing tube 2

PIQA 16,113 1,838 3,084
context: When boiling butter, when it’s ready, you can
options: 1: Pour it onto a plate 2: Pour it into a jar 2

aNLI 169,654 1,532 3,040
context: It was my birthday. When I got home the party was set up for my brother.
options: 1: I was so excited. 2: I was so mad. 2

CommonGEN 67,389 4,018 6,042 generate a sentence with these concepts: Apple Grow Tree Apple grows on the tree

Table 8: Properties of Commonsense benchmark datasets.
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A.4 KNOWLEDGE PROBING

LAMA probe is consisting of a set of knowledge sources, each comprised of a set of fact. It defines
that a pre-trained language model knows a fact (subject, relation, object) such as (Bird, CapableOf,
Fly) if it can predict masked objects in cloze statement such as "Birds can [MASK]". For evaluation,
we first filtered out examples that mask label is not in vocabulary list of T5. Then, we evaluate
the model based on how highly it ranks the ground truth token against every other word in a fixed
vocabulary list of T5, and get mean precision at k to check whether the object is ranked among the
top k results. We summarize the results of ConceptNet (Speer & Havasi, 2012) in Table 6. Unlike
other language models which are optimised to masked word anywhere in a given sequence, T5 is
trained with different denoising method. It might cause low performance on such slot filling task, but
compared to T5, our model shows better performance compared to base model.

KILT task is a benchmark for assessing models that need to access specific knowledge in a defined
snapshot of Wikipedia to solve tasks spanning five domains. The goal is to analyze the model whether
it has task-agnostic representations of knowledge. We test our model on domain of fact checking,
entity linking. Fact checking verifies textual claims against textual sources. For this task, we use
FEVER (Thorne et al., 2018) which is a large dataset for claim veracity that requires evidence from
multiple Wikipedia pages to determine whether the claim is supported or refuted. Entity Linking
assigns Wikipedia page to entities mentioned in text. We use AIDA CoNLL-YAGO (AY2) (Hoffart
et al., 2011) which supplements the CoNLL 2003 (Tjong Kim Sang & De Meulder, 2003) with
Wikipedia URL annotations for all entities.

A.5 EXPERIMENTS WITH BART AS BACKBONE

To show that our approach is versatile to different pre-trained models, we conduct experiments with
BART as the backbone model. We can see that our approach consistently and significantly (with
p-value < 0.01) improves BART-base on all datasets. This result shows that our method is versatile to
different pre-trained models.

Methods CSQA OBQA PIQA aNLI CommonGEN
Accuracy (official dev) BLEU-4 METEOR CIDEr SPICE

BART-base (Mix-only) 56.31(±0.28) 58.30(±1.1) 67.53(±1.01) 59.85(±1.14) 25.10 29.50 13.16 30.20
CALM (BART-base) 58.22(±0.21) 59.10(±1.0) 69.40(±1.23) 61.28(±0.30) 26.40 29.90 13.71 31.10

Table 9: Experimental results with BART as backbone model. Best models are bold.

A.6 EXPERIMENTS WITH NOUN/VERB AS CONCEPTS

We also conducted an ablation study about the choice of using either nouns or verbs as concepts. We
can see that using either nouns-only or verbs-only as concepts for our approach leads to substantial
performance drop. This supports our choice about using both nouns and verbs as concepts.

Methods CSQA OBQA PIQA aNLI CommonGEN
Accuracy (official dev) BLEU-4 METEOR CIDEr SPICE

CALM 63.32(±0.35) 60.90(±0.4) 71.01(±0.61) 63.20(±0.52) 26.40 31.40 13.88 33.00
CALM-nouns 62.45(±0.42) 59.40(±0.5) 69.05(±0.70) 61.55(±0.58) 25.70 31.20 13.17 32.60
CALM-verbs 62.51(±0.47) 59.10(±0.7) 69.24(±0.65) 61.40(±0.51) 25.60 31.20 13.24 32.60

Table 10: Experimental results with Noun/Verb as Concepts. Best models are bold.

A.7 HUMAN EVALUATION ON COMMONGEN GENERATIONS

We conducted a human evaluation of CommonGEN predictions between T5 and CALM. We asked
three annotators to choose the most reasonable sentence between T5-base and CALM-base predictions.
The evaluation was conducted on 50 test sentences in binary selection by majority voting. Cohen’s
Kappa score, which is a measurement of inter-annotator agreement, was 0.73. Annotators say that for
60% of test sentences, CALM-base generated better.
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