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ABSTRACT 37 

 38 

The ability to perform motor actions depends, in part, on the brain’s initial state, that is, 39 

the ensemble firing rate pattern prior to the initiation of action. We hypothesized that the same 40 

principle would apply to cognitive functions as well. To test this idea, we examined a unique set 41 

of single unit data collected in human dorsolateral prefrontal (dlPFC) cortex. Data were collected 42 

in a conflict task that interleaves Simon (motor-type) and Eriksen (flanker-type) conflict trials. In 43 

dlPFC, variability in pre-trial firing rate predicted the ability to resolve conflict, as inferred from 44 

reaction times. Ensemble patterns that predicted faster Simon reaction times overlapped slightly 45 

with those predicting Erikson performance, indicating that the two conflict types are associated 46 

with near-orthogonal initial states, and suggesting that there is a weak abstract or amodal conflict 47 

preparatory state in this region. These codes became fully orthogonalized in the response state. 48 

We interpret these results in light of the initial state hypothesis, arguing that the firing patterns in 49 

dlPFC immediately preceding the start of a task predispose it for the efficient implementation of 50 

cognitive action.  51 

 52 
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INTRODUCTION   58 

The ability to respond effectively to a stimulus can depend on the state of the brain even 59 

before the stimulus appears 1–3. In other words, our responses are determined not only by the 60 

neural activity driven by the response-driving stimulus, but by the way that activity interacts with 61 

ongoing neural activity 4. In the motor system, one expression of this idea is the initial state 62 

hypothesis, which holds that motor control involves a series of dynamical states and that 63 

initiation of motor control requires a particular state 5–10. Variability in performance, typically 64 

assessed with reaction times, corresponds in part to variability in pre-trial firing rates because 65 

those reflect the response of the system relative to the optimal response-driving initial state. We 66 

and others have proposed that dynamical principles relevant to the motor system may apply to 67 

non-motor processes, including higher level cognitive processes 11–15. We hypothesized, 68 

therefore, that the ability to implement a cognitive process may likewise depend on the initial 69 

state of the system. 70 

We are particularly interested in conflict detection and resolution, a pair of 71 

complementary and relatively well-studied cognitive behaviors whose neuronal basis is 72 

beginning to be understood 16–21. Conflict typically refers to a competition between possible 73 

stimuli for attention and/or action and generally evokes slower reaction times, increased error 74 

rates, and disengagement from alternative tasks 22,23. This refocusing of mental resources is the 75 

basis of conflict resolution and presumably occurs in response to an internal detection of conflict 76 

and generation and propagation of a conflict signal. We hypothesized that the ability to deal 77 

effectively with conflict depends in part on variability in neural processes in conflict-relevant 78 

brain regions before the appearance of the conflicting stimuli.  79 

The dorsolateral prefrontal cortex (dlPFC) is among the most studied brain regions for 80 

cognitive control, along with anterior cingulate cortex 16,20,24–26. dlPFC shows systematic changes 81 

in hemodynamic response, local field potential (LFP), and firing rate in the face of conflict 82 

(ibid.). We have recently proposed that these two regions play somewhat distinct, albeit 83 

complementary roles in conflict detection and resolution 16 . We proposed that dlPFC is more 84 

associated with implementation, and thus potentially a closer cognitive analogue to motor areas 85 

(see also 25–27).  86 

Here, we examined firing rates of single neurons in dlPFC while humans performed the 87 

multi-source interference task (MSIT), a task that manipulates two different forms of conflict, a 88 

motor (Simon) type and a perceptual (Eriksen flanker) type 16,19. We found that activity patterns 89 

in the period preceding the start of the trial predicted reaction time in dlPFC, even after 90 

regressing out prior trial reaction time and conflict type. At the individual cell level, we found 91 

evidence for a neural code for response times specific to each conflict type. These codes 92 

overlapped slightly but significantly at the population level, indicating the presence of a weak 93 

shared conflict-amodal code. These results endorse the idea that conflict resolution reflects the 94 

interaction between stimulus-driven activity and ongoing fluctuations in pre-trial activity, 95 

support the initial state hypothesis for cognitive actions, and suggests a mechanism by which the 96 

brain can respond both flexibly and efficiently to different conflict conditions.  97 

 98 
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RESULTS 103 

 104 

Behavior 105 

We examined responses of single neurons recorded in dlPFC in 9 human patients (Figure 106 

1A). Task-related responses in this dataset were described in an earlier study, but pre-trial 107 

responses, the focus of the present study, were not analyzed 16,28. Participants performed the 108 

multi-source interference task (MSIT), a task that involves two independently manipulated types 109 

of conflict (Figure 1B).  110 

The validity of this task as a manipulation of conflict has been demonstrated 16,19,29,30. We 111 

therefore only briefly summarize the evidence that the task manipulates conflict. Most 112 

importantly, median reaction time in the Simon trials (1.5 sec) was significantly slower than no 113 

conflict trials (1.26 sec, p=0.017, z=2.402, ranksum=8438). Likewise, reaction times in the 114 

Eriksen trials (1.63 sec) was slower than in no conflict trials (p<0.001, z=4.51, ranksum=259). 115 

Finally, reaction times on both-conflict trials (1.71 sec) were longer than on Simon trials 116 

(p=0.006, z=2.71, ranksum=11428) although not compared to Eriksen: p=0.353, z=0.927, 117 

ranksum=11134). (Note that the difference between both and Simon survives Bonferroni 118 

correction). Despite the non-significant difference between both conflict trials and Eriksen-only 119 

trials, when the effects of either single type of conflict (Eriksen or Simon) are averaged, the 120 

effect of both types of conflict occurring together is still larger than the effect of either one 121 

(p=0.012, z=2.514, ranksum=15093).  122 

 123 

 124 

Figure 1. Multi-source interference task (MSIT) design, recording locations, and behavioral 125 

results. (A) Basic task design. Participants fixate on a central cross and then see a visual cue 126 

consisting of three numbers and has to identify the unique number with a button push.  127 

“correct response” is the left button if the target is 1, middle if 2, right if 3. Four example cues 128 

are shown here, and in each case, the target is “2” and the middle button is the correct 129 

response. This is most obvious for the first cue (“none”), where there is no conflicting 130 

information. In the other three examples, conflicting information makes the task more difficult. 131 

First, incongruence between the location of the target number in the 3-digit sequence and 132 
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location of the correct button in the 3-button pad produces spatial (Simon) conflict (orange). 133 

Second, the distracting presence of numbers that are valid button choices (“1”, “2”, “3”) 134 

produces flanker (Eriksen) conflict (green). Trials can also simultaneously have both types 135 

(blue). B. The visual cues are associated with one or more sensorimotor responses. Every cue 136 

has a correct response, meaning the button press that corresponds to the unique target. Cues 137 

can also have one or more distractor responses, meaning the button press that corresponds to 138 

task-irrelevant spatial information (Simon) or flanking distractors (Eriksen). If and only if the 139 

correct response and distractor response do not match, then the cue causes conflict because 140 

only one button response can ultimately be chosen. C. Diagram of the intracranial implant 141 

showing the UMA and tungsten microelectrode recoding locations schematized as a purple 142 

square on the surface of dlPFC. sulcus. D. The average (mean) response times across subjects 143 

in each of the four task conditions and (right) the mean response times within each subject. 144 

Bars = standard error across subjects. 145 

 146 

Pre-trial single neuron correlates of conflict 147 

We recorded from 378 neurons from 9 patients in dlPFC. Our goal was to determine 148 

whether responses of neurons before the start of the trial predict subsequent reaction time. 149 

Consider, first, responses of an example neurons shown in Figure 2.  150 

In our example neuron (Figure 2), taken from dlPFC, both Simon responses and Eriksen 151 

responses were significantly greater before the start of faster reaction time trials than before 152 

slower reaction time trials (fast Simon RT trials: 3.2 spikes/sec, slow Simon RT trials: 2.5 153 

spikes/sec, p=0.005, t-test on z-scored data; fast Eriksen RT trials: 3.2 spikes/sec, slow Eriksen 154 

RT trials: 2.5 spikes/sec, p=0.008, t-test on z-scored data). Specifically, we ran a median split on 155 

reaction times post-hoc and separated firing rates on those two categories. As described below, 156 

firing rate in this neuron also predicted the reaction time in a continuous model.  157 

 158 

Pre-trial population correlates of conflict 159 

To explore these effects at the population level, we fit generalized linear models (GLMs) 160 

to the pretrial firing rates and reaction times for all trials. Our analyses controlled for prior trial 161 

conflict type, because conflict level on the previous trial can modulate preparatory neural 162 

responses and lead to trial-to-trial adjustments, such as post-error slowing and conflict-163 

adaptation/trial congruency effects 19,31,32. Our analyses also controlled for previous trial reaction 164 

time (RT), to remove possible effects of slow drifts in arousal. We analyzed the 500ms epoch 165 

between the fixation and cue onset in the current trial. 166 

We first asked whether pre-trial activity predicted reaction times on all trials without 167 

regard to conflict or history. Pre-trial firing rates in 13.2% of neurons in dlPFC were predictive 168 

of the RT on the upcoming trial (n = 50/378 neurons). This proportion is greater than that 169 

predicted by chance (p < 0.001, one-sided binomial test) and remained the same after controlling 170 

for prior trial reaction time and conflict type. These results indicate that a small but statistically 171 

significant fraction of neurons have firing rates that predict upcoming reaction times.  172 

After establishing that pretrial activity predicts reaction time overall, we next examined 173 

whether it modulated reaction times differently depending on the upcoming conflict condition. 174 

We compared a model with a single parameter for any conflict type (“conflict type-amodal”, 175 

valued at 1 for any conflict type and 0 for no conflict) to a model with separate parameters for 176 

Eriksen and Simon conflict types (“conflict type-specific”), including trials in which the 177 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451322doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451322


6 

 

 

distractor stimuli appeared separately as well as together, and controlling for previous trial 178 

conflict and RT. We also compared these models to the “no-conflict” model described above. In 179 

both areas, we found significant proportions of cells with a significant main effect of firing rate 180 

on response time.  181 

At the single cell level, we found evidence for both conflict type-amodal tuning and 182 

conflict type-specific tuning. In the conflict type-amodal model, 7.7% of cells exhibited 183 

significant single conflict coefficients, a proportion that was significantly greater than chance (n 184 

= 29/378, p = 0.009, binomial test with chance rate of 5%) and 11.1% of cells showed a main 185 

effect (Wald test) of firing rate (p < 0.001, one sided binomial test with chance rate of 5%). With 186 

the conflict type-specific model, 14.6 % of all cells (n=55/378) exhibited significant coefficients 187 

(Wald tests) for predicting RT on either Eriksen trials or on Simon Trials (p < 0.001, binomial 188 

test with chance rate of 9.75%). Examining the main effect of overall firing rate in this model, 189 

13.2% of cells showed a significant effect (n = 50/378, p < 0.001, binomial test).  190 

When we examined the evidence for conflict tuning in dlPFC with model comparison, we 191 

found that 73% of cells preferred the conflict-specific model (n = 277/378, median model 3:1 192 

BIC weight ratio  = 23, median model 3:2 BIC weight ratio = 40), 22%  preferred the no-conflict 193 

model (n = 83/378, median model 1:3 BIC weight ratio  = 2.9, median model 1:2 BIC weight 194 

ratio = 44) and only 3% preferred the conflict type-amodal model (n = 10/378, median model 2:3 195 

BIC weight ratio  = 2.8, median model 2:1 BIC weight ratio = 2.4 x 106). Of the 29 cells with 196 

significant conflict type-amodal coefficients, 93% (n = 27/29) preferred the conflict type-specific 197 

model. These BIC results indicate that cells tuned for conflict type-specific responding dominate 198 

in dlPFC.  199 

 200 

 201 

 202 

 203 
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Figure 2. Individual dlPFC neurons signal the speed of upcoming responses in a conflict-specific 204 

manner. (A-B) PSTHs of example neuron 369 showing significantly higher pre-trial activity 205 

before fast (red) responses than slow (blue) responses in both (A) Eriksen and (B) Simon conflict 206 

trials. Gray shading indicates the 500ms analysis window. The dotted line indicates the response 207 

on the last trial and the solid vertical line indicates the stimulus onset.   208 

 209 

Semi-orthogonal coding for two forms of conflict preparation in dlPFC 210 

Our observation that a significant portion of individual cells code for conflict type-211 

amodal reaction times but yet were mostly better described with the conflict type-specific model 212 

led us to wonder if population-level activity might contain a conflict type-amodal signal. To test 213 

this possibility, we asked how ensemble codes for predicting resolution of Simon and Eriksen 214 

conflict, derived from the conflict type-specific model, were related to each other. To do this, we 215 

calculated a vector of GLM regression weights for each distractor type across neurons. We call 216 

these vectors the pre-trial tuning weight vectors. We then compared these vectors by computing 217 

the Spearman correlation of the vectors corresponding to Eriksen and Simon coefficients (cf. 33). 218 

(Note that the Spearman test does not assume linearity and is thus more general than the more 219 

common Pearson and is also less sensitive to potential outliers). We tested these analyses on all 220 

cells that preferred either conflict type-amodal or conflict type-specific models by BIC (n = 221 

287/738) as well as on all cells; doing so allows us to include contributions from all relevant 222 

neurons, even those with real effects that do not pass the strict significance threshold; this 223 

approach thus has better signal-to-noise (and moderately less susceptible to Type II errors) than 224 

analysis approaches that focus on cells that cross a significance threshold (Blanchard et al., 225 

2018).  226 

We found that in the conflict-preferring population, the codes for Simon and Eriksen 227 

were weakly positively correlated (r = 0.12, p = 0.048; permutation test). Relatedly, we found 228 

the angle	𝜃 between these vectors to be 83° and significantly less than 90° (p = 0.017, 229 

permutation test). This result is consistent with the population-level superposition of collinear 230 

and orthogonal coding for optimal initial conditions for conflict responding. In the entire 231 

population, the angle 𝜃 between these vectors was 86° and less than 90° at a trend level (p = 232 

0.079, permutation test), and the Spearman’s r was 0.093 (p = 0.038, permutation test).  In other 233 

words, this result indicates that there is a conflict type-amodal code recoverable from dlPFC 234 

ensemble activity.  235 

 236 

Firing rates in the response period explain response time variability  237 

If neural firing patterns in the preparatory period bias response speed in a conflict type-238 

specific manner, we would expect the neural state in the response period to reflect this. To test 239 

this hypothesis, we ran the conflict type-specific model described above on the 500ms period 240 

after stimulus onset. We found that 16.9 % of all cells (n = 64/378) exhibited significant 241 

coefficients (Wald Test) for predicting RT on either Eriksen trials or Simon Trials (p < 0.001, 242 

binomial test with chance rate of 9.75%). To examine the degree to which the preparatory state 243 

resembled the response state, we computed similarity measures for their respective coding 244 

vectors, which we call the response tuning weight vectors.  For both areas, we found that the pre-245 

trial and response tuning weight vectors were partially co-linear. The Spearman correlation 246 

between Eriksen codes for conflict-preferring cells was r = 0.22 (p <  0.001, permutation test) 247 

and between Simon codes was r = 0.23 (p < 0.001, permutation test); the angles were 77° for the 248 

Eriksen (p  <  0.001, permutation test) and 78° for the Simon condition (p  < 0.001, permutation 249 
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test). The results for all cells were similar (Eriksen r = 0.22, p < 0.001 and 𝜃 = 	78°, 𝑝 < 0.001	; 250 

Simon r = 0.23, p < 0.001 and 𝜃 = 	75°, 𝑝 < 0.001	). These results support the notion that the 251 

neural states in dlPFC that predispose for more efficient conflict resolution overlap with the 252 

states of efficient responding themselves. Next, we queried the association between the Eriksen 253 

and Simon response tuning weight vectors. We found that the codes for both the conflict-254 

preferring and all-cell populations were fully orthogonalized in the response period, in contrast to 255 

the pre-trial period (conflict-preferring cells r  = -0.01, p = 0.882 and 𝜃 = 	90°, 𝑝 > 0.05	; all 256 

cells r  = -0.04, p > 0.05 and 𝜃 = 	92°, 𝑝 > 0.05, permutation	tests). To determine whether the 257 

pre-trial and response correlation coefficients and angles differed, we computed bootstrap 258 

distributions for each and compared the medians. The correlation coefficient for Eriksen versus 259 

Simon pre-trial tuning weight vectors differed significantly from those for the response tuning 260 

weight vectors for both the conflict-preferring population and all cells (Wilcoxon rank sums, all 261 

p <0.001). This is important to confirm because the difference between a significant and non-262 

significant effect is not necessarily itself significant 34.  263 

 264 

 265 

 266 

Figure 3. The angle between conflict-response tuning weight vectors in dlPFC orthogonalizes 267 

between the pre-trial and response period. A zero-degree angle represents complete collinearity. 268 

(A-D) the angle between Eriksen and Simon coding vectors (blue circle, blue numbering and red 269 

line). The significance of the difference from a 90° (blue italics) was computed from permutation 270 

testing. The null distribution is shown with grey circles.   (A) Vector angle between conflict 271 

preferring cells (amodal or conflict-type specific) showing superimposed collinear and 272 

orthogonal coding. (B) The angle between all cells shows a similar trend. (C) Same as (A) for 273 

response codes, showing purely orthogonal coding. (D) Same as for (B) for response codes, 274 

showing orthogonal coding.  275 
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 276 

Figure 4. The angle between pre-trial and response conflict-response tuning weight vectors in 277 

dlPFC shows partially co-linear coding in dlPFC. A zero-degree angle represents complete 278 

collinearity. (A-B) Conflict-preferring coding vector angles (blue circle, blue numbering and red 279 

line); the significance of the difference from a 90° (blue italics) was computed from permutation 280 

testing (the null distribution is shown with grey circles).  (A) the angle between pre-trial and 281 

response Eriksen coding vectors shows significant collinearity as does (B) the angle between 282 

pre-trial and response Simon coding vectors.  283 

 284 

DISCUSSION 285 

We examined the responses of single neurons in human dlPFC during a task that 286 

interleaved two kinds of conflict, Simon and Eriksen. We found that firing rates of a modest but 287 

significant proportion of neurons in both areas before the trial predicts the efficiency of cognitive 288 

control, as inferred from reaction times. The fact that ensemble responses predict reaction time 289 

before the trial, and presumably task-driven cognition, supports the hypothesis that successful 290 

cognitive control reflects, in part, the ability to transition through specific brain states. By 291 

controlling for prior trial condition and reaction time, we showed that these brains states do not 292 

simply reflect adaptation or drifts in arousal, but rather history-independent patterns that 293 

predispose to efficient responding.  294 

We also compared the patterns that predicted the efficiency of upcoming responses on 295 

trials with either Simon, Eriksen or both types of conflict. At the individual cell level, we found 296 

that these responses were consistent with three types of codes: a conflict-independent (no-297 

conflict), a conflict type-amodal and conflict type-specific code. At the population level, we 298 

found a weak general conflict type-amodal code. These results demonstrate, first, that neurons in 299 

dlPFC process both type-specific and domain-general neural computations. While the domain-300 

general element was observed both at the individual cell level and the population level, model 301 

comparison suggests it is more likely a population level phenomenon: in most cells the full 302 

model with separate conflict terms significantly outperformed a model with one single term for 303 

any type of conflict. A sizable proportion of individual cells (22%) did prefer a model with no 304 

conflict term, predicting response speed across all conditions. However, the domain-305 

general/conflict type-amodal element emerged at the population level from the correlation 306 

between the conflict-specific regression coefficients across neurons. 307 
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Studies of motor control in rodents and non-human primates have shown that variability 308 

in the firing rates of neurons in motor cortex during movement preparation predicts variability in 309 

subsequent movements 6,9,10. This body of work has given rise to the “initial condition 310 

hypothesis”, which posits that neural firing patterns behave like dynamical systems, and the 311 

trajectory of neural dynamics therefore depends on the initial state of the system 3,8,35. One 312 

implication of this theory is that preparatory neural states can therefore be optimized to 313 

efficiently produce a desired behavioral outcome 36. If similar principles apply to neural 314 

dynamics during cognitive tasks, this suggests that preparatory activity may also be optimized to 315 

support the efficient application of cognitive control, consistent with the notion of pro-active 316 

control 37.  317 

Indeed, a growing literature suggests neural patterns subserving cognition are also 318 

consistent with dynamical systems models 38. Using the same task studied, here, we recently 319 

showed that neural population activity in prefrontal regions during conflict resolution follows 320 

low-dimensional trajectories that differ depending on the type of conflict 28. The divergence of 321 

these trajectories raises the question of whether they have different optimal initial states, or if 322 

similar neural starting conditions give rise to similar task performance. The results we present 323 

provide a somewhat nuanced answer: the optimal initial states overlap slightly, suggesting a 324 

weak mechanism for shared conflict-responding, but orthogonalize over the course of response, 325 

supporting the notion of trajectory divergence. 326 

What are the implications of preparatory brain states for conflict resolution?  One 327 

possibility is that initial states that predict response times reflect changes in arousal or attention 328 

that are either spontaneous or the result of adaptations to the previous trial. While attractive for 329 

its simplicity, this explanation would not explain the persistence of the effect after controlling for 330 

trial history nor would it explain the conflict type-specific nature of the initial states. Rather, our 331 

results suggest that the computations that perform conflict resolution are not only distinct, as 332 

implied by the divergent neural state space trajectories, but are facilitated with both shared and 333 

independent factors. In this task, participants do not have knowledge of whether the upcoming 334 

trial will have one form of conflict or the other or both. Maintaining both shared and independent 335 

preparatory factors for conflict types, independent of the past, may allow the brain to respond 336 

flexibly to unpredictable challenges while minimizing interference between the processes needed 337 

to respond to those challenges. Such a factorized model of representation has been proposed as a 338 

mechanism to minimize interference and facilitate generalization in learning 39 . Why would 339 

preparatory states vary from trial to trial? The simplest explanation is spontaneous fluctuations 340 

due to noise. Another possibility is that participants are subtly making predictions about the 341 

condition of the upcoming trial, perhaps based on longer trial history than the recent past 342 

controlled for here.  343 

 Recent years have seen the emergence of the dynamical systems perspective in motor 344 

neurophysiology. This view sees the aggregate activity of neurons in a region as constituting a 345 

state and that the execution of motor actions is driven by the lawful progression across states in 346 

motor regions. It has been further proposed that cognitive performance may reflect a similar 347 

dynamical system view, however, this view has been difficult to test. We recently demonstrated 348 

that, in asynchronous choice, neurons in two core reward areas show subspace orthogonalization, 349 

a neural process previously associated only with motor cortex 40. Here we sought to test a critical 350 

prediction of the initial state hypothesis. In the motor cortex, the initial state hypothesis holds 351 

that successful implementation of a motor actions cannot begin until motor cortex enters into a 352 

specific ensemble state, defined in practice as an ensemble firing rate pattern. We hypothesized 353 
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that an analogous idea in cognition would be that implementation of a cognitive act would 354 

require implementation of an initial state. Our results suggest that not only does the initial state 355 

of neural activity prior to the cognitive act of conflict resolution support efficient responding in a 356 

pro-active manner 37, it does so in a largely conflict type-specific manner. The small degree of 357 

collinearity we observe in dlPFC may contribute to untangling of stimulus-action processes 358 

before full orthogonalization during implementation. Previous work in premotor cortex has 359 

shown that the neural state space during responding predicts reaction times in motor tasks 41. We 360 

found that these optimal initial states share structure with the optimal responding states, 361 

suggesting they support optimal response trajectories. Future studies may examine whether 362 

neural state-space trajectories separate by response time differently depending on both the initial 363 

states and the specific cognitive computations the brain performs. 364 

 365 

 366 

 367 

 368 

  369 
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METHODS 370 

 371 

Subjects and ethics statement 372 

 373 

We studied one cohort of 9 patients: 8 (2 female) with movement disorders (Parkinson’s disease 374 

or essential tremor) who were undergoing deep brain stimulation (DBS) surgery, and one male 375 

patient with epilepsy undergoing intracranial seizure monitoring. The entry point for the 376 

trajectory of the DBS electrode is typically in the inferior portion of the superior frontal gyrus or 377 

superior portion of the middle frontal gyrus, within 2 cm of the coronal suture. This area 378 

corresponds to dlPFC (Brodmann’s areas 9 and 46). The single epilepsy patient in this cohort 379 

underwent a craniotomy for placement of subdural grid/strip electrodes in a prefrontal area 380 

including dlPFC. 381 

All decisions regarding sEEG and DBS trajectories and craniotomy location were made solely 382 

based on clinical criteria. The Columbia University Medical Center Institutional Review Board 383 

approved these experiments, and all subjects provided informed consent prior to participating in 384 

the study. 385 

Behavioral Task 386 

All subjects performed the multi-source interference task (MSIT; Figure 1A). In this task, each 387 

trial began with a 500-millisecond fixation period. This was followed by a cue indicating 388 

the correct response as well as the distractor response. The cue consisted of three integers 389 

drawn from {0, 1, 2, 3}. One of these three numbers (the “correct response cue”) was different 390 

from the other two numbers (the “distractor response cues”). Subjects were instructed to 391 

indicate the identity of the correct response number on a 3-button pad. The three buttons on this 392 

pad corresponded to the numbers 1 (left button), 2 (middle) and 3 (right), respectively. 393 

The MSIT task therefore presented two types of conflict. Simon (motor spatial) conflict occurred 394 

if the correct response cue was located in a different position in the cue than the corresponding 395 

position on the 3-button pad (e.g. ‘0 0 1’; target in right position, but left button is correct 396 

choice). Eriksen (flanker) conflict occurred if the distractor numbers were possible button 397 

choices (e.g. ‘3 2 3’, in which “3” corresponds to a possible button choice; vs. ‘0 2 0’, in which 398 

“0” does not correspond to a possible button choice). 399 

After each subject registered his or her response, the cue disappeared, and feedback appeared. 400 

The feedback consisted of the target number, but it appeared in a different color. The duration of 401 

the feedback was variable (300 to 800 milliseconds, drawn from a uniform distribution therein). 402 

The inter-trial interval varied uniformly randomly between 1 and 1.5 seconds. 403 

The task was presented on a computer monitor controlled by the Psychophysics Matlab Toolbox 404 

(www.psychtoolbox.org; The MathWorks, Inc). This software interfaced with data acquisition 405 

cards (National Instruments,) that allowed for synchronization of behavioral events and neural 406 

data with sub-millisecond precision. 407 
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Data Acquisition and preprocessing 408 

Single unit activity (SUA) was recorded from a combination of two techniques. The DBS 409 

surgeries were performed according to standard clinical procedure, using clinical microelectrode 410 

recording (Frederick Haer Corp.). Prior to inserting the guide tubes for the clinical recordings, 411 

we placed the microelectrodes in the cortex under direct vision to record from dlPFC, (IRB-412 

AAAK2104). The epilepsy implant in Cohort 2 included a Utah-style microelectrode array 413 

(UMA) implanted in dlPFC (IRB-AAAB6324). In all cases, data were amplified, high-pass 414 

filtered, and digitized at 30 kilosamples per second on a neural signal processor (Blackrock 415 

Microsystems, LLC). 416 

SUA data were re-thresholded offline at negative four times the root mean square of the 250 Hz 417 

high-pass filtered signal. Well-isolated action potential waveforms were then segregated in a 418 

semi-supervised manner using the T-distribution expectation-maximization method on a feature 419 

space comprised of the first three principal components using Offline Sorter (OLS) software 420 

(Plexon Inc, Dallas, TX; USA). The times of threshold crossing for identified single units were 421 

retained for further analysis. 422 

Data Analysis 423 

 424 

We determined the effect variations in pre-stimulus firing rates had on reaction times by 425 

comparing four generalized linear models. We first fit gamma distributions to the reaction times 426 

and excluded reaction times with a less than 0.005 probability following 42. For each model, we 427 

centered and scaled the continuous predictor variables (firing rate and reaction time) by z-428 

scoring. We analyzed correct and incorrect trials to prevent false-positives from data-censoring 429 

effects. We pre-selected the pre-trial analysis interval as the 500ms period between fixation and 430 

stimulus onset and the response analysis interval as the 500ms following stimulus onset. To 431 

determine the overall effect of firing rate marginalized over condition, we first fit the following 432 

generalized linear model: 433 

 434 

 435 

 436 

We then compared several alternative models, while controlling for reaction time and prior 437 

conflict: a single firing rate coefficient for all trials model, 438 

a model with an additional term for the firing rate on trials with any conflict (Simon, Eriksen or 439 

both), 440 

 441 

 442 

 443 

  444 

and a model with separate, additive conflict terms for Simon and Eriksen conditions, 445 

 446 

 447 
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 448 

where FR is firing rate on all trials, C is an indicator variable for trials with any conflict, CE and 449 

CS are indicator variables for Eriksen and Simon trials, respectively, pC is a categorical variable 450 

for prior conflict type and pRT is the previous trial reaction time. We used a normal distribution 451 

with a log link function because the reaction time data was well described by a log-normal 452 

distribution.  453 

 454 

We compared these models by their BIC weight ratios 43 . We identified the best fitting model 455 

for each cell as the model with a greater than one BIC weight ratio for all pairwise comparisons. 456 

The BIC penalty for model complexity is greater than that for Akaike Information Criteria (AIC) 457 

as the number of model parameters exceeds e2 ~ 7 and thus more appropriate here (and more 458 

conservative)  43,44.To assess the significance of overall model fits we performed deviance tests 459 

relative to a constant model. To assess the significance of coefficients we performed Wald tests 460 

(REF).  461 

 462 

To compare the neural codes for conflict, we entered the regression coefficients into individual 463 

vectors for each conflict condition. We then computed the Spearman correlation between those 464 

vectors as well as the angle between the vectors. We excluded points more than 3 median 465 

absolute deviations from the median because angle measurements; this approach excluded 6 466 

cells. We then randomized the vector entries and computed correlations between the randomized 467 

vectors to form null distributions (2000 permutations). We computed p-values for the real 468 

measurement relative to the corresponding null distribution (permutation test). To compare 469 

angles and correlations, we constructed bootstrap distributions with resampling (5000 samples) 470 

and compared the medians of the resultant distributions with the non-parametric Wilcoxon rank 471 

sum test.  472 

 473 

 474 
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