
Pre-validation and inference in microarrays

Robert Tibshirani ∗ and Bradley Efron †

June 26, 2002

Abstract

In microarray studies, an important problem is to compare a pre-
dictor of disease outcome derived from gene expression levels to stan-
dard clinical predictors. Comparing them on the same dataset that
was used to derive the microarray predictor can lead to results strongly
biased in favor of the microarray predictor. We propose a new tech-
nique called “pre-validation” for making a fairer comparison between
the two sets of predictors. We study the method analytically and
explore its application in a recent study on breast cancer.

1 Introduction

A DNA microarray dataset typically consists of expression measurements on
a large number of genes (say 10,000) over a small set of cases (say 100). In
addition, a true class label is often available for each case, and the objective
is to find a function of the gene expression values that accurately predicts
the class membership. A number of techniques have been proposed for this
[see e.g. Dudoit et al. (2001)]. Having formed a prediction function from the
microarray values, the following problem often arises in a medical context:
how do we compare the microarray predictor to an existing clinical predictor

∗Department of Health Research & Policy, and Department of Statistics, Stanford
University, Stanford CA 94305; tibs@stat.stanford.edu
†Department of Statistics, and Department of Health Research & Policy, Stanford

University, Stanford CA 94305; brad@stat.stanford.edu

1

of the class membership. Does the new microarray predictor add anything
to the clinical predictor?

An example of this problem arose in the paper of van’t Veer et al. (2002).
Their microarray data has 4918 genes measured over 78 cases, taken from a
study of breast cancer. There are 44 cases in the good prognosis group and
34 in the poor prognosis group. The microarray predictor was constructed
as follows:

1. 70 genes were selected, having largest absolute correlation with the 78
class labels

2. Using these 70 genes, a nearest centroid classifier (described in detail
in Section 6) was constructed.

3. Applying the classifier to the 78 microarrays gave a dichotomous pre-
dictor zj for each case j.

It was of interest to compare this predictor to a number of clinical pre-
dictors including tumor grade, estrogen receptor (ER) status, progesteron
receptor (PR) status, tumor size, patient age, and angioinvasion. The top
part of Table 1, labelled “re-use”, shows the result when a multivariate logis-
tic regression was fit to the microarray predictor and clinical predictors. The
microarray predictor looks very strong, but this is not surprising as it was
derived using the same set of cases that are used in the logistic regression.
In the bottom half of the table, we have derived a “pre-validated” version
of the microarray predictor, and used it in the logistic regression. Now the
microarray predictor is much less significant, and the clinical predictors have
strengthened.

The idea of “pre-validation” was used in the supplementary material for
van’t Veer et al. (2002), and is the topic of this paper. It is also similar to the
method of “stacking” due to Wolpert (1992), in the area of machine learning.

2 Pre-validation

In order to avoid the overfitting problem apparent in the top half of Table 1,
we might try to use some sort of cross-validation:

1. Divide the cases up into say K approximately equal-sized parts

2

Table 1: Results of model fitting to breast cancer data. Top panel: re-using the
microarray scores zj in the logistic model; bottom panel: using pre-validated
scores z̃j. The last column is the change in misclassification rate, when the
given predictor is deleted from the full model. The full-model misclassification
rates are 0.14 and 0.21 for the re-use and pre-validated models respectively.

Model Coef Stand. Err. Z score p-value Odds ratio ∆MR

Re-use
microarray 4.096 1.092 3.753 0.000 60.105 0.12
angio 1.208 0.816 1.482 0.069 3.348 0.01
er -0.554 1.044 -0.530 0.298 0.575 0.01
grade -0.697 1.003 -0.695 0.243 0.498 0.01
pr 1.214 1.057 1.149 0.125 3.367 -0.01
age -1.593 0.911 -1.748 0.040 0.203 0.01
size 1.483 0.732 2.026 0.021 4.406 0.00

Pre-validated
microarray 1.549 0.675 2.296 0.011 4.706 0.05
angio 1.589 0.682 2.329 0.010 4.898 0.01
er -0.617 0.894 -0.690 0.245 0.540 0.01
grade 0.719 0.720 0.999 0.159 2.053 0.00
pr 0.537 0.863 0.622 0.267 1.710 0.01
age -1.471 0.701 -2.099 0.018 0.230 0.03
size 0.998 0.594 1.681 0.046 2.714 0.04

3

2. Set aside one of parts. Using the other K−1 parts, select the 70 genes
having the largest absolute correlation with the class labels, and form
a nearest centroid classifier.

3. Fit a logistic model to the kth part, using the microarray class predictor
and clinical predictors

4. Do steps 2 and 3 for each of the k = 1, 2, . . .K parts, and average the
results from the K resulting logistic models.

The main problem with this idea is step 3, where there will typically be too
few cases to fit the model. In the above example,with K = 10, the 10th part
would consist of only 7 or 8 cases. Using a smaller value of K (say 5) would
yield a larger number of cases, but then might make the training sets too
small in step 2.

Pre-validation is a variation on cross-validation that avoids these prob-
lems. It derives a “fairer” version of the microarray predictor, and then this
predictor is fit along side the clinical predictors in the usual way. Here is how
pre-validation was used in the bottom half of Table 1:

1. Divide the cases up into K = 13 equal-sized parts of 6 cases each.

2. Set aside one of parts. Using only the data from the other 12 parts,
select the genes having absolute correlation at least .3 with the class
labels, and form a nearest centroid classification rule.

3. Use the rule to the predict the class labels for the 13th part

4. Do steps 2 and 3 for each of the 13 parts, yielding a “pre-validated”
microarray predictor z̃j for each of the 78 cases.

5. Fit a logistic regression model to the pre-validated microarray predic-
tor and the 6 clinical predictors. Figure 1 illustrates the logic of this
computation.

Notice that the cross-validation in steps 1–3 deals only with the microarray
predictor: it creates a “fairer” version of this predictor, in which the predictor
for case j has not seen the true class label for case j. This pre-validated
predictor is then compared to the clinical predictor in the standard way at
step 5.

4

regression
logistic

outcome y

predictor
pre-validated

genes

cases

predictors
clinical T

~

omitted part

Expression data

z

c

X

Figure 1: Schematic of pre-validation process. The cases are divided up into
(say) 10 equal-sized groups. The cases in one group are left out, and a mi-
croarray predictor is derived from the expression data of the remaining cases.
Evaluating this predictor on the left-out cases yields the pre-validated predic-
tor z̃ for those cases. This is done for each of the 10 groups in turn, producing
the pre-validated predictor z̃ for all cases. Finally, z̃ can be included along
with clinical predictors in a logistic regression model, in order to assess its
relative strength in predicting the outcome.

5

3 Pre-validation in detail

We have microarray data X, a p×n matrix of measurements on p genes over
n cases. 1 The outcome is an n-vector y, and suppose we also have set of k
clinical predictors, represented by a n× k matrix c, for predicting y. Let xj
denote the jth column of X.

An expression predictor z = (z1, z2, . . . zn) is adaptively chosen from the
training data

zj = fX,y(xj). (1)

The notation indicates that zj is a function of the data X and y, and is
evaluated at xj . In our motivating example earlier, the function f(·) consisted
of finding the 70 top correlated genes, and using them to form a nearest
centroid classifier. Our challenge is to compare c to z, in terms of their
strength in predicting y. The re-use method uses the predictor z as is,
and then fits a model to examine the relative contributions of z and c in
predicting y. In our motivating example, we used a logistic model. Clearly
this comparison is biased in favor of z, since the outcomes y were already
used in the construction of z

It is helpful to consider what we would do given an independent test set
(X0,y0) with corresponding clinical predictors c0. We could use the test set
to derive the predictor z0 = (z01 , z

0
2 , . . . z

0
n) where z

0
j = fX,y(x

0
j) and then use

this to fit a model to predict y0 from z0 and c0. This would allow us to
directly examine the relative contributions of z0 and c0 in predicting y0.
K-fold pre-validation tries to mimic this, without use of a test set. We

divide the cases into K roughly equal-sized groups, and let g(k) be the cases
composing each part k. For k = 1, 2, . . .K, we form the pre-validated pre-
dictor

z̃g(k) = fX−g(k),y−g(k)(xg(k)); for k = 1, 2, . . .K (2)

the notation indicating that cases g(k) have been removed from X and y.
Finally, we fit the model to predict y from z̃ and c, and compare their
contributions in this prediction.
1It is conventional in the microarray area to arrange the data matrix X with genes

(predictors) in the rows and cases in the columns. Although this is the transpose of the
usual statistical convention, we adopt it here. Accordingly, we index the cases by the
subscript j.

6

4 Does pre-validation work?

The goal of pre-validation is to construct a “fairer” version of the microarray
predictor that acts as if it hasn’t “seen” the response y. One way to quantify
this goal is as follows. When the pre-validated predictor z̃ is included with
clinical predictors in a linear or linear logistic model for predicting y, it should
spend one degree of freedom. For the usual (non pre-validated) predictor z,
we expect more than one degree of freedom to be spent. In this section we
will make these notions precise and see if pre-validation works in this sense.

As before we define a microarray predictor as

z(x) = fX,y(x), (3)

let z be the vector of values (z(x1), z(x2), . . . z(xn)) and let c be an n by k
matrix of k clinical predictors. Using these we fit a linear or linear logistic
model to predict y, with predicted values

µ̂(x, c; z, c,y). (4)

The first two arguments indicate the predicted values are evaluated at x (a
p-vector of expression values) and c (a k-vector of clinical predictors).

Let µ̂j = µ̂(xj , cj; z, c,y), the predicted values for the training data, and
let σ2 be the variance of each yj. Following Efron et al. (2002) (see also Stein
(1981),Ye (1998)), we define the degrees of freedom in the predicted values
µ̂j to be

df(µ̂) = E(

n∑
j=1

∂µ̂j
∂yj

)/σ2 =

n∑
j=1

cov(µ̂j, yj)/σ
2 (5)

The leftmost relation defines degrees of freedom by the total change in the
predicted values as each yj is perturbed. On the right, it is defined as the
total “self-influence” of each observation on its predicted value. These two
notions are equivalent, as shown in Efron (1986). He proves that (5) holds
exactly for the Gaussian model, and approximately when µ̂ is an expectation
parameter in an exponential family model.

In the special case that f is a linear function of y and the model giving
µ̂(x, c; z, c,y) is linear least squares, we can derive an explicit expression for
df(µ̂).

7

Let z = Ay and let M be the n × (k + 1) matrix {z, c}. Let P project
onto the column space of M and Pc project onto the column space of c
alone. Define A⊥ = (I − P)A, zc = (I − Pc)z and µ̂ = Py. Then we have
the following results:

n∑
1

∂µ̂j

∂yj
= (k + 1) +

yT (A⊥ + tr(A⊥) · I)zc
||zc||2

n∑
1

∂µ̂j

∂yj
|y=µ̂ = (k + 1) +

yT (tr(A⊥) · I)zc
||zc||2 (6)

The proof is given in the Appendix.
The term (k + 1) is the degrees of freedom if z were the usual kind of

predictor, constructed independently of the training data. The second term
is the additional degrees of freedom due to the possible dependence of z on
y.

If A is a least squares projection matrix of rank p and there are no clinical
predictors (k = 0), then one can show that the second term in expression (6)
is p− 1, so that the total degrees of freedom is (0 + 1) + (p− 1) = p.

It turns out that leave-one-out pre-validation can also be expressed as a
linear operator. Let H be the projection matrix onto the row space of X
(recall that X is p× n, with genes in the rows). Let D be a diagonal matrix
consisting of the diagonal of H , and let I be the n×n identity matrix. Then
the pre-validated predictors have the form

z = Ay; with A = (I −D)−1(H −D) (7)

[using the Sherman-Morrison Woodbury identity; see e.g. Hastie & Tibshi-
rani (1990), chapter 3]. The matrix A has some interesting properties, for
example tr(A) = 0.

Our hope here is that with A defined as in (7), the additional degrees of
freedom [second term in (6)] will be zero. This is difficult to study analyti-
cally, so we turn to a numerical study in the next section.

5 Numerical study of degrees of freedom

In this section we carry out some simulations to study the degrees of freedom
in pre-validated predictors.

8

In our first study, we generated standard independent normal expression
measurements on n = 50 or 200 cases and p genes, p ranging from 2 to 20. The
outcome y was generated y = xTβ + ε where ε ∼ N(0, .04). The coefficient
vector β was set to zero in the null case, and β ∼ N(0, 1) in the non-null
case. Finally, a samples of independent clinical predictors c ∼ N(0, 1) was
generated.

The linear pre-validation fit (7) was computed from the expression data,
and included along with c in a linear least-squares model to predict y. Note
that for simplicity, the outcome y was centered and no intercept was included
in the linear least squares model. The mean and standard error of the total
degrees of freedom [formula (6)] over 50 simulations is shown in Table 2.

While the degrees of freedom tends to be less than p+1 (the value without
pre-validation), we see it exceeds the ideal value of 2 in the null case, and is
less than 2 in the non-null case.

The null case is most bothersome, for in that case treating the microarray
predictor as a one degree of freedom predictor will cause us to overestimate
its effect. In the null setting with p = 2, it is remarkable that the degrees
of freedom is actually greater than p + 1, which is the value for the non
pre-validated predictor.

We think of this increase in degrees of freedom as “leakage”. While
pre-validation makes each value z̃j independent of its outcome value yj, the
outcome yj does influence other pre-validated values zk, causing some degrees
of freedom to “leak” into the final fit. One might guess that “leakage” will
tend to disappear as the sample size n gets large. But that is not borne out
in the results for n = 200.

The rightmost column of Table 2 gives a parametric bootstrap estimate
of degrees of freedom. Fixing the expression data, new response values were
generated as y∗j ∼ µ̂j + ε∗j with ε∗j ∼ N(0, σ̂2), σ̂2 being the usual unbiased
estimate of variance. Using five such sets of bootstrap values, the covariance
expression in (5) was estimated. We see that the bootstrap does a reasonable
job of estimating the degrees of freedom, although sometimes it underesti-
mates the actual value. The bootstrap method can be applied to general
situations where the actual value of degrees of freedom is not available.

In Table 3, we generated a scenario closer to actual microarray experi-
ments. Here n = 50 and p = 1000, with the expression values again being
standard independent Gaussian. Since p > n we cannot use least squares
regression to construct the microarray predictor z, so we used pre-validated

9

Table 2: Simulation results. Degrees of freedom of pre-validated predictor
from formula (6) and parametric bootstrap estimate. Ideal value is 2.

p Formula (se) Parametric bootstrap (se)
Null case, n = 50

2 4.04 (0.21) 3.25 (0.18)
5 3.40 (0.09) 2.72 (0.12)
10 2.95 (0.05) 2.73 (0.10)
20 2.89 (0.02) 2.64 (0.09)

Null case, n = 200
2 6.44 (0.63) 3.74 (0.31)
5 3.95 (0.22) 2.98 (0.16)
10 3.39 (0.09) 2.73 (0.14)
20 3.09 (0.06) 2.64 (0.10)

Non-null case, n = 50
2 1.35 (0.09) 1.32 (0.13)
5 1.19 (0.03) 0.98 (0.09)
10 1.15 (0.01) 0.68 (0.14)
20 1.30 (0.02) 0.56 (0.10)

Non-null case, n = 200
2 1.61 (0.19) 1.64 (0.19)
5 1.17 (0.02) 1.07 (0.12)
10 1.12 (0.01) 1.01 (0.13)
20 1.11 (0.01) 0.79 (0.19)

Table 3: Simulation results- large example. As in Table 2, with the ideal
value for degrees of freedom equal to 2.

Formula (se) Parametric bootstrap (se)
Null case

6.48 0.4 7.26 0.47
Non-Null case

2.70 (.34) 3.65 (.50)

10

ridge regression. As before, the outcome was generated as y = xTβ + ε and
linear least squares was used for the final model to predict y from z̃ and c,
with β ∼ N(0, .052) in the non-null case.

In this setup the mapping fX,y(x) is not linear, so it is not convenient
to use formula (6). Hence we computed the covariance expression on the
right-hand side of (5) directly. The results in Table 3 show that leakage is
again a problem, in the null case.

Our conclusion from these studies is that pre-validation greatly reduces
the degrees of freedom of the microarray predictor, but does not reliably
reduce it to the ideal value of one. Hence we recommend that for each
application of pre-validation, a parametric bootstrap be used to estimate the
degrees of freedom. This is illustrated in the breast cancer example in the
next section.

6 Further analysis of the breast cancer data

We re-analyzed the breast cancer data from van’t Veer et al. (2002). The
authors use the following steps:

1. Starting with 24,881 genes, they apply filtering based on fold-change
and a p-value criterion, to yield 4936 genes (personal communication
from authors).

2. They select the genes have absolute correlation ≥ .3 with the class
labels, giving 231 genes

3. They find the 231-dimensional centroid vector for the 44 good-prognosis
cases

4. They compute the correlation of each case with this centroid and choose
a cutoff value so that exactly 3 of the poor groups are misclassified. This
value turned out to be .38. Finally they classify to the good prognosis
group if the correlation with the normal centroid is ≥ .38, otherwise
they classify to the poor prognosis group.

5. Starting with the top 5, 10, 15 . . . genes, they carried out this classifica-
tion procedure with leave-one-out cross-validation, to pick the optimal
number of genes. reporting an optimal number of 70

11

Table 4: Odds ratios from pre-validated data

Predictor Friend et. al. Our analysis
microarray 17.6 4.7
angio 4.7 4.9
ER 1.7 1.9
grade 1.1 2.1
PR 2.1 1.7
age 4.0 4.3
size 3.5 2.7

Even with some help from the authors, we were unable to exactly reproduce
this analysis. At stages 2 and 3, we obtained 4918 and 235 genes, respectively.
The authors told us they could not release their list of 4936 genes for legal
reasons. We fixed the number of genes (70) in step 5.

The authors carry out what we call a pre-validation analysis in the sup-
plementary material to their paper. Table 4 shows the odds ratios from the
pre-validated data, both from their analysis and our. The odds ratios for the
microarray predictor differ greatly, and we were unable to reproduce their
results.

We estimated the degrees of freedom for the full model in Table 4 nu-
merically, using the bootstrap method of the previous section, obtaining an
estimate of 9.0, with a standard error of .71. The nominal value would be 8
(7 predictors plus the intercept), so about one degree of freedom has leaked.

In the remainder of this section we apply full cross-validation to this
dataset Pre-validation is a partial form of cross-validation that is especially
convenient when the microarray score “z” might be applied in a wide variety
of possible models.

The model illustrated in Figure 1 can be described as follows: for each
case j, a score zj is constructed from the 78× 4936 microarray data matrix
X and the 78 dimensional response vector y, say

zj = f(xj |X,y) (8)

12

according to algorithm (1)–(5) at the beginning of this Section. The nota-
tion in (8) indicates that (X,y) determines the form of the rule f , which is
then evaluated at the 4936-vector xj for that case’s microarray. The final
prediction for case j is

µ̂j = g(cj, zj|c, z). (9)

Here g is the logistic regression rule based on the 78× 6 matrix of covariates
c and the vector z of 78 z scores, then evaluated at (cj , zj), the vector of 6
covariates and zj (the top panel of Table 1 was based on the predictions µ̂j).

Full cross-validation modifies (8)–(9) so that the data for case j is not
involved in constructing the form of the rules for its own prediction. Let X(j)
indicate the 77 × 4937 matrix obtained by deleting column xj from X, and
likewise c(j),y(j) etc. The cross-validated predictor µ̃j is obtained as

z̃j = f(xj |X(j),y(j)) (10)

and

µ̃j = g(cj, z̃j |c(j), z̃(j)). (11)

(By contrast, the pre-validated predictors used in the bottom of Table 1
employed g(cj, z̃j|c, z̃).)

Full cross-validation permits an almost unbiased estimate of the predic-
tion error we would obtain if rule (9) were applied to an independent test
set. If Q(yj , µ̂j) is a measure of error for predicting that outcome yj by µ̂j ,
then

Êrr =
1

n

n∑
i=1

Q(yj, µ̂j) (12)

is nearly unbiased for the expected error rate of rule µ̂j applied to an inde-
pendent set of test cases, see Efron & Tibshirani (1997) and Efron (1983).

13

Table 5 refers to the error function

If yj = 1 and µ̂j ≤ 34/78
or yj = 0 and µ̂j > 34/78

then Q(yj, µ̂j) = 1 (13)

and Q(yj, ŷj) = 0 otherwise. In other words, Êrr is the proportion of pre-
diction errors (with the prediction threshold set at 34/78 rather than 1/2 to
reflect the 44/34 division of cases in the training cases.)

Table 5: Estimates of prediction error for two logistic regression models: c
alone (only the 6 covariates) and c plus z (6 covariates plus the microarray
predictor z.) Naive reuse method suggests that adding z cuts the error rate
nearly in half, from 26.9% to 14.1%. Most of the apparent improvement
disappears under full cross-validation, where now the comparison is 29.5%
versus 28.2%. Bootstrap methods give similar results. The standard errors
were obtained from jackknife calculations, and show that this experiment was
too small to detect genuine differences of less than about 10%.

Model Re-use cross-val (sterr) zero-boot (sterr) 632+ boot (sterr)

c alone: 0.269 0.295 (0.052) 0.341 (0.078) 0.320 (0.062)
c plus z: 0.141 0.282 (0.076) 0.342 (0.067) 0.301 (0.068)

difference: 0.128 0.013 (0.091) -0.001 (0.072) 0.019 (0.066)

Table 5 compares the prediction error rates (13) from two logistic re-
gression models: one based on just the six covariates in c, the other using
these plus the microarray predictor z. The naive reuse error rates make z
look enormously helpful, reducing Êrr from 26.9% to 14.1%. Most of z’s
advantage disappears under cross-validation, giving Êrr(c) = 29.5% versus

Êrr(c, z) = 28.2%, for a difference of only 1.3%.
Another important point is clear from Table 2: the cross-validated differ-

ence of 1.3% has an estimated standard error of ±9.1%. In other words there

14

is not enough data in the van’t Veer et al. study to establish a prediction
advantage for z of less than say 10% even if it exists (which does not appear
to be the case.)

The cross-validation in Table 5 grouped the 78 cases into 13 groups of 6
cases each, so that calculations (11)-(12) produced z̃j and µ̃j values six at a
time. The jackknife was used to calculate standard errors: a typical jackknife
pseudo-value deleted one of the 13 groups and repeated the cross-validation
calculations using just the data from the other 12 groups, finally obtaining
the standard error as in (11.5) or (11.15) of Efron & Tibshirani (1993).

Cross-validation can be overly variable for estimating prediction error
(13), see Efron (1983). Table 2 also reports two bootstrap estimates de-
scribed in Efron & Tibshirani (1997): “zero-boot” and the “632+ rule”,
equations 17 and 27-29 of that paper, with γ̂ = .50), the latter having a par-
ticularly good track record. The story here does not change much, though
632+ gives a slightly larger difference estimate, 1.9%, with a smaller stan-
dard error, ±6.6%. Bootstrap estimates were based on B = 600 bootstrap
replications, with standard errors estimated by the jackknife-after-bootstrap
computations of Efron (1992).

7 Discussion

In this paper we have analyzed pre-validation, a technique for deriving a fairer
version of an adaptively chosen predictor. It seems especially well-suited
to microarray problems. The promise of pre-validation is that the resulting
predictor will act similarly to one that has been derived from an independent
dataset. Hence when included in a model with clinical predictors, it should
have have one degree of freedom. This is contrast to the usual (non pre-
validated) predictor, which has degrees of freedom equal to the total number
of parameters fit in each of the two stages of the analysis.

We have found that pre-validation is only partially successful in achieving
its goal. Generally it controls the degrees of freedom of the predictor, as
compared to the non pre-validated version. However in null situations where
the microarray predictor is independent of the response, degrees of freedom
can “leak” from one case to another, so that the total degrees of freedom of
the pre-validated predictor is more than the ideal value of one. Conversely, in
non-null settings, the total degrees of freedom of the pre-validated predictor

15

can be less than expected. Overall we recommend use of the parametric
bootstrap, to estimate the degrees of freedom of the pre-validated predictor.
With the estimated value of degrees of freedom in hand, one can use the
pre-validated predictor along with clinical predictors, in a model to compare
their predictive accuracy.

Finally, while pre-validation is a promising method for building and as-
sessing an adaptive predictor on the same set of data, it is no substitute
for full cross-validation or test set validation, in situations where there is
sufficient data to use these techniques.

Acknowledgments: Tibshirani was partially supported by NIH grant 2
R01 CA72028, and NSF grant DMS-9971405. Efron was partially supported
by NIH grant 2R01 CA59039 and NSF grant DMS-0072360.

Appendix: proof of formula (6)

Formula (6) concerns pre-validation in linear model situations. We compute
z = Ay for a fixed n × n matrix A, and then µ̂ = Py where P is the
n× n projection matrix into the linear space spanned by the columns of the
n× (k + 1) matrix M = (c, z), c being the n× k matrix of fixed covariates:

P =MG−1MT (G =MTM). (A1)

Notice that P = P (y) is not fixed, being a function of y though z.

Define P⊥ = I − P, A⊥ = P⊥A, and z(c) = (I − c(cTc)−1)z.
An infinitesimal change in the response vector, y → y + dy, changes z by
amount dz = Ady, which we can write as

dz = Pdz+ P⊥dz ≡ dẑ+ dz⊥. (A2)

The resulting change in P is calculated as follows.
Lemma

dP = (dz⊥zT(c) + z(c)dz
⊥T)/‖z(c)‖2. (A3)

Proof. Changes in y affect P only through changes in z. Moreover, the
component dẑ has no effect on the projection matrix P since it preserves the

16

linear space M , so we can consider dP to be a function of only dz⊥. The
change in G =MTM is zero to first order,

G+ dG = (c, z+ dz⊥)T (c, z+ dz⊥) =̇ G, (A4)

since cTdz⊥ = 0 = zTdz⊥. Thus

P + dP =̇ [(c, z) + (0, dz⊥)]G−1
[(
cT

zT

)
+

(
0T

dz⊥

)]

=̇ P + (0, dz⊥)G−1
(
cT

zT

)
+ (c, z)G−1

(
0

dz⊥T

)
,

or

dP =̇ dz⊥(G21, G22)

(
cT

zT

)
+ (c, z)

(
G12

G22

)
dz⊥T (A5)

Here we have partitioned G−1 into

G−1 =

(
G11 G12

G21 G22

)
(with G21 = G21T). (A6)

Let

v = (c, z)

(
G12

G22

)
.

Then, also partitioning G,

cTv = (G11, G12)

(
G12

G22

)
= 0 and zTv = (G21, G22)

(
G12

G22

)
= 1, (A7)

(A7) following from(
G11 G22
G21 G22

)(
G11 G12

G21 G22

)
=

(
I, 0
0, 1

)
.

Since v is a linear combination of z and the columns of c, cTv = 0 shows
that v must lie along the projection of z orthogonal to c, that is v = γz(c).

17

Also zTv = 1 implies γ = 1/‖z(c)‖2, or v = z(c)/‖z(c)‖2. The Lemma follows
from (A5).

Lemma (A3) combined with dz⊥ = A⊥dy gives

∂Pij
∂yi

= (A⊥iiz(c)j + A
⊥
ijz(c)i)/‖z(c)‖2. (A7)

Finally
∂µ̂i
∂yi

=
∂

∂yi

∑
j

Pijyj = Pii +
∑
j

∂Pij
∂yi

yj

so ∑
i

∂µ̂i

∂yj
=

∑
i

Pii +
∑
j

∂Pij

∂yi
yj

= (k + 1) +
∑
i

∑
j

(A⊥iiz(c)j + A
⊥
ijz(c)i)yj/‖z(c)‖2.

which is the top version of (6). The bottom version follows since

µ̂TA⊥z(c) = (µ̂TP⊥)(Az(c)) = 0T (Az(c)) = 0

Note: it is not necessary for the first mapping z = f(y) to be linear.
Result (6) holds in the nonlinear case if A is defined to be the matrix of
partial derivatives

A = (∂zi/∂yj).

References

Dudoit, S., Fridlyand, J. & Speed, T. (2001), ‘Comparison of discrimination
methods for the classification of tumors using gene expression data’, J.
Amer. Statist. Assoc pp. 1151–1160.

Efron, B. (1983), ‘Estimating the error rate of a prediction rule: some im-
provements on cross-validation’, J. Amer. Statist. Assoc. 78, 316–331.

Efron, B. (1986), ‘How biased is the apparent error rate of a prediction rule?’,
J. Amer. Statist. Assoc. 81, 461–70.

18

Efron, B. (1992), ‘Jackknife-after-bootstrap standard errors and influence
functions (with discussion)’, J. Royal. Statist. Assoc. B. 54, 83–111.

Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2002), Least angle
regression, Technical report, Stanford University.

Efron, B. & Tibshirani, R. (1993), An Introduction to the Bootstrap, Chap-
man and Hall, London.

Efron, B. & Tibshirani, R. (1997), ‘Improvements on cross-validation: the
632+ bootstrap: method’, J. Amer. Statist. Assoc. 92, 548–560.

Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapman
and Hall, London.

Stein, C. (1981), ‘Estimation of the mean of a multivariate normal distribu-
tion’, Annals of Statistics 9, 1131–1151.

van’t Veer, L. J., van de Vijver, H. D. M. J., He, Y. D., Hart, A. A., Mao, M.,
Peterse, H. L., van der Kooy, K., Marton, M. J., Anke T. Witteveen and,
G. J. S., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., &
Friend, S. H. (2002), ‘Gene expression profiling predicts clinical outcome
of breast cancer’, Nature 415, 530–536.

Wolpert, D. (1992), ‘Stacked generalization’, Neural Networks 5, 241–259.

Ye, J. (1998), ‘On measuring and correcting the effects of data mining and
model selection’, J. Amer. Statist Assoc. 93(413), 120–131.

19

