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Abstract—In this work we introduce the notion of pre-
aggregation function. Such a function satisfies the same boundary
conditions as an aggregation function, but, instead of requiring
monotonicity, only monotonicity along some fixed direction (di-
rectional monotonicity) is required. We present some examples
of such functions. We propose three different methods to build
pre-aggregation functions. We experimentally show that in fuzzy
rule-based classification systems, when we use one of these
methods, namely, the one based on the use of the Choquet
integral replacing the product by other aggregation functions,
if we consider the minimum or the Hamacher product t-norms
for such construction, we improve the results obtained when
applying the fuzzy reasoning methods obtained using two classical
averaging operators like the maximum and the Choquet integral.

Index Terms—Aggregation functions, directional monotonicity,
fuzzy measures, Choquet integral, fuzzy rule-based classification
systems, fuzzy reasoning method

I. INTRODUCTION

Aggregation functions [1], [2] are crucial tools nowadays to

deal with many computation problems [3], [4], [5], [6], [7].

The key property for defining them, apart from the boundary

conditions, is monotonicity and, more specifically, monotone

increasingness. However, some other statistical tools, such as

the mode, are not included in this family, although they are

useful, since, even if they are properly defined as functions,

monotonicity is violated.

The problem of relaxing the definition of monotonicity has

recently attracted a lot of interest. In [8], Wilkin and Beliakov

proposed the notion of weak monotonicity in order to extend

the usual monotonicity property. In this case, monotonicity is
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required only along the direction of the first quadrant diagonal.

This concept of weak monotonicity has been further extended

by Bustince et al. [9] by introducing the notion of directional

monotonicity, which allows monotonicity along (some) fixed

ray. In particular, directionally monotone functions encom-

pass weak monotone functions, as well as the mode and any

aggregation function.

In particular, in this paper we consider the following objec-

tives:

1) To introduce the concept of pre-aggregation functions.

2) To study the first properties of these new functions.

3) To introduce three different methods for building pre-

aggregation functions.

4) To show an application where the introduction of the

new concept of pre-aggregation function is justified.

To achieve these goals we use the notion of directional

monotonicity. Moreover, for one of the construction methods

that we propose, in the definition of the Choquet integral we

replace the product by the minimum or the Hamacher product

t-norm, and, in this way, we obtain pre-aggregation functions

that are not aggregation functions. We show that using these

new functions in a Fuzzy Rule-based Classification System

(FRBCS), and, in particular, in the Fuzzy Reasoning Method

(FRM) of FARC-HD [10], which is currently one of the most

accurate FRBCSs, the obtained results are better than both

applying the classical Choquet integral and the well-known

FRM of the winning rule.

This paper is organized as follows. In Section II, we

present some related preliminary concepts that are necessary to

understand the paper. In Section III we introduce the notion of

pre-aggregation function and discuss some properties. Three

methods of construction of pre-aggregation functions are

described in Section IV. The generalization of the FRM using

pre-aggregation functions is described in detail in Section V.

The experimental framework and the analysis of the obtained

results when considering some of our pre-aggregation func-

tions are reported in Section VI. In Section VII we draw the

main conclusions and the detailed results of the experiments

are available in the Appendix.

II. PRELIMINARIES

A. Aggregation functions

An important class of operators that are used in this paper

are the aggregation functions [1], [11]:

Definition 2.1: A function A : [0, 1]n → [0, 1] is said to

be an n-ary aggregation function if the following conditions

hold:



TABLE I: T-norms used in this paper

Name Definition

Minimum TM (x, y) = min{x, y}

Algebraic Product TP (x, y) = xy

Łukasiewicz TŁ(x, y) = max{0, x+ y − 1}

Drastic Product TDP (x, y) =







x if y = 1
y if x = 1
0 otherwise

Nilpotent Minimum TNM (x, y) =

{

min{x, y} if x+ y > 1
0 otherwise

Hamacher Product THP (x, y) =

{

0 if x = y = 0
xy

x+y−xy
otherwise

(A1) A is increasing1 in each argument: for each i ∈
{1, . . . , n}, if xi ≤ y, then A(x1, . . . , xn) ≤
A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the boundary conditions: A(0, . . . , 0) = 0
and A(1, . . . , 1) = 1.

Definition 2.2: A bivariate aggregation function T :
[0, 1]2 → [0, 1] is a t-norm if, for all x, y, z ∈ [0, 1], it satisfies

the following properties:

(T1) Commutativity: T (x, y) = T (y, x);
(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);
(T3) Boundary condition: T (x, 1) = x.

If T satisfies (T3) (and also T (1, x) = x) only, then it is called

a semi-copula.

Since t-norms are associative, it is possible to extend each

t-norm T in a unique way to an n-ary operation in the usual

way by induction [12]. The bivariate t-norms that are used

in this paper are presented in Table I. Observe that a convex

combination of t-norms is a (commutative) semicopula, but

not a t-norm, in general, since associativity may be violated.

B. Fuzzy measures

In this subsection, we recall the notion of fuzzy measure,

which is going to be a key tool for constructing some of our

examples of pre-aggregation functions.

In the following, consider the set N = {1, . . . , n} for an

arbitrary positive integer n.

Definition 2.3: A function m : 2N → [0, 1] is a fuzzy

measure if, for all X,Y ⊆ N , it satisfies the following

properties:

(m1) Increasingness: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

In the context of aggregation functions, fuzzy measures are

used for evaluating the relationship among the elements to be

aggregated, which represents the importance of a coalition.

The fuzzy measures considered in this paper, defined for A ⊆
N , are the following:

Uniform measure:

mU (A) =
|A|

n
. (1)

1In this paper, an increasing (decreasing) function does not need to be
strictly increasing (decreasing).

Dirac’s measure: For a previously fixed i ∈ N ,

m
i
D(A) =

{

1 if i ∈ A
0 if i 6∈ A.

(2)

Additive measure (Wmean): Take W =
(w1, . . . , wn) ∈ [0, 1]n such that

∑n
i=1 wi = 1.

Consider

mW ({i}) = wi

Then, for |A| > 1, define:

mW (A) =
∑

i∈A

wi. (3)

Symmetric measure (OWA): Take W =
(w1, . . . , wn) ∈ [0, 1]n such that

∑n
i=1 wi = 1.

Then, for any non-empty subset A, define:

msW (A) =

|A|
∑

i=1

wi. (4)

Note that this expression is different from Eq. (3)

since in this case only the cardinal of each subset A
is taken into account.

Power measure:

mPM (A) =

(

|A|

n

)q

, with q > 0. (5)

Observe also that from the considered fuzzy measures,

mU , mi
D and mW are additive and mU , msW and mPM are

symmetric, that is, the measure of any subset A only depends

on the cardinality of A.

The Choquet integral generalizes the Lebesgue integral,

which is defined with respect to additive measures. However,

the Choquet integral is defined with respect to fuzzy measures.

In this paper, we consider only the discrete Choquet integral,

related to fuzzy measures, which are defined on finite spaces:

Definition 2.4: [1, Definition 1.74] Let m : 2N → [0, 1]
be a fuzzy measure. The discrete Choquet integral of x =
(x1, . . . , xn) ∈ [0, 1]n with respect to m is defined as a

function Cm : [0, 1]n → [0, 1], given by

Cm(x) =

n
∑

i=1

(

x(i) − x(i−1)

)

·m
(

A(i)

)

, (6)

where
(

x(1), . . . , x(n)

)

is an increasing permutation on the

input x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention

that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of

indices of n− i+ 1 largest components of x.

The Choquet integral combines the inputs in such a way that

the importance of the different groups of inputs (coalitions)

may be taken into account. Allowing to assign importance

to all possible groups of criteria, the Choquet integral offers

greater flexibility in the aggregation modelling. Since the

weighted arithmetic mean and OWA operators are special

cases of the Choquet integral, with respect to additive and

symmetric fuzzy measures, respectively, Choquet integral-

based aggregation functions represent a larger class of aggre-

gation functions [1], [13], [14].

Note that the Choquet integral with respect to mW is a



weighted arithmetic mean, and with respect to msW is an OWA

operator2. These facts explain the acronyms we have chosen

in the present work for these measures.

C. Directional monotonicity

This subsection is devoted to recalling the basic concept for

our definition of pre-aggregation function, that of directional

monotonicity [9].

Definition 2.5: Let ~r = (r1, . . . , rn) be a real n-

dimensional vector, ~r 6= ~0. A function F : [0, 1]n → [0, 1]
is ~r-increasing if for all points (x1, . . . , xn) ∈ [0, 1]n and for

all c > 0 such that (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n it holds

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn) .

That is, an ~r-increasing function is a function which is

increasing along the ray (direction) determined by the vector

~r. For this reason, we say that F is directionally monotone,

or, more specifically, directionally increasing. Note that every

increasing function (in the usual sense) is, in particular, ~r-

increasing, for every non-negative real vector ~r. However,

the class of directionally increasing functions is much wider

than that of aggregation functions. For instance:

• Fuzzy implication functions (see [21]) are (−1, 1)-
increasing functions. This implies that many other func-

tions, which are widely used in applications and which

can be obtained from implication functions, are also

directionally increasing. This is the case, for instance,

of some subsethood measures (see [22]);

• Many functions used for comparison of data are also

directionally increasing. In particular, this is the case of

those based on component-wise comparison by means of

the Euclidean distance |x − y|, as for restricted equiva-

lence functions [23];

• Weakly increasing functions ([8]) are a particular case

of directionally increasing functions, with ~r = (1, . . . , 1).

III. PRE-AGGREGATION FUNCTIONS

In this section we introduce the notion of pre-aggregation

function and discuss some properties and construction meth-

ods.

Definition 3.1: A function F : [0, 1]n → [0, 1] is said to be

an n-ary pre-aggregation function if the following conditions

hold:

(PA1) There exists a real vector ~r ∈ [0, 1]n (~r 6= ~0) such

that F is ~r-increasing.

(PA2) F satisfies the boundary conditions: F (0, . . . , 0) = 0
and F (1, . . . , 1) = 1.

Example 3.1: Some examples of pre-aggregation functions

are the following.

(i) Consider the mode, Mod(x1, . . . , xn), defined as the

function that gives back the value which appears most

times in the considered n-tuple, or the smallest of the

values that appears most times, in case there is more than

2The OWA operators were first introduced by Yager [15], and several forms
and usage of OWA operators have been discussed in the literature [16], [17],
[18], [19], [20].

one. Then, the mode is (1, . . . , 1)-increasing, and it is a

particular case of pre-aggregation function which is not

an aggregation function.

(ii) F (x, y) = x− (max{0, x− y})2 is, for instance, (0, 1)-
increasing, and it is an example of a pre-aggregation

function which is not an aggregation function.

(iii) Weakly increasing functions satisfying the boundary con-

ditions (PA2) are also pre-aggregation functions which

need not be aggregation functions.

(iv) Take λ ∈]0, 1[. The weighted Lehmer mean Lλ :
[0, 1]2 → [0, 1], given by

Lλ(x, y) =
λx2 + (1− λ)y2

λx+ (1− λ)y

(with convention 0/0 = 0) is (1− λ, λ)-increasing, so it

is a pre-aggregation function.

(v) Define A,B : [0, 1]2 → [0, 1] by

A(x, y) =

{

x(1− x) if y ≤ 3/4 ,

1 otherwise,

and

B(x, y) =

{

y(1− y) if x ≤ 3/4 ,

1 otherwise.

Then both A and B are pre-aggregation functions which

are not aggregation functions. In fact, A is (0, a)-
increasing for any a > 0 but for no other direction

~r = (a, b), b > 0, while B is (b, 0)-increasing for any

b > 0 but for no other direction ~r = (a, b), a > 0.

However, C = (A + B)/2 is not a pre-aggregation

function, just illustrating the fact that the class of all pre-

aggregation functions with a fixed dimension n is not a

convex class.

If F is a pre-aggregation function with respect to a vector

~r we just say that F is an ~r-pre-aggregation function.

Remark 3.1: Note that if A : [0, 1]n → [0, 1] is an aggre-

gation function, then A is also a pre-aggregation function. In

fact, if, for a non-zero vector ~r ∈ [0, 1]n we denote by PA~r

the class of all ~r-increasing pre-aggregation functions, then

the class of all pre-aggregation functions PA is the union

of all these classes PA~r, while the class of all aggregation

functions is the intersection of all the classes PA~r. The latter

intersection is the same as the intersection over PA~ei , where

~ei = (0, ..1, ..0), i ∈ {1, . . . , n}, is the vector having 1 as i-th
value, and all other coordinates are equal to zero.

Note that the reverse of the first claim of Remark 3.1 does

not hold, as the cases considered in Example 3.1 (i) and (ii)

show. Pre-aggregation functions which are not aggregation

functions will be called proper pre-aggregation functions.

However, we can use aggregation functions to obtain direc-

tionally increasing functions as follows.

The next results were proved for directionally monotone

functions in our recent paper [9].

Proposition 3.1: Let A : [0, 1]m → [0, 1] be an aggregation

function. Let Fi : [0, 1]n → [0, 1] (i ∈ {1, . . . ,m}) be a

family of m ~r-pre-aggregation functions for the same vector

~r ∈ [0, 1]n. Then, the function A(F1, . . . , Fm) : [0, 1]n →



[0, 1], defined as

A(F1, . . . , Fm)(x1, . . . , xn) =

A(F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn))

is also an ~r-pre-aggregation function.

Proof:

Due to ([9], Proposition 3), only the boundary conditions for

the functions (F1, . . . , Fm) should be guaranteed. However,

their validity is obvious.

The following corollary is straightforward.

Corollary 3.1: Let F1, F2 : [0, 1]n → [0, 1] be two ~r-pre-

aggregation functions for the same vector ~r ∈ [0, 1]n. Then:

(i) F1+F2

2 is also an ~r-pre-aggregation function.

(ii) F1F2 is also an ~r-pre-aggregation function.

Regarding duality, we can state the following.

Proposition 3.2: Let F : [0, 1]n → [0, 1] be an ~r-pre-

aggregation function for ~r ∈ [0, 1]n. Then, the function

F d(x1, . . . , xn) = 1− F (1− x1, . . . , 1− xn)

is also an ~r-pre-aggregation function.

Proof:

Obviously, F d(0, . . . , 0) = 0 and F d(1, . . . , 1) = 1. Now,

the result follows from ([9], Proposition 3).

The following corollary is now straight.

Corollary 3.2: Let F be an ~r- pre-aggregation function.

Then, the function F+Fd

2 is a self-dual ~r-pre-aggregation

function.

IV. THREE METHODS OF CONSTRUCTING

PRE-AGGREGATION FUNCTIONS

In this section we introduce and illustrate three methods

of constructing pre-aggregation functions. The first method is

based on the composition of appropriate functions, the second

one is inspired by the construction of the discrete Choquet

integral, and the third of the proposed methods is inspired by

the construction of the discrete Sugeno integral.

A. Construction of pre-aggregation functions by composition

Fix n ∈ N. Let I be a proper subset of N = {1, . . . , n} and

consider that I = {i1, . . . , ik} with i1 < . . . < ik. For an n-

tuple x = (x1, . . . , xn) ∈ [0, 1]n, its I-projection is a k-tuple

xI = (xi1 , . . . , xik), where k is the cardinality of I . We will

use I-projections xI of points x ∈ [0, 1]n and I-projections

~rI of (geometrical) vectors ~r ∈ [0, 1]n as well. Finally, for

a function F : [0, 1]n → [0, 1], let D↑(F ) = {~r ∈ [0, 1]n |
F is ~r - increasing}. Note that the zero vector is not excluded

now.

Proposition 4.1: Let {I1, . . . , Ik} be a partition of N , k >
1. For j ∈ {1, . . . , k}, let nj = |Ij | and consider functions

Fj : [0, 1]
nj → [0, 1] such that Fj(1, . . . , 1) = 1. Then, for

any aggregation function G : [0, 1]k → [0, 1], the composite

function H : [0, 1]n → [0, 1] defined by

H(x) = G (F1 (xI1) , . . . , Fk (xIk))

is ~r-increasing for any vector ~r ∈ [0, 1]n such that ~rIj ∈
D↑(Fj), j = 1, . . . , k, and H(1) = 1. Moreover, if there is a

j0 ∈ {1, . . . , k} such that Fj0 is a pre-aggregation function,

and 0 is an annihilator of G, then the function H is a pre-

aggregation function.

Proof: Clearly, H(1) = G (F1 (1I1) , . . . , Fk (1Ik)) =
G(1, . . . , 1) = 1. Moreover, if Fj0(0, . . . , 0) = 0 for some

j0 ∈ {1, . . . , k} and 0 is an annihilator of G, then

H(0) = G
(

F1 (0I1) , . . . , Fj0

(

0Ij0

)

, . . . , Fk (0Ik)
)

= G (F1 (0I1) , . . . , 0, . . . , Fk (0Ik)) = 0.

Next, consider a vector ~r ∈ [0, 1]n such that ~rIj ∈ D↑(Fj)
for each j = 1, . . . , k. Then, for any c > 0 and x ∈ [0, 1]n

such that also x+ c~r ∈ [0, 1]n, it holds that

H(x+ c~r) = G (F1 (xI1 + c~rI1) , . . . , Fk (xIk + c~rIk))

≥ G (F1 (xI1) , . . . , Fk (xIk)) = H(x),

where the inequality follows from the increasing mono-

tonicity of the aggregation function G, and the fact that

Fj

(

xIj + c~rIj
)

≥ Fj

(

xIj

)

, j = 1, . . . , k.

Now, suppose that Fj0 is a pre-aggregation function,

i.e., Fj0(0, . . . , 0) = 0 and Fj0 is ~v-increasing for some

non-zero vector ~v ∈ [0, 1]nj0 . Due to the above men-

tioned facts, H satisfies the boundary conditions and is

directionally increasing in the direction of a non-zero vec-

tor ~r ∈ [0, 1]n such that ~rIj0 = ~v and ~rN\Ij0
=

(0, . . . , 0), which proves that H is a pre-aggregation function.

�

Example 4.1: Let n = 2 and ~v = (v1, v2) ∈ ]0, 1]2.

For obtaining a proper pre-aggregation function which is ~v-

increasing, it is enough to consider the weighted Lehmer mean

Lλ : [0, 1]
2 → [0, 1] with λ = v2

v1+v2
, see Example 3.1(iv),

given by

Lλ(x, y) =
v2x

2 + v1y
2

v2x+ v1y
.

This fact and Proposition 4.1 allow us to construct a pre-

aggregation function H which is directionally increasing in

the direction of any a-priori given vector ~0 6= ~r ∈ [0, 1]n.

Consider, for example, n = 4 and ~r = (0.5, 0.4, 0.3, 0.7).
Let G = TM , I1 = {1, 3}, I2 = {2, 4}, F1 = L3/8, F2 =
L7/11. Then H : [0, 1]4 → [0, 1] given by

H(x1, x2, x3, x4) = min

{

3x2
1 + 5x2

3

3x1 + 5x3
,
7x2

2 + 4x2
4

7x2 + 4x4

}

is an ~r-increasing proper pre-aggregation function.

B. Choquet-like construction method of pre-aggregation func-

tions

This method is inspired in the way the Choquet integral is

built, replacing the product operation in Equation (6) by other

aggregation functions.

Let m : 2N → [0, 1] be a fuzzy measure and M : [0, 1]2 →
[0, 1] be a function such that M(0, x) = 0 for every x ∈ [0, 1].
Taking as basis the Choquet integral, we define the function



CM
m

: [0, 1]n → [0, n] by

CM
m
(x) =

n
∑

i=1

M
(

x(i) − x(i−1),m
(

A(i)

))

, (7)

where N = {1, . . . , n}, (x(1), . . . , x(n)) is an increasing

permutation on the input x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n),

with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)}
is the subset of indices of n− i+ 1 largest components of x.

Note that CM
m

is well defined by (7) even if the permutation

is not unique.

Now we have the following result.

Theorem 4.1: Let M : [0, 1]2 → [0, 1] be a function such

that for all x, y ∈ [0, 1] it satisfies M(x, y) ≤ x, M(x, 1) =
x, M(0, y) = 0 and M is (1,0)-increasing. Then, for any

fuzzy measure m, CM
m

is a pre-aggregation function which is

idempotent and averaging, i.e.,

min(x1, . . . , xn) ≤ CM
m
(x1, . . . , xn) ≤ max(x1, . . . , xn).

Proof: Note that

CM
m
(x1, . . . , xn) =

n
∑

i=1

M
(

x(i) − x(i−1),m
(

A(i)

))

≤
n
∑

i=1

(x(i) − x(i−1))

= x(n) = max(x1, . . . , xn) .

From these two inequalities, idempotency follows. Besides

min(x1, . . . , xn) = x(1) = M
(

x(1) − x(0),m
(

A(1)

))

≤ CM
m
(x1, . . . , xn)

Finally, take ~r = ~1 = (1, . . . , 1). Note that in Equation (7),

for i ≥ 2, it follows that, for any c > 0

M
(

x(i) + c− (x(i−1) + c),m
(

A(i)

))

= M
(

x(i) − x(i−1),m
(

A(i)

))

whereas, for i = 1

M
(

x(1) + c− x(0),m
(

A(1)

))

= M
(

x(1) + c,m
(

A(1)

))

≥ M
(

x(1),m
(

A(1)

))

so CM
m

is ~1-increasing.

Remark 4.1: Under the constraints of Theorem 4.1, we

cannot ensure the monotonicity of CM
m

, i.e., CM
m

is, in general,

a proper pre-aggregation function. To see it, observe the

following:

(i) Take M(x, y) = TM (x, y). Consider N = {1, 2, 3, 4}
and the uniform measure m = mU given in Equation (1).

Then, we have that

CTM
m

(0.05, 0.1, 0.7, 0.9) = 0.8 , whereas

CTM
m

(0.05, 0.1, 0.8, 0.9) = 0.7 ,

so CTM
m

is not an increasing function and hence it is not

an aggregation function.

(ii) Consider the Łukasiewicz t-norm TŁ(x, y) = max{0, x+

y − 1}. Again, for N = {1, 2, 3, 4} and the uniform

measure m = mU we have that

C
TŁ
m (0.05, 0.1, 0.7, 0.9) = 0.15 , whereas

C
TŁ
m (0.05, 0.2, 0.7, 0.9) = 0.05 ,

so C
TŁ
m is not an increasing function and hence it is not an

aggregation function. Analogous counterexamples can be

found for the cases of the drastic product, the Hamacher

product or the nilpotent minimum t-norms.

Consider N = {1, . . . , n} and a fuzzy measure m : 2N →
[0, 1]. In Table II, we present the value of CT

m
, which are pre-

aggregation functions but not aggregation functions, for the

different t-norms given in Table I.

C. Sugeno-like construction method of pre-aggregation func-

tions

In this subsection we follow the notation of Definition 2.4.

Recall that the formula for the discrete Sugeno integral

Sm : [0, 1]n → [0, 1] can be written as

Sm(x) =

n
∨

i=1

min
{

x(i),m
(

A(i)

)}

.

Inspired by this formula, for any function M : [0, 1]2 → [0, 1],
we define the function SM

m
: [0, 1]n → [0, 1] by the formula

SM
m
(x) =

n
∨

i=1

M
(

x(i),m
(

A(i)

))

. (8)

We prove a sufficient condition for M ensuring that SM
m

is a

pre-aggregation function for any fuzzy measure m.

Proposition 4.2: Let M : [0, 1]2 → [0, 1] be a function

increasing in the first variable and let for each y ∈ [0, 1],
M(0, y) = 0 and M(1, 1) = 1. Then SM

m
defined in (8) is a

pre-aggregation function for any fuzzy measure m.

Proof: It is easy to check that, for any m,

SM
m
(0) =

n
∨

i=1

M
(

0,m
(

A(i)

))

= 0

and

SM
m
(1) =

n
∨

i=1

M
(

1,m
(

A(i)

))

= M(1,m(A(1))) = M(1, 1) = 1.

Moreover, for vector ~1 = (1, . . . , 1) we get

SM
m
(x+ c~1) =

n
∨

i=1

M
(

x(i) + c,m
(

A(i)

))

≥
n
∨

i=1

M
(

x(i),m
(

A(i)

))

= SM
m
(x),

i.e., SM
m

is ~1-increasing, which completes the proof that SM
m

is a pre-aggregation function.

�

Note that any function M satisfying the constraints of

Proposition 4.2 is, in fact, a binary (1, 0)-increasing pre-



TABLE II: Some pre-aggregation functions obtained using the t-norms

T-Norm Resulting pre-aggregation function

Minimum C
TM
m

(x) =
∑n

i=1 min
{

x(i) − x(i−1),m
(

A(i)

)}

Łukasiewicz C
TŁ
m

(x) =
∑n

i=1 max
{

0, x(i) − x(i−1) + m

(

A(i)

)

− 1
}

Drastic Product CDP
m

(x) =
∑n

i=1







x(1) if i = 1

m

(

A(i)

)

if x(i) − x(i−1) = 1
0 otherwise

Nilpotent Minimum CNM
m

(x) =
∑n

i=1







min
{

x(i) − x(i−1),m
(

A(i)

)}

if x(i) − x(i−1) + m

(

A(i)

)

> 1
0 otherwise

Hamacher Product CHP
m

(x) =
∑n

i=1



















0 if x(i) = x(i−1) and m

(

A(i)

)

= 0

(x(i)−x(i−1))·m(A(i))
x(i)−x(i−1)+m(A(i))−(x(i)−x(i−1))·m(A(i))

otherwise

aggregation function which satisfies M(0, y) = 0 for each

y ∈ [0, 1].
Example 4.2: (i) Let M : [0, 1]2 → [0, 1] be any aggrega-

tion function. Then SM
m

: [0, 1]n → [0, 1] is also an aggregation

function, independently of m.

(ii) Consider the function F , F (x, y) = x|2y − 1|. Note that

F is a proper pre-aggregation function which satisfies the

constraints of Proposition 4.2, and thus, for any m, the function

SF
m
: [0, 1]n → [0, 1], SF

m
(x) =

n
∨

i=1

F
(

x(i),m
(

A(i)

))

is a pre-

aggregation function (even an aggregation function thought F
is not).

For example, for n = 2, m({1}) = 1/3, m({2}) = 3/4, we

get

SF
m
(x, y) =

{

x ∨ y
2 if x ≤ y,

y ∨ x
3 if x > y.

V. THE FUZZY REASONING METHOD USING

PRE-AGGREGATION FUNCTIONS

In this section, we present a generalization of the FRM

proposed by Barrenechea et al. [24], using the proposed

pre-aggregation functions, which are the result of combining

different t-norms and fuzzy measures. To do so, we first

explain the components of standard FRBCSs and then, the

new FRM is introduced.

A classification problem consists of m training examples

xp = (xp1, . . . , xpn, yp), with p = 1, . . . ,m, where xpi, with

i = 1, . . . , n, is the value of the ith attribute variable and

yp ∈ C = {C1, C2, . . . , CM} is the label of the class of the

pth training example.

Among all the techniques used to face classification prob-

lems, one of the most used are the Fuzzy Rule-based Classifi-

cation Systems (FRBCSs) [25], since they allow the inclusion

of all the available information in the system modelling, gen-

erating an interpretable model and providing accurate results.

The two main components of FRBCSs are:

(i) The Knowledge Base containing the Rule Base and

the Data Base, where the fuzzy inference rules and

the membership functions are stored, respectively.

(ii) The Fuzzy Reasoning Mechanism, which is used to

classify examples using the information available in

the Knowledge Base.

The choice of the aggregation function plays a crucial role

in FRBCSs [26], [27], since it determines the behaviour of the

Fuzzy Reasoning Method (FRM) [28]. This is due to the fact

that in the FRM the local information given by each fuzzy

rule is aggregated to provide global information, which is

associated with each class of the problem [28], [27], [29],

[30], [31]. Finally, the example is assigned to the class having

the maximum global information.

The usage of the maximum as the aggregation function in

the FRM to obtain the global information is very common

in the literature, which is known as the FRM of the winning

rule [28], [27], [32], [33]. However, whenever one considers,

for each class, just the information given by a single fuzzy

rule having the highest compatibility with the example, the

available information provided by the remaining fuzzy rules

of the system is ignored.

Denote by xp = (xp1, . . . , xpn), the n-dimensional vector

of attribute values corresponding to an example xp. The fuzzy

rules that are used in this work are of the following form:

Rule Rj :

If xp1 is Aj1 and . . . and xpn is Ajn then xp in Ck
j with RWj ,

(9)

where Rj is the label of the jth rule, Aji is an antecedent

fuzzy set modelling a linguistic term, Ck
j is the label of the

consequent fuzzy set Ck modelling the class associated to the

rule Rj , with k ∈ {1, . . . ,M}, and RWj ∈ [0, 1] is the rule

weight [34].

Let xp = (xp1, . . . , xpn) be a new example to be classified,

L the number of rules in the rule base and M the number of

classes of the problem. The new FRM using pre-aggregation

functions presents the following steps:

Matching degree: it is the strength of the activation of the

if-part of the rules for the example xp, which is computed



using a t-norm T ′ : [0, 1]n → [0, 1]:

µAj
(xp) = T ′(µAj1

(xp1), . . . , µAjn
(xpn)), with j = 1, . . . , L.

(10)

Association degree: it is the association degree of the

example xp with the class of each rule in the rule base, given

by:

bkj (xp) = µAj
(xp)·RW k

j , with k = Class(Rj), j = 1, . . . , L.
(11)

Example classification soundness degree for all classes: in

this step, we apply pre-aggregation functions (Equation (7))

to combine the association degrees calculated in the previous

step, obtaining the classification soundness degrees, defined

by:

Yk(xp) = CT
m

(

bk1(xp), . . . , b
k
L(xp)

)

, with k = 1, . . . ,M,
(12)

where CT
m

is the obtained pre-aggregation, which is the result

of combining a bivariate t-norm T : [0, 1]2 → [0, 1] and a

fuzzy measure m : 2N → [0, 1].
Since, whenever bki (xp) = 0, it holds that:

CT
m
(bk1(xp), . . . , b

k
L(xp))

= CT
m
(bk1(xp), . . . , b

k
j−1(xp), b

k
j+1(xp), . . . , b

k
L(xp)),

then, for practical reasons, only bkj > 0 are considered in

Equation (12).

Classification: A decision function F : [0, 1]M →
{1, . . . ,M} defined over the example classification soundness

degrees of all classes and determining the class corresponding

to the maximum soundness degree is given by:

F (Y1, . . . , YM ) = min
k=1...M

k such that Yk = max
w=1,...,M

(Yw).

(13)

In practical applications, it is sufficient to consider

F (Y1, . . . , YM ) = argmax
k=1,...,M

(Yk). (14)

Barrenechea et al. proposed to use the classical Choquet

integral (product t-norm) instead of pre-aggregation in Equa-

tion (12). They also considered tuning the exponent of the

power measure using an evolutionary algorithm [24]. Specifi-

cally they used the CHC evolutionary model [35], which was

used to define the most suitable exponent to be used for each

class.3 We denote this proposal as power measure genetically

adjusted (Power GA).

VI. ANALYSIS OF THE APPLICATION OF

PRE-AGGREGATION FUNCTIONS IN CLASSIFICATION

PROBLEMS

This section is aimed at providing an application of pre-

aggregation functions in real-world problems. Specifically, as

introduced in Section V, we consider to introduce this new

theory to extend the FRM proposed by Barrenechea et al. [24],

which was applied to tackle classification problems.

The aim of the experimental study is to see whether the

usage of pre-aggregation functions in this FRM allows the

3See [24] for a detailed explanation of the evolutionary algorithm.

results of the classical Choquet integral (product t-norm) to

be enhanced. To do so, we test the performance of the FRM

using 30 different pre-aggregation functions, which are all

the possible combinations among the six t-norms shown in

Table I and the five fuzzy measures (see Section II) consid-

ered in this paper. Finally, as it was done in [24], we also

analyse if the best FRM (the best pre-aggregation) is able to

enhance the results of the well-known FRM of the Winning

Rule (WR), that is, the usage of the maximum to aggregate

the information in the third step of the FRM described in

Section V. Consequently, we want to show that the usage of

pre-aggregation functions allows the results obtained with two

classical averaging operators to be enhanced.

In the remainder of this section, we first explain the

adopted experimental framework (Section VI-A) and then we

present the results as well as their corresponding analysis

(Section VI-B).

A. Experimental framework

We use 27 real world data-sets selected from the KEEL

dataset repository [36]. Table III summarizes the properties of

these datasets, showing, for each dataset, the identifier (Id.) as

well as the name (Dataset), the number of instances (#Inst),
the number of attributes (#Att) and the number of classes

(#Class). The magic, page-blocks, penbased, ring, satimage

and twonorm datasets have been stratified sampled at 10% in

order to reduce their size for training. Examples with missing

values have been removed, e.g., in the wisconsin dataset.

TABLE III: Datasets used in this study

Id. Dataset #Inst #Att #Class

App Appendiciticis 106 7 2
Bal Balance 625 4 3
Ban Banana 5300 2 2
Bnd Bands 365 19 2
Bup Bupa 345 6 2
Cle Cleveland 297 13 5
Eco Ecoli 336 7 8
Gla Glass 214 9 6
Hab Haberman 306 3 2
Hay Hayes-Roth 160 4 3
Iri Iris 150 4 3
Led Led7digit 500 7 10
Mag Magic 1,902 10 2
New Newthyroid 215 5 3
Pag Pageblocks 5,472 10 5
Pho Phoneme 5,404 5 2
Pim Pima 768 8 2
Rin Ring 740 20 2
Sah Saheart 462 9 2
Sat Satimage 6,435 36 7
Seg Segment 2,310 19 7
Tit Titanic 2,201 3 2
Two Twonorm 740 20 2
Veh Vehicle 846 18 4
Win Wine 178 13 3
Wis Wisconsin 683 11 2
Yea Yeast 1,484 8 10

We adopt the model proposed in [24], [37], [38], that is, a

5-fold cross-validation model, where a dataset is split in five

partitions randomly, each partition with 20% of the examples,

and a combination of four of them is then used for training

and the other is used for testing. This process is repeated five



times by using a different partition to test the system each time.

For each partition the output is computed as the mean of the

numbers of correctly classified examples divided by the total

number of examples for each partition, that is, the accuracy

rate. Then, we consider the average result of the five partitions

as the final classification rate of the algorithm. This procedure

is a standard for testing the performance of classifiers [39],

[40].

We use FARC-HD [10], which is short for Fuzzy Associ-

ation Rule-based Classification model for High Dimensional

problems, to accomplish the fuzzy rule learning process. We

have considered the following configuration: the product t-

norm as the conjunction operator T ′, the Certainty Factor

as the rule weight RWj , 5 linguistic labels per variable,

0.05 for the minimum support, 0.8 as the threshold for the

confidence, the depth of the search trees is limited to 3 and

the parameter determining the number of fuzzy rules that cover

each example, kt, is set to 2. For the genetic process, we have

used populations composed of 50 individuals, 30 bits per gen

for the Gray codification (for incest prevention) and 20,000

as the maximum number of iterations. Finally, for the Dirac

fuzzy measure, the value of the variable i used to decide if

i ∈ A, for A ⊆ N = {0, . . . , n}, we adopt the median value,

given by,

i =

{

n+1
2 if n is odd

n
2 + 1 if n is even.

In order to give statistical support to the analysis of the

results we consider the usage of hypothesis validation tech-

niques [41], [42]. Specifically, we use non-parametric tests,

since the initial conditions that guarantee the reliability of the

parametric tests cannot be performed [43].

In fact, we use the aligned Friedman test [44] to detect

statistical differences among a group of results and to show

how good a method is with respect to the others. In this

method, the algorithm achieving the lowest average ranking

is the best one. Furthermore, we apply the post-hoc Holm’s

test [45] to study whether the best method rejects the equality

hypothesis with respect to its partners. The post-hoc procedure

allows us to know whether a hypothesis of comparison could

be rejected at a specified level of significance α. Specifically,

we compute the adjusted p-value (APV) to take into account

that multiple tests are conducted. As a result, we can directly

compare the APV with the level of significance α so as to be

able to reject the null hypothesis.

Finally, we also consider the usage of the Wilcoxon test [46]

in order to perform pair-wise comparisons.

B. Experimental Results

The summary of the results provided by all the different

configurations of the FRM, i.e. all the pre-aggregation func-

tions, are introduced in Table IV. Each column of this table

shows the results obtained using the fuzzy measure reported

in its top cell using the six t-norms, which are shown by

rows. The number in each cell is the average of the accuracy

rate obtained in the 27 datasets by the corresponding pre-

aggregation function. The best result for each fuzzy measure

is highlighted in bold-face. The number in brackets is the

number of datasets in which each t-norm has obtained the best

performance for each fuzzy measure (ties are excluded). The

detailed results obtained in each dataset are available in A.

TABLE IV: Averaged results obtained by the different pre-

aggregation functions considered in the study.

Uniform Dirac Wmean OWA Power GA

Product 78.68 (7) 78.01 (3) 78.12 (4) 77.33 (4) 78.55 (5)

Minimum 78.85 (7) 77.81 (0) 78.75 (7) 78.33 (10) 79.00 (7)

Łukasiewicz 76.61 (1) 77.81 (1) 76.92 (0) 76.44 (1) 78.14 (0)

Drastic 76.66 (0) 77.81 (0) 76.66 (1) 76.66 (2) 76.66 (1)

Nilpotent 76.88 (1) 77.81 (0) 76.76 (3) 76.60 (1) 78.78 (5)

Hamacher 79.16 (8) 77.81 (1) 79.19 (10) 78.61 (7) 79.42 (7)

From these results we can observe two situations:

• The performance of the product, minimum and Hamacher

is in general clearly better than that of Łukasiewicz,

Drastic product and Nilpotent minimum.

• The performance of all the t-norms using the Dirac’s

measure is almost the same.

The reason implying the low performance of Łukasiewicz,

Drastic product and Nilpotent product is that after aggregating

a set of values, the obtained one is similar to that obtained

if we aggregated them using the minimum function (not the

pre-aggregation associated with the minimum), which usually

obtains poor results. The explanation is as follows: let x and

y be the result of the fuzzy measure and the subtraction of

the elements to be aggregated using the Choquet integral,

respectively.

• Łukasiewicz: x + y − 1 is lower than 0 on half of its

domain. Therefore, most of the time we do not add

anything, which implies obtaining the minimum or a

value close to it.

• Drastic product: the value of the fuzzy measure is never

1 (except when we have all the elements) and it is very

difficult to have a difference between two values to be

aggregated equal to 1. Therefore, most of the time we

add 0.

• Nilpotent minimum: in the same way than Łukasiewicz,

on half of the domain x + y is greater than 1. Conse-

quently, we also add 0 most of the times.

Regarding the behaviour of the Dirac’s measure, the similar

behaviour among all the t-norms is due to the fact that this

measure returns always either 1 or 0. Furthermore, it is known

that T (x(i) − x(i−1), 0) = 0 and T (x(i) − x(i−1), 1) = x(i) −
x(i−1), for any t-norm T . Consequently, the selected t-norm

T does not have a great influence on the results of the pre-

aggregation functions.

Due to the aforementioned poor results obtained when

applying Łukasiewicz, Drastic product and Nilpotent mini-

mum, we focus the remainder of the analysis on the product,

minimum and Hamacher t-norms.

From the results on Table IV, we can observe that, with

the exception of the Dirac’s fuzzy measure, the results of the

Hamacher t-norm are better than those of the minimum t-norm,

which in turn are better than the ones of the product. This trend

is also present, in general, on the number of datasets in which

each of these t-norms obtain the best result.



In order to support the previous findings, we carry out a

statistical test to compare, for each fuzzy measure, the product,

minimum and Hamacher t-norms. To do so, we have used the

Aligned Friedman test as well as the Holm’s post-hoc test. The

results of these statistical techniques are reported in Table V,

where in each column we find the different fuzzy measures

whereas the three t-norms are shown in rows. The number

in each cell is the average rank computed with the aligned

Friedman test and the number in brackets is the APV computed

with the Holm’s test. The best t-norm for each fuzzy measure

is the one with the less rank, which stressed in bold-face,

whereas the APV is underlined in case of statistical differences

in favour to the best t-norm.

TABLE V: Aligned Friedman and Holm tests to compare the

different pre-aggregation functions.

Uniform Dirac WMean OWA Power GA

Product 42.94 (0.21) 38.13 51.09 (0.002) 53.91 (0.003) 50.78 (0.004)

Minimum 45.13 (0.21) 43.38 (0.771) 42.13 (0.054) 35.24 (0.828) 41.20 (0.112)

Hamacher 50.22 41.18 (0.771) 29.78 33.85 31.02

From the results in Table V, we can observe that the usage

of the Hamacher t-norm provides the best behaviour for all

the fuzzy measures, with the exception of the one defined

by Dirac due to the previous mentioned behaviour. In fact,

we find statistical differences with respect to the product

when using the additive (WMean), symmetric (OWA) and

Power GA fuzzy measures and a low APV when using the

uniform measure. Therefore, we can conclude that the usage

of the Hamacher t-norm allows us to enhance the results of

the product.

Furthermore, we also want to analyse if the minimum is also

appropriate when compared with the usage of the product.

To do so, we compare, for each fuzzy measure, the results

provided by the product versus the ones of the minimum. To

perform these comparisons, we have applied the Wilcoxon’s

test to conduct such pair-wise comparisons. The obtained

results are introduced in Table VI, where we can observe

that when using the additive (WMean), symmetric (OWA) and

Power GA fuzzy measures there is a trend in favour to the

minimum whereas in the two remainder fuzzy measures the

behaviour of these two t-norms is similar.

TABLE VI: Wilcoxon Test to compare the product (R+)

versus the minimum (R−).

Comparison R+ R− p-value

Uniform+Prod vs. Uniform+Min 195.5 182.5 0.925
Dirac+Prod vs. Dirac+Min 214 164 0.625
WMean+Prod vs. WMean+Min 135.5 242.5 0.200
OWA+Prod vs. OWA+Min 107.5 270.5 0.004
Power GA+Prod vs. Power GA+Min 132 249 0.148

Finally, we want to study whether the results obtained by

the best pre-aggregation function are able to improve those

provided by the well-known FRM of the WR, that is, the usage

of the maximum to aggregate the information. According to

Table IV, we select the pre-aggregation function resulting of

the combination among the Power GA fuzzy measure and

the Hamacher t-norm (Power GA+Ham), since it provides

the best average result. The results provided by this pre-

aggregation function as well as those obtained with the WR are

reported in Table VII, where the best result for each dataset is

highlighted in bold-face. From these results, it can be observed

that the global behaviour of Power GA+Ham is better than

that of the WR. This is due to the fact that Power GA+Ham

provides the best result in 17 out of the 27 datasets considered

in the study. We also apply the Wilcoxon’s test to support

these findings, whose obtained results are shown in Table VIII.

According to the statistical results, we can confirm with a high

level of confidence that the usage of Power GA+Ham is better

than that of the WR.

TABLE VII: Results in testing provided by Card GA+Ham

and WR.

Dataset WR Power GA+Ham

App 84.89 82.99
Bal 82.08 82.72
Ban 84.30 85.96
Bnd 68.56 72.13
Bup 61.16 65.80
Cle 55.23 55.58
Eco 75.61 80.07
Gal 63.11 63.10
Hab 71.22 72.21
Hay 79.46 79.49
Iri 94.67 93.33

Led 69.80 68.60
Mag 79.60 79.76
New 94.42 95.35
Pag 94.52 94.34
Pho 82.01 83.83
Pim 75.38 73.44
Rin 90.00 88.79
Sah 67.31 70.77
Sat 80.40 80.40
Seg 92.99 93.33
Tit 78.87 78.87

Two 84.32 85.27
Veh 67.62 68.20
Win 94.36 96.63
Wis 96.49 96.78
Yea 56.54 56.53

Mean 78.70 79.42

TABLE VIII: Wilcoxon Test to compare the power measure

genetically adjusted method with the Hamacher t-norm (R+)

versus the classical FRM of the Winning Rule (R−).

Comparison R+ R− p-value

Power GA+Ham vs. WR 267.5 110.5 0.06

VII. CONCLUSION

In this paper, based on the notion of an aggregation func-

tion, we have introduced the concept of a pre-aggregation

function. We have described three construction methods for

such functions. In particular, one of them derives from the

Choquet integral by using other t-norms in the place of the

product t-norm considered in the standard definition of the

Choquet integral. Furthermore, we have proposed to apply this

specific instance of pre-aggregation in the FRM of FRBCSs



to aggregate the local information given by each fuzzy rule of

the system.

In the experimental study we have shown that the usage

of the Hamacher or even the minimum t-norms allows one

to improve the results obtained when applying the classical

Choquet integral, that is, when using the product t-norm.

Moreover, we have checked that the pre-aggregation providing

the best results, which is obtained combining the Hamacher

t-norm and the power measure genetically learnt, enhances the

results achieved by the well-known FRM of the winning rule,

that is, applying the maximum as the aggregation function.

Therefore, the pre-aggregation functions introduced in this

paper can offer greater flexibility for FRBCSs, enlarging

the scope of the application of the approach proposed by

Barrenechea et al. [24].

Future work is concerned with the study of the properties

satisfied by the pre-aggregation functions, and the usage of

overlap functions [6], [7], [47], [48], [49] for the general-

ization of the Choquet integral, also using a fuzzy interval

approach [50], [51], [52], [53], [54], as, e.g., in [55], [33],

[31].

APPENDIX

The tables in this Appendix present the obtained results

in each dataset considering the different t-norms, for each

fuzzy measure. Each table contains the results obtained with

a different fuzzy measure:

• Table IX: results of the uniform measure for the six t-

norms.

• Table X: results of the Dirac’s fuzzy measure for the six

t-norms.

• Table XI: results of an additive fuzzy measure for the six

t-norms.

• Table XII: results of the ordered weighted averaging

fuzzy measure for the six t-norms.

• Table XIII: results of the genetic uniform fuzzy measure

for the six t-norms.

The structure of these 5 tables is as follows: in each row we

find a dataset and in each column we introduce a different t-

norm. The best result for each dataset is stressed in boldface.
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TABLE IX: Detailed results in testing using the uniform

measure.

Dataset Product Minimum Lukasiewicz Drastic Nilpotent Hamacher

App 86.80 84.89 87.75 83.03 82.12 85.89

Bal 78.24 82.24 75.04 76.80 77.12 80.96

Ban 84.45 83.38 82.70 82.72 81.91 84.19

Bnd 64.00 70.24 64.07 65.56 63.81 69.96

Bup 64.35 63.19 63.77 63.48 65.22 65.80

Cle 57.57 55.55 55.24 56.89 52.51 56.90

Eco 78.28 76.20 72.91 75.61 75.61 79.17

Gal 65.90 63.58 62.62 62.17 62.16 64.47

Hab 74.50 72.53 73.51 73.20 73.84 72.87

Hay 81.00 78.69 78.77 78.77 79.52 79.49

Iri 94.00 94.00 94.00 92.67 94.67 93.33

Led 68.20 68.80 67.40 67.00 68.40 69.00

Mag 79.02 79.49 76.50 77.28 76.97 80.65

New 94.42 95.35 93.02 92.56 92.56 94.88

Pag 94.16 93.80 93.61 94.34 94.16 94.34

Pho 83.14 81.92 80.18 79.70 79.81 83.33

Pim 72.26 74.74 71.62 72.65 72.40 74.48

Rin 85.81 88.24 78.38 78.11 79.59 87.43

Sah 70.97 70.55 68.83 68.61 69.70 69.68

Sat 84.50 81.80 77.76 78.38 76.36 79.47

Seg 92.60 93.07 90.00 90.69 89.74 93.25

Tit 78.87 78.87 78.87 78.87 78.87 78.87

Two 80.54 83.24 77.84 77.70 76.22 82.70

Veh 63.53 68.56 66.78 64.89 65.72 69.03

Win 94.37 93.81 88.71 88.73 95.49 95.51

Wis 95.90 96.05 95.02 95.32 94.44 95.76

Yea 56.94 56.26 53.44 53.97 56.94 56.00

Mean 78.68 78.85 76.61 76.66 76.88 79.16

TABLE X: Detailed results in testing using the Dirac’s mea-

sure.

Dataset Product Minimum Lukasiewicz Drastic Nilpotent Hamacher

Dataset Product Minimum Lukasewitz Drastic Nilpo Hamacher

App 80.17 80.17 80.17 80.17 80.17 80.17

Bal 78.24 78.24 77.60 78.24 78.08 78.24

Ban 84.09 84.09 84.09 84.09 84.09 84.09

Bnd 70.67 65.97 65.97 65.97 65.97 65.97

Bup 64.06 64.06 64.06 64.06 64.06 64.06

Cle 55.56 55.56 55.56 55.56 55.56 55.56

Eco 77.70 77.70 77.70 77.70 77.70 77.70

Gal 64.98 64.98 64.98 64.98 64.98 64.98

Hab 71.23 71.23 71.23 71.23 71.23 71.23

Hay 78.69 78.69 79.46 78.69 78.69 78.69

Iri 93.33 93.33 93.33 93.33 93.33 93.33

Led 68.00 68.00 68.00 68.00 68.00 68.20

Mag 77.86 77.86 77.86 77.86 77.86 77.86

New 93.02 93.02 93.02 93.02 93.02 93.02

Pag 94.52 94.52 94.52 94.52 94.52 94.52

Pho 82.33 82.33 82.33 82.33 82.33 82.33

Pim 72.52 72.52 72.52 72.52 72.52 72.52

Rin 84.59 84.59 84.59 84.59 84.59 84.59

Sah 70.97 68.82 68.82 68.82 68.82 68.82

Sat 79.84 78.85 78.85 78.85 78.85 78.85

Seg 91.04 91.04 91.04 91.04 91.04 91.04

Tit 79.06 79.06 79.06 79.06 79.06 79.06

Two 82.30 82.30 82.30 82.30 82.30 82.30

Veh 62.35 64.66 64.66 64.66 64.66 64.66

Win 96.06 96.06 96.06 96.06 96.06 96.06

Wis 95.90 95.90 95.90 95.90 95.90 95.90

Yea 57.21 57.21 57.21 57.21 57.21 57.21

Mean 78.01 77.81 77.81 77.81 77.80 77.81
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[9] H. Bustince, A. Kolesárová, J. Fernandez, and R. Mesiar, “Directional
monotonicity of fusion functions,” European Journal of Operational

Research, in press, doi.10.1016/j.ejor.2015.01.018.

[10] J. Alcala-Fdez, R. Alcala, and F. Herrera, “A fuzzy association rule-
based classification model for high-dimensional problems with genetic
rule selection and lateral tuning,” IEEE Transactions on Fuzzy Systems,
vol. 19, no. 5, pp. 857–872, 2011.

[11] G. Mayor and E. Trillas, “On the representation of some aggrega-
tion functions,” in Proceedings of IEEE International Symposium on

Multiple-Valued Logic. Los Alamitos: IEEE, 1986, pp. 111–114.

[12] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms. Dordrecht:
Kluwer Academic Publisher, 2000.

[13] M. Grabisch and C. Labreuche, “A decade of application of the Choquet
and Sugeno integrals in multi-criteria decision aid,” Annals of Opera-

tions Research, vol. 175, no. 1, pp. 247–286, 2010.

[14] J.-L. Marichal, “Aggregation of interacting criteria by means of the
discrete Choquet integral,” in Aggregation Operators, ser. Studies in
Fuzziness and Soft Computing, T. Calvo, G. Mayor, and R. Mesiar,
Eds. Physica-Verlag HD, 2002, vol. 97, pp. 224–244.

[15] R. R. Yager, “On ordered weighted averaging aggregation operators in
multicriteria decision making,” Systems, Man and Cybernetics, IEEE



TABLE XI: Detailed results in testing using an additive

measure (WMean).

Dataset Product Minimum Lukasiewicz Drastic Nilpotent Hamacher

Dataset Product Minimum Lukasewitz Drastic Nilpo Hamacher

App 82.08 83.94 82.08 83.03 83.98 85.84

Bal 78.08 81.60 75.52 76.80 74.56 81.12

Ban 83.85 84.02 83.30 82.72 82.11 84.47

Bnd 61.33 71.32 69.83 65.56 68.20 67.99

Bup 64.35 61.16 65.22 63.48 65.80 65.51

Cle 57.56 55.24 54.86 56.89 56.22 57.92

Eco 79.46 78.86 73.53 75.61 76.19 76.49

Gal 63.54 64.05 62.62 62.17 63.57 64.02

Hab 72.54 70.91 73.19 73.20 70.24 72.21

Hay 77.98 78.69 78.77 78.77 79.52 79.49

Iri 93.33 94.00 93.33 92.67 94.00 93.33

Led 68.40 68.20 67.80 67.00 67.80 69.40

Mag 80.55 80.76 76.08 77.28 76.97 80.02

New 93.95 94.88 92.56 92.56 92.56 94.42

Pag 94.34 94.16 93.97 94.34 94.71 94.34

Pho 82.51 82.11 79.44 79.70 79.90 82.25

Pim 73.56 74.86 72.40 72.65 71.75 75.78

Rin 85.68 88.24 76.89 78.11 78.65 88.78

Sah 65.59 69.27 70.57 68.61 67.97 71.21

Sat 81.40 78.23 78.85 78.38 77.91 79.78

Seg 92.12 92.21 90.00 90.69 89.61 92.86

Tit 78.87 78.87 78.87 78.87 78.87 78.87

Two 82.03 83.65 77.97 77.70 75.14 85.41

Veh 70.00 68.67 64.89 64.89 64.42 69.86

Win 94.40 95.48 94.37 88.73 92.11 93.81

Wis 95.76 95.75 95.46 95.32 95.02 97.07

Yea 56.00 57.21 54.58 53.97 54.79 56.00

Mean 78.12 78.75 76.92 76.66 76.76 79.19

TABLE XII: Detailed results in testing using a symmetric

measure (OWA).

Dataset Product Minimum Lukasiewicz Drastic Nilpotent Hamacher

Dataset Product Minimum Lukasewitz Drastic Nilpo Hamacher

App 83.03 82.99 82.12 83.03 88.66 84.85

Bal 78.88 82.56 77.28 76.80 74.72 80.80

Ban 84.55 83.23 82.21 82.72 82.79 83.23

Bnd 61.33 68.26 64.95 65.56 66.61 68.56

Bup 62.90 61.74 65.51 63.48 63.19 66.67

Cle 53.20 55.23 53.54 56.89 55.56 56.21

Eco 76.20 75.90 73.82 75.61 75.03 74.12

Gal 63.09 62.64 61.23 62.17 64.03 67.74

Hab 73.19 71.89 74.48 73.20 72.88 71.57

Hay 78.75 79.49 78.77 78.77 78.77 79.49

Iri 92.00 93.33 92.00 92.67 91.33 92.00

Led 67.60 68.20 67.00 67.00 67.00 68.40

Mag 79.49 79.18 77.71 77.28 76.97 80.13

New 91.63 90.70 92.09 92.56 91.63 91.16

Pag 94.34 95.25 94.16 94.34 94.16 94.34

Pho 81.98 81.92 79.03 79.70 79.87 82.72

Pim 72.65 75.00 73.05 72.65 73.18 73.56

Rin 81.89 86.76 75.54 78.11 77.97 86.49

Sah 69.89 70.99 68.18 68.61 69.03 69.25

Sat 79.84 78.54 77.29 78.38 76.98 79.00

Seg 92.21 91.56 90.00 90.69 90.39 92.03

Tit 78.87 78.87 78.87 78.87 78.87 78.87

Two 81.35 86.35 77.03 77.70 74.59 88.78

Veh 64.12 66.08 64.30 64.89 62.29 66.07

Win 93.25 94.37 94.35 88.73 91.59 94.37

Wis 95.17 96.34 95.46 95.32 94.88 96.05

Yea 56.47 57.68 53.91 53.97 55.12 56.13

Mean 77.33 78.33 76.44 76.66 76.60 78.61
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TABLE XIII: Detailed results in testing using the power

measure genetically adjusted (Power GA.

Dataset Product Minimum Lukasiewicz Drastic Nilpotent Hamacher

App 80.13 81.17 81.17 83.03 83.98 82.99

Bal 82.40 82.72 80.32 76.80 81.28 82.72

Ban 86.32 85.28 84.40 82.72 84.21 85.96

Bnd 64.00 70.25 71.02 65.56 69.37 72.13
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