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Abstract. Hybrid dynamical systems are systems that combine features of continuous-time dy-
namical systems and discrete-time dynamical systems, and can be modeled by a combination of dif-
ferential equations or inclusions, difference equations or inclusions, and constraints. Pre-asymptotic
stability is a concept that results from separating the conditions that asymptotic stability places
on the behavior of solutions from issues related to existence of solutions. In this paper, techniques
for approximating hybrid dynamical systems that generalize classical linearization techniques are
proposed. The approximation techniques involve linearization, tangent cones, homogeneous approx-
imations of functions and set-valued mappings, and tangent homogeneous cones, where homogeneity
is considered with respect to general dilations. The main results deduce pre-asymptotic stability of
an equilibrium point for a hybrid dynamical system from pre-asymptotic stability of the equilibrium
point for an approximate system. Further results relate the degree of homogeneity of a hybrid system
to the Zeno phenomenon that can appear in the solutions of the system.
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1. Introduction. A fundamental result in the theory of differential equations
deduces asymptotic stability of an equilibrium point from asymptotic stability for the
linear approximation to the differential equation. The main goal of this paper is to
give parallel and far more general results in the setting of hybrid dynamical systems.

Hybrid dynamical systems combine behaviors typical of continuous-time dynam-
ical systems with behaviors typical of discrete-time dynamical systems and are of
increasing interest in control engineering, computer science, and systems biology. Ex-
amples include circuits combining analog and digital components, mechanical devices
controlled by computers, biological systems exhibiting impulsive behavior, or systems
where various behaviors occur on dramatically different time scales, like in mechan-
ical systems with impacts. This paper models hybrid systems by hybrid inclusions,
which generalize differential equations as well as difference equations. A hybrid in-
clusion combines a differential inclusion, a difference inclusion, and constraints on the
motions resulting from the differential and difference inclusions.

The framework of hybrid inclusions builds on the settings used in [5], [6], [21],
and [13]. The work [13], and the concurrent [10], outlines some elementary structural
properties of the solution space to a hybrid inclusion. Consequences of those proper-
ties for asymptotic stability in hybrid systems, some of which we rely on in this paper,
appear in [14]. There are mathematical frameworks that also target continuous-time
dynamical systems with occasional discontinuous behaviors, like measure driven dif-
ferential equations or inclusions [24], [11], [29], or that unify differential and difference
equations, like dynamical systems on time scales [7]. In general, these frameworks do
not overlap with the hybrid systems considered here.
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Homogeneity is often used in stability analysis for differential or difference equa-
tions or inclusions. Results deducing asymptotic stability of a system from asymptotic
stability of its homogeneous approximation date back to [20], where linearization was
used, [22] and [23], where standard homogeneity is considered, and in [17], [26], where
non-standard dilations are used. Control design results relying on homogeneity ap-
pear in [19], [16], and [31]. Generalized homogeneity for hybrid systems is studied in
[32], and a result related to linearization for hybrid systems is given in [21].

Tangent cones to constraint sets play an important role in viability theory for
differential equations or inclusions [3]. Conical approximations of differential inclu-
sions and control systems were used in [12] and [30] in the study of controllability and
stabilizability properties. The most general result of the current paper blends homo-
geneous approximation and conical approximation concepts. In particular, it involves
homogeneous approximations of set-valued mappings, similar to the idea of graphical
derivatives [25, Chapter 8, Section G] but relying on generalized homogeneity. Ho-
mogeneous, with respect to non-standard dilations, approximations of sets were used
in [2] in the study of optimal control problems. The tangent homogeneous cones used
in this paper agree in some cases with the set of homogeneous tangent vectors of [2].

The main results of this paper show how pre-asymptotic stability of an equi-
librium point can be deduced for a hybrid system from pre-asymptotic stability of
the equilibrium point for a homogeneous approximation of the hybrid system. Pre-
asymptotic stability is closely related to asymptotic stability, but allows for solutions
that are not complete. Rigorous statements of the results require introducing several
definitions. However, the ideas can be illustrated now.

Fig. 1.1. The hybrid system from Example 1.1. Solutions may flow in the set C =˘
x ∈ R2 |x1 ≥ 0, x2 ≤ x2

1

¯
and may jump from the set D =

˘
x ∈ R2 |x1 ≥ 0, x2 = x2

1

¯
. The solid

arrow indicates the direction of flow, given by f(x) = (1, 1), and the dashed arrows indicate jumps,
given by g(x) = (x2

1,−x1/2). The left graph shows a sample divergent solution.

Example 1.1. Consider a hybrid system in R2 for which solutions may flow
according to a differential equation

ẋ = f(x) :=
(

1
1

)
in the set C :=

{
x ∈ R2 |x1 ≥ 0, x2 ≤ x2

1

}
,

and they may jump according to a difference equation

x+ = g(x) :=
(

x2
1

−x1/2

)
from the set D :=

{
x ∈ R2 |x1 ≥ 0, x2 = x2

1

}
.
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For example, a solution from (1/4, 0) may flow with velocity (1, 1) while remaining in
the set C for 1/4 units of time, at time 1/4 reach the set D at the point z = (1/2, 1/4),
jump to a point g(z) = (1/4,−1/4), and then flow with velocity (1, 1) forever. See
Figure 1.1. Careful analysis shows that solutions from initial points in C sufficiently
close to the origin remain close to the origin and converge to it by flowing, reaching D
and jumping, flowing again, reaching D and jumping again, and so on. One can ask
whether there is a simpler way to predict that solutions from near the origin remain
close to the origin and converge to it.

This paper suggests approximating the hybrid system with a simpler one. For
example, one can consider an approximation for which the flow is determined by

ẋ = f(0) =
(

1
1

)
in the set TC(0) = R≥0 × R≤0,

with TC(0) being the tangent cone to C at 0, and the jumps are determined by

x+ = g′(0)x =
(

0
−x1/2

)
from the set TD(0) = R≥0 × {0},

with TD(0) being the tangent cone to D at 0. See Figure 1.2. For this approximation,
solutions from nonzero initial conditions experience infinitely many periods of flow
with jumps in between those periods and converge to the origin, and solutions from
near the origin remain near it. This can be shown using a Lyapunov function V (x) =
2x1−3x2, which is positive definite on TC(0)∪TD(0) and satisfies ∇V (x) ·f(0) = −1
for all x ∈ TC(0) and V (g′(0)x) = 3/4·V (x) for all x ∈ TD(0). Theorem 3.3 concludes,
from the properties of the approximation, that solutions to the original system, from
initial points close to the origin, remain close to the origin and converge to it.

Fig. 1.2. Approximation of the hybrid system from Example 1.1. Solutions may flow in the
R≥0 × R≤0, which is the tangent cone to C, and they may jump from the set R≥0 × {0}, which
is the tangent cone to D. The solid arrow indicates the direction of flow, which is determined by
f(0) = (1, 1), and the dotted arrows indicate the jumps, which are determined by g′(0)x = (0,−x1/2).
The graph on the right shows a sample solution.

Another question to ask is “how much time does it take for such solutions to
converge to the origin?”. Clearly, solutions from near the origin experience infinitely
many jumps, but it is less clear that those jumps happen in a finite amount of time.

Another use of homogeneity, in the framework of differential equations, is its
implication for convergence rates. Non-exponential convergence is associated with
positive degree of homogeneity for a system, exponential convergence is associated
with degree zero, and finite-time convergence is associated with negative degree. In
this paper, we connect homogeneity to the amount of time — but not to the number of
jumps — it takes for solutions to converge to the origin in a pre-asymptotically stable
hybrid system. This issue is closely related to the Zeno phenomenon, which is the
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occurrence of infinitely many jumps of a solution in a finite amount of ordinary time.
The Zeno phenomenon poses challenges for simulation and may have an adverse effect
on performance of hybrid control algorithms. A vast literature in control engineering
and computer science tackles these issues, for example [18], [8], and [33]. Conditions
guaranteeing or ruling out Zeno phenomenon have also been studied, via approxima-
tion of solutions [28], or approximation of systems [1]. An often used example of a
system with Zeno phenomenon is the bouncing ball.

Example 1.2. Consider a hybrid system in R2 for which solutions may flow
according to a differential equation

ẋ = f(x) :=
(
x2

γ

)
in the set C :=

{
x ∈ R2 |x1 ≥ 0

}
,

and they may jump according to a difference equation

x+ = g(x) :=
(

x1

−ρx2

)
from the set D :=

{
x ∈ R2 |x1 = 0, x2 < 0

}
.

This is a simple model of a ball bouncing on a surface, with x1 representing the
ball’s height, x2 the velocity, γ < 0 the acceleration due to gravity, and ρ ∈ (0, 1) a
dissipation of energy factor. The flow describes the ball evolving according to Newton’s
Law when above the surface, the jumps represent the instantaneous reversal of velocity
when the ball bounces, with some energy dissipation. A calculus exercise shows that,
for a ball dropped from a positive height, the times of consecutive bounces form a
convergent sequence. In short, infinitely many bounces occur in finite time.

One of the results in this paper, Theorem 6.2, lets one conclude that infinitely
many jumps occur in finite time without explicitly solving for the bounce times.
Instead, it is sufficient to note that this hybrid system is homogeneous with a negative
degree with respect to an appropriate dilation. Corollary 6.3 makes similar conclusions
from a homogeneous approximation of a system. These two results also exclude
nondegenerate Zeno behavior for systems with a nonnegative degree of homogeneity.

2. Preliminaries.

2.1. Hybrid systems. The data of a hybrid system with state x ∈ Rn consists
of four elements: a flow set C, a flow map F , a jump set D, and a jump map G. The
following is assumed about these elements:

• C and D are sets in Rn;
• F : Rn ⇒ Rn is a set-valued mapping with F (x) 6= ∅ when x ∈ C;
• G : Rn ⇒ Rn is a set-valued mapping with G(x) 6= ∅ when x ∈ D.

Roughly, solutions to a hybrid system are allowed to flow in the flow set according to
a differential inclusion given by the flow map, and are also allowed to jump from the
jump set according to a difference inclusion given by the jump map. This behavior
can be summarized in the following representation: x ∈ C ẋ ∈ F (x)

x ∈ D x+ ∈ G (x) .
(2.1)

The notation ẋ denotes the time derivative, while the notation x+ represents the state
after a jump. A special case of (2.1) is provided by systems where the flow and jump
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maps are functions, so that we have x ∈ C ẋ = f (x)

x ∈ D x+ = g (x) .
(2.2)

Each solution of a hybrid system is parameterized by elements of a hybrid time
domain, an ordered subset of R2

≥0. Hybrid time domains include R≥0 × {0}, which
corresponds to a solution that never jumps; {0} × N, corresponding to a solution
that never flows; and sets that are, in a sense, in between these two possibilities. A
distinguishing feature of the framework adopted here is that different solutions to the
same hybrid system may have different domains.

Definition 2.1. A set E ⊂ R2 is a compact hybrid time domain if E =
⋃J

j=0 Ij×
{j}, where J ∈ N and Ij = [tj , tj+1], j = 0, 1, . . . , J , for some 0 = t0 ≤ t1 ≤
t2 ≤ · · · ≤ tJ+1. A set E is a hybrid time domain if, for each (T, J) ∈ E, the set
{(t, j) ∈ E | t ≤ T, j ≤ J} is a compact hybrid time domain.

Equivalently, a hybrid time domain is a union of finitely or infinitely many inter-
vals [tj , tj+1] × {j}, where 0 = t1 ≤ t2 ≤ . . . , with the last interval — if it exists —
possibly of the form [tj , tj+1) or [tj ,∞).

Definition 2.2. A function φ : E → Rn is a solution to the hybrid system (2.1)
if E is a hybrid time domain, φ(0, 0) ∈ C ∪D, and

• if Ij := {t | (t, j) ∈ E} has nonempty interior, then t 7→ φ(t, j) is locally
absolutely continuous on Ij and

φ(t, j) ∈ C for all t ∈ int Ij and
d

dt
φ(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij ;

• if (t, j) ∈ E and (t, j + 1) ∈ E then

φ(t, j) ∈ D and φ(t, j + 1) ∈ G(φ(t, j)).

A solution φ : E → Rn is maximal if it cannot be extended, and complete if E is
unbounded.

To save on notation, the domain of a solution φ to a hybrid system will be
denoted domφ. Caratheodory solutions to a differential equation ẋ = f(x), where
f : Rn → Rn, correspond to solutions to a hybrid system with the flow map f , flow set
Rn, empty jump set, and arbitrary jump map. More precisely, a solution to ẋ = f(x)
on [0, T ] corresponds to a solution to the hybrid system with domain [0, T ] × {0}.
Similarly, solutions to a difference equation or inclusion correspond to solutions of an
appropriate hybrid system, whose domains are subsets of {0} × N.

Example 2.3. Consider the hybrid system, proposed as an approximation of
another system in Example 1.1, with the following data:

C = R≥0 × R≤0, f(x) =
(

1
1

)
D = R≥0 × {0}, g(x) =

(
0

−x1/2

)
.

The maximal solution with initial condition (0,−1), to the system (2.2) with the data
as above, is given by

domφ =
∞⋃

j=0

[
j∑

i=1

2−i, 2j +
j∑

i=1

2−i

]
× {j}, φ(t, j) =

t−
j∑

i=1

2−i

t− 2−j

.
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The maximal solution with initial condition 0 is domφ = {0} × N, φ(0, j) = 0. Both
of these solutions are complete. For the former solution, it is easy to check that only
for t ∈ [0, 2) there exists j such that (t, j) ∈ domφ.

2.2. Pre-asymptotic stability. Usually, definitions of asymptotic stability are
posed in a setting where existence of solutions is guaranteed. Alternatively, explicit
requirements that maximal solutions be complete are sometimes included. For exam-
ple, the classical result that asymptotic stability of the equilibrium point at the origin
for ẋ = f(x) follows from asymptotic stability of the origin for ẋ = f ′(0)x requires
not only differentiability of f at the origin but also properties of f away from origin
to ensure that, for every initial condition close to the origin, a solution to ẋ = f(x)
exists. Continuous differentiability is often assumed for f in order to guarantee the
latter property. The existence of solutions for the linear approximation ẋ = f ′(0)x,
on its own, does not have any bearing on existence of solutions for the original equa-
tion. This observation suggests separating the issues of existence of solutions from the
behavior of the solutions that do exist. It is worth noting that existence of solutions
is not related to Lyapunov inequalities. In fact, even in the setting of hybrid systems,
it is pre-asymptotic stability, as defined below, that turns out to be equivalent to the
existence of smooth Lyapunov functions [9].

Since hybrid systems blend differential equations or inclusions, in which asymp-
totic properties describe what happens as time approaches infinity, and difference
equations or inclusions, in which asymptotic properties describe what happens as the
number of jumps approaches infinity, the definition below considers behavior of so-
lutions to hybrid systems as either time or the number of jumps approaches infinity.
Note that this is connected to the concept of completeness of a solution, which re-
quires that the domain of a solution be unbounded, but does not require that it be
unbounded in both “the t direction” and “the j direction”.

Definition 2.4. For the hybrid system (2.1), the origin is
• stable if for each ε > 0 there exists δ > 0 such that every solution φ to (2.1)

with |φ(0, 0)| < δ satisfies |φ(t, j)| < ε for all (t, j) ∈ domφ;
• pre-attractive if there exists δ > 0 such that every solution φ to (2.1) with
|φ(0, 0)| < δ is bounded and if it is complete, then |φ(t, j)| → 0 as (t, j) ∈
domφ, t+ j →∞.

• pre-asymptotically stable if it is stable and pre-attractive.
• attractive if there exists δ > 0 such that every maximal solution φ to (2.1)

with |φ(0, 0)| < δ is complete and |φ(t, j)| → 0 as (t, j) ∈ domφ, t+ j →∞.
• asymptotically stable if it is stable and attractive.

Pre-asymptotic stability of the origin agrees with asymptotic stability of the origin
when maximal and bounded solutions to a hybrid system, from initial conditions near
the origin, are complete. This is always the case when, for each initial condition
near the origin, existence of nontrivial solutions is guaranteed and stability is present.
Sufficient conditions for existence of nontrivial solutions, and their implications for
maximal solutions, are given in Proposition 2.4 in [14].

Pre-asymptotic stability, used in the setting of differential equations, yields the
following version of a classical result: if f : Rn → Rn is differentiable at the origin,
then the origin is pre-asymptotically stable for ẋ = f(x) if it is pre-asymptotically
stable for ẋ = f ′(0)x. Such a result is a special case of Theorem 3.3. Of course, for
ẋ = f ′(0)x, pre-asymptotic stability is equivalent to asymptotic stability.

A different justification for the term “pre-asymptotic” is that every hybrid system
with pre-asymptotically stable origin can be augmented to yield asymptotic stability.
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Indeed, consider (2.1) and suppose that the origin is pre-asymptotically stable. Re-
place the map G by x 7→ G(x) ∪ {0} if x ∈ D, x 7→ {0} if x 6∈ D and then replace D
by Rn. The resulting system has the origin asymptotically stable, and every solution
to the original system is also a solution to the augmented system.

Example 2.5. A hybrid system given in R2 by (2.2) with

C := R≥0
2, f(x) :=

(
−x2

x1

)
∀x ∈ R2,

empty D, and arbitrary g has the origin pre-asymptotically stable. Let |x| denote the
Euclidean norm of x. Then, for every solution φ, |φ(0, 0)| < ε implies |φ(t, j)| =
|φ(0, 0)| < ε for all (t, j) ∈ domφ, so the origin is stable. The unique complete
solution is φ(t, 0) = 0 for all t ∈ R≥0, while solutions with nonzero initial conditions
are not complete, with (t, 0) ∈ domφ implying t ≤ π/2, and bounded. Hence the
origin is pre-attractive, and pre-asymptotically stable.

Now consider C and f as above but let D = R2, g(x) = 0 for all x ∈ R2. This
system has the origin asymptotically stable.

3. Main results. The classical result about linear approximation and asymp-
totic stability deduces asymptotic stability of the origin for a differential equation
ẋ = f(x), with a sufficiently regular right-hand side and f(0) = 0, from asymp-
totic stability for the linear approximation of the differential equation at the origin:
ẋ = f ′(0)x. Here, f ′(0) is the matrix representing the derivative of f at 0, i.e.,

lim
|h|→0

f(h)− f(0)− f ′(0)h
|h|

= 0.

A similar result holds for difference equations.
Local approximations of sets, often used in optimization in optimality conditions,

and in viability theory in conditions for existence of solutions to constrained differen-
tial equations or inclusions, are given by tangent cones.

Definition 3.1. The tangent cone to a set S ⊂ Rn at a point x ∈ S, denoted
TS(x), is the set

TS(x) = {v ∈ Rn | there exist λi ↘ 0, xi → x such that (xi − x)/λi → v as i→∞} .

When S is a C1 manifold, the tangent cone to it agrees with the tangent space.
The example below discusses the case of a hybrid system with the flow set described
by inequalities and the jump set being a part of the boundary of the flow set.

Example 3.2. Consider

C = {x ∈ Rn |hi(x) ≤ 0, i = 1, 2, . . . ,m} , D = C ∩
l⋃

i=1

{x ∈ Rn |hi(x) = 0} (3.1)

where hi : Rn → R are continuously differentiable and l ≤ m. Without loss of
generality, suppose hi(0) = 0 for i = 1, 2, . . . ,m. If ∇hi(0), i = 1, 2, . . . ,m, are
linearly independent, then

TC(0) = {v ∈ Rn |∇hi(0) · v ≤ 0, i = 1, 2, . . . ,m} , (3.2)

TD(0) = TC(0) ∩
l⋃

i=1

{v ∈ Rn |∇hi(0) · v = 0} . (3.3)
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See [25, Theorem 6.31]. An alternative condition for (3.2) to hold, independently of
linear independence of ∇hi(0), is that the set on the right of (3.2) have interior; see
the example following [4, Definition 4.1.1].

Combining the two ideas on approximation, and accounting for the possibility
that a hybrid system can be pre-asymptotically stable even when the flow map is not
0 at 0, leads to a result on pre-asymptotic stability of hybrid systems.

Theorem 3.3. Suppose that a function f : Rn → Rn is continuous at 0, and if
f(0) = 0 then it is differentiable at 0, a function g : Rn → Rn is differentiable at 0
and g(0) = 0, and C, D are sets in Rn. If the origin is pre-asymptotically stable for
the hybrid system 

x ∈ TC(0) ẋ =

 f(0) if f(0) 6= 0

f ′(0)x if f(0) = 0

x ∈ TD(0) x+ = g′(0)x

(3.4)

then the origin is pre-asymptotically stable for the hybrid system (2.2).
This theorem justifies the statements in Example 1.1. In that example, concluding

pre-asymptotic stability of 0 for the system (3.4) is straightforward, while doing it for
the original system is not as immediate if done directly.

Of course, there are pre-asymptotically stable, or even asymptotically stable
systems for which the approximation (3.4) is not pre-asymptotically stable. This
is the case for the bouncing ball model of Example 1.2. There, TC(0) = C ={
x ∈ R2 |x1 ≥ 0

}
and f(0) = (0, γ), and hence (3.4) has flowing solutions from arbi-

trarily close to 0, even from 0, that diverge.
Note that (3.4) can turn out to be a “trivial” hybrid system, i.e., a system where

solutions only flow or only jump. In some cases, this makes concluding pre-asymptotic
stability quite simple.

Example 3.4. Consider the hybrid system (2.2) with the data

C =
{
x ∈ R2 |x1 ≥ 0, 0 ≤ x2 ≤ x2

2

}
, f(x) =

(
1
1

)
,

D =
{
x ∈ R2 |x1 ≥ 0, x1 = x2

2

}
, g(x) =

(
x1/2

0

)
.

Then TC(0) = TD(0) = R≥0×{0}, and there are no solutions to ẋ = f(0) = (1, 1) that
start and remain in TC(0) for a positive amount of time. Hence, the solutions to the
approximation (3.4) correspond to solutions to x ∈ TD(0), x+ = (x1/2, 0). Obviously,
(3.4) has 0 pre-asymptotically stable, and in fact asymptotically stable. Theorem 3.3
implies that the origin is pre-asymptotically stable for the system displayed above.

Example 3.5. Consider the hybrid system (2.2) with the flow set and jump set
given by (3.1), the flow map f : Rn → Rn is continuously differentiable and f(0) 6= 0,
while g : Rn → Rn is differentiable at 0, g(0) = 0 and g(D) ⊂ C ∪D. Theorem 3.3
concludes that if the origin is pre-asymptotically stable for x ∈ TC(0) ẋ = f(0)

x ∈ TD(0) x+ = g′(0)x,

then the origin is pre-asymptotically stable for (2.2). Example 3.2 provided simple
descriptions (3.2), (3.3) of TC(0), TD(0). It is also easy to give a sufficient condition
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that ensures that pre-asymptotic stability for (2.2) is in fact asymptotic stability. The
condition is ∇f(0)·∇hi(0) < 0 for i = l+1, l+2, . . . ,m. Indeed, then ∇f(x)·∇hi(x) <
0 for all x ∈ C \D close enough to 0, and consequently, f(x) ∈ TC(x) for all such x,
i = l+ 1, l+ 2, . . . ,m. This ensures that for all x ∈ C ∪D close enough to the origin
there exists a nontrivial solution to (2.2). In the presence of pre-asymptotic stability,
this ensures that maximal solutions from initial points close enough to 0 are complete.
For further details, see [14, Section 2.3].

When the approximation (3.4) of (2.2) does not yield useful conclusions, other
“tighter” approximations can be considered. Even in the setting of differential equa-
tions, the linear approximation may vanish and hence asymptotic stability for it may
be absent even if it is present for the differential equation. Higher order approxi-
mations, homogeneous with respect to the standard dilation with order greater than
1, can be then used. Alternatively, one can consider approximations that are homo-
geneous with respect to more general dilations. For an exposition, see [17]. These
approximations motivate much of what follows. First, to familiarize the reader with
the concept, we give a shortened version of Example 3.2 from [17].

Example 3.6. Let f : R2 → R2 be given by

f(x) =
(
x2

2 − x3
1

−x5/3
2

)
.

The function f and its derivative vanish at the origin, and the origin is not asymp-
totically stable for the linearization. However, f = f2 + f5, where

f2(x) =
(
−x3

1

−x5/3
2

)
, f5(x) =

(
x2

2

0

)
,

and, for the differential equation ẋ = f2(x), the origin is obviously asymptotically
stable. Now, Theorem 3.3 of [17] concludes that, for the differential equation ẋ = f(x),
the origin is asymptotically stable, because both f2 and f5 are homogeneous with respect
to a particular dilation, and the degree of homogeneity for f5 is higher than the order

for f2. Indeed, for each λ ∈ R≥0, let M(λ) =
[
λ 0
0 λ3

]
. Then, for each λ ∈ R≥0 and

each x ∈ R2, f2(M(λ)x) = λ2M(λ)f2(x) and f5(M(λ)x) = λ5M(λ)f5(x).
Definition 3.7. A dilation of Rn, with parameters r1, r2, . . . , rn ≥ 0, is the

family of mappings x 7→M(λ)x, λ ∈ R≥0, where M(λ) is the diagonal matrix

M(λ) = diag {λr1 , λr2 , . . . , λrn} (3.5)

A dilation is proper if r1, r2, . . . , rn > 0.
The standard dilation, x 7→ λx, corresponds to ri = 1, i = 1, 2, . . . , n. With some

abuse of terminology, we will often speak of the dilation M(λ) or just the dilation M ,
when referring to the object defined in Definition 3.7. Every tangent cone is a cone,
i.e., a set that is homogeneous with respect to the standard dilation. Homogeneity of
sets and mappings with respect to general dilations can be considered.

Definition 3.8. A set S ⊂ Rn is homogeneous with respect to a dilation M if,
for each λ ∈ R>0, M(λ)S = S. A set-valued mapping Φ : Rn ⇒ Rn is homogeneous
with respect to a dilation M and the degree of homogeneity is d if, for each λ ∈ R>0,
each x ∈ Rn, Φ(M(λ)x) = λdM(λ)Φ(x).

The sets {x ∈ R2 |x1 ≥ 0, x2 ≤ x2
1} and {x ∈ R2 |x1 ≥ 0, 0 ≤ x2 ≤ x2

1} are ho-

mogeneous with respect to
[
λ 0
0 λ2

]
. A constant set-valued mapping is homogeneous
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with respect to a standard dilation with degree −1. Some examples of functions
homogeneous with respect to a nonstandard dilation were given in Example 3.6.

To extend the idea of homogeneous approximations from differential equations to
hybrid systems, a concept of a homogeneous approximation of a set, and later of a
set-valued mapping, is needed. A concept of a tangent M -cone, generalizing that of
a tangent cone, is now proposed to address the first need.

Definition 3.9. Given a set S ⊂ Rn and a dilation M , the tangent homogeneous
with respect to M cone to S at x (the tangent M -cone for short) is the set

TM
S (x) = {v ∈ Rn | there exist λi ↗∞, xi → x such that M(λi)(xi − x) → v} .

In [2], homogeneous tangent vectors to a reachable set of a control system were
defined. Only dilations with integer ri ≥ 1 were considered. Mimicking that definition
to define homogeneous tangent vectors to a set leads to: v ∈ Rn is a homogeneous
tangent vector to S ⊂ Rn at x ∈ S if there exists a continuous y : [0, ε] → S
with y(0) = x such that v = limε↘0M

(
ε−1

)
(y(ε)− x). For the case of the standard

dilation, such a definition resembles that of a derivable tangent vector in [25, Definition
6.1], where no continuity of y is required. Not all tangent vectors are derivable. An
illustration of this and further details are in [25, Chapter VI] and [4, Chapter 4]. A
key property of homogeneous tangent cones to a set is that, locally, their homogeneous
neighborhoods contain the set. Details of this fact are given in Lemma 5.1.

Lemma 3.10. For any set S ⊂ Rn, any dilation M , and any x ∈ Rn, the tangent
M -cone to S at x is closed and homogeneous with respect to M .

Proof. The set TM
S (x) is the outer limit, as i→∞, of the sequence of sets given by

M(i)(S−x). Hence it is closed [25, Proposition 4.4]. Regarding homogeneity, pick any
v ∈ TM

S (x) and any λ > 0. Let λi ↗∞ and xi ∈ S be such that M(λi)(xi − x) → v.
Then M(λ)M(λi)(xi − x) = M(λλi)(xi − x) → M(λ)v and thus M(λ)v ∈ TM

S (x).
Consequently, M(λ)TM

S (x) ⊂ TM
S (x) for all λ > 0. Then M(λ−1)TM

S (x) ⊂ TM
S (x),

and TM
S (x) ⊂M(λ)TM

S (x), for all λ > 0. Thus TM
S (x) is homogeneous.

Theorem 3.11. Consider the hybrid system (2.2) and suppose that there exists
a proper dilation M and d ∈ R such that, for all x ∈ Rn,

f(x) = fd(x) +
K∑

k=1

fδk
(x), g(x) = g0(x) +

L∑
l=1

gδl
(x),

where fd : Rn → Rn is continuous and homogeneous with respect to M with order
d; g0 : Rn → Rn is continuous and homogeneous with respect to M with order 0;
fδk

: Rn → Rn is locally bounded and homogeneous with respect to M with order
δk > d, k = 1, 2, . . . ,K; and gδl

: Rn → Rn is locally bounded and homogeneous with
respect to M with order δl > 0, l = 1, 2 . . . , L. Then, if the origin is pre-asymptotically
stable for the hybrid system x ∈ TM

C (0) ẋ = fd (x)

x ∈ TM
D (0) x+ = g0 (x)

(3.6)

then the origin is pre-asymptotically stable for the hybrid system (2.2).
Example 3.12. In R2, consider ẋ = f(x) constrained by x ∈ C, where

f(x) =
(
x3

1 + x2

x2
1x2

)
, C =

{
x ∈ R2 |x1 ≥ 0, x2 ≥ x2

1

}
.
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One can ask whether the origin is pre-asymptotically stable for this system. (It is not
asymptotically stable, because for all solutions, ẋ1 ≥ 0, ẋ2 ≥ 0.) Theorem 3.3 suggests
looking at ẋ = f ′(0)x = (x2, 0) constrained to x ∈ TC(0) = R≥0

2. For this system,
the origin is not pre-asymptotically stable, hence Theorem 3.3 is not helpful.

Consider M(λ) =
[
λ 0
0 λ2

]
and note that TM

C (0) = C while

f(x) = f1(x) + f2(x), where f1(x) =
(
x2

0

)
, f2(x) =

(
x3

1

x2
1x2

)
,

and fi are homogeneous with respect to M with degree i, i = 1, 2. For ẋ = f1(x),
x ∈ C, maximal solutions are not complete, except the constant solution x(t) = 0,
and satisfy |x(t)| ≤

√
|x(0)|(|x(0)|+ 1) on their intevals of existence. Hence, this

constrained differential equation is pre-asymptotically stable. Theorem 3.11 concludes
pre-asymptotic stability for ẋ = f(x), x ∈ C.

Note that a set-valued mapping Φ : Rn ⇒ Rn is homogeneous with respect to
M(λ) with degree d if and only if its graph is homogeneous, as a set, with respect to

N(λ) =
[
M(λ) 0

0 λdM(λ)

]
. (3.7)

That is, Φ(M(λ)x) = λdM(λ)Φ(x) for all x if and only if gphΦ = N(λ) gphΦ.
Definition 3.13. Given a set-valued mapping Φ : Rn ⇒ Rn, a dilation M , and

N is given by (3.7), the homogeneous with respect to M approximation of Φ at 0
with degree d is the set-valued mapping ΦM,d : Rn ⇒ Rn given by

gphΦM,d = TN
gph Φ(0).

For the case of a standard dilation and d = 0, ΦM,d reduces to the graphical
derivative of Φ at 0 [25, Definition 8.33]. Lemma 3.10 implies that for any Φ, any M ,
and any d, ΦM,d has closed graph, and thus is outer semicontinuous, and furthermore,
it is homogeneous with respect to M with degree d.

Example 3.14. Let f : Rn → Rn be continuous at 0 and M be the standard
dilation. Then

fM,−1(x) = f(0) for all x ∈ Rn,

in other words, the constant function x 7→ f(0) is the homogeneous with respect to M
approximation of f at 0 with degree −1. Indeed, let y ∈ fM,−1(x). Then, by definition,
there exist λi ↗ ∞, xi ∈ Rn, such that M(λi)xi = λixi → x, λ−1

i M(λi)f(xi) =
f(xi) → y. Then xi → 0, and by continuity of f at 0, y = f(0). More generally, if
F : Rn ⇒ Rn is outer semicontinuous at 0, then FM,−1(x) = F (0) for all x ∈ Rn. If
f is differentiable at 0 and f(0) = 0 then

fM,0(x) = f ′(0)x for all x ∈ Rn.

Definition 3.15. Given a proper dilation M , a homogeneous with respect to
M quasinorm on Rn is a continuous function ω : Rn → R≥0 that satisfies ω(x) = 0
if and only if x = 0, lim|x|→∞ ω(x) = ∞, and ω(M(λ)x) = λω(x) for all λ > 0,
x ∈ Rn.
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For the standard dilation, any norm is a homogeneous quasinorm. For a general
proper dilation, an example of a quasinorm is ω(x) =

√
|x1|2/λ1 + · · ·+ |xn|2/λn .

Theorem 3.16. Consider the hybrid system (2.1). Suppose that there exists a
proper dilation M , a homogeneous with respect to M quasinorm ω, and d ∈ R such
that the set-valued mappings

x 7→ ω−d(x)M
(
ω−1(x)

)
F (x), x 7→M

(
ω−1(x)

)
G(x)

are locally bounded at x = 0. If 0 is pre-asymptotically stable for the hybrid system x ∈ TM
C (0) ẋ ∈ conFM,d (x)

x ∈ TM
D (0) x+ ∈ GM,0 (x)

(3.8)

then 0 is pre-asymptotically stable for the hybrid system (2.1).
In (3.8), conFM,d (x) stands for the closed convex hull of FM,d (x). The role of

the boundedness assumptions in Theorem 3.16 is to ensure that conFM,d and GM,0

be locally bounded at all x 6= 0 and that they approximate F and G, respectively, in
an appropriate local sense. Details are in Lemma 5.1. Here, note that the bounded-
ness assumption on ω−d(x)M

(
ω−1(x)

)
F (x), for the standard dilation and d = −1

amounts to F being locally bounded at 0, while for d = 0 it amounts to F (x)/|x|
being locally bounded at 0. This suggests that Theorem 3.16 implies Theorem 3.3.

Proof. (of Theorem 3.3.) By Example 3.14, (3.4) is obtained from (2.2) just as
(3.8) is obtained from (2.1), by considering the standard dilation, d = −1 for the
case of f(0) 6= 0, and d = 0 for the case of f(0) = 0. In Theorem 3.16, consider the
standard dilation M and ω(x) = |x|. If f : Rn → Rn is a continuous at 0 function,
then |x|1M

(
|x|−1

)
f(x) = f(x) is bounded at x = 0. If f(0) = 0 and f is differentiable

at 0, then |x|0M
(
|x|−1

)
f(x) = f(x)/|x| is bounded at x = 0; similarly for g.

Theorems 3.11 and 3.16 are proved in Section 5. Theorem 3.11 is shown as a conse-
quence of Theorem 3.16. The idea behind Theorem 3.16 is that the data of the system
(3.8) is regular enough to ensure that pre-asymptotic stability of 0 for (3.8) is robust,
as a consequence of generic robustness results for hybrid systems. Homogeneity of
(3.8) yields that this robustness is not just to some sufficiently small perturbation,
but to a homogeneous perturbation. The data of a homogeneous perturbation of (3.8)
contains, locally around 0, the data of (2.1). Thus, locally around 0, solutions to (2.1)
are solutions to the homogeneous perturbation of (3.8) and pre-asymptotic stability
for the homogeneous perturbation of (3.8) implies that for (2.1).

4. Pre-asymptotic stability and robustness for homogeneous hybrid
systems. This section develops material on homogeneous hybrid systems, needed
to prove the main results. Homogeneous hybrid systems are defined, homogeneous
perturbations of such systems are presented, and robustness of pre-asymptotic stabil-
ity to homogeneous perturbations is shown.

4.1. Homogeneous hybrid systems.
Definition 4.1. Let M be a dilation and d ∈ R. The hybrid system (2.1) is

homogeneous with respect to a dilation M and the degree of homogeneity is d if
• the sets C and D are homogeneous with respect to M ,
• the mapping F is homogeneous with respect to M with degree d,
• the mapping G is homogeneous with respect to M with degree 0.
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For example, the Bouncing Ball system of Example 1.2 is homogeneous with

respect to
[
λ2 0
0 λ

]
, with degree d = −1. The linear/tangent cone approximation

(3.4) is homogeneous with respect to the standard dilation and d = 0 when f(0) = 0,
d = −1 when f(0) 6= 0. Homogeneity of G with nonzero degree is not considered,
since it does not translate nicely to properties of solutions.

Given a hybrid system (2.1), λ > 0, and d ∈ R, consider a system with the
rescaled flow map:  x ∈ C ẋ ∈ λ−dF (x)

x ∈ D x+ ∈ G (x)
. (4.1)

Lemma 4.2. Suppose that the hybrid system (2.1) is homogeneous with respect to
a proper dilation M with order d. Then, a function φ : domφ → Rn is a solution to
(2.1) if and only if the function ψ : domφ → Rn given by ψ(t, j) = M(λ)φ(t, j) is a
solution to (4.1).

The proof is straightforward. In other words, the lemma says that if φ solves
(2.1), then M(λ)φ solves system like (2.1), but in which the flow occurs faster (if
λ−d > 1) or slower (if λ−d < 1).

The proposition below shows that for homogeneous hybrid systems, pre-asymptotic
stability can be concluded from the behavior of solutions with initial points on a
“sphere” determined by a quasinorm.

Proposition 4.3. Consider a hybrid system (2.1), a proper dilation M , and
d ∈ R such that the system (2.1) is homogeneous with respect to dilation M with
degree d and there exist R > r > 0, m > 0, and a homogeneous with respect to M
quasinorm ω such that for any solution φ to (2.1) with ω(φ(0, 0)) = r either

(i) domφ is compact, with t+ j ≤ m for all (t, j) ∈ domφ and for all such (t, j),
ω(φ(t, j)) ≤ R, or

(ii) there exists (T, J) ∈ domφ with T+J ≤ m, ω(φ(T, J)) ≤ r/2, and ω(φ(t, j)) ≤
R for all (t, j) ∈ domφ, t ≤ T , j ≤ J .

Then, 0 is pre-asymptotically stable for (2.1).
Proof. Let ψ be a solution to (2.1) with 2i−1r ≤ ω(ψ(0, 0)) ≤ 2ir for some

i ∈ Z. Pick 2−i ≤ λ ≤ 2−i+1 such that λω(ψ(0, 0)) = r and consider φ given by
φ(t, j) = M(λ)ψ(t, j). Lemma 4.2 implies that φ is a solution to the system (4.1),
with ω(φ(0, 0)) = ω(M(λ)ψ(0, 0)) = λω(ψ(0, 0)) = r. Assumptions (i) and (ii) apply
to φ, with m replaced by m′ = λdm if λ−d < 1 (because then, solutions to (4.1) flow
slower than those to (2.1)) and m′ = m if λ−d ≥ 1 (because then, solutions to (4.1)
flow faster than those to (2.1)). Translating this to ψ yields

(i’) domψ is compact, with t + j ≤ m′ for all (t, j) ∈ domψ, and for all such
(t, j), ω(ψ(t, j)) ≤ R/λ ≤ 2iR, or

(ii’) there exists (T, J) ∈ domψ with T + J ≤ m′, ω(ψ(T, J)) ≤ r/(2λ) ≤ 2i−1r,
and such that ω(ψ(t, j)) ≤ R/λ ≤ 2iR for all (t, j) ∈ domψ, t ≤ T , j ≤ J .

This is enough to conclude that 0 is pre-asymptotically stable for (2.1).

4.2. Homogeneous perturbations of hybrid systems.
Definition 4.4. Given a hybrid system (2.1), a proper dilation M , and a ho-

mogeneous with respect to M quasinorm ω, a homogeneous perturbation of (2.1) of
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size ρ > 0 is the hybrid system: x ∈ Cρ ẋ ∈ Fρ (x)

x ∈ Dρ x+ ∈ Gρ (x)
(4.2)

with the data given by

Cρ = {x | (x+ ρM(ω(x))B) ∩ C 6= ∅} ,

Fρ(x) = conF ((x+ ρM(ω(x))B) ∩ C) + ρωd(x)M(ω(x))B,

Dρ = {x | (x+ ρM(ω(x))B) ∩D 6= ∅} ,

Gρ(x) = G ((x+ ρM(ω(x))B) ∩D) + ρM(ω(x))B,

where B = {x ∈ Rn |ω(x) ≤ 1}.
Using the term “homogeneous” in the name of the perturbation in Definition 4.4

above is justified by the following result.
Proposition 4.5. Let M be a proper dilation, d ∈ R, and ω a homogeneous with

respect to M quasinorm. If the hybrid system (2.1) is homogeneous with respect to
M with degree d then, for each ρ > 0, the hybrid system (4.2) is homogeneous with
respect to M with degree d.

Proof. Recall that ω(M(λ)x) = λω(x) for all x ∈ Rn and λ > 0 and note that
M (ω(M(λ)x)) = M(λ)M(ω(x)). Then Fρ(M(λ)x) turns into

conF [M(λ)x+ ρM(λ)M(ω(x))B] + ρλdωd(x)M(λ)M(ω(x))B

which is exactly λdM(λ)Fρ(x). The case of G is similar; consider d = 0 above.
Now, M(λ)Cρ is {M(λ)x | (x+ ρM(ω(x))B) ∩ C 6= ∅} which, by taking y = M(λ)x
and so x = M(λ−1)y, turns into

{
y |M(λ−1)(y + ρM(ω(y))B) ∩ C 6= ∅

}
and, since

M(λ)C = C, to {y | (y + ρM(ω(y))B) ∩ C 6= ∅} = Cρ. The case of Dρ is parallel.

4.3. Robustness of pre-asymptotic stability for homogeneous systems.
A set-valued mapping Φ : Rn ⇒ Rn is outer semicontinuous at x ∈ Rn if, for each
xi → x and each convergent sequence yi ∈ Φ(xi), limi→∞ yi ∈ Φ(x). Φ is locally
bounded at x if there exists a neighborhood U of x such that Φ(U) is bounded.

Assumption 4.6 (basic assumptions). The system (2.1) is said to satisfy the
basic assumptions on a set S ⊂ Rn if

(a) C and D are relatively closed in S;
(b) F is locally bounded and outer semicontinuous at x and F (x) is nonempty

and convex for all x ∈ C ∩ S;
(c) G is locally bounded and outer semicontinuous at x and G(x) is nonempty

for all x ∈ D ∩ S.
Definition 4.7. A continuous function β : R2

≥0 → R≥0 such that r 7→ β(r, s)
is nondecreasing and β(0, s) = 0 for all s while s 7→ β(r, s) is nonincreasing and
lims→∞ β(r, s) = 0 for all r is called a KL function.

Lemma 4.8. Let M be a proper dilation and ω be a homogeneous with respect to
M quasinorm. Suppose that the hybrid system (2.1) satisfies the basic assumptions
on Rn and 0 is pre-asymptotically stable for (2.1). Then there exists a KL function
β and for each ε > 0, each K > 0, there exists δ > 0 such that

ω(φ(t, j)) ≤ β (ω(φ(0, 0)), t+ j) + ε for all (t, j) ∈ domφ (4.3)
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for all solutions to the hybrid system x ∈ C + δB ẋ ∈ F (x+ δB) + δB

x ∈ D + δB x+ ∈ G (x+ δB) + δB
(4.4)

with ω(φ(0, 0)) ≤ K.
Proof. The system (2.1) can be augmented, as was illustrated at the end of

Section 2.2, to yield a system whose solutions subsume those of (2.1) and for which
0 is asymptotically stable. Then, Proposition 6.4 and Theorems 6.5, 6.6 in [14] yield
a KLL function γ with properties paralleling those of the needed β. Considering
β(r, s) = supt+j=s γ(r, t, j) finishes the proof.

The lemma above stated that pre-asymptotic stability in a hybrid system meeting
the basic assumptions is robust, to constant perturbations, in a semiglobal practical
sense. A result on global robustness to nonconstant, and vanishing near 0, pertur-
bations is in [9]. The theorem below shows that for homogeneous hybrid systems,
pre-asymptotic stability is robust to homogeneous perturbations.

Theorem 4.9. Consider a hybrid system (2.1), a proper dilation M , d ∈ R, and
a homogeneous with respect to M quasinorm ω. Suppose that the hybrid system (2.1)
is homogeneous with respect to M with degree d, satisfies the basic assumptions on
Rn \ {0}, and has 0 pre-asymptotically stable. Then, there exists ρ > 0 such that 0 is
pre-asymptotically stable for (4.2).

Proof. Consider the hybrid system x ∈ C \ intB ẋ ∈ F (x)

x ∈ D \ intB x+ ∈ G (x)
. (4.5)

Since, for (2.1), 0 is pre-asymptotically stable, 0 is also pre-asymptotically stable for
(4.5). Furthermore, (4.5) meets the regularity assumptions in Lemma 4.8. Hence,
there exists a KL function β, and δ > 0 such that (4.3) holds with ε = 1 for each
solution φ to  x ∈ (C \ intB) + δB ẋ ∈ F (x+ δB) + δB

x ∈ (D \ intB) + δB x+ ∈ G (x+ δB) + δB
(4.6)

with ω(φ(0, 0)) ≤ 4. Pick m > 0 such that β(4,m) ≤ 1. Then, pick ρ > 0 such that
ρM(ω(x))B ⊂ δB for all x ∈ Rn with ω(x) ≤ R := β(4, 0)+1 and ρωd(x)M(ω(x))B ⊂
δB for all x ∈ Rn with 1 ≤ ω(x) ≤ R. With such ρ, consider the system (4.2) and
recall that by Proposition 4.5, it is homogeneous with respect to M with degree d.

Let φ be a solution to (4.2) with ω(φ(0, 0)) = 4. Note that φ is also a solution to
(4.6) as long as it remains in {x | 1 ≤ ω(x) ≤ R}. Let (T, J) ∈ domφ be the “first”
element in domφ such that ω(φ(T, J)) ≤ 2. If such (T, J) does not exist, it means
that domφ is compact, with t + j ≤ m for all (t, j) ∈ domφ, and for all such (t, j),
ω(φ(t, j)) ≤ R. For such a (T, J), thanks to (4.3), T + J ≤ m and ω(φ(t, j)) ≤ R for
all (t, j) ∈ domφ, t ≤ T , j ≤ J . Proposition 4.3 finishes the proof.

5. Proofs of the main pre-asymptotic stability results.
Lemma 5.1. Let M be a proper dilation, d ∈ R, and Φ : Rn ⇒ Rn be a set-valued

mapping such that
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(a) for some homogeneous with respect to M quasinorm ω, the mapping x 7→
ω−d(x)M

(
ω−1(x)

)
Φ(x) is locally bounded at x = 0.

Then ΦM,d is locally bounded at each x 6= 0. Furthermore, if Ψ : Rn ⇒ Rn is a
set-valued mapping such that

(b) gphΦM,d \ {0} ⊂ int gphΨ;
(c) Ψ is homogeneous with respect to M with order d;

then, for all x sufficiently close to 0, Φ(x) ⊂ Ψ(x).
Proof. To prove the first conclusion, suppose that, on the contrary, there exists

a convergent sequence xi, i = 1, 2, . . . , with xi → x 6= 0, and a sequence yi ∈
ΦM,d(xi) with |yi| → ∞. The definition of ΦM,d yields λi ↗ ∞, a sequence x′i with
M(λi)x′i → x, and a sequence y′i with y′i ∈ Φ(x′i) and |λd

iM(λi)y′i| → ∞. Note that
since M is proper, x′i → 0 as i → ∞. Let ω be as in assumption (a), and note
that ω(M(λi)x′i) = λiω(x′i) =: ai → a where a = ω(x) 6= 0. Then λd

iM(λi)y′i =
ad

iM(ai)ω−d(x′i)M
(
ω−1(x′i)

)
y′i and this remains bounded as i → ∞, by assumption

(a) and since ai → a 6= 0. This contradicts |λd
iM(λi)y′i| → ∞.

To prove the second conclusion, suppose on the contrary, that there exists a
sequence xi, i = 1, 2, . . . , such that xi 6= 0, xi → 0 and a sequence yi, i = 1, 2, . . . ,
such that yi ∈ Φ(xi) but yi 6∈ Ψ(xi). With the quasinorm ω from assumption (a),
pick λi = ω−1(xi). Let x′i = M(λi)xi, so that ω(x′i) = 1, and y′i = λd

iM(λi)yi ∈
λd

iM(λi)Φ(xi). By assumption (a), y′i’s are uniformly bounded. Without relabeling,
pass to a subsequence so that x′i’s and y′i’s converge to, respectively, x and y. By
Definition 3.9, (x, y) ∈ gphΦM,d. Hence, by (b) and since ω (x) = 1, (x, y) ∈ gphΨ.
Then, for all large enough i, (x′i, y

′
i) ∈ gphΨ, and thus λd

iM(λi)yi ∈ Ψ(M(λi)xi).
Homogeneity of Ψ, as in (c), implies that yi ∈ Ψ(xi), which is a contradiction.

Corollary 5.2. Let M be a proper dilation and S, S′ ⊂ Rn be sets such that
TM

S (0) \ {0} ⊂ intS′ and S′ is homogeneous with respect to M . Then for all x
sufficiently close to 0, x ∈ S implies x ∈ S′.

Proof. In Lemma 5.1, consider Φ(x) = 0 if x ∈ S, Φ(x) = ∅ otherwise, and
Ψ(x) = Rn if x ∈ S′, Ψ(x) = ∅ otherwise.

Proof. (of Theorem 3.16.) Lemma 3.10 showed that TM
C (0), TM

D (0) are closed. It
also implies that graphs of FM,d and GM,0 are closed, hence the mappings are outer
semicontinuous. Lemma 5.1 implies that FM,d and GM,0 are locally bounded at each
x 6= 0. Pointwise convexification of FM,d does not change the local boundedness,
which is clear, and outer semicontinuity at x 6= 0, as follows from [25, Proposition
4.30]. Now Theorem 4.9 can be invoked to yield ρ > 0 such that the homogeneous
perturbation of (3.8) with size ρ, as in Definition 4.4, is pre-asymptotically stable. Let(
TM

C (0)
)
ρ
,
(
conFM,d

)
ρ
,
(
TM

D (0)
)
ρ
,
(
GM,0

)
ρ

be the data of this perturbation. Then

TM
C (0)\{0} ⊂ int

(
TM

C (0)
)
ρ
,

{
(x, y) |x ∈ TM

C (0), y ∈ FM,d(x)
}
⊂ int gph

(
conFM,d

)
ρ
,

and a similar containment holds for the objects associated with D and G, with d = 0
for the latter. Lemma 5.1 and Corollary 5.2 imply that the data of (2.1) is, locally
around 0, contained in the data of the homogeneous perturbation of (3.8) with size
ρ. More precisely, we have, for some ε > 0:

C ∩ εB ⊂
(
TM

C (0)
)
ρ
, F (x) ⊂

(
conFM,d

)
ρ
(x) ∀x ∈ C ∩ εB,

D ∩ εB ⊂
(
TM

D (0)
)
ρ
, G(x) ⊂

(
GM,0

)
ρ
(x) ∀x ∈ D ∩ εB.

This is sufficient to conclude pre-asymptotic stability of 0 for (2.1) from that for the
homogeneous perturbation of (3.8) with size ρ.
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Lemma 5.3. Given a proper dilation M and d ∈ R, suppose that a set-valued
mapping Φ : Rn ⇒ Rn can be decomposed as

Φ(x) = Φd(x) +
K∑

k=1

Φδk
(x),

where Φd is outer semicontinuous, locally bounded, and homogeneous with respect to
M with degree d and Φδk

, k = 1, 2, . . . ,K are locally bounded and homogeneous with
respect to M with degree δk, and δk > d, k = 1, 2, . . . ,K. Then, for any homogeneous
with respect to M quasinorm ω, the set-valued mapping x 7→ ω−d(x)M

(
ω−1(x)

)
Φ(x)

is locally bounded at x = 0 and ΦM,d ⊂ Φd. If, furthermore, dom Φd = dom Φδk
for

k = 1, 2, . . . ,K, then ΦM,d = Φd.
Proof. First, note that

ω−d(x)M
(
ω−1(x)

)
Φ(x) = ω−d(x)M

(
ω−1(x)

)
Φd(x) +

K∑
k=1

ω−d(x)M
(
ω−1(x)

)
Φδk

(x)

= Φd

(
M

(
ω−1(x)

)
x
)

+
K∑

k=1

ωδk−d(x)Φδk

(
M

(
ω−1(x)

)
x
)

and ω
(
M

(
ω−1(x)

)
x
)

= ω−1(x)ω(x) = 1. This, local boundedness of Φd, Φδk
’s, and

δk − d > 0 shows that x 7→ ω−d(x)M
(
ω−1(x)

)
Φ(x) is locally bounded at x = 0,

By definition, y ∈ ΦM,d(x) means that there exist λi ↗∞, xi, yi ∈ Rn such that
yi ∈ Φ(xi), M(λi)xi → x, λdM(λi)yi → y. The inclusion yi ∈ Φ(xi) is equivalent to

λd
iM(λi)yi ∈ λd

iM(λi)Φd(xi) +
K∑

k=1

λd−δk
i λk

iM(λi)Φδk
(xi)

= Φd(M(λi)xi) +
K∑

k=1

λd−δk
i Φδk

(M(λi)xi)

Local boundedness of Φδk
’s and the fact that λd−δk

i → 0 implies that y is an ele-
ment of lim supi→∞ Φd(M(λi)xi) ⊂ Φd(x), where the last inclusion comes from outer
semicontinuity of Φd. Hence ΦM,d ⊂ Φd. The reverse inclusion is shown by consid-
ering any λi ↗ ∞, any x, any y ∈ Φd(x), xi = M(λ−1

i )x, and yi ∈ Φ(xi) given by
yi = λ−d

i M(λ−1
i )y +

∑K
k=1 λ

−δk
i M(λ−1

i )yk
i , where yk

i ∈ Φδk
(x) are arbitrary.

Proof. (of Theorem 3.11.) Combine Theorem 3.16 and Lemma 5.3.

6. Uniform small ordinary time property and Zeno behavior. Homo-
geneity of hybrid systems sheds light on the Zeno phenomenon — the occurrence of
infinitely many jumps in a finite amount of time — in asymptotically stable hybrid
systems. In particular, homogeneity turns out to be closely related to the amount of
time it takes solutions to such hybrid systems to converge to the origin.

Given a set S ⊂ Rn and a solution φ to (2.1), let

TS(φ) = sup {t ∈ R≥0 | ∃j ∈ N such that (t, j) ∈ domφ, φ(t, j) ∈ S} .

In particular, TRn(φ) = sup {t ∈ R≥0 | ∃j ∈ N such that (t, j) ∈ domφ}.
Definition 6.1. The origin is uniformly small ordinary time pre-asymptotically

stable for the hybrid system (2.1) if it is pre-asymptotically stable and for each ε >
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0 there exists δ > 0 such that, for each solution φ to (2.1) with |φ(0, 0)| < δ,
TRn\{0}(φ) < ε.

The result below ties the issue of TRn\{0}(φ) being small or infinite to the degree
of homogeneity of a hybrid system.

Theorem 6.2. Consider a hybrid system (2.1), a proper dilation M , d ∈ R, and
a homogeneous with respect to M quasinorm ω. Suppose that 0 is pre-asymptotically
stable for (2.1). Then

(a) if d < 0 and (2.1) satisfies the basic assumptions on Rn except possibly the
local boundedness of F at 0, then 0 is uniformly small ordinary time pre-
asymptotically stable for (2.1);

(b) if d ≥ 0, (2.1) satisfies the basic assumptions on Rn, and TRn\{0}(φ) > 0 for
every complete solution to (2.1) with ω(φ(0, 0)) = 1 then TRn\{0}(φ) = ∞ for
all complete solutions to (2.1) with ω(φ(0, 0)) > 0.

Proof. Showing (a) relies on the proof of Theorem 4.9. That proof obtained
m > 0 such that, for any solution φ to (4.5) (since solutions to (4.5) are solutions
to (4.6)) with ω(φ(0, 0)) = 4, either t + j ≤ m for all (t, j) ∈ domφ or there exists
(T, J) ∈ domφ with T + J ≤ m and ω(φ(T, J)) ≤ 2. Since solutions φ to (2.1) are
also solutions to (4.5) when restricted to (t, j) ∈ domφ with t ≤ T , j ≤ J , one can
conclude the following: for any solution φ to (2.1) with ω(φ(0, 0)) = 4, either t ≤ m
for all (t, j) ∈ domφ or there exists (T, J) ∈ domφ with T ≤ m and ω(φ(T, J)) ≤ 2.

Now take a solution ψ to (2.1) with 2 2r ≤ ω(ψ(0, 0)) ≤ 4 2r for some r ∈ Z.
Let λ = 4/ω(ψ(0, 0)), so that 2−r ≤ λ ≤ 2−r+1, and let φ(t, j) = M(λ)ψ(t, j). Then
ω(φ(0, 0)) = 4 and ψ is a solution to (4.1). Then either t ≤ λdm ≤ 2d(−r+1)m for
all (t, j) ∈ domφ = domψ, or there exists (T, J) ∈ domφ = domψ with T ≤ λdm ≤
2d(−r+1)m and ω(φ(T, J)) ≤ 2, and thus ω(ψ(T, J)) ≤ 2/λ ≤ 2 2r = 4 2r−1. Now (a)
follows, since d < 0, from the recursive bound

TRn\{0}(ψ) ≤ 2d(−r+1)m+2d(−(r−1)+1)m+· · · = 2d(−r+1)m
(
1 + 2d + 22d + . . .

)
<∞.

To see (b), note that there exist m > 0, r > 0 such that, for each complete
solution φ to (2.1) with ω(φ(0, 0)) = 1 there exists (t, j) ∈ domφ, t > m, such that
ω(φ(t, j)) > r. Indeed, otherwise there exist complete solutions φi to (2.1) with
ω(φi(0, 0)) = 1 such that ω(φi(t, j)) < 1/i for all (t, j) ∈ domφi with t > 1/i. By
Lemma 4.8, this sequence is uniformly bounded. It also has a graphically convergent
subsequence, see Theorem 4.18 in [25], the graphical limit φ of which is a complete
solution to (2.1), with TRn\{0} = 0. This is a contradiction.

Now, for any complete solution φ and (t1, j1) with t1 > m, ω(φ(t1, j1)) > r let
λ = 1/ω(φ(t1, j1)) and consider M(λ)φ. Then ω(M(λ)φ(t1, j1)) = 1, M(λ)φ is a
solution to (4.1), and there exists (t2, j2) ∈ domφ with t2 − t1 > λdm, and thus
t2 > m

(
1 + ω−d(φ(t1, j1))

)
such that ω(M(λ)φ(t2, j2)) > r, and thus ω(φ(t2, j2)) >

r2. Repeating this argument shows the existence of (tk, jk) ∈ domφ with tk >

m
(
1 +

∑k−1
i=1 ω

−d(φ(ti, ji))
)

Since (2.1) is pre-asymptotically stable, φ is bounded,
and hence ω(φ(ti, ji)) are bounded above. Since d ≥ 0, this implies that tk → ∞ as
k →∞, and thus TRn\{0}(φ) = ∞.

Theorem 6.2 verifies the claims made in Example 1.2, about the convergence of
solutions to 0 in a finite amount of time. Indeed, the Bouncing Ball system is ho-

mogeneous with respect to
[
λ2 0
0 λ

]
, with d = −1. In general, Theorem 6.2 excludes

Zeno behavior of solutions converging to 0 when the degree of homogeneity is nonneg-
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ative and jumps to 0 do not occur, and it suggests Zeno behavior when the degree of
homogeneity is negative and solutions converging to 0 do jump infinitely many times.

Corollary 6.3. Under the assumptions of Theorem 3.16,
(a) if 0 is pre-asymptotically stable for (3.8) and d < 0, then 0 is uniformly small

ordinary time pre-asymptotically stable for (2.1);
(b) if 0 is pre-asymptotically stable for (3.8), d ≥ 0, and TRn\{0}(φ) > 0 for every

complete solution to (3.8) with ω(φ(0, 0) = 1, then 0 is pre-asymptotically
stable for (2.1) and TRn\{0}(φ) = ∞ for every complete solution to (2.1).

Proof. Combine the proof of Theorem 3.16 with Theorem 6.2.
Definition 6.4. The origin is uniformly Zeno asymptotically stable for the

system (2.1) if it is uniformly small ordinary time pre-asymptotically stable and there
exists δ > 0 such that each maximal solution φ to (2.1) with 0 < |φ(0, 0)| < δ is Zeno,
i.e., φ is complete, TRn(φ) <∞, and there is no j ∈ N with (TRn(φ), j) ∈ domφ.

To see the difference between uniform Zeno asymptotic stability and “Zeno asymp-
totic stability”, a property that combines asymptotic stability with the existence of a
neighborhood of 0 from which all solutions are Zeno, consider the next example.

Example 6.5. In R2, consider a hybrid system given by

C =
∞⋃

i=0

{
x ∈ R2 |x1 ≥ 0, x2 ≥ 0, 2−2i−1 ≤ |x| ≤ 2−2i

}
, f(x) = − x

|x|
,

D =
∞⋃

i=0

{
x ∈ R2 |x1 ≥ 0, x2 ≥ 0, |x| = 2−2i−1

}
, g(x) =

x

2
.

This system is pre-asymptotically stable. Furthermore, |φ(0, 0)| ≤ 2−2i implies that
TRn\{0}(φ) ≤ 2−2i+1/3, i = 0, 1, . . . , and every solution is Zeno. Thus 0 is uniformly
Zeno asymptotically stable. Now consider a system with the same D, g, but with

C =
∞⋃

i=0

{
x ∈ R2 |x1 ≥ 0, x2 ≥ x2

1, 2
−2i−1 ≤ |x| ≤ 2−2i

}
, f(x) = − x

|x|
x2

x1
.

Then 0 is asymptotically stable, all solutions are Zeno, but the uniform small ordinary
time property is missing: there exist solutions φ from initial points x with |x| = 2−2i,
x2 = x2

1 and arbitrarily close to 0, such that TRn\{0}(φ) ≥ 2/3.
Proposition 6.6. Suppose the hybrid system (2.1) satisfies the basic assumptions

on Rn, 0 is uniformly small ordinary time pre-asymptotically stable for (2.1), and:
(a) there exists ε > 0 such that each maximal solution φ to (2.1) with 0 <

|φ(0, 0)| < ε satisfies TRn\{0}(φ) > 0;
(b) there does not exist an absolutely continuous ψ : [0, ε] → Rn, ε > 0, such that

ψ̇(t) ∈ −F (ψ(t)) for almost all t ∈ [0, ε], ψ(t) ∈ C all t ∈ (0, ε), ψ(0) = 0,
ψ(ε) 6= 0.

Then 0 is uniformly Zeno pre-asymptotically stable for (2.1).
Proof. We need to find δ > 0 such that each maximal solution φ to (2.1) with

|φ(0, 0)| < δ is Zeno. Using pre-asymptotic stability pick δ > 0 so that each maximal
solution φ to (2.1) with |φ(0, 0)| < δ is bounded, satisfies |φ(t, j)| < ε for all (t, j) ∈
domφ where ε ≥ δ is such that each maximal solution ψ to (2.1) with |ψ(0, 0)| < ε
satisfies 0 < TRn\{0}(ψ) <∞. Existence of such a ε comes from (a) and the uniform
small ordinary time property. Let φ be a solution to (2.1) with 0 < |φ(0, 0)| < δ.
Suppose φ is not complete. If domφ was not closed, φ could be extended to domφ.
Hence, maximality of φ implies that domφ is closed. Let (T, J) be the “last” element
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in domφ. Since |φ(T, J)| < ε, maximal solutions ψ from φ(T, J) satisfy TRn\{0}(ψ) >
0. Concatenating such a ψ with φ contradicts maximality of φ. Thus φ is complete
and TRn\{0}(φ) < ∞. To see that TRn(φ) < ∞ it is enough to note that there does
not exist (t, j) ∈ domφ with φ(t, j) = 0. This follows from assumptions (a) and (b):
(a) excludes the possibility of φ(t, j) = 0 with (t, j − 1) ∈ domφ and φ(t, j − 1) 6= 0,
(b) excludes the possibility of φ(t, j) = 0 with (t′, j) ∈ domφ, t′ < t, and φ(t′, j) 6=
0. Thus TRn(φ) < ∞. Finally, if there exists J ∈ N with (TRn(φ), j) ∈ domφ,
then ψ(t, j) := φ (t+ TRn(φ), j + J) violates the property that 0 < TRn\{0}(ψ) for all
maximal solution ψ to (2.1) with |ψ(0, 0)| < ε. Thus φ is Zeno.

7. Hybrid systems with logical modes.

7.1. Definitions and the main result. The data of a hybrid system with
logical modes consists of a set Q = {1, 2, . . . , qmax}, and for each q ∈ Q, a flow set
Cq, a flow map Fq, a jump set Dq, and a jump map Gq. The following is assumed,
for each q ∈ Q: Cq and Dq are sets in Rn; Fq : Rn ⇒ Rn is a set-valued mapping
with Fq(x) 6= ∅ when x ∈ Cq; and Gq : Rn ⇒ Q × Rn is a set-valued mapping with
Gq(x) 6= ∅ when x ∈ Dq. Such systems can be represented in the following form: x ∈ Cq ẋ ∈ Fq (x)

x ∈ Dq

(
q+

x+

)
∈ Gq (x) . (7.1)

A solution to (7.1) consists of functions q : E → Q, φ : E → Rn, where E is a hybrid
time domain, φ(0, 0) ∈ Cq(0,0) ∪ Dq(0,0), and, if Ij := {t | (t, j) ∈ E} has nonempty
interior, then t 7→ q(t, j) is constant, t 7→ φ(t, j) is absolutely continuous on Ij , and

φ(t, j) ∈ Cq(t,j) for all t ∈ int Ij and
d

dt
φ(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij ;

if (t, j) ∈ E and (t, j + 1) ∈ E then

φ(t, j) ∈ Dq(t,j) and
(
q(t, j + 1)
φ(t, j + 1)

)
∈ Gq(t,j)(φ(t, j)).

Pre-asymptotic stability for (7.1) considers the behavior of φ(t, j) and not of q(t, j).
For (7.1), the origin is stable if for each ε > 0 there exists δ > 0 such that every solution
(q, φ) to (7.1) with |φ(0, 0)| < δ satisfies |φ(t, j)| < ε for all (t, j) ∈ dom(q, φ); pre-
attractive if there exists δ > 0 such that every solution (q, φ) to (7.1) with |φ(0, 0)| < δ
is bounded and if it is complete, then |φ(t, j)| → 0 as (t, j) ∈ dom(q, φ), t + j → ∞;
and pre-asymptotically stable if it is stable and pre-attractive.

Theorem 7.1. Consider the hybrid system (7.1). Suppose that there exists a
proper dilation M of Rn, a homogeneous with respect to M quasinorm ω, and d ∈ R
such that, for each q ∈ Q, the set-valued mappings

x 7→ ω−d(x)M
(
ω−1(x)

)
Fq(x), x 7→M

(
ω−1(x)

)
Gq(x)

are locally bounded at x = 0. If 0 is pre-asymptotically stable for the hybrid system
x ∈ TM

Cq
(0) ẋ ∈ conFM,d

q (x)

x ∈ TM
Dq

(0)
(
q+

x+

)
∈ GM,0

q (x)
(7.2)

then 0 is pre-asymptotically stable for the hybrid system (7.1).
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Hybrid systems with logical modes (7.1) can be formulated as (2.1). To this end,
one constructs a hybrid system in Rn+1 with the variable (q, x) as follows:

C =
⋃
q∈Q

{q} ×Cq, F (q, x) =
(

0
Fq(x)

)
, D =

⋃
q∈Q

{q} ×Dq, G(q, x) = Gq(x). (7.3)

Details can be seen, for example, in [27]. However, Theorem 7.1 is not a special case
of Theorem 3.16. Pre-asymptotic stability of the origin for (7.1) corresponds to pre-
asymptotic stability of Q× {0} for (7.3). Furthermore, in Theorem 7.1, the “tangent
approximation” is carried out in each mode q separately, reformulation of (7.2) along
the lines of (7.3) is homogeneous but with respect to a dilation that is not proper,
etc. Still, the key ideas of the proof are similar, and many elements of the proof of
Theorem 7.1 just need to be repeated in each mode q. We only outline the argument.

7.2. Outline of the proof of Theorem 7.1. The system (7.2) is homogeneous
in the following sense: for each q ∈ Q, Cq, Dq are homogeneous with respect to M ,
Fq is homogeneous with respect to M with order d, and for each x ∈ Rn, λ > 0,

Gq(M(λ)x) =
[
1 0
0 M(λ)

]
Gq(x). For (7.2), and for each system homogeneous in the

same sense, a result parallel to Lemma 4.2 is straightforward: (q, φ) is a solution to
(7.1) if and only if (q,M(λ)φ) is a solution to a system like (7.1) but where Fq is
replaced by λ−dFq. Then, a result like Proposition 4.3 follows. Furthermore, for each
q ∈ Q, the flow and the jump sets for (7.2) are closed, while the flow and the jump
maps are outer semicontinuous and locally bounded at each point except x = 0. In
other words, (7.2) reformulated as (2.1) along the lines of (7.3) satisfies the basic
assumptions on Rn+1 \ (Q× {0}).

If 0 for (7.2) is pre-asymptotically stable, then there exists ρ > 0 such that
x ∈

(
TM

Cq
(0)

)
ρ

ẋ ∈
(
conFM,d

q

)
ρ
(x)

x ∈
(
TM

Dq
(0)

)
ρ

(
q+

x+

)
∈

(
GM,0

q

)
ρ
(x)

(7.4)

has the origin pre-asymptotically stable. Above,
(
TM

Cq
(0)

)
ρ
,
(
conFM,d

q

)
ρ
, and

(
TM

Dq
(0)

)
ρ

are obtained from TM
Cq

(0), conFM,d
q , and TM

Dq
(0), respectively, just like Cρ, Fρ, and

Dρ are obtained from C, F , and D, respectively, in Definition 4.4, while(
GM,0

q

)
ρ
(x) = GM,0

q

(
(x+ ρM(ω(x))B) ∩ TM

Dq
(0)

)
+ {0} × ρM(ω(x))B.

To prove this, the arguments parallel to those in the proof of Theorem 4.9 can be
given. These arguments use the fact that the system

x ∈ TM
Cq

(0) \ intB ẋ ∈ conFM,d
q (x)

x ∈ TM
Dq

(0) \ intB
(
q+

x+

)
∈ GM,0

q (x)

satisfies the basic assumptions on Rn+1, is pre-asymptotically stable, and thus there
exists a KL function β and for each ε > 0, each K > 0, there exists δ > 0 such
that (4.3) holds for all solutions (q, φ) to it. The bound (4.3) comes from Proposi-
tion 6.4 and Theorems 6.5, 6.6 in [14], since the concept of pre-asymptotic stability
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used here translates, via the trick used in the proof of Lemma 4.8, to asymptotic
stability of the compact set Q × {0} in the sense of [14]. These arguments also use
the fact that the system (7.4) is homogeneous, in the sense mentioned above. In-
deed, the justification for

(
TM

Cq
(0)

)
ρ
,

(
conFM,d

q

)
ρ
, and

(
TM

Dq
(0)

)
ρ

is the same as in

Proposition 4.5. For
(
GM,0

q

)
ρ
, one needs to consider, for each q ∈ Q, the mapping

x 7→
{
y | (q, y) ∈

(
GM,0

q

)
ρ
(x)

}
, and then rely on Proposition 4.5.

The proof can be finished, as for Theorem 3.16, by noting that, for each q ∈ Q,
the data of (7.4) contains, locally around 0, the data of (7.1).
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