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We present a model of human preattentive texture perception. This model consists of three stages: (1) convolu- 
tion of the image with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of 
responses modeling outputs of V1 simple cells, (2) inhibition, localized in space, within and among the neural- 
response profiles that results in the suppression of weak responses when there are strong responses at the same or 
nearby locations, and (3) texture-boundary detection by using wide odd-symmetric mechanisms. Our model can 
predict the salience of texture boundaries in any arbitrary gray-scale image. A computer implementation of this 
model has been tested on many of the classic stimuli from psychophysical literature. Quantitative predictions of 
the degree of discriminability of different texture pairs match well with experimental measurements of discrimina- 
bility in human observers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. INTRODUCTION 

Classical theories of texture perception by J u l e s ~ l - ~  and 
B e ~ k ~ - ~  attribute preattentive texture discrimination to dif- 
ferences in first-order statistics of stimulus features such as 
orientation, size, and brightness of constituent elements. 
These theories have typically been constructed for black- 
and-white dot or line patterns and are not directly applica- 
ble to gray-scale images (though Voorhees and Poggio7 pro- 
vide a definition of textons for gray-scale images). Experi- 
mental results describing phenomena that are not well 
explained by these theories have been reported.a10 An al- 
ternative a p p r ~ a c h ~ ~ ' l - ~ ~ ~ ' ~ - ' ~  to texture perception is based 
on the responses of the linear mechanisms (psychophysically 
observed spatial-frequency channels and neurophysiologi- 
cally observed blob-, bar-, and edge-sensitive neurons) that 
have been used to explain a range of phenomena in early 
spatial vision. While these efforts have demonstrated that a 
filtering approach can explain some phenomena that are not 
consistent with the texton theory, a complete model has not 
Yet been presented. Such a model should satisfy the follow- 
ing criteria: 

1. Biological plausibility: The stages of the model 
8hould be motivated by, and be consistent with, known 
Physiological mechanisms of early vision. 

2. Generality: The model should be general enough that 
it can be tested on any arbitrary gray-scale image. 

3. Quantitative match with psychophysical data: The 
model should make a quantitative prediction about the sa- 
lience of the boundary between any two textured regions. 
Rank ordering of the discriminability of different texture 
Pairs should agree with that measured psychophysically. 

We outline our model in Section 2. In Section 3 we moti- 
W e  the necessity of each stage of the model with physiologi- 
cal, Psychophysical, and computational arguments. In Sec- 
tion 4, quantitative predictions from our model are com- 
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Fared with psychophysical data on the discriminability of 
several texture pairs collected by Gurnsey and Browselo and 
KrOse.17 We also show in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 that our model performs 
satisfactorily on the texture pairs invented by Julesz and 
KrOsels and by Williams and Juleszlg in order to pose diffi- 
culties for other quasi-linear-filtering models. We conclude 
with a critical discussion in Section 6. 

2. MODEL FOR TEXTURE PERCEPTION 

In the first stage we model the output of V1 simple cells (or 
subunits of V1 complex cells as described by Spitzer and 
Hochstein20). The image I ( x ,  y) is convolved with a bank of 
linear filters Fk followed by half-wave rectification. We will 
indicate the positive part with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR+(x ,y)  = max[R(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ) ,  01 and 
the negative part with R-(x ,  y) = max[-R(x, y ) ,  01, which 
give a set of neural responses Ri(x ,  y), where the index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 
identifies the orientation-frequency channel: 

R,fi = ( I  * F k ) + ( x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY), R,k+i = (1 * F k ) - ( x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY). (1) 

Radially symmetric filters model nonoriented simple cells. 
Directionally tuned filters with even-symmetric cross sec- 
tions perpendicular to their axes model bar-sensitive simple 
cells. In Subsection 3.A we give the details of the choice of 
the filters. 

The second stage of our model is nonlinear inhibition, 
localized in space, within and among the neural-response 
profiles, which results in the suppression of weak responses 
when there are stronger responses a t  the same or nearby 
locations. Details are in Subsection 3.F. Let PZR;(r, y )  be 
the postinhibition response in the ith channel. 

The third stage of our model is the computation of the 
texture gradientz1 (Subsection 3.G). We define the texture 
gradient to be maxillv(PIR, * G,,)(x, y)ll, where G,, is a radi- 
ally symmetric Gaussian function with standard deviation CT' 
and the index i ranges over all channels. 

A schematic view of the model is presented in Fig. 1. 
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Fig. 1. Simplified schematics of our model for texture perception. 
The image (bottom) is filtered using the kernels 8'1.. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF,,, and is 
half-wave rectified to give the set of simple-cell responses RI . . . R,. 
The postinhibition responses PIRl . . . PIR, are computed by 
thresholding the R, and taking the maximum of the result over small 
neighborhoods. The thresholds depend on the activity of all chan- 
nels. The texture gradient is computed by taking the maximum of 
the responses of wide odd-symmetric filters acting on the postinhi- 
bition responses PIRi. 

3. MOTIVATION FOR THE STAGES OF THE 
MODEL 

The general structure of our model follows the findings of 
Julesz,l-3 B e ~ k , ~ - ~  and TreismanZ2 that  state that in preat- 
tentive vision, precise positional relationships between tex- 
tons are not important; only densities matter. These find- 
ings suggest that when two textures T I  and T2 are discrimi- 
nable, they are distinguished by different spatial averages J 
J T ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ( x ,  y) and J JT, R ( x ,  y) of some locally computed 
neural response R. A discussion of how earlier models fit 
into this framework may be found in Ref. 23. 

Within this framework, a set of appropriate neural mecha- 
nisms that  produce responses Ri and a pooling mechanism 
utilizing these responses to  compute the texture gradient 
have to  be chosen. Our guiding principles for these two 
choices are biological plausibility and parsimony. The final 
test for the model is, of course, whether i t  reproduces human 
performance. 

A. Choice of the Filters 

Several models have been proposed for the point-spread 
function of simple cells and subunits of complex cells. 
These include Gabor functions,24 differences of offset Gaus- 
s i a n ~ ~ ~  (DOOG), and differences of offset differences of 
Gaussians.26 We have chosen to  use DOOG (Fig. 2) for our 
simulations, given their good fit with the physiological mea- 
surements and their computational simplicity. We believe 
that this is not a critical choice. Any of the families of 
functions mentioned above could have been used instead. 

The radially symmetric filter classes DOGl(u) and 
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DOGZ(u) (Figs. 2a and 2b) model nonoriented simple cells. 
Directionally tuned filters DOOG2 ((T, r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 )  with even-sym. 
metric cross sections perpendicular to their axes (Fig. 2c) 
model bar-sensitive simple cells. In our simulations we used 
six equally spaced orientations 8 and a constant aspect ratio 
r = 3. 

Implicit in the DOOG model is the assumption that recep- 
tive field profiles in the direction that is perpendicular to the 
axes are either odd-symmetric or even-symmetric and not of 
an intermediate phase. This model is suggested by psycho- 
physical studies on phase d i s c r i m i n a t i ~ n . ~ ~ ~ ~ ~  One has to be 
aware that electrophysiological mapping of the impulse-re- 
sponse function of single-cortical simple cells does not sup- 
port this view.26 At the cell level there seems to be not a 
sharp dichotomy but rather a continuum between even and 
odd symmetry. One explanation of this discrepancy could 
be that the responses of different cells are pooled together in 
such a way that  one effectively gets strictly odd- or even- 
symmetric mechanisms. We hypothesize (Subsection 3.H) 
that information from odd-symmetric mechanisms is not 
used for texture perception and therefore exclude from our 
model odd-symmetric mechanisms, which respond optimal- 
ly to  appropriately oriented edges. 

The (T parameter of the three filter classes that were used 
corresponds to  a nominal spatial frequency in cycles per 
degree (c/deg) (given the viewing distance and size of image). 

Fig. 2. Point-spread functions of some of the filters used in our 
simulation. The filters were designed after Youngz5 by summing 
Gaussian functions G(ro, yo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAux, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,,) = 1/2ru u exp(-(n - ro/uJ2 + 
(r -  yo/^,)^]] and have zero-mean value. a, Linear combination of 
three circular concentric Gaussian functions, DOG2(u) = a G(0, 0, 
u,, a,) + b . G(0, 0, u, u) + c . G(0, 0, uo, u,,) with variance u,:u:uo in a 
ratio of 0.62:1:1.6 and a:b:c in a ratio of 1:-2:l. b, Linear combina- 
tion of two circular concentric Gaussian functions, DOGl(u) = 
a .  G(O,O, ut, u,) + b . G(0, 0, uo, u,J, with variance uz:u:uo in a ratio of 
0.71:1:1.14 and coefficients a:b in a ratio of 1:-I. c, Linear combina- 
tion of three offset identical Gaussian functions DOOG2(u, r ,  B )  = 

a . G(O,y,, uz, uy) 4- b . G(O,Yb, ux, u,) + c . G(O,y,, ux, u)), Variances 
are u, = u, ux = r u, offsets are yo  = -yc = u, Yb = 0, and coefficients 
are a:b:c in a ratio of -1:2:-I for the filter with an axis of symmetry 
along the x direction ( 0  = 0). The other DOOG2() filters are 
obtained by rotation about the center of the middle Gaussian. The 
scaling coefficients aDOGI:aDOG2:aDOOG2 were in a ratio of 3:4.15:2, 
which was designed to equalize the dynamic range of the respective 
responses. 

" r  
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Fig. 3. Some textures (top row) and half-wave-rectified responses of one of the filters to each (bottom row). The point-spread function of 
each filter is shown at the bottom-right corner of the response image. The filter shapes are as in Fig. 2; the frequency parameters correspond to 
a 4 deg X 4 deg image. The response images are composed of two square regions, an upper one depicting R+, the positive part of the response, 
and a lower one showing R-. a, Texture from Ref. 10, Fig. 6, pair 2.2 (top) and the response of an 8-c/deg DOGl filter (bottom); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = 0.5 X 
(length of texel line segments). b, Texture from Ref. 10, Fig. 6, pair 2.1 (top) and the response of a 5-c/deg DOGl filter (bottom); u = 2 X (width 
of texel line segments). c, Arrow-triangle texture (top), for which the arrow texel is obtained from the triangle by shifting one of its legs, and 
the response to a 5-c/deg DOG2 filter (bottom); u = 0.3 X (length of triangle's hypotenuse). d, Texture from Ref. 30, Fig. 4.2b (top) and the re- 
sponse to a 13-c/deg DOOG2 filter (bottom); uy = (width of bars), uI:uy = 3, and orientation 120 deg. 

To sample adequately the spatial-frequency range around 
the peak of the luminance-contrast-sensitivity function, we 
used all integer values of the frequency between 3 and 14 c/ 
deg.29 This gives 96 filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF h ,  which result in 192 neural 
responses Ri. It should be noted that all the filters are zero 
mean. Consequently, they have zero response to  any image 
region in which the luminance I ( x ,  y )  is constant. 

Representative examples of these responses for some tex- 
tures may be found in Fig. 3. 

B. Inadequacy of Purely Linear Mechanisms 
The mechanisms considered so far-convolutions of the im- 
age withVl cell impulse responses-are linear. T o  see that a 
model based purely on linear mechanisms cannot reproduce 
human performance, we consider two textures TI, Tz that 
have identical mean brightnesses, i.e., identical spatial aver- 
ages. Convolving them with a linear filter F results in re- 
sponses R T ~ ( X ,  y )  and R Q ( x ,  y )  with identical spatial aver- 
ages. (The values of the power spectra a t  0 are identical.) 
Now, we know that humans can preattentively discriminate 
some textures with identical spatial averages. An example 
is the even-odd pair from Ref. 31 or indeed any discrimina- 
ble texture pair with identical first-order global statistics. A 
generalization of this observation to  nth-order statistics and 
nth-order polynomial operators may be found in Ref. 23. 

Some nonlinearity in the system is therefore necessary for 
texture perception. 

The most obvious choice of nonlinearity is half-wave recti- 
fication. V1 cortical cells have low-maintained discharge 
rates and are unable to  respond with a decrease in firing rate 
as required by a negative response. Two different cells are 
needed (and used) to  represent the positive and negative 
parts of the response belonging respectively t o  the on and off 
pathways. 

C. Loss of Essential Information from Full-Wave 
Rectification 
Two nonlinearities that are similar to  half-wave rectification 
have been used in other models of texture discrimination. 
These are 

1. Full-wave rectification, where the response in the lzth 
channel is R R ( x ,  y )  = l ( I*  F k ) ( x ,  y)l, is equivalent to  sum- 
ming the outputs in the two corresponding half-wave rectifi- 
cation channels. This approach has been used by Bergen 
and Ade1s0n.l~ 

Energy computation, where & ( x ,  y )  = I(I * Sk)(x, y)I2 
i- I ( I  * c h ) ( X , y ) l 2  and where s h ,  c h  constitute a pair of filters 
in quadrature phase (e.g., Gabor sine and cosine filters), has 
been used by Sutter et ~ 1 . ' ~  and by Fogel and Sagi.'G 

2. 

We have two reasons for preferring half-wave rectification. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The first is that it is the most natural choice in the context of 
current biological evidence; we know that linear filtering 
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b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C 

d 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. a, Texture pair that was constructed by adding to a uniform 
gray field the zero-mean micropatterns M (right) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-M (left). 
The two textures are easily discriminable, though it may be shown 
that spatially averaged responses for any linear filter followed by 
either half- or full-wave rectification are identical for both and thus 
insufficient for the discrimination. b, Cross section of Malong the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
axis. c, d, Cross sections of the responses to M and -M in one 
channel (corresponding to convolution with Fj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= M followed by 
positive half-wave rectification). The areas under c and d are equal. 
For any zero-mean filter F (1 J F = 0 )  we have J j ( M  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF) = 0; 
hence J J(M * F)' = J J ( M  * F)- = J J(-M * F)+. 

that is followed by half-wave rectification is a good first- 
order approximation for modeling responses of simple cells 
and subunits of complex cells. Cells computing energies 
have not yet been documented. Second, in both full-wave 
rectification and energy computation, the sign of the filter 
response is lost. Consequently, the response in a full-wave 
rectification channel or in an energy channel is identical for 
micropatterns M and -M and would remain so after any 
subsequent processing. This response results in the predic- 
tion that a texture pair composed of micropatterns M on one 
side and -M on the other (bright bars and dark bars, say) 

cannot be discriminated. Since we can discriminate easily 
many such texture pairs (for example, Fig. 4a) it is obvious 
that these nonlinearities cannot be part of all the channels of 
the visual pathway that performs texture perception. 

D. Need for a Second Nonlinearity 
A model of texture discrimination that uses half-wave recti- 
fication as the only nonlinearity before the pooling stage (at 
which the texture gradient is computed) successfully ex- 
plains human performance on a number of examples. How- 
ever, we can prove that such a model cannot discriminate 
texture pairs composed of micropatterns M and -M. One 
such texture pair can be seen in Fig. 4a; human observers 
have no difficulty in discriminating the bright-bar region 
from the dark-bar region. 

Of course, th'e responses of a channel (linear filtering fol- 
lowed by half-wave rectification) to micropatterns M and 
-Mare in general going to be different. However when they 
are pooled, i.e., spatially averaged over a region greater than 
the area of a micropattern, then they result in identical 
values. For any zero-d.c. filter F(J J F = 0), the average 
response is J J(M * F) = 0, which implies that the positive 
and negative parts of the response on each texture have the 
same average, i.e., that J J ( M  * F)+ = J J(M * F)-. Now 
the response to M in the off channel ( M  * F)- is the same 
as that to -M in the on channel (-M * F)+. I t  follows that 
J J(M * F)+ = J J ( - M  * F)+ and consequently, pooled 
responses in any on channel cannot be used to discriminate 
the two textures. The situation is similar for any off chan- 
nel. Segmentation is therefore impossible for any channel 
corresponding to zero-mean filters. For a graphical 
representation of this argument see Fig. 4. 

E. Choices of Second Nonlinearity 
The argument in Subsection 3.D provides a motivation for 
including additional nonlinearities in the channels. Howev- 
er the form and site of the nonlinearity are left largely un- 
specified. 

The first decision to be made is whether to have the non- 
linearity precede or follow the simple-cell response stage 
(linear filtering and half-wave rectification). A well-known 
early nonlinearity in the visual system-that of retinal adap- 
t a t i ~ n ~ ~ - h a s  been postulated to play a significant role in 
texture discrimination according to Sutter et ~ 1 . ~ 5  and Gra- 
ham et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 2 1 . ~ ~  This nonlinearity clearly plays an important 
role in vision because i t  enables the system to respond to 
local contrast over ten log units of illumination changes. 
The crucial question is whether i t  is sufficient to account for 
texture discriminability data, with no later nonlinearity re- 
quired. Relevant evidence comes from data on binary tex- 
tures with only two distinct gray levels (Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4), so that 
local contrasts are equal. For these stimuli, adaptation can- 
not account for the deviation of rank ordering of psycho- 
physically measured texture discriminability with that pre- 
dicted in the absence of a late nonlinearity. See the discus- 
sion in Section 6. This suggests that a late nonlinearity is 
essential. 

There are a t  least two physiologically plausible choices for 
a late nonlinearity: 

1. A nonlinear contrast response function g could be 
picked. Typicallyg has a sigmoidal shape with neurons that 
exhibit a threshold effect for low contrast and a saturation 
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effect for high contrast (e.g., as discussed by Albrecht and 
) j m i l t ~ n ~ ~ ) .  

2. Intracortical inhibition could occur within and among 
the responses in the different channels. 

In our model, we have chosen to use intracortical inhibi- 
tion. We studied a few variations on this theme, which are 
explored in Subsection 3.F. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F. Nonlinear Inhibition 

Inhibitory connections and interactions (some nonlinear) 
among the neurons in the primary visual cortex have been 
well documented by physiological and anatomical tech- 
n i q u e ~ ~ ~ - ~ ~  and are presumably the substrate for psycho- 
physically observed inhibition among channels.38 A num- 
ber of functional roles, including the generation or sharpen- 
ing of orientation and length selectivity and contrast gain 
control, have been attributed to these connections. We pro- 
pose that another consequence of intracortical inhibition is 
the suppression or reduction of spurious responses in nonop- 
timally tuned channels. 

What do we mean by spurious responses? First, we dis- 
cuss some observations about neurons with linear receptive 
field functions. Such a neuron typically gives a nonzero 
response to a stimulus to which i t  is not optimally tuned. 
For example, consider the texture in Fig. 4a. The bright-bar 
channel is tuned to the stimulus M (Fig. 4b), and its response 
(Fig. 4c) has a strong peak at the position of the stimulus. 
The dark-bar channel is not tuned to the stimulus and gives 
a response (Fig. 4d) consisting of two smaller peaks. We call 
this response spurious. The concept is general; the response 
in an orientationally tuned DOOG2 channel (as in Fig. 2) to a 
DOG1 stimulus may similarly be regarded as spurious. 

In Subsection 3.E we showed an example for which the 
spatial averaging of the response in the optimal channel 
gives the same value as the spatial average of a spurious 
response. The peak value is of course greater for the opti- 
mal channel. If intracortical inhibition acted in a way so as 
to favor responses in optimal channels and reduce the spuri- 
ous responses, texture discrimination would then be possible 
by using pooled responses. 

Physiological experiments on inhibition in V1 have not yet 
converged on a definitive model; indeed i t  is likely that there 
are several inhibitory circuits with different roles. At 
present we can only hypothesize a model and argue for (a) its 
functional adequacy and (b) its biological plausibility. For 
biological plausibility, we imposed three design constraints 
on the inhibition model: a neural implementation should 
(1) require only local connections (in the same or nearby V1 
hypercolumns), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) require only a few neural time steps, and 
(3) not demand unduly specific interconnection strengths 
between arbitrary pairs of neurons. 

One way to model this inhibition is as follows. Thresh- 
olds T,(Xo, yo) for neurons belonging to channel i with retino- 
topic coordinates xo, yo are computed: 

Here 1,i is the neighborhood of (20, yo) in which neurons in 
channelj  are able to inhibit neurons in channel i, and a,i is a 
measure of the effectiveness of this inhibition. The postin- 
hibition response PIR,(xo, yo) is given by 
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This results in a suppression of responses below the thresh- 
old. S,(xo, yo) is a sampling neighborhood from which the 
strong responses in channel i are selected for subsequent 
processing. 

One way to think about this mechanism is as a so-called 
leaders-take-most feedforward network; it is a variant of the 
winner-take-all type mechanisms quite popular in the neu- 
ral-network literature. 

We were guided in our choice of I,, and all by the design 
criterion of eliminating spurious responses. As an example, 
consider channels i and j that correspond to the positive and 
negative responses of the filter DOOG2((r). Figures 4c and 
4d show the responses in the two channels to a bright bar. 
The peaks in the negative (spurious) response are approxi- 
mately 0.65 times the positive central peak and are displaced 
from it  by 1 . 2 5 ~ .  This prompts a choice of a,, = 0.65 and Ill 
to be a disk of radius 1.250 in order to ensure a suppression of 
the negative response. This procedure can be repeated for 
all the 192 X 192 pairs of channels. However this violates 
our third criterion for biological plausibility because specific 
interconnection strengths are required between arbitrary 
pairs of neurons. We can however exploit the known clus- 
tering; nonorientationally tuned neurons tend to occur in 
the V1 blobs, and neurons sharing similar orientation prefer- 
ences occur together. This clustering leads us to form eight 
groups of channels in our framework (two radially symmet- 
ric + six oriented). Ill and a], are identical for all channels i 
in one of these groups; these values have been computed 
from the spurious responses in the channel i with the same u 

parameter as channel j. The actual values used in our simu- 
lations are shown in Tables 1 and 2. S,  was chosen to be a 
disk of constant radius. We will refer to this model of 
inhibition as model A. 

Model A seems rather elaborate, and it is natural to seek 
simpler models that might be adequate. In model B, we set 
all = 0.5. This corresponds to having a nonspecific local 
inhibitory pool of neurons and would be more consistent 
with the physiological evidence of Bonds.39 In model C, alr 

Table 1. Inhibitory Coefficients for Model A" 

DOGl(u,) 0.2 0.45 0.15 

DOOG2(u,, r,, 0,) 0.15 0.20 0.65 6(8,, 0,) 

DOG2(o,) 0.45 0.25 0.20 

6(8,, 8,) = 1 if 0, = 8,; 0 otherwise. The  inhibitory coefficients for models B, 
C, and D were constant: u , ~ ~  = 0.5, a,,c = 0, and u , , ~  = 0. 

Table 2. Radii of the Inhibition Neighborhoods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIji for 
Models A and Ba 

I 
1 DOGl(u,) DOG~(U,) DOOG2(g1, r,, 0,) 

DOGl(o,) 201 1.50, 1 . 2 5 ~ ~  
DOG2(u,) 201 1.50, 1.250, 
DOOG2(uL, T i ,  0, )  2UI 1.50, 1.250, 

In Models C and D the neighborhoods I,, are irrelevant. 
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computing local, strong responses in a neighhorhood zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS , .  
One could relate this model to outputs of complex cells th:tt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
do not show a significant modulation in their response when 
a stimulus is moved across the receptive field. Finally, mod- 
el D served as a control with PIR, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G .  
Nothdurft? has shown two characteristics of texture per- 
ception that any model must explain. Texture discrimina- 
bility depends on (a) the density of micropatterns in the 
image, with higher densities leading to easier discrimination, 
and (b) local differences rather than global differences. 
This naturally suggests the idea of computing the gradient of 
the smoothed postinhibition responses in each channel. 

The texture gradient that we use is defined as max,v 
(PIR, * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,,?)(x, y). Biologically, the computation of the gra- 
dient of the smoothed postinhibition response in each chan- 
nel can be done by using odd-symmetric oriented mecha- 
nisms similar to the edge-sensitive cells in V1. Of course, 
the mechanisms responsible for computing the texture gra- 
dient have large receptive fields ((T? is a measure of the size) 
and presumably occur in some extrastriate area. The maxi- 
mum operation seems a natural way of combining the out- 
puts of the different channels. Texture boundaries may be 
defined as corresponding to local peaks of the texture gradi- 
ent magnitude (Fig. 5 ) .  

Computation of the Texture Gradient 

H. Nonuse of Odd-Symmetric Mechanisms 

Our model used only channels corresponding to even-sym- 
metric filters. This choice was based on an interpretation of 
some experimental results of Rentschler et  ~ 1 . , 4 ~  who found 
that textures composed of mirror-image, compound Gabor 
signals were indistinguishable even when the individual mi- 
cropatterns were easily discriminated. There was no diffi- 
culty in discriminating textures composed of nonmirror- 
image, compound Gabor signals. A simplified version of the 
phenomenon can be seen by comparing Fig. 4a (easily seg- 
mentable) and Fig. 6 (not preattentively segmentable). We 
will show that this phenomenon implies that  odd-symmetric 
and even-symmetric filters are not treated identically in 
texture discrimination. Specifically, the signs of responses 
of odd-symmetric filters are ignored, while the signs of the 
responses of even-symmetric filters are used (for example, to 
distinguish dark-bar and bright-bar textures as in Fig. 4). 

First we supply some definitions: micropatterns MI and 
M:! are said to be y mirror symmetric (y-ms) if M l ( x )  = 
M,(-x)  and xy mirror symmetric (xy-ms) if M 1 ( z )  = 

Fig. 5. Detail of the portrait of Adele Bloch-Bauer by Gustav 
Klimt (left) and the texture boundaries that were found (right). 
The essential boundaries of the five perceived groups have been 
detected. 

.i. blalik ;ind 1?. I?erona 

Fig. 6 .  
terns. Segmentation is not preattentive. Compare with Fig. 4. 

Texture pair composed of y mirror-symmetric micropat- 

- M 2 ( - x ) .  Examples of y-ms pairs are found in Ref. 40 
(Figs. 2a and 2c) and in the two micropatterns in Fig. 6; Fig. 4 

contains an xy-ms pair. Consider any two y-ms patterns 
M I ,  Mr.  Now, the following operations (or any composition 
thereof) preserve y-ms: (a) half-wave rectification, (b) con- 
volution with any even-symmetric filter, and (c) nonlinear 
scaling I - g ( I ) .  Consequently, responses R , ( M J ,  R,(M2) in 
any channel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL corresponding to an even-symmetric filter are 
also y-ms. In fact, so also are postinhibition responses 
PlR,(M,), PIR,(Mz) if only inhibition from channels j corre- 
sponding to even-symmetric filters is considered [for any 
such j ,  R,(Ml), R,(M2) are y-ms, resulting in T,(MI) ,  T,(M:!), 
the respective thresholds being a y-ms pair]. Now any two 
patterns that  are a y-ms pair have identical spatial averages, 
and from the preceding argument so must postinhibition 
responses in even-symmetric channels. In other words, to 
segment a texture composed of M I  from one composed of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMz 
by using spatially averaged responses, we must rely on the 
channels corresponding to odd-symmetric filters. Interest- 
ingly, for an xy-ms pair, the situation is reversed; only even- 
symmetric filters are useful. To establish this, note that 
convolving an xy-ms pair with an odd filter makes it a y-ms 
pair. 

To find the texture boundary in Fig. 6, the visual system 
must rely on the differential activation of channels corre- 
sponding to odd-symmetric filters; the detection of texture 
boundary in Fig. 4a relies on even-symmetric channels. The 
latter is easily discriminable; the one in Fig. 6 is not. One 
could conclude from this result that odd-symhetric mecha- 
nisms are not utilized in texture perception but that even- 
symmetric are. This could be because (a) oddlsymmetric 
mechanisms are not part of the texture processink pathwaY 
or (b) inhibitory interactions between odd-symmdtric cells 
are such that their activity is greatly reduced when?they are 
stimulated by repetitive texture patterns. 

An alternative hypothesis is that the outputs of odd-sym- 
metric cells of opposite polarities are pooled together in the 
texture-processing pathway, and therefore the information 
necessary for segmenting y-ms textures is lost. 

We are not in a position to discriminate precisely among 
these hypotheses. Since we have not found any textures for 
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,hi& odd-symmetric mechanisms are necessary, we have 
hosen to exclude odd-symmetric mechanisms from our 

,odd 

EXPERIMENTAL RESULTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ye have compared the degree of texture discriminability 
hat was predicted by our algorithm with psychophysical 
ata from KroseI7 and Gurnsey and Browse.lo Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 
bows seven bipartite textures with elements constructed 
fterKrOse17 (Section 3.2, pp. 34-39), two after Williams and 
U ~ ~ S Z , ~ '  and one composed of R's and mirror-image R's 

R-mirror-R). For two of these textures, the texture 
radient (a' = 12 pixels, s, = constant) obtained by our 
jgorithm, using model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA for inhibition, is plotted as a func- 
ion of column number (Fig. 8). The texture boundary 
column 64) is associated with the central peak in the gradi- 
nt. The value of the gradient associated with this peak is 
&en to be a measure of the discriminability predicted by 
,ur algorithm. In Table 3, these data are presented in a 
nore easily readable form and compared with data from 
(rijse (Table 3.1, p. 39; stimulus onset asychrony, 320) and 
;urnsey and Browse (pairs 1.1,1.2,1.3,3.1) for mean overall 
liscriminability. Note that  the rank order of discriminabil- 
ty predicted by our model matches the rankings found ex- 
,erimentally. 
The Williams-Julesz textures were constructed to demon- 

trate essential nonlinearities in texture preception. Their 

Fig. 7. Nine textures that were used in our experiments. 
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Fig. 8. Texture gradient as a function of column number. For the 
128 X 128 textures in Fig. 7 the texture gradient is averaged along 
the vertical direction on the central middle portion of each column 
and plotted with respect to the horizontal coordinate. Such plots 
are shown for the most (L +) and least (R-mirror-R) discriminable 
textures. The value of the texture gradient at its central peak is 
taken to be the prediction of our model and is reported in Table 3, 
column 3. 

Table 3. Comparison of Predictions from Texture 
Segmentation Algorithm with Two Sets of 

Psychophysical Dataa 

Texture Pair 

+ O  
+ U  

L +  
LM 

+ T  
+ X  
T L  
LL ML 
R-mirror-R 

Ai 

Discriminability 
Data Refs. Data Predicted 
41 and 42 Ref. 43 Data 

100(saturated ) n.a. 407 
88.1 n.a. 225 
68.6 0.736 203 
n.a. n.a. 165 
52.3 0.4-0.55 159 
37.6 0.496 120 
30.3 n.a. 104 
30.6 0.421 90* 
n.a. n.a. 85 
n.8. n.a. 50' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a The symbol * indicates that  a side peak of the texture gradient was higher 
than the reported central peak. Because of differences in the scales used, the 
three columns should be compared only by the rank ordering of discriminabil- 
ity. The rank order of discriminability for the predicted data matches both 
other data rankings exactly. The L M and LL LL textures have been invented 
by Williams and Julesz as a counterexample to purely linear theor ie~ . '~  Our 
algorithm correctly ranks the L M pair within the most discriminable textures 
and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALL ML pair within the least discriminable ones. The discriminability 
of the + o texture given by Krose saturates his psychophysical scale (top 
value, zero standard deviation), so i t  cannot be compared quantitatively with 
the other discriminability figures (standard deviation ranging between 6.7 
and 11.7); ma., not available. Also compare Fig. 8. 

reasoning is as follows. The LM texture is easily discrimina- 
ble; not so the LLML texture (call i t  C), which is obtained by 
adding to the LM texture (call i t A) a uniform texture of 
little L's (call i t B) placed a t  the endpoints of the L and M 
micropatterns. If the discriminability between the left and 
right regions were a linear function of the image, then the 
discriminability of C = A + B would be the sum of the 
discriminabilities of A and B. As B is a single-texture region 
its discriminability is of course zero, so the discriminability 
of C should be equal to  that  of A. Clearly it is not. 

The match with the experimental data that  we have ob- 
tained is surprisingly good; we are not aware of any other 

\ 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Comparison of the Predictions from Models A-D with Segmentabil ity Measurements for  Two Sets of 
Exper imental  Data" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

__ - ~ _ _ _ _  

Discriminability 
Predicted Data 

Model D Model A Model B Model C 
Data Refs. Data Ref. Specific Constant No No Inhibition, 

Texture Pair 41 and 42 43 Inhibition Inhibition Inhibition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ,  = 1 pixel - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ O  100(sat) n.a. 407 450 235 35 
+ O  88.1 n.a. 225 306 140 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8' 
L +  68.6 0.736 203 327 202 20 
Ai 52.3 0.4-0.55 159 172 112 12 
+ T  37.6 0.496 120 189 126 12* 
+X 30.3 n.a. 104 170 158 10" 
T L  30.6 0.421 90* 170 87' 8* 

- 
a The symbol * indicates that a side peak of the texture gradient was higher than the central peak reported. 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Comparison of the  Discriminabil ity Ranking Given by Models A-D wi th  T h a t  for  Exper imental  Data 

Predicted Data 
Data Refs. 

Rankina 41 and 42 Model A Model B Model C Model D 
~ ~ 

+ O  + O  + O  + O  + O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ o  + a  + L  L +  L +  
L +  L +  + O  + X  +T, AI 

Ai A1 + T  + U  

+ T  + T  A', T L, + X + T  + X  
+ X , T L  + X  A' T L , + o  

T L  T L  

model that fits these data. Of course, the usual notes of 
caution for any model with parameters that are not directly 
measured from physiology or psychophysics apply. The 
particular equations and parameters that we have proposed 
are surely wrong in detail. To have any relevance to biologi- 
cal texture perception, the model should degrade gracefully, 
i.e., roughly similar ideas should work as well, and choices of 
parameters should not be too critical. 

One can gain additional insight into these issues by study- 
ing simplified variants of the inhibition model A. We did 
that by replacing i t  with the models B, C, and D described in 
Subsection 3.F. The results of these simulations are shown 
in Tables 4 and 5. Additional simulation results with a 
slightly different choice of parameters of model A may be 
found in Ref. 44. 

Some qualitative features of the results are noted below. 
Appropriate caution should be exercized as we do not have 
any error bars for the simulation data for the four models. 

1. Model A matches the experimental data best. 
2. Model B does almost as well. The order of discrimi- 

nability of the textures (+ 0) and (L +) is reversed. Most 
significant is the decrease in the discriminability of the tex- 
ture (A/); i t  is now in the same group as the three significant- 
ly less discriminable textures (+ T), (T L), and (+ X). 

3. For model C, we note that, in addition to the errors 
mentioned for model B, we have the unwanted increase in 
the discriminability of the texture (+ X). 

4. Model D serves as a control, with PIRi = Ri. The 
rs here can not be explained by the adaptation nonlin- 

5. LAPLACIAN PYRAMID TEXTURES 

Julesz and KroselB studied a texture, which was composed of 
L's and +'s, that Bergen and Adelson14 say is segmentable by 
using the output of a simple center-surround Laplacian-of- 
Gaussian filter. Julesz and Krose decomposed this image 
into a series of bandpass-filtered images by using the Lapla- 
cian pyramid technique. Levels 2, 3, and 4 of the pyramid 
appeared to be the ones showing a difference between the 
texture of L's and the texture of T's and hence responsible 
for texture discrimination. Julesz and Krose constructed 8 

new image for which these levels had been replaced by uni- 
form gray. The textures however remained highly discrimi- 
nable, which casts doubt on the validity of Bergen and Adel- 
son's explanation. 

We re-created this phenomenon (Fig. 9). The three tex- 
tures appear equally discriminable, and a correct model of 
texture perception should be able to predict this fact. We 
tested our model on these textures, and the results may be 
found in Fig. 10. I t  is seen that our model finds the textures 
approximately equally discriminable, as indeed it should. 
On examining various bandpass-filtered versions of the tex- 
tures, we observed that a t  most frequency bands there is 
some difference between the L's texture and the +'s texture; 
this difference can be amplified and used by the subsequent 
nonlinear stages of the model. In our simulation we found 
the most significant differences in the postinhibition re- 
sponses PIR; correspond to the positive part of DOG1 filters 
between 3 and 9 cldeg for the original +-L texture, corre- 
sponding indeed to the levels 2, 3, and 4 of the Laplacian 
pyramid. For the +-L texture deprived of the levels 2 ~ 3 ,  

and 4 of the Laplacian pyramid, the DOG2 filters with fie- 
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quencies above 10 c/deg were the most important for seg- 
mentation. The shapes of the filters are specified in Fig. 2. 

Julesz"5 has suggested that the technique of removing 
frequency bands that was used by Julesz and Krose can be 
used to generate counterexamples for theories that do not 
have any nonlinearity before the linear filtering stage. We 
have tried this on the +-L and A1 textures by deleting the 
frequencies that  appeared to be used by our algorithm for 
segmentation. A segmentable texture obtained this way 
would falsify our theory or, at  least, show that we need to add 
more filters to our implementation. As observed above, for 
the +-L texture every frequency band appears to contrib- 
ute to segmentation and so produces the trivial result that 
only a blank image is not segmentable. In the A1 texture, by 
filtering away the relevant frequency bands we considerably 

Fig. 9. Textures from left to right: the +L texture, the same after 
removal of Laplacian pyramid level 3 (+L -3), the same after 
removal of Laplacian pyramid levels 2, 3, and 4 (+L -234). The 
Laplacian pyramid was generated by taking differences of contigu- 
ous levels of a Gaussian pyramid. Level 0 of the Gaussian pyramid 
was the image itself; level i was the image convolved with a rotation- 
ally symmetric Gaussian of unitary norm, and u is equal to 2' pixels. 
The original image is 128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 128 pixels in size. In our experiment the 
(+ L) image and the (+ L -3) image were scaled by 2/3 and %, 
respectively, to reach roughly the same perceptual segmentability as 
the (+L - 234) image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y &io 

140.00 I 1 - +-~--234 - - --- 

- + L - 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- I  
20.00 /" 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
_ I  

i 

I I 
0. O d  

X 

Fig. 10. The 
average gradient over the central middle portion of each column of 
the picture is plotted. The values of the maxima are 134 for the (+ 
L) image, 114 for the (+ L -3) image, and 126 for the (+ L -234) 
image. These values have to be scaled by3/2 to be compared with the 
values in Fig. 8. 

0.00 50.00 100.00 

Texture gradient for the three textures in Fig. 9. 
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Fig. 11. Texture (Ai) (center) and two textures obtained by its 
bandpass filtering (left and right). Our simulations suggested that 
segmentation of Texture (Ai) does not rely on outputs of filters of 3- 
4,lO-11, and 15 c/deg. The two bandpassed images were obtained 
by filtering the original texture with radially symmetric window 
(brick wall) filters passing the corresponding bands (left) and a 
comparable number of complementary bands (right). Our model 
predicts that the left image should be much less segmentable than 
the one to the right. The bands used were (3-9 30-42 48-57) for the 
left image and (9-30 42-48) for the right image (frequency units here 
are in pixels and refer to 128 X 128 pixel-square images, which is not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to be confused with the c/deg units that are used in the rest of this 
paper). 

reduce discriminability (see Fig. ll), as expected from our 
model. 

6. DISCUSSION 

The results in Section 4 illustrate the explanatory power of 
our model and suggest that  many of the essential aspects of 
texture perception have been captured in our theory. We 
list here the principal contributions: 

1. Theoretical arguments pointing out the need for es- 
sential nonlinearities in texture perception and critiquing 
full-wave rectification, energy computation, and adaptation 
as choices of these nonlinearities. 

Arguments pointing out that the polarities of respons- 
es of odd-symmetric mechanisms are not utilized in texture 
discrimination. 

A demonstration that  a model using half-wave rectifi- 
cation and nonlinear inhibition can explain psychophysical 
data on degree of texture discriminability. (This model 
works equally well on the tricky examples of Julesz and 
Krose as well as Williams and Julesz.) 

2. 

3. 

Weaknesses of our model, which suggest further research, 
include the following list: 

1. Our model of nonlinear inhibition is somewhat ad hoc, 
as it was constructed in the absence of detailed quantitative 
experimental data. We hope that further research in physi- 
ology and psychophysics will provide these data. The pre- 
cise form of this stage (subthreshold suppression) in our 
model should be viewed as a stopgap approximation. 

2. Julesz,' Treisman,22 and Gurnsey and Browselo have 
all mentioned the asymmetries in various tasks in preatten- 
tive vision. I t  is most clearly seen in the data from Gurnsey 
and Browse, e.g., when a field of L's is embedded in a field of 
+'s, its discriminability (0.93) is much greater than for a 
field of +'s embedded in L's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0.53).  We suspect that this 
phenomenon is related to noise in the texture gradient. 
Similar ideas in the context of a different model of texture 
discrimination have been expressed by Rubenstein and 
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3. In our simulations, the choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu’ was made by hand 
(8, 12, or 16 pixels) in the computation of the texture gradi- 
ent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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