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Introduction 

Despite the considerable research attention recently 
devoted to diet and microbiota, the notion that dietary 
components can influence gastrointestinal microbiota 
composition and enhance host health is not new. Indeed, 
this very hypothesis was envisioned more than a century 
ago, long before any specific foods or food constituents 
had been identified and before techniques for assessing 
microbiota complexity could be appreciated [1,2]. One of 
the first specific dietary components to be recognized for 
its unique impact on the gut microbiota was breast milk 
[3]. Eventually, the prebiotic concept was introduced to 
describe those food ingredients or constituents that en-
rich for beneficial organisms in the gastrointestinal tract 

(GIT) [4]. In the past two decades, appreciable experimen-
tal and clinical evidence has emerged suggesting that 
prebiotics may promote gastroenterological homeosta-
sis and/or redress specific disease states associated with 
microbial imbalance (i.e., dysbiosis) [5*]. 

Like prebiotics, probiotics have also long been used as 
therapeutic agents for improving gastrointestinal health. 
However, most probiotic microorganisms are allochtho-
nous to the intestinal environment and are generally un-
able to colonize or persist in the GIT [6,7]. Prebiotics have 
a decided advantage by enriching for organisms already 
present in the gut ecosystem (so-called autochthonous 
members). Fermentation of prebiotic carbohydrates yields 
butyrate and other short chain fatty acids, as well as other 
end products that lower the local pH, stimulate mucin 
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Key Points 
● The human gut microbiota is profoundly influenced by 

prebiotic food ingredients as well as fermentable fi-
bers and oligosaccharides found in human milk. 

● Shifts in the gut microbiota are associated with positive 
systemic as well as specific health outcomes although 
clinical data are equivocal, in part because some indi-
viduals do not respond to prebiotic treatments. 

● Dietary strategies based on mixtures of prebiotic fibers 
or rationally designed synbiotic approaches may be 
more effective at modulating the gut microbiota. 

Table 1. Simple and complex prebiotics 

Simple  Complex 

Inulin  Pectins 
Fructooligosaccharide  Human milk oligosaccharide 
Galactooligosaccharide  Resistant starch 
Isomaltooligosaccharide  Arabinoxylan 
Mannan oligosaccharide 

Adapted from [22]. 

production by colonocytes, and induce production of im-
munomodulatory cytokines [8]. Thus, prebiotics not only 
cause shifts in the microbiota by supporting growth of 
particular GIT members but also serve as substrates for 
production of biologically active metabolites. 

Prebiotics now provide food formulators, as well as cli-
nicians, with rather simple diet-based opportunities to in-
fluence the composition of the gut microbiota and im-
prove intestinal health. In this review, we describe current 
strategies for how prebiotic approaches can be used to 
achieve these goals. Specifically, we address the prebiotic 
activity of fiber-rich foods, why some individuals respond 
to prebiotics and others do not, and the advantages of 
rational or synergistic synbiotics for inducing beneficial 
shifts in the gastrointestinal microbiota. 

Prebiotics in 2016: Emerging Concepts 

Despite the substantial industrial and clinical interest 
in prebiotics, the commercial market has been dominated 
by only a handful of prebiotics, mainly inulin, fructooli-
gosaccharides, and galactooligosaccharides (GOS) [9,10]. 
Several isomaltooligosaccharides products are also com-
mercially available [11]. In the United States, European 
Union, and Pacific Rim, these prebiotics are added as func-
tional ingredients in a wide variety of processed foods 
and beverages. Infant formula products, in particular, are 
often supplemented with GOS or fructooligosaccharides 
because of their ability to mimic a bifidogenic response 
similar to that which occurs with human milk oligosaccha-
rides in breast-fed infants [12,13]. 

Also documented to have prebiotic activity are resis-
tant starches, starches that are resistant or slowly resis-
tant to digestion and reach the colon intact. Depending 
on the type of resistant starches, studies have shown they 
enhance growth of bifidobacteria, as well as Eubacterium 

rectale, Ruminococcus bromii, and lactobacilli [5*,14–17]. 
Some of these changes in the microbiota are correlated 
with glycemic improvements [18] and high butyrate pro-
duction [19]. The latter could be favorable for the preven-
tion of colon cancer and inflammation [20,21]. In general, 
these commercial prebiotics consist of mostly linear oli-
gosaccharides or polysaccharides that contain only one 
or two monomeric sugars (Table 1) [22]. 

There is also considerable evidence showing that sev-
eral dietary fibers have prebiotic activity [23*]. In contrast 
to the rather simple, linear composition of commercial 
prebiotics, the carbohydrates in plants as well as those 
present in human milk (Table 1) are diverse and struc-
turally complex, with many containing functional groups 
[13,24*,25]. In the gut, they require participation of a 
more extensive and diverse array of hydrolytic enzymes 
to degrade these molecules into fermentable substrates 
[24*,26**]. Accordingly, there may be different host-de-
pendent responses, as the specific form or type of dietary 
fiber consumed by an individual may differentially affect 
the response of the microbiota [26**,27]. 

Prebiotic fibers are often natural constituents of a vari-
ety of foods, especially whole grains, fruits, root and other 
vegetables, and legumes. Although some foods contain 
appreciable concentrations of these prebiotics [28], in 
most western diets, consumption of these fiber-rich foods 
is probably too low to contribute much fermentable fi-
ber to the colon. However, for individuals who consume 
whole grain products and fiber-rich diets, significant ef-
fects on the microbiota have been observed, with shifts 
in the abundance of specific taxa and increased micro-
bial diversity [18,23*,29]. In contrast, other studies have 
shown that whole grain consumption does not always in-
duce changes in gut microbiota [30] or consistently affect 
clinical end points [31]. 

Based on these observations, several researchers have 
suggested that prebiotics are best defined based on their 
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physiological effects or functional capacities rather than 
the specific microbial targets affected [32*,33]. So-called 
second generation prebiotics were envisioned as provid-
ing specific functional benefits. According to this argu-
ment, dietary fibers may have prebiotic activity by caus-
ing broad changes in community structure, but without 
necessarily influencing abundances of bifidobacteria or 
lactobacilli [34]. 

It is worth noting that the convergence of “prebiotics” 
and “fiber” has led to the development of a new lexicon 
in the prebiotic community [35]. Indeed, “low-digestible” 
[36] and “nondigestible carbohydrates” [37], “prebiotic fi-
ber” [34], “functional fiber”, and “fermentable fiber” [38] 
are among the terms used to describe the food carbohy-
drates that have microbiome-influencing properties. Nei-
ther is there consensus on definitions of prebiotics nor the 
specific types of fiber [38,39]. Recently, Sonnenburg and 
Sonnenburg [40**] introduced the term “microbiota- ac-
cessible carbohydrate” (MAC) to describe fibers, as well as 
host-secreted mucin and microbial-produced saccharides, 
that are available as substrates for the gut community. The 
absence of these fibers in the colon (as a result of low-fi-
ber diets) may result in gut microbes looking elsewhere 
for sugars, namely, the mucin layer that protects the host. 

Prebiotics, the Healthy Gut Microbiota, and the 
Challenge of Individual Variation 

Although several microbial taxa or genera have been 
suggested as being beneficial to the host (i.e., Bifidobac-
terium and Lactobacillus spp. [41,42]), there is still no ac-
tual definition of what constitutes a healthy gut microbi-
ota [32*,43]. One recent study showed that gut microbiota 
from healthy human hunter gatherers was significantly dif-
ferent from a healthy western cohort, suggesting that the 
ideal or optimal composition of an individual’s gut micro-
biota depends on the lifestyle of the individual [44]. Al-
though enrichment of specific taxa by diet is possible, the 
clinical significance of these changes may not be readily 
apparent. Indeed, organisms not previously recognized 
as contributing to host heath, including Eubacteria, Fae-
calibacter, Akkermansia, Ruminococcus, and Roseburia, are 
known to respond to prebiotics [5*,16,45,46*]. Finally, sev-
eral microorganisms categorized previously as detrimen-
tal are now recognized as part of the gut “normobiosis” 
and may even be beneficial. For example, Clostridia spp. 
have recently been shown to be beneficial in the atten-
uation of diseases in models of colitis and allergic diar-
rhea [42,47,48]. 

Significant interindividual variability [49] can also make 
the outcome of dietary interventions less predictable. 

Indeed, multiple studies have reported the occurrence of 
study participants who respond to prebiotics and other di-
etary treatments (responders), whereas in similar studies, 
study participants fail to respond (nonresponders) to the 
same treatments [14,43,50,51]. Responses to dietary inter-
ventions likely depend on the taxonomic and functional 
composition of the gut microbiota. Thus, when a given 
compound is selectively fermented by a limited number of 
bacteria (fulfilling the actual definition of prebiotic) the re-
sponse will depend on the gene content and functionality 
of the target bacteria before supplementation. The pres-
ence of species known to metabolize certain compounds, 
however, is not a guarantee of a positive response to pre-
biotic supplementation. For instance, dietary interventions 
in obese study participants resulted in decreased choles-
terol concentrations, but only in individuals with high ini-
tial levels of Clostridium sphenoides [43]. Furthermore, Da-
vis et al. [52] showed that a fraction of study participants 
who had consumed as much as 10 g GOS/day for 3 weeks 
did not respond to the treatment, even though they har-
bored bifidobacteria at similar levels as that of respond-
ers. The authors suggested that nonresponders may lack 
specific strains capable of metabolizing GOS [52]. 

The ability of a particular species to ferment certain 
prebiotics is strain specific [53–55]. Thus, GIT environ-
ments having a similar taxonomic assembly might differ 
in functional capabilities and therefore result in different 
responses to prebiotics interventions. Moreover, although 
a given strain may have the biochemical and physiologi-
cal means to transport and metabolize a prebiotic, it must 
also outcompete other autochthonous members of the 
microbiota to actually utilize the prebiotic compounds 
and potentially expand its population [52]. Ultimately, the 
complexity and individuality of the gut microbiota and the 
structural complexity of dietary fibers likely contribute to 
the phenomenon of responders and nonresponders. 

As a practical strategy, consumption of fermentable fi-
ber or combinations of prebiotics may enrich for a larger 
and more diverse population of gut microbes. This strat-
egy could potentially reduce the occurrence of nonre-
sponders. In addition, stimulating a broader spectrum 
of microorganisms, either directly or via cross-feeding, 
could also promote greater diversity within the gut eco-
system. High levels of diversity are generally considered 
important for a functional gut ecosystem [56]. Several 
human gastrointestinal diseases are associated with re-
duced microbial diversity and gene richness [5*]. In par-
ticular, reductions in Firmicutes are frequently described 
[57]. Reduced diversity has also been reported to have 
an impact on the production of beneficial metabolites by 
gut microbes. For example, antibiotic treatments and di-
arrheal disease are characterized by reduced or altered 
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production of short chain fatty acids [58,59]. In contrast, 
increased diversity has been associated with an improve-
ment in insulin sensitivity [60]. Furthermore, and perhaps 
most importantly, the restoration of a diverse gut micro-
biota is associated with successful treatments for C. dif-
ficile infections [61*]. 

Ultimately, the success of a prebiotic treatment de-
pends on its ability to enhance health or reduce a disease 
phenotype. Several meta-analyses and systematic reviews 
of human trials with various prebiotics have been con-
ducted with various end points assessed (Table 2) [62–71]. 
In general, these analyses have shown that commercial 
prebiotics were effective for some conditions (i.e., consti-
pation and diarrhea), but not others (i.e., cholesterol re-
duction and eczema). 

Synbiotics to the Rescue 

Although some attempts to predict responses to di-
etary interventions based on the microbial composition of 
the gut prior to prebiotic consumption [43] have proven 
successful, it remains a challenge for practitioners and di-
etitians to recommend specific prebiotics to patients be-
cause of highly individualized responses. Accordingly, 
when rationally formulated, synbiotics may provide an 
effective strategy to enhance persistence and metabolic 
activity of specific beneficial probiotic strains. The most 
commonly used synbiotic combinations contain lactoba-
cilli and bifidobacteria, as the probiotic component, and 
oligosaccharides, inulin, or fibers as the prebiotic com-
ponent [72]. Despite the potential advantages of these 
products, however, how these synbiotics are specifically 
formulated can have considerable influence on their po-
tential effectiveness. 

When the synbiotic concept was first introduced [4], 
two configurations were proposed. Either the prebiotic 
and probiotic components are chosen independently of 
one another, with each responsible for a particular effect 
or health benefit (complementary synbiotics); or the syn-
biotic combination is specifically designed with a prebi-
otic substrate synergistically supporting the competitive-
ness, survival, or metabolic activity of a cognate probiotic 
strain in the gastrointestinal ecosystem (synergistic synbi-
otics) [73]. These synergistic synbiotics have the potential 
advantage of functioning even in prebiotic nonresponders, 
since they would not require the presence of responder 
strains. Furthermore, the incorporation of a selective fer-
mentable substrate represents a resource opportunity that 
increases the competitive fitness of the partner organism 
and could enhance its persistence [74]. 

Although several meta-analyses of synbiotic trials 

suggest clinical benefits (Table 3) [62,71,75–77], most tri-
als have lacked experimental power or were designed such 
that the treatment effects could not be determined, that 
is, the treatment effects of the pro and prebiotic were not 
determined independently. Additionally, microbial anal-
yses either were absent in several studies or the analyti-
cal methods were conducted at higher taxonomical levels 
and were not strain specific. Thus, only very few studies 
showed that the synbiotic had functioned synergistically in 
vivo [78,79,80*,81,82]; only one of these studies was con-
ducted in humans [82]. 

As noted above, for most synbiotic products, selec-
tion of pro and prebiotic pairs has been based on arbi-
trary considerations [80*] rather than on rational selection 
of synbiotic constituents. Although in-vitro screenings of 
potential synbiotic combinations are routinely used, such 
approaches do not account for ecological efficacy or ef-
fectiveness [83–88]. Moreover, in-situ predictions for how 
an individual will respond to prebiotics based on genome 
content may also be limited, in part, because they do not 
account for competitiveness and other interactions with 
autochthonous members of the gut microbiota (i.e., cross-
feeding and predation) [52,89,90]. Nonetheless, such anal-
yses can be a valuable first step toward designing syner-
gistic synbiotics. 

Recently, two novel approaches, both based on eco-
logical performance or fitness, have been proposed for 
developing synergistic synbiotics. The in-vivo selection 
method relies on the selection and isolation of strains 
whose abundance is significantly enriched in study par-
ticipants who had consumed a given prebiotic [80*]. When 
recombined as a synbiotic and introduced into a new host, 
these strains would be expected to colonize at greater 
levels than in the absence of the prebiotic. This approach 
was recently tested in an animal model. The synbiotic con-
sisted of a strain of B. adolescentis (IVS-1) that had been 
enriched by GOS in a single human study participants [52]. 
When combined with GOS and fed to rats, the abundance 
of B. adolescentis increased to about 30% of the total pop-
ulation [80*]. 

The other approach, called multitaxon INsertion Se-
quencing, uses libraries of transposon mutants of bacterial 
strains with probiotic interest to identify genes that de-
termine the fitness of that bacteria in response to a pre-
biotic treatment [91*]. Not only are bacteria that are spe-
cifically responsive to the treatment recognized in vivo 
but also the genes that drive the response are identified. 
As the authors state, however, this promising technique 
currently cannot distinguish between primary effects in-
duced by the diet and secondary community driven, eco-
logical effects. 
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Conclusion 

More than a century ago, Nobel laureate, Ilya Metch-
nikoff wrote “The dependence of the intestinal microbes 
on the food makes it possible to adopt measures to mod-
ify the flora in our bodies and to replace the harmful mi-
crobes by useful microbes” [92]. Noting the experimental 
challenges implied by this goal, Metchnikoff added that 
“Notwithstanding this difficulty, however, a rational solu-
tion of the problem must be sought.” These experimen-
tal difficulties no longer exist, and the ability to modulate 
the gastrointestinal microbiota by prebiotic fibers and ra-
tional synbiotics is now possible. Current efforts to relate 
shifts in the microbiota, and specific taxa, in particular, to 
health and disease or to affect a clinically proven health 
benefit, may well lead to well tolerated and effective ther-
apies for improving human health. In particular, formula-
tion of synergistic synbiotics containing strains having es-
tablished health benefits may provide opportunities for 
personalized treatments. 
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