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Summary 

An overview of some nonparametric procedures based on precedence (or ex­

ceedance) statistics is given. The procedures include both tests and confidence 

intervals. In particular, the construction of some simple distribution-free confi­

dence bounds for location difference of two distributions with the same shape is 

considered and some properties are derived. The asymptotic relative efficiency of 

an asymptotic form of the corresponding test relative to Wilcoxon's two-sample 

rank-sum test and the two-sample Student's t-test is given for various cases. 

Some K -sample problems are discussed where precedence type tests are useful, 

along with a review of the literature. 
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1. Introduction 

The main purpose of this paper is to present an overview of a class of simple nonparametric 

tests and confidence intervals based on what are called precedence (or exceedance) statistics. 

A formal definition of a precedence statistic in the two-sample setting is as follows. Let there 

be two independent random samples of X's and Y's of sizes m and n, respectively, from 

two continuous populations. Let X(,.) be a specified order statistic of the X-sample and let 

V,. denote the total number of V-observations that do not exceed, that is precede, X(,.). The 

statistic V,. is called a precedence statistic and a test based on V,. is referred to as a precedence 

test. A closely related test, used by some authors, is based on the statistic V:, which denotes 

the number of Y's that exceed X(,.). Thus V: is called an exceedance statistic and any test 

based on it is called an exceedance test. Clearly V,. + V: = n so that the precedence and 

the exceedance tests are statistically equivalent. Interestingly, there is a connection between 

the count V,. and the rank R,. of X(,.) in the combined sample of X's and V's. This is given 

by R,. = V,. + r. Thus rank tests can be written in terms of precedence tests and vice-versa. 

Also, a precedence test can be viewed as a two-sample analog of the usual one-sample sign 

(quantile) test. For example, if we let m -+ 00, with rim -+ p (0 < p < 1), we arrive 

in the one-sample situation and the precedence statistic reduces to the well known quantile 

test statistic (the sign test obtains when p = 1/2). An indication of such a test appeared 

in Thompson (1938). A discussion on quantile tests can be found in standard books on 

nonparametric statistics (see for example Gibbons and Chakraborti, 1992) and as such the 

one-sample problem is omitted from this paper. Also, we concentrate on the K (~ 2)-sample 

location problem and thus we do not consider applications of precedence or precedence type 

tests in the context of block designs. 

We begin with a discussion of the two-sample location problem and review some of the litera­

ture on precedence (and related) tests. Some simple confidence bounds and the corresponding 

one-sided precedence tests based on pairs of order statistics are studied next. This is followed 

by a discussion on generalizations to the multi-sample location problem. An important prac­

tical advantage of the class of precedence tests, to be elaborated later, is that in certain 

experimental situations the tests can be applied before all the data are collected. Thus the 

experiment can be terminated early and a decision can be reached on the basis of a precedence 

test, resulting in savings in time and resources. Also, being distribution-free, the precedence 
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tests and confidence bounds are more flexible and are more generally applicable. Moreover, 

the procedures share the advantage associated with many non parametric procedures, namely 

that their applications only require simple calculations. 

The paper is organized as follows. The two-sample problem is outlined in Section 2. Section 

3 is a survey of some literature. The proposed confidence bounds are presented in Section 4 

with a discussion on the selection of preferable bounds in Section 5. Some properties of the 

confidence bounds and the associated tests are examined in Section 6 and 7. In section 8 

some K -sample problems are introduced. Various precedence type tests for these problems 

are reviewed in section 9. 

2. The Two-sample Problem 

Let X and Y be two independent random variables with unknown continuous cumulative 

distribution functions F(x) and G(y), respectively. The density functions corresponding to 

F and G, if they exist, are denoted by lex) and g(y), respectively. Suppose two independent 

samples of observations XI,"', Xm and Y1 ,"', Yn , respectively, are drawn from the two 

distributions so that there are a total of N = m + n observations. The order statistics are 

denoted by X(l) < ... < X(m) and Y(l) < ... < y(n), respectively. It is well known that 

the use of order statistics often results in very simple b.ut efficient tests. Also, because of 

their very definition, the order statistics are often the most suitable statistics in a host of 

applications. For example, in the field of life-testing, when observations arrive in order of 

magnitude and one needs to analyze the data before all observations become available, it 

is natural to consider applying tests based on order statistics. The advantages are possible 

shortening of the duration of the experiment (testing time) and also of reducing the number 

of test items to be destroyed. We are interested in the location difference and it is assumed, 

without loss of generality, that F(x) = G(x + 6) for all x and with 9 E e c lRt, so that 

F(.) and G(·) have the same shape. The problem is to consider distribution-free tests and 

the corresponding confidence bounds for 9 based on some precedence statistics. The null 

hypothesis Ho : 9 = 0, that the two distributions are identical, is tested against either the 

one-sided alternative HI : 9> 0, or the two-sided alternative H2 : 6 :f:. 0. 

It may be noted that a test based on the precedence statistic V,. is statistically equivalent to 
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a test based on two order statistics, one from each sample. This follows since 

v,. < i if and only if nGn(X(,.») < i 

if and only if XC,,) < Y(i)' 

(1) 

(2) 

where Gn (.) is the empirical distribution function of the V-sample. The last equation also 

highlights the fact that the precedence tests involve a comparison of the two-sample quantile 

functions. Various precedence tests have been proposed in the literature using either the 

counting form (1), or the order statistic form (2). 

3. A Review of Some Literature 

For two continuous populations with the same shape, precedence tests (and the corresponding 

confidence bounds) can be used to test for a possible difference in the location parameters. 

These tests are particularly useful when a simple and quick "in the field" analysis of the data 

is desirable. Some of the simplest tests will now be summarized. 

For arbitrary sample sizes a simple procedure for testing is proposed by Tukey (1959). Hone 

sample contains the highest value and the other the lowest, then we may choose i) to count 

the number of values in the one sample exceeding all values in the other, ii) to count the 

number of values in the other sample falling below all those in the one, and iii) to sum these 

two counts; it is required that neither count be zero. If m and n don't differ too much, then 

the critical values of the total count are roughly 7, 10 and 13 with two-sided confidence level 

of .05, .01 and .001, respectively. A one-sided test was also presented by Sidak-Vondracek 

(1957). 

A popular distribution-free test for the two-sample location problem is the Mood-Westen berg 

joint median test (Mood, 1954; Westenberg, 1948, 1950 and 1952). The test is based on W, 

the number of Y -observations smaller than (Le., that precede) m, the median of the combined 

sample of X's and Y's. The null hypothesis Ho can be tested by comparing the proportions of 

the XiS and the Y's that lie below m. If the alternative hypothesis is HI, the test is to reject 

Ho if W < w, where w is determined such that the size of the test is Q. If the alternative 

is H2 , the test can be performed by setting up a 2 x 2-table with the X-sample and the 

Y-sample, as the row categories and "smaller than m" and "larger than or equal to m" as 

the column categories, and applying the usual chi-square criterion with 1 d.f. The Pitman 
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ARE (asymptotic relative efficiency) of the median test relative to Student's t-test in the case 

of two normal populations with equal variances is equal to ~, which is about .64. The median 

test is the loca.lly most powerful linear rank test when the underlying distributions are double 

exponential. Exact power computations for m = n = 3, 4, 5 and normal distributions have 

been made by Dixon (1954). Extensions to the case of several quantiles in the combined 

sample is considered by Massey (1951). 

Chakravarti, Leone and Alanen (1962) have shown that the ARE of the median test and 

the test of Massey (1951) based on the first quartile and the median are zero, when these 

two tests are compared with the likelihood-ratio test for the exponential distribution. They 

found Massey's test to be about three times as efficient as the median test. Chakravarti, et al. 

(1961) derived the exact power of the median test and Massey's test under the exponential, 

the uniform shift and the uniform scale alternatives. 

The median test is a special case of a joint quantile test. Let Z(,.), where r is specified 

beforehand, be the roth order statistic of the combined sample. The joint quantile test is 

based on the number of WI" the number of V-observations that are smaller than Z(,.). Like 

the median test, the null hypothesis Ho is rejected against the alternative Ht, if WI' < w, 

where w is obtained such that the size of the test is 0'. Against the two-sided alternative H2, 

the test may be performed by setting up a 2 x 2-table with the X -sample and the Y -sample as 

the row categories and "smaller than Z(,.)" and "larger than or equal to Z(,.)" as the column 

categories and applying the usual chi-square criterion with 1 dJ. To see that a joint quantile 

test is a precedence test (Pratt, 1964; van der Laan, 1970b) note that W,. < w if and only if 

the smallest r - 1 observations in the combined sample include at most w - 1 Y's and thus 

at least r - w X's, which is possible if and only if X(r-w) < lew). 

Hemelrijk (1950) investigated joint quantile tests for arbitrary underlying distributions, con­

tinuous or discrete and proposed a generalization of the quantile test, namely a joint two­

quantiles test. Here two percentiles q1>l and qPa (> q1>l) of the combined sample (for the exact 

definition, see Hemelrijk, 1950) are chosen and the num~er 51 of observations of one sam­

ple smaller than q1>l and the number 52 of observations of the same sample larger than qPa 

are determined. The critical region of this test consists of pairs (5b 52) with the smallest 

probabilities under Ro. Generalizations to more than two quantiles are possible. 
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Another simple test of the equality of two distributions is the control median test proposed 

by Mathisen (1943). The test is a precedence test based on Vm +1, the number of observations 

of the Y -sample of size 2n that precede the median of the X -sample of size 2m + 1. The null 

distribution of Vm +1 can be obtained in a closed form and will be discussed later. Mathisen 

provided the exact lower and upper .01 and .OS percentage points for the test. For large m 

and n, a normal approximation can be used. The name control median test derives from the 

fact that in certain applications the X-population represents a control and the V-population 

represents a treatment. The test is clearly applicable in situations where such a designation 

does not exist and in fact, in life-testing problems one can rename the samples and apply 

the test, depending on which of the sample medians become available first. Mathisen also 

discussed a precedence type test which makes use of the median and quartiles in the first 

sample. 

It is clear that in general one may choose, instead of the median, say, the Tth order statistic 

of the X-sample and base the test on the precedence statistic Vf" Such a test may be referred 

to as the control quantile test. Thus for the joint quantile test one finds a suitable quantile 

of the combined sample and uses the number of observations from any of the samples that 

precede the chosen quantile to define a test. On the other hand for the control quantile test 

one finds a suitable quantile from one of the samples (say the one corresponding to a control) 

and uses the number of observations in the other sample that precede the chosen control 

quantile to define a test. 

Bowker (1944) showed that the control median test may not be consistent with respect to 

certain alternatives, say, when F and G are identical in the neighbourhood of their medians. 

However, the test can be shown to be consistent for the shift alternatives: F( x) == G( x + 6), 

for the practically important case that /(x) = F'(x) exists and the set {x;/(x) # O} is an 

interval. Similar remarks can be made for all these kinds of quantile tests. 

Gart (1963) proposed an approximate chi-square test against a two-sided alternative based 

on 

X2 = (12VH1 - 11 - 1)2(28 + 3), 

n(2s + n + 2) 
(3) 

where m = 28 + LUnder Ho, the distribution of X2 can be approximated by a chi-square 

distribution with 1 dJ. Gart's test rejects Ho in favour of H2 if X2 > xta' Gart also studied 
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the asymptotic non-null distribution of the test statistic and showed that the Pitman ARE 

of the control median test is 1 with respect to the Mood-Westen berg joint median test. The 

same result is true for any other quantile. Gastwirth (1968) provided more details about the 

asymptotic distribution of the control median statistic and proposed a modification of the 

test better suited for the two-sided alternatives. 

As noted earlier, precedence tests sometimes have the advantage that they lead to an early 

termination of an experiment. In the case of comparing life test results, where the data 

become available in a naturally increasing order of magnitude, it is possible that the unknown 

joint median is large, whereas the median of one of the samples, say of the X -sample, is not. 

In this situation the control median test has an important practical advantage over the joint 

median test, namely that the former can be applied before the latter (Gastwirth, 1968) and 

usually well before all the observations have been collected. 

As noted before, in general, precedence tests can be based on the statistic v,. which equals 

the number of Y -observations that precede X(,,), where r = 1,2, ... , m, is selected in advance. 

It can be shown that under H 0 

P(V" = s) = s = O,l, ... ,n, (4) 

and hence any precedence test based on V" is a distribution-free test. Under the assump­

tion F(x) = G(x + 8), X's are distributed as Y - 8, so that under RI : 8 > 0, the X's 

are stochastically smaller than the Y's and therefore, intuitively, small values of V" should 

mitigate against the null hypothesis in favour of the alternative. On the other hand if the 

alternative hypothesis is one-sided but in the opposite direction: 8 < 0, then the Y's are 

stochastically smaller than the X's and thus large values of V" should lead to a rejection of 

Ro. These facts amply illustrate the simplicity and usefulness of precedence (count based) 

tests. A choice of the quantity r is important. A practical choice is the median of the X­

sample, although ideally, r should be chosen so that the test is most "sensitive" to location 

differences for a variety of distributions and quantiles. This raises the question of whether 

there is a "best" precedence testi more will be said about this point later on. Some special 
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cases of the precedence test are r = i( m+ 1), m odd, which yields Mathisen's control median 

test, and r = 1, which yields the Rosenbaum (1954) test. Epstein (1954), Gumbel and Von 

Schelling (1950), Sarkadi (1957) and Ha.rris (1952) presented derivations of null distributions 

and moments, as well as asymptotic approximations. 

An expression for the power of a precedence test can be easily obtained. Suppose that the 

alternative is H l , so that the test is to reject Ho jf V,. < v, where v = Vcr is to be determined 

such that the size of the test is Q. The power of the test follows from the fact that 

so that the power of the precedence test is given by 

"0-1 

f3( P, G) = L P(V,. = i), (6) 
i=O 

where Vcr is the largest integer such that 

"0-1 

L PHo(V,. = 8) ::; 0:, (7) 
.=0 

and PHo(v" = 8), given by (4), follows from (5) when P = G. 

Thus the power of a precedence test depends on the underlying distribution functions P 

and G only through the composite function GP-1
(.). This shows tha.t a precedence test is a 

strongly distribution-free test in the sense of Bell, Moser and Thompson (1966). Katzenbeisser 

(1989) and Liu (1992) presented results concerning the power of precedence tests against 

location alternatives under exponential, logistic and rectangular distributions. Sukhatme 

(1992) studied the power of some precedence tests under the Lehmann alternatives and 

obtained exact expressions for the powers of the Mathisen test and the Rosenbaum test. 

These results can be obtained from (6). For completeness it may be noted that closed 

form expressions for the power of precedence tests against the uniform shift alternatives, the 

exponential shift alternatives and the Lehmann alternatives can also be found in van der Laan 

(1970b). Also, it may be noted that the function G p-l arises in the context of a two-sample 

p-p plot, a well known nonparametric graphical procedure (Wilk and Gnanadesikan, 1968) 

for testing if two distributions are identical. Young (1973) discussed the precedence test and 

obtained a normal approximation to its power function. 
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As noted earlier, the asymptotic distribution ofthe precedence statistic V has been obtained 

in the literature. Here we state the result as given in Chakraborti and Mukerjee (1989). Let 

VI be the pth quantile of the X-population and let {Tm} be a sequence of positive integers such 

that limm_oo(Tm/m) - p, 0 < p < 1. For example, one might take Tm/m :5 p < (rm + l)/m. 

Also let limm.n_oo{n/m) = A, where A (0 < A < (0) is a fixed quantity between 0 and 00, and 

let Vm•n be the number of Y -observations that do not exceed X,. ... Then the random variable 

n- I
/

2[Vm •n - nG(vl)] is asymptotically normally distributed with mean 0 and variance 

(8) 

A test statistic (5z + ~) - (5" + Rz ) was suggested by Haga (1959/1960), where 5z and 

Rz denote the number of X -observations larger than Y(n) and smaller than y(l), respectively. 

Similarly, 5" and ~ denote the number of Y -observations larger then X(m) and smaller than 

X(l), respectively. Hajek and Sidak (1967) propose, among other forms of statistics, a test 

based on min (5z,~) - min(5", Rz)' These two test statistics may be used against one- and 

two-sided alternatives. 

Epstein (1955) studied the relative merits of four nonparametric test procedures to test the 

null hypothesis of equal means, on the basis of samples of size 10 from two normal populations 

with equal variances. One of these tests is a. special kind of an exceedance test for samples of 

equal size. Let W,. :::;; max(X(,.) , Y(,.». If W,. = XC,.), count the number of Y's which exceed 

X(,.). On the other hand, if W,. = y(,.), count the number of X's which exceed Y(,.). The test 

statistic E,. is the number of exceedances. The study was limited to the cases T == 1, 2 and 3. 

The other tests are the rank-sum test of Wilcoxon, the run test and the maximum-deviation 

test (this is a truncated maximum-deviation test (Tsao, 1954) with the truncation taking 

place at a time not later than U,. == max(X(,.) , 1(,.», where r is fixed in advance). In table 

3.1 the experimental results for 200 pairs of samples are reproduced (the results for different 

rows are based on the same samples). 

Insert Table 3.1 Here' 

Nelson (1963) proposed a precedence testing procedure particularly useful in life-testing prob­

lems. His test is based on the number Kl of observations in the sample yielding the smallest 
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observation which precede the r-th order statistic of the other sample. This test is mathemat­

ically equivalent to the exceedance test in which one counts the number ]{2 of observations in 

the sample yielding the first failure which exceed the r-th order statistic of the other sample. 

The tests are related by KI = n - ](2 for all r, where n is the size of the sample yielding 

the smallest observation. Tables with critical values of ]{t for the precedence test with r = 1 

are given for significance levels less than or equal to .10, .05, .01 (two-sided) and less than 

or equal to .05, .025, .005 (one-sided), for all combinations of sample sizes up to twenty. 

Recently, Nelson (1993) reintroduced the test and compared the power of a precedence test 

with the popular Wilcoxon rank-sum test in a simulation study where random samples were 

generated from two normal distributions. In this context it was reinforced that although a 

precedence test could lead to savings in resources by allowing a termination of the experi­

ment before all the observations are made, the price one may have to pay is the power. For 

example, the power of a precedence test may be considerably less than that of the well known 

Wilcoxon rank-sum test, which of course, requires that all observations be available at the 

time of analysis. A computer program, written in BASIC, which can analyze the results of a 

precedence test, was provided. 

Lehmann (1963) showed that if P[U:5 a] = P[U ~ b] = T' then P[D{AH):5 8:5 DCo)] = I-a, 

where U is the Mann-Whitney statistic, D(l) < ... < D(mn) are the ordered differences in ob­

servations from the two independent samples, and 8 is the shift parameter. He further showed 

that this confidence interval, which, in a specific way, is related to a precedence statistic (van 

der Laan, 1970b; Chapter 7.1) inherits certain asymptotic efficiency properties from the 

Mann-Whitney test and gave a comparison of the interval [D{AH)' D(b)] with the t inter­

val. Sen (1966) generalized this procedure from the Mann-Whitney to Chernoff-Savage type 

statistics. There are practical difficulties in using [D(AH)' D(o)] since many differences have 

to be ordered. This can be partially alleviated by some graphical methods presented in Moses 

(1965) and discussed in several textbooks (e.g. Gibbons, 1976; Gibbons and Chakraborti, 

1992). 

Eilbott and Nadler (1965) investigated some precedence tests for life-testing problems under 

the assumption of underlying exponential distributions. Let F( z) = 1 - exp( -z !8z ), z > 0, 

and G(y) = 1 - exp( -y!8,,), 11 > 0, respectively, and suppose Ho : 8z = 8" is to be tested 

against HI : 8z > 8". The two groups of items (of size m and n, respectively) are placed 
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on test simultaneously and testing is terminated as soon as k out of the m X's fail or r 

out of the nY's fail, whichever comes first. The null hypothesis is rejected in favour of 

the alternative if k of the X failures are observed before T of the Y failures. Note that 

this is a precedence test since the critical region is equivalent to V,,'" ~ k, where v,.* denotes 

the number of X's that precede 1(,,). They discussed various properties of the precedence 

test including the expected duration (testing time) and obtained closed·form expressions for 

the power function. They also derived the one-sided uniformly most powerful test for this 

problem and compared it, asymptotically, with the precedence test. For the problem of 

testing Ho against H2 : 8. :/: 811 , Eilbott and Nadler proposed to reject the null hypothesis 

if X(kl) < 1("1) or 1(~) < X(,.,). If, in addition, the restriction: min(kbk2) ~ ma.x(Tl,T2) is 

imposed, then the power function ofthe test is given by P(X(kd < 1("1») + P(1(~) < X(",»). 

For the special case Tl = T2 = r, kl = k2 = k and m = n, these restricted test plans 

are equivalent to the procedures investigated by Epstein (1955). On the other hand, when 

Tl = T2 = 1 does not hold, these restricted test plans differ from the general two·tailed tests 

proposed by Nelson (1963). Nelson's procedure depends on which sample gave rise to the 

first observed failure, whereas EHbott and Nadler's procedure clearly does not. Their findings 

provide further insight into its properties in situations where the underlying distributions are 

unknown. They concluded that " ... unless one knows that the underlying distributions are 

approximately normal, the use of a precedence life test with very small T is unwise. If no 

pertinent knowledge of the underlying distributions is available, we believe it prudent to 

choose a test plan with T ~ 3 and balanced sample sizes when circumstances permit." 

Shorack (1967) showed that the expressions of the power function derived by EHbott and 

Nadler are in fact valid for a large class of distributions which include the exponential dis­

tribution, namely the class of distributions:F = {(F,G) : G = 1 - (1 - F)",6 > a}. He 

showed that the power function in the case of exponential distributions with difference in 

scale parameters is a function of A = (J7I/(J. only. Young (1973) presented some asymptotic 

results for the precedence test of Eilbott and Nadler (1965), including the asymptotic relative 

efficiency with respect to the F test for the scale parameter of an exponential distribution. 

The precedence statistic ~, which represents the number of Y's that precede X(,,), is also 

referred to as the "placement" of XC,,) among the observations in the Y-sample. Fligner 

and Wolfe (1976) and Orban and Wolfe (1982) derived various properties of the placements, 
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including the first two moments under the null hypothesis. The placements are closely related 

to another class of statistics called the "block-frequencies" or the "two-sample coverages." 

The reader is referred to Wilks (1963) for a discussion of the statistical properties of the 

coverages. 

Hackl and Katzenbeisser (1984) proposed a precedence type test of Ho against the alterna­

tive that the dispersion of F exceeds the dispersion of G. Chakraborti and Mukerjee (1989) 

considered the problem of estimating the probability that a Y -observation will exceed some 

specified quantile of the X -population. Such a quantity can be used to define a nonparametric 

measure of the difference between F and G and may be useful in survival/reliability analysis, 

especially in situations where the X-population represents a "control" and the Y-population 

represents some experimental condition. An asymptotically distribution-free confidence in­

terval for this measure was given based on a precedence type statistic and the performance 

of the interval was studied in a simulation study. 

Lin and Sukhatme (1992) considered the problem of finding the "best" precedence test for 

the "Lehmann alternatives" where distribution functions F and G are related by F(x) = 

1 - (1 - G(x»\ >. > 1. The Lehmann alternatives, which define a class of distributions, 

allow a semiparametric formulation of the equality of two distributions and are quite popular 

in survival analysis and reliability problems. The class includes exponential distributions, 

Wei bull distributions differing only in scale and distributions with proportional hazard rates. 

The "best" means the most powerful test against a simple alternative A = Ao. This approach 

is different from the one in van der Laan (1970b) where the idea of a most stringent (Lehmann, 

1959) test is used. 

Finally, it may be noted that some authors have studied precedence tests for the Behrens­

Fisher type problems. For example, Schlittgen (1979) proposed a nonparametric test for 

testing differences of location in two independent samples without assuming equal scale pa­

rameters. The test is based on simultaneous application of two modified median tests, each 

using its sample median of the two samples. The test is 'somewhat complicated since it is 

based on a two-dimensional rejection region. In this paper, however, we concentrate on the 

shift alternatives. 
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4. Simple Confidence Bounds and Tests Based on Pairs of Order Statistics 

In this section confidence bounds and corresponding tests based on pairs of order statistics 

will be considered for the two-sample case. The corresponding tests are precedence tests. 

The presentation is from van der Laan (1970a,b) where a general class of lower confidence 

bounds was considered for the difference in location, 8, defined by 

P(.8th largest of 1'(;.) - X(i .. ) < 8; r = 1, -", R) ~ 1 - a" (9) 

and a class of upper confidence bounds for 8 defined by 

P(-yth largest of 1'(i .. ) - X(i .. ) > 8; r = 1"", R) ~ 1 - at" (10) 

If R = 1, and thus {3 = 1, then a lower confidence bound for 8 is given by 1'(it) - X(il) < 

8, where i l and it, can be chosen in such a way that the confidence bound and/or the 

corresponding test have nice properties. Similar remarks can be made for upper confidence 

bounds for 8. 

If the lower confidence bound is smaller than the upper confidence bound, with probability 

one, then a confidence interval with confidence level 0 can be obtained by combining these 

bounds, and where 0 = a, + au. For the confidence coefficients 1 - ai, 1 - o~ and 1 - 0* 

the property 0* = ai + o~ holds. 

The case R = 1 is now considered in more detail. In this case the class of lower confidence 

bounds is denoted by Cl and the class of corresponding precedence tests is denoted by Vl -

The mn lower confidence bounds l"(j) - X(i) of Cl for 8 are denoted by Dji, with 1 ~ i ~ m 

and 1 ~ j ~ n, and are given in Mood (1950) and Mood and Graybill (1963). Mood and 

Graybill suggest a criterion for selecting a particular confidence bound to be used. This 

criterion is such that the corresponding test has significance level approximately equal to o. 

The confidence coefficient of the lower confidence bound 'Dii is equal to 

P(D .. 8) = 1 ~ (i + , - 1) (N - i - ') 't < (H\) .t...-., n _ I ' i = 1, ... , m; j = I" ... , n, 
n '=J 

(11) 

which follows from (4) using the fact that 
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with Y(;) = 1'(;) - 9, j = 1, .•. , n. The lower confidence bound yields a test of Ho : 9 = 

o against the alternative HI : 9 > O. The test rejects Ho if Dii > O. Note that D;t > 

o if and only if 1'(;) > XCI)' so that the Dis test is a precedence test. Without loss of 

generality the null hypothesis can be formulated as (I = 0, because 9 = 90 (60 known) can be 

transformed into H 0 by taking Y - 90 instead of Y. 

The following theorem shows that the precedence tests are consistent. 

Theorem 4.1. If m, n, i and j tend to infinity such that £, ~..... A (0 < A < 1), and F(·) 

has a density f(-) continuous in the neighbourhood of {)" where F({l.) = A and f({l.) > 0, 

then P(Dji > 0 IHl : 9 = 91 > 0) tends to 1. 

Proof: 

Under the given conditions 1'(;) and X(i) converge in probability to T}>.. and 6" respectively, 

where F(6.) = A and G(T}l.) = A. So for each € > 0 and 0 < fJ < 1 one can find Nc .6 such that 

for m and n larger than Nc .6 one has 

and 

Now under HI, TJ), > 6, so that taking € = T}l. - 6. = 61 , one gets 

P[Dii > 0] = P[1'(i) - XCi) > 0] 

~ p [ IYw -T}>..I < i A IXCi) - 61 < i] 

= p [ l1'(i) - T}l.l < 5] P [ IX(i) - 61 <: 'i] > (1 - 6)2 , 

and the result follows immediately. o 

The subscripts j and i of Dis must be chosen beforehand, namely before'the results of the 

experiment are known. In the next section a selection scheme for the subscripts is indicated. 
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6. Selection of Confidence Bounds from C1 

In C1 there are many candidates for a lower confidence bound for (J. It is possible to select a 

lower confidence bound on the basis of the idea of a most stringent test. 

For any pair of sample sizes (m, n) and a given level of significance a, the test with the 

maximal size among all available level ex tests Dii is determined!. Denote the power function 

of this test by.8maxliae(tija). Then O~50 is determined for which Pmaxaise(O~50,iex) = .50. 

Next among all level ex tests Dji the one with maximal power at ~50 is determined and its 

power function is denoted by P*(8). Then O~26'(}~60 and (}~76 are calculated by P*«(}~25) = .25, 

P"«(J~60) = .50 and P·(0~15) = .75. These computations are carried out in order to find the 

region in which the power functions of the better tests have interesting values. For all level 

ex tests the power is determined at these three points O~25' 0~50 and 0~76' In each of these 

three points the maximal powers b.21;, b.60 and b.75, respectively, among all level ex tests are 

determined. Then the test being selected is the one (with power function P(fJ» among all 

level ex tests for which 

is minimal, Le. minimizes the average shortcoming over three interesting points. Thus, 

roughly speaking, this selected test has, on a.verage, optimal power among all level ex tests. 

This selection of tests, and consequently of lower confidence bounds, has been performed 

for normal distributions with common a variance 0'2 and for sample sizes (~ 3) up to and 

including m = 15 and n = 15 and for six significance levels. In this paper only the results 

for two significance levels, .01 and .05, are given in Tables 5.3 and 5.4. We need to compute 

the power P(6),0 = O*/u, of the Dji test for testing Ho against H1 : 0 = 0* > O. From (6) 

one gets 

(12) 

'In lOme cues ihere is more than one test with maximal size. In ihese cues the test with maximal i hu 

been taken. 

15 



where it denotes the standard normal distribution function. To evaluate (12) numerical 

integration has been employed where an approximation for itO (d. Hastings, 1955) has 

been used. The error function has been approxima.ted with maximal error 10-9 • Note that 

if D;i is the selected test for the pair of sample sizes m and n, then Dm-i+1.n-i+1 is the 

selected test for the pair of sample sizes nand m. For large m and n normal approximations 

can be used (d. Mood, 1950i Mood and Graybill, 1963; van der Laan, 1970b). 

Using standard methods it can be shown that in general the ARE of the Dii test relative to 

the Wilcoxon rank-sum test is equal to 

1'(0) 
(13) 

3(J~oo J2 (t )dt)2 ' 

for any continuous density function I with 1(0) > O. Relative to the two-sample t-test the 

ARE of the D;i test is equal to 

(14) 

for any continuous density function I with variance 0'2. 

In Tables 5.3 and 5,4 some values of the ARE are given. 

Insert Table 5.3 and Table 5.4 Here 

6. Comparison of the Selected Lower Confidence Bounds Dii with the Lower 

Confidence Intervals Based on the t-distribution 

It is possible to compare the selected lower confidence bounds with the lower confidence 

bounds based on the t-distribution directly by means of the expected lengths of the one­

sided confidence intervals. The length of a one-sided confidence interval is defined in this 

context as the absolute value of the difference of (J and the confidence bound. In the case of 

normal distributions with common variance 1 (this assumption can be made without loss of 

generality) and confidence level 1 - 0 = .95 the selected 'lower confidence bounds Dji (with 

confidence coefficient 1-0") have been compared with the lower confidence bounds based on 

the two-sample Student's t-test with the same confidence coefficient for each pair of sample 

sizes (smaller than or equal to 15) by determining the ratios of the expected lengths of the 

one-sided confidence intervals, namely 
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with S2 is the pooled estimator ofthe common variance and where the (1 - a*)-percentage 

points tI-o-(N -2) ofthe t-distribution with (N -2) degrees offreedom and E{S} have been 

approximated by some simple extra- and interpolations from tables in Pearson and Hartley 

(1958). The results are presented in table 6.1. It can be seen that for this case the loss is 

about 20 per cent, which seems satisfactory. 

Insert Table 6.1 Here 

Next we discuss some multi-sample extensions of precedence tests. 

7. Some K -sample Problems 

Suppose that I{ (~ 2) independent random samples Xhi, i = 1, ... , nil. and h = 1, ... , K are 

available from continuous distributions with distribution functions Fh ... , FK, respectively, 

and the null hypothesis of homogeneity 

Ho: FI = F2 = ... = FK 

is to be tested against some alternative hypothesis. For the usual K -sample problem, the 

alternative hypothesis is often the global alternative 

HI: not Ho 

and the most popular nonparametric test is the Kruskal-Wallis test (Lehmann, 1975), In some 

situations however, the alternative hypothesis specifies some order relationship among the 

distributions and with this information available a.-priori, one should be able to design specific 

tests that are more powerful than the Kruskal-Wallis test. For example, if FI corresponds to 

some "control", one may be interested in testing Ho against the partially-ordered alternative 

with strict inequality for some i. This would be the case when one wishes to test if any of 

the "treatments" 2, ,." K, is "better" than the control. In the literature of "order restricted 
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statistical inference" (Robertson, Wright and Dykstra, 1989), this is referred to as the simple­

tree alternatives or the many-ta-one problem. 

On the other hand, if the K treatments respresent, for example, the increasing dose levels 

(1, .. " K) of some drug, one may be interested to test if the responses under these treatments 

also exhibit an increasing order. This is called the upward trend problem or the problem of 

simple order, The alternative hypothesis in this case is written as 

with at least one strict inequality, In the next section we discuss some precedence type tests 

for these problems which may be viewed as generalizations of their twa-sample counterparts. 

8. A Review of Some Literature 

First consider the problem oftesting Ho against the global alternative H l , Massey (1951) con­

sidered a multi-sample extension of the median test for this problem using several order statis­

tics of the combined sample. Suppose that there are no ties and of the N = r;~=1 nil. ordered 

observations in the combined sample, r - 1 are chosen, These are denoted by Zal' .. " Za .. _l' 

where the ai are integers with 1 S 01 < .. , < a,.-l S N, Let Whj denote the number of 

observations such that Zai_l < Xhi S ZO:j' j = 2, .. " r - 1, h = 1, .. " A:. Also let WhO denote 

the number of Xhi S Zal and let Whr denote the number of Xhi > Zo:,._l' Under the null 

hypothesis the joint distribution of the W's is given by Massey (1951) which does not depend 

on the distribution Ft., Therefore tests based on the W's are distribution-free, 

A direct extension of the Mood-Westenberg joint median test is obtained by choosing only 

the median in the combined sample and noting the number of observations W l ,. .. , WK, re­

spectively, from each of the K samples, that precede the median of the combined sample, 

Under the null hypothesis the joint distribution of the W'~ can be shown to be 

( :: )-( :: ) 
(:) 

18 
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where t = N/2 if N is even and t = (N - 1)/2 if N is odd. The Mood-Brown-Westenberg 

median test of H 0 against H 1 is based on 

Q 
_ N(N - 1) L:K 

(Wi - if)' 
N- , 

t(N - t) i=1 Ri 
(17) 

and the approximately size Q test rejects H 0 in favour of HI if 

(18) 

Andrews (1954) derived the efficacy of the Mood-Brown-Westenberg median test and showed 

that with respect to the Kruskal-Wallis (global) test the ARE is equal to the ARE of the sign 

test relative to the Wilcoxon signed rank test, given in (13). Thus, for example, the ARE is 

2/3 when the underlying distributions are normal. 

An extension of the control median test for the mUlti-sample problem is as follows. Let M 

be the median ofthe control sample (say the first sample) and let Vio, i = 1, ... , K, denote the 

number of observations under the ith treatment that precede M. Under the null hypothesis, 

the joint distribution ofthe Vio's can be shown (see Sen, 1962; also Gibbons and Chakraborti, 

1992; chapter 11) to be 

(19) 

K 

where Vi = L: vii,j = 0,1, and ViI = ni - ViO. Thus the null distribution does not depend 
i=l 

on the underlying distribution and so any test based on the Vio's is distribution-free. The 

asymptotic joint distribution of the Vio's can be shown to be a multivariate normal distri­

bution. As with the median test, a large sample test of Ho against H1 can be based on a 

quadratic form in the Vio's with the large sample covariance matrix as the discriminant, the 

rejection region of the test consisting of large values of the test statistic. Sen (1962) proposed 

the criterion 

(20) 

Under Ho and some mild conditions, asymptotically, eN has a chi-square distribution with 

K - 1 degrees of freedom. An approximately size Q test of Ho against H1 is 
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(21) 

Sen (1962) showed that the ARE of the eN test relative to the QN test is 1, so that for 

large sample sizes the two median tests are 'power equivalent.' Extensions to the cases where 

some quantile other than the median is of interest or where one picks two or more quantiles 

in the control sample instead of just one are clearly plausible and have been studied in the 

literature. Among these, Sen (1962) treated the general case, which is also discussed in 

Gibbons and Chakraborti (1992; Chapter 11), where additional references can be found. Sen 

(1962) provided asymptotic power and efficacy calculations together with suggestions about 

a choice of the number and the order of the control quantiles to define the "'best" test. The 

consensus is that one or two quantiles is usually sufficient in practice. 

Slivka (1970) considered a test for the simple-tree alternatives problem based on the counts 

Vio, i = 2, ... , K. Let V = min(V2o, ... , VKO). Slivka's test uses the union-intersection principle 

and rejects H 0 in favour of H 2 if at least one of the Vio's is sufficiently small, that is if V is 

smalL The null distribution of V is given by 

(22) 

Slivka provided tables for the exact P-values when nl = 1(1)14 and n2 = ... = nK = n = 
[1/3nlJ(1)n}, (where [aJ represents the largest integer not exceeding a) and]( = 2(1)9. Slivka 

also considered the asymptotic null distribution of V and obtained a normal approximation. 

When ni = Ant, where i = 2, .. " K and A is some constant, the probability P(V =:; vlHo) can 

be approximated by 1- G(HiN,p), where G(HiN,p) is the quantity tabulated by Gupta 

(1963) (in the context of the cumulative distribution function of the maximum of N normal 

random variables with mean 0, variance 1, and a common correlation coefficient). In our case 

the quantities H, N and pare, 

{(nl + 1)V - ns} 
(23) 

ns(nl - s + l)(nl + n + 1)/(nl + 2)' 

K - 1 and n/(nl + n + 1), respectively. When only critical values for the test are desired, 

one can use the tables given, for example, in Bechhofer and Dunnett (1988). 

Chakraborti and Desu (1988a) considered an extension of the control quantile test for the 

simple-tree problem. Their test is based on T = Ef:2 Vio and the test rejects Ho in favour 
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of H2 if T is small. Since T counts the number of treatment observations, out of a total of 

N* = N - nt, that precede the rth control order statistic, the null distribution of T can be 

obtained from the null distribution of a two-sample precedence statistic, given in (4), with 

n = N* and m = nt. For small sample sizes, Kao and Chakraborti (1994) developed a 

computer program to tabulate the exact critical values. A normal approximation, given in 

Chakraborti and Desu (1988a), is adequate for moderate to large sample sizes. Simulation 

studies have indicated that the test of Chakrabori and Desu is more powerful than Slivka's 

test when the treatments are about equally effective but more effective than the control, 

whereas Slivka's test is more powerful in situations where only some of the treatments are 

better than the control. 

It may be noted that in practice, situations arise where one would like to test whether the 

quantiles of K treatment populations are equal to some specified (standard) value against 

the alternative that at least one of the treatment quantiles is greater (or smaller). In this 

case one can use precedence type statistics, which in fact, are the familiar sign test statistics. 

We will not discuss any of these details; readers are referred to Chakraborti and Gibbons 

(1991,1992,1993), Chakraborti (1991) and Ismail (1992). 

Next we consider the problem of simple-order or the upward trend problem. Gore, Rao and 

Sahasrabudhe (1986) proposed an extension of the joint median test based on T* = I:[;1 ~, 

where recall that Wi denotes the number of observations from the ith sample that precede 

the median of the combined sample. The test rejects the null hypothesis if T* is large. The 

asymptotic distribution of T* can be shown to be normal. In particular, under the null 

hypothesis, the asymptotic mean and the variance of To. equals tK(K + 1)/2N and 

K K 

{I) i/nd2Ti - (I: iTi/ni)'} /4, (24) 
i=1 i=1 

respectively, where Ti = limN_oo(ni/N). These moments can be used to define an approx­

imately size (l test. The authors also considered the asymptotic nonnull distribution of 

T* under a sequence of local translation alternatives and derived the Pitman ARE against 

the well known lonckheere-Terpstra test. It is interesting to note that when the location 

parameters are equally spaced, the ARE turns out to be the same as that of the Mood­

Brown-Westenberg joint median test against the Kruskal-Wallis test, given in (13). One can 

further consider some quantile other than the median of the combined sample and construct 
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a linear function of the counts. Distributional properties of such a 'linear joint quantile' test 

can be obtained along similar lines. 

In some situations a practitioner may like to use a linear function of the W's, say, Ef:l ajWj 

as a test statistic, where the weights ~ are determined such that the resulting test has some 

optimal (power) property. To this end one approach used in the literature is to maximize 

the Pitman efficacy (asymptotic local power) of the class of tests against a sequence of local 

alternatives (converging to the null hypothesis). It has been shown (Rao and Gore, 1984) 

that in the balanced (equal sample size) design case, the optimal weight aj is proportional 

to i, i = 1, ... , K, when the location parameters are equally spaced. One can also consider 

deriving weights that optimize other aspects related to the power of the test. For example, 

one could attempt to find the weights that minimizes the maximum shortcoming (Schaafsma, 

1966) of the test. It will be interesting to compare these tests, especially for small to moderate 

sample sizes. 

Chakraborti and Desu (1988b) considered a linear function of the precedence statistics, 

Ef:2 hi Vio, for the simple-order problem and obtained the optimal weights which maximize 

the Pitman efficacy against a class of local translation alternatives. The results are similar 

to those for the median statistics, namely that for equal sample sizes and equal spacings 

the optimal weight hi is proportional to i = 2, ... , K .. When the median is the quantile of 

interest, with equal sample sizes and equal spacings, the ARE of the optimal member of the 

Chakraborti-Desu class of statistics relative to the popular tests of Jonckheere-Terpstra (and 

Rao-Gore) can be shown to be equal to the ARE of the sign test relative to the Wilcoxon 

signed rank test, given in (13). Thus, for heavy-tailed distributions like the Cauchy and 

the double exponential, the optimal member of the Chakraborti-Desu class of tests is more 

efficient. 
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Table 3.1 

Observed probability of a.eeepting Ho(d = 0) based on 200 pairs of samples, each of size ten. 

rank exceedance maximum deviation 

d=I~1 sum run r=l r=2 r=3 r=3 r=6 r = 10 

0 .935 .965 .95 .96 .96 .955 .945 .945 

1 .485 .795 .655 .65 .60 .575 .555 .555 

2 .015 .275 .16 .12 .10 .065 .045 .045 

3 0 .02 .025 0 0 0 0 0 
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Table 5.1. Distribut.ion-fret> lower confidence hounds Dji, denoted by j - i, for shift (selection 

based 011 Normal shift alternatives) wi1 II co111idp)]C(, }('v(:>1 1 - 0 :::::: .01 a.nd the values of: 

I-confidence coefficient. 
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Table 5.2. Distribution-fn1(1 lower collfi<i('II('P bOllllds Dji, denoted by j - i, for shift (selection 

based on Normal shift alternatives) wit II confid<'I]("p level 1 - 0 = .05 and the values of: 

I-confidence coefficient. 
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Table 5.3. 

ARE of the Dii test relative to Wilcoxon-rank-sum test for various distributions; p being the 

shape parameter of the Gamma distribution. 

Uniform .333 Gamma 

Normal .667 p=4 .601 

Logistic .750 p = 10 .642 

Cauchy 1.333 p = 40 .661 

Double 

Exponential 1.333 

Table 5.4. 

ARE of the Dit. test relative to the two sample t-test for various distributions; p being the 

shape parameter of the Gamma distribution. 

Uniform .333 Gamma 

Normal ~ = .637 p=4 .704 

Logistic ~ = .822 p = 10 .662 

Double 

Exponential 2 p =40 .643 
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Table 6.] 

Val11l."s of the rat io of the exp(>rted lell),!;1 hs of Ill<' Sf']pct <:d one-sided confidence intervals and 

tIle one-sided confidence intervals COl'r(lspolldiJlg with thE' two-sample I-test in the case of 

normal distributions with the same confidence rOl'fficients (confidence level 1 - a = .95) 
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