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Abstract

According to the working mode of the ballistic missile warning radar (BMWR), the radar return from the BMWR is

usually sparse. To recognize and identify the warhead, it is necessary to extract the precession frequency and the

locations of the scattering centers of the missile. This article first analyzes the radar signal model of the precessing

conical missile during flight and develops the sparse dictionary which is parameterized by the unknown precession

frequency. Based on the sparse dictionary, the sparse signal model is then established. A nonlinear least square

estimation is first applied to roughly extract the precession frequency in the sparse dictionary. Based on the time

segmented radar signal, a sparse component analysis method using the orthogonal matching pursuit algorithm is

then proposed to jointly estimate the precession frequency and the scattering centers of the missile. Simulation

results illustrate the validity of the proposed method.

1. Introduction
Interception of separating ballistic missiles is particularly

difficult because the sensor has to be able to discrimi-

nate countermeasures, light and heavy decoys, from the

warheads within a very limited time [1]. There are three

phases in the trajectory of the ballistic missile (BM):

boost phase, mid-course phase, and the reentry phase.

Mid-course phase is the longest of the three and is the

preferred intercept phase in the ballistic missile defense

(BMD) system [2].

Since many warheads are spin-stabilized in the mid-

course phase, they will precess due to the separation

disturbance, and will keep the precession motion until

they re-enter the atmosphere [3]. Precession motion,

which is a kind of micro-Doppler motion [4], will

impose a micro-Doppler modulation effect on the radar

echoes, and this is a unique feature of ballistic targets.

The precession frequency is an important feature para-

meter in ballistic target recognition, and it can reflect

kinematical characteristics as well as structural and

mass distribution features.

At present, the radar based feature extraction for the

BM target recognition mainly includes the following

techniques: (1) Electromagnetic scattering feature

extraction, i.e. radar signal amplitude, phase informa-

tion, and polarization features; (2) Motion feature

extraction, i.e. the spinning and precession frequency

extraction based on the time-frequency analysis [5,6];

(3) Target geometrical structure extraction based on the

high resolution range profile (HRRP), ISAR image or

three dimensional imaging [7-9].

Most of the BM target radar feature extraction techni-

ques are grounded on the uniformly and continuously

sampled data in time domain, and some techniques

such as HRRP and ISAR require wide band and high

frequency sampled radar echoes. However, due to the

practical demands on the BMWR, especially for phased

array radars, which work in the mode of multi-task and

multi-target, radar return for each target is usually seg-

mented and even sparse in the time domain. This

greatly increases the difficulties of the BM target feature

extraction task. The analysis of the sparse signal from

the BMWR is particularly important to detect and

recognize non-cooperative unknown targets, especially

for the BMD, a task that must be accomplished swiftly

and with as few measurements as possible.

According to the electromagnetic scattering mechan-

ism, in the high-frequency region, the signal returned

from a target can be modeled approximately by a sum

of signals scattered from some dominant and discrete

radiation sources on the target, referred to as scattering

centers [10], which implies that the radar signal from
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the BM in the high-frequency region is sparse. The scat-

tering centers whose number is usually less than ten are

normally associated with significant geometric features

of the target. The relative position of the scattering cen-

ters is a key feature in the missile target recognition

task.

Both the sparse nature of the scattering centers and

the discontinuous availability of the target’s radar return

motivate the use of the sparse component analysis

(SCA) technique for the extraction of the BM target fea-

tures, such as the precession frequency and the scatter-

ing center relative locations.

So, aiming at identifying the special characteristics of

the BM target returns from the ground based warning

radar, a method of jointly estimating the precession fre-

quency and the locations of the scattering centers is

proposed in this article. In Section 2, the radar signal

model of a conical warhead is analyzed and the mea-

surement matrix for SCA is established; Section 3 pre-

sents the SCA method using the OMP algorithm to

estimate the precession frequency and image the scatter-

ing centers of the BM. In order to reduce the computa-

tional requirement, the nonlinear least square (NLLS)

algorithm is employed before the OMP processing to

get a coarse estimate of the precession frequency. Simu-

lation results are provided in Section 4 to assess the per-

formance of the proposed method, and are followed by

conclusions in Section 5.

2. Signal model
Precession is a motion unique to the BM in the mid-

course phase. Research on the precession motion of

the BM target in the United States goes back to the

1960s and the feasibility of recognizing the real war-

head and decoys based on the precession motion was

validated in the two “Firefly” missions in 1990 [11]. A

conical tip is a commonly seen feature in many ballis-

tic missiles [12]. Figure 1 illustrates the precession

motion model of a conical warhead. The warhead

spins around its geometrical axis and precesses along

the direction of velocity v.

In order to analyze the radar return from the BM, we

establish a Cartesian coordinate system with the origin

point O at the center of the BM bottom, set the geome-

trical axis as the x axis, and set the y axis vertical to the

radar incident plane, as shown in Figure 2. The radar

return from the BM target can be described as

s(t) =

∫ ∫

�

ρ(x, y) exp

[

−j4π f0
RO1

(t) + (x + OO1) cos ϕ(t) + y sin ϕ(t)

c

]

dxdy (1)

where f0 is the radar carrier frequency, c is the speed

of light, r(x,y) is the scattering intensity at (x,y) in the

coordinate system, �(t) is the aspect angle of the target,

Ω stands for the target space, RO1
(t) is the radial dis-

tance of the mass center O1 from the transmitter, and

OO1 is the distance from the point O1 to the bottom

center O. During the mid-course phase (above the

atmosphere), gravitation is the only force acting on the

BM, which means RO1
(t) can be calculated based on

the two body motion theory [13].

According to the geometry and the precession model

of a rigid body object, as illustrated in Figure 1, the rela-

tionship between the aspect angle �(t), the precession

angle θ(t), the precession frequency fp, and the observa-

tion time t can be expressed as

ϕ(t) = arccos

{

sin θ(t) sin β(t) cos
[

2π fp(t0 + t) + φ0

]

cos2θ(t)
+ cos θ(t) cos β(t) −

sin3θ(t) sin β(t)

cos2θ(t)

}

(2)

where j0 is the initial reference angle, t0 is the initial

reference time and b(t) is the angle between the radar

line of sight (LOS) and the vector direction of the war-

head velocity v. Compared with the aspect angle �(t),

θ(t), and b(t) change very slowly. So it is not compli-

cated to compensate for the time-variation of the para-

meters θ(t) and b(t) and the actual method of the

compensation [14] need not be discussed in this article.

Therefore, one can infer that the aspect angle �(t) is

pseudo-periodic and the “period” Tp is determined by

the precession frequency fp.

As we can see from (1), the radar scattering mechan-

isms are complicated, even for a geometrically simple

target [15]. However, the concept of scattering centers

provides a physically relevant, yet concise description of

the object, and is thus a good candidate for use in radar

signature modeling as well as target recognition [10].

According to the scattering center theory, (1) can be

rewritten as [8]

s(t) =

M
∑

m=1

a(xm, ym) exp

[

−j4π f0
RO1

(t)x′
m cos ϕ(t) + y′

m sin ϕ(t)

c

]

, t = [t1, t2, ..., tN]. (3)

where M is the number of all possible scattering

centers on the area illuminated by the radar, (xm, ym)

is the coordinate of the mth possible scattering center,

and am = a(xm,ym) represents the scattering coefficient.

The positions of the possible scattering centers are

chosen to be uniformly distributed in the covered area

and their number M is chosen according to the azi-

muth resolution of the radar, whose limit is l/4 [16],

where l is the wavelength of the radar l = f0/c. The

actual number of scattering centers is much smaller

than M, which means that most of the am’s are zero.

Generally, the upside of the BM is full of the materials

with low density, such as the fuze and some carbonac-

eous stuff, and the main load of the BM is at the bot-

tom [14]. Thus, the distance between the mass center

to the bottom center OO1 is normally very small. And
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the value of OO1 does not affect the relative positions

of the scattering centers on the BM. Hence, we set

x′
m = xm + OO1 and y′

m = ym . In (3), we define Fm(t,fp)

as the phase function of the mth scattering center,

which is

	m(t, fp) = 4π f0
RO1

(t) + x′
m cos ϕ(t) + y′

m sin ϕ(t)

c
. (4)

Define

sT = [s(t1) s(t2) · · · s(tN)]

aT = [a1 a2 · · · aM]

Q =

⎡

⎢

⎣

e−j�1(t1,fp) e−j�2(t1,fp) · · · e−j�M(t1,fp)

. . .
...

e−j�1(tN ,fp) e−j�2(tN ,fp) · · · e−j�M(tN ,fp)

⎤

⎥

⎦

(5)

where s Î ℂ
N is the observation vector, a Î ℂ

N×M is

the measurement matrix (dictionary) with unknown

parameter fp. Define Π ≜ {a Î ℂ
M : Qa = s}. If there is

a Î Π, then a is a representation of the signal s in the

dictionary Q. And if we have ∥a∥0 <M, then a is a sparse

representation of the signal s, where ∥a∥0 = Card{j : |aj|

≠ 0}. Especially, if ã = arg minaÎΠ ∥a∥0, then ã is the

sparsest representation of the signal s, and K = ∥ã∥0 is

the sparsity.

For the conical missile as shown in Figure 1, there are

three scattering centers on the target theoretically [17]:

one at the top S3, and two at the bottom of the BM S1
and S2. The distribution of the three scattering centers

on the BM is shown in Figure 2. So, the sparsest repre-

sentation ã of the signal s has non-zero values only at

the positions of S1, S2, and S3, and the sparsity K is the

number of the scattering center, with K = 3. Hence, if

we can estimate the sparsest representation s̃ , we can

then image the BM target simply by calculating the

non-zero value positions of the vector ã. The sparsest

representation estimation ã can be achieved by the fol-

lowing expression

min
a∈CM

‖a‖0 s.t. Qa = s (6)

Assuming that the receiver noise is white Gaussian

noise, the observation system is given by

y = Qa + v (7)

where y = [y(t1),..., y(tN)]
T is the observation vector, v

= [v(t1),...,v(tN)]
T is the receiver noise vector which is

Figure 1 Precession motion of a conical warhead.
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modeled as a zero-mean Gaussian vector with covar-

iance matrix s
2IN×N with IN×N denoting the (N × N)

identity matrix and s2 denoting the noise variance. So

taking the receiver noise into account, (6) is reformu-

lated as

min
a∈CM

‖a‖0 s.t.
∥

∥y − Qa
∥

∥

2
≤ σ (8)

Solving (6) or (8) with the ℓ0 norm is both numerically

unstable and NP-hard [18]. Fortunately, optimization

algorithms, such as the basic matching pursuit (MP)

[19] and orthogonal matching pursuit (OMP) [20], can

exactly recover sparse signals with high probability.

3. Precession frequency estimation and BM
imaging
As it has been discussed above, the SCA is suitable to

process the radar signal from a BM which is sparse.

Thus, the task of BM target imaging, i.e., estimating the

positions of the scattering centers on the BM, can be

carried out by SCA based on the non-uniformly or even

sparsely sampled radar data, which can significantly save

the time resource in the BMD system and satisfy the

special working mode of the BMWR. However, as men-

tioned in the sparse system model in (8), there is an

unknown parameter fp in the measurement matrix Q

that has to be estimated. Further, the precession fre-

quency fp is also an important feature parameter in the

BM target recognition.

Here, we propose to jointly estimate the positions of

the scattering centers and the precession frequency. The

proposed SCA based method consists of solving the

OMP for each precession frequency candidate and

retain the solution which minimizes the mean square

error (MSE) between the measurements and estimated

signal. In order to reduce the search space for fp and

thus reduce the computational burden of the system, we

also propose to initialize the estimation of fp by estimat-

ing the period of the observed signal using the NLLS.

The NLLS is a widely used estimation approach since it

makes no assumption on the distribution of the noise

[21]. However, in our problem, the accuracy of the

NLLS is limited by the sparse measurements, and thus

the NLLS can only be used as an initial guess and a

more accurate estimate has to be achieved in the follow-

ing SCA process.

Y

X

   Z

Figure 2 Distribution of the BM scattering centers.
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3.1. NLLS estimation of the precession frequency

Assuming b(t) and θ(t) to be constant during the obser-

vation time, the aspect angle in (2) can be rewritten as

φ(t) = arccos
(

w1 cos[2π fp(t + t0) + φ0] + w2

)

(9)

where, w1 and w2 are constants, given by

w2 = cos θ cos β −
sin θ3 sin β

cos θ2
,

w2 = cos θ cos β −
sin θ3 sin β

cos θ2
. The aspect angle is thus

periodic with period Tp = 1/fp and so are the Fm(t,fp)’s

and the signal s(t) in (3).

The estimation of all unknown parameters using the

maximum likelihood (ML) approach would require a

highly nonlinear and multi-dimensional optimization.

However, if one is interested in estimating the preces-

sion frequency fp only, a suboptimum but computation-

ally attractive approach is described next.

The received signal can be regarded as a periodic sig-

nal of an unknown shape in AWGN. If the sampling is

very fine, then the period can be estimated easily using

time-domain autocorrelation. Otherwise, one has to

resort to the frequency domain, as follows.

Using the Fourier series analysis, the received signal

can be expressed as

y(t) =

∞
∑

g=−∞

cge
−j2πgfot + v(t), t = t1, t2, ..., tN. (10)

To estimate the parameter fp, we first truncate the

above summation to 2G + 1(≪ N) terms, which yields

y(t) ≈

g=G
∑

g=−G

cge
−j2πgfpt + v(t), t = t1, t2, ..., tN . (11)

and then solve the following NLLS problem

(

ĉ, f̂ 0
p

)

= arg min
c,f

tN
∑

t=t1

∣

∣

∣

∣

∣

∣

y(tn) −

G
∑

g=−G

cge
−j2πgf tn

∣

∣

∣

∣

∣

∣

2

(12)

The precession frequency can thus be estimated by

f̂ 0
p = arg max

f
yHŴf

(

ŴH
f Ŵf

)−1
ŴH

f y (13)

where

yT =
[

y(t1) y(t2) · · · y(tN)
]

cT =
[

cG cG−1 · · · c−G

]

Ŵf =

⎡

⎢

⎣

e−j2πGf t1 e−j2π(G−1)f t1 · · · ej2πGf t1

. . .
...

e−j2πGf tN e−j2π(G−1)f tN · · · ej2πGf tN

⎤

⎥

⎦
.

(14)

In (13), parameter G should be designed to provide a

good trade-off between modeling accuracy (bias) and

estimation variance. Indeed, modeling accuracy increases

with G (so the bias decreases), but when G increases the

number of unknown parameters to estimate increases

and this leads to a higher estimation variance. This is a

well known problem in estimation theory, and thus will

not be discussed here. In our simulation setup, G = 64

was shown to give good results.

3.2. BM target imaging based on SCA

The OMP, a powerful and efficient algorithm for sparse

signal recovery [20], is a greedy algorithm similar to the

basic MP algorithm. The general goal of this technique

is to obtain a sparse signal representation by choosing,

at each iteration, a dictionary atom that is best adapted

to approximate part of the signal. At each iteration, the

OMP approach gives rise to the set of coefficients yield-

ing the linear expansion that minimizes the distance to

the signal.

Let qk denote the kth column vector of matrix Q. For

the sparse signal model in (8), let bp be the pth order

residue and initialize the residual b0 = y. The indices of

the p vectors selected are stored in the index vector Ip =

[k1,k2,...,kp], and the vectors are stored as the columns of

the matrix �p =
[

qk1
, qk2

, ..., qkp

]

. The OMP algorithm

selects kp at the pth iteration by finding the vector best

aligned with the residual obtained by projecting bp onto

the dictionary components, that is

kp = arg max
l

∣

∣< q1, bp >
∣

∣ , l �∈ Ip−1 (15)

where <ql, bp > means the inner product of vectors ql
and bp. The re-selection problem is avoided with the

stored dictionary. The selected vector component qkp is

orthogonalized by the Gram-Schmidt algorithm as

up = qkp
−

p−1
∑

l=0

< qkp
, ul >

‖ul‖
2
2

ul (16)

The residual bp is updated as

bp+1 = bp −
< bp, up >

∥

∥up

∥

∥

2

2

up (17)

The algorithm terminates when ∥bp+1∥2 ≤ s.

Since there is an unknown parameter fp in the mea-

surement matrix Q, we perform the OMP algorithm for

each candidate for fp and retain the candidate which

minimizes the mean squares error between the corre-

sponding sparse representation and observation vector,

i.e.
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f̂p = arg min
f∈ϒ

∥

∥

∥
y − Q̂f âf

∥

∥

∥

2
(18)

where âf is the sparse representation obtained by the

OMP algorithm for the frequency candidate f Î ϒ, and

the search range ϒ is chosen to be centered around the

NLLS estimate f̂ 0
p presented in section 3.1.

Therefore, the proposed SCA method is summarized

as follows.

Step 1: Obtain the initial estimate of the precession

frequency f̂ 0
p using the NLLS method;

Step 2: Set the search range ϒ as

ϒ ≡
(

f̂ 0
p − εL, f̂ 0

p + εP

)

; for every f Î ϒ, obtain a sparse

representation âf via the OMP algorithm;

Step 3: Obtain the estimate f̂p of the precession fre-

quency and the corresponding sparsest representation

â
f̂p using eq. (18).

Step 4: Calculate the sparsity as K̂ =
∥

∥

∥
â

f̂p

∥

∥

∥

0
.

4. Simulation and experimental results
When the BMWR is working in the mode of multi-tar-

get and multi-task detection, the radar return for each

target is non-uniformly sampled and time-segmented.

The trajectory (see Figure 3) was calculated based upon

the two-body motion theory [13]. The geographic coor-

dinate values of the BM launch point are

(125.19E,43.54N,0), the fall point is (110.20E,20.02N,

100) and the ground based radar sat is

(119.58E,31.47N,50). We assume that there are four

observation time segments of the BM, which begin at

the 650th, 651th, 652th and the 652.5th second after the

BM is launched, respectively. For simplicity, the observa-

tion time segments are set to be the same and equal to

50 milliseconds, and the pulse repetition frequency

(PRF) of each segment is set to fs = 2048 Hz. Note that

in practice, the observation durations and the PRF of

the different segments may be set to be different.

The returned signal is from a ground based BMWR

with carrier frequency f0 = 5.0 GHz. The simulated BM

size considered in this article was set by reference to the

Radar

LOS

BM

Figure 3 BM trajectory and time segmented observation of the BMWR.
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Indian Agni-II BM [22]: the length of the warhead is H

= 2.09 m and the bottom radius is r = 0.329 m. We

assume that the target area is 2.5 m × 1 m, as shown in

Figure 2. Taking into account the target recognition

requirements and the practical radar resolution capabil-

ity, the target area is uniformly divided into 60 × 60

small rectangles along the coordinate axes, which means

that the number of possible scattering centers M in (3)

is set as M = 360, the resolution is about l/2 along the

x axis and l/4 along the y axis.

Figure 4 shows the plots of the mean estimation of fp
using NLLS and OMP methods versus SNR. Figure 5

shows the plots of the MSE of the estimation of fp esti-

mation for the two methods. As a benchmark, the plot

of the Cramér-Rao lower bound (CRLB) versus SNR is

also displayed in Figure 5. For the parameter estimation

using OMP, the step size of the discrete grid for esti-

mating fp at every SNR was set to be lower than the

square root of the CRLB. As shown in Figure 5, the

MSE of the OMP estimation of fp is two orders of mag-

nitude lower than that of the NLLS estimation, which

means that with the prior information of the sparsity of

the scattering centers, the SCA method using the OMP

algorithm can achieve significantly better estimation

performance. With SNRs higher than 10dB, the MSE of

the OMP-based frequency estimate is lower than 10-6;

this accuracy is good enough for the scattering center

imaging process, as shown in Figures 6 and 7.

Figure 6 displays the mean values and confidence

intervals of the sparsity (K) estimate versus SNR. When

the SNR is higher than 15dB, the mean value of the

sparsity estimate is two. According to the theoretical

analysis in Section 2, the number of scattering centers

on the BM is three. However in the geometric model of

the BM in this article, the radius of the conical BM top

is set to zero and thus the intensity (which is deter-

mined by the BM top radius) of the scattering center S

3 is zero too. Hence, the actual value of the sparsity is K

= 2, and the simulation result is in agreement with the

simulation setting.

With the estimation of the sparse representation â,

the target scattering centers can be easily imaged

according to the Cartesian coordinate system in Figure

2. Figure 7 displays the BM target scattering center

radar images with different SNRs. As shown in Figure 7,

the estimation of â is accurate when the SNR is higher

than 15dB, in terms of both the positions and the num-

ber of the scattering centers.
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Figure 6 Mean and confidence interval of sparsity K estimation versus SNR.
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5. Conclusion
The micro-Doppler parameter estimation and scattering

center imaging are very important in the BM target

recognition system. According to the electromagnetic

scattering mechanism, the SCA technique based on the

sparse measurements from the BMWR can solve this

task efficiently and can also greatly save the time

resources in the BMD system. The article analyzed the

BM radar signal model and established the sparse dic-

tionary according to the sparse nature of the scattering

centers of the BM. A method based on the NLLS and

the OMP algorithms was proposed to estimate the pre-

cession frequency and image the BM scattering centers.

The proposed method can extract these feature para-

meters with limited radar measurements.
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