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Abstract 

1. Annual precipitation has decreased in much of the West, Southwest, and Southeast and 

 increased in most of the Northern and Southern Plains, Midwest, and Northeast. A 

 national average increase of 4% in annual precipitation since 1901 is mostly a result of 

 large increases in the fall season. (Medium confidence) 

 

 2. Heavy precipitation events in most parts of the United States have increased in both 

 intensity and frequency since 1901 (high confidence). There are important regional 

 differences in trends, with the largest increases occurring in the northeastern United 

 States (high confidence). In particular, mesoscale convective systems (organized clusters 

 of thunderstorms)—the main mechanism for warm season precipitation in the central part 

 of the United States—have increased in occurrence and precipitation amounts since 1979 

 (medium confidence). 

 

 3. The frequency and intensity of heavy precipitation events are projected to continue to 

 increase over the 21st century (high confidence). Mesoscale convective systems in the 

 central United States, are expected to continue to increase in number and intensity in the 

 future (medium confidence). There are, however, important regional and seasonal 

 differences in projected changes in total precipitation: the northern United States, 

 including Alaska, is projected to receive more precipitation in the winter and spring, and 

 parts of the southwestern United States are projected to receive less precipitation in the 

 winter and spring (medium confidence). 

 

 4. Northern Hemisphere spring snow cover extent, North America maximum snow depth, 

 snow water equivalent in the western United States, and extreme snowfall years in the 

 southern and western United States have all declined, while extreme snowfall years in 

 parts of the northern United States have increased (medium confidence). Projections 

 indicate large declines in snowpack in the western United States and shifts to more 

 precipitation falling as rain than snow in the cold season in many parts of the central and 

 eastern United States (high confidence).   
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7. Precipitation Change in the United States 1 

KEY FINDINGS 2 

1. Annual precipitation has decreased in much of the West, Southwest, and Southeast and 3 

increased in most of the Northern and Southern Plains, Midwest, and Northeast. A 4 

national average increase of 4% in annual precipitation since 1901 is mostly a result of 5 

large increases in the fall season. (Medium confidence) 6 

2. Heavy precipitation events in most parts of the United States have increased in both 7 

intensity and frequency since 1901 (high confidence). There are important regional 8 

differences in trends, with the largest increases occurring in the northeastern United 9 

States (high confidence). In particular, mesoscale convective systems (organized clusters 10 

of thunderstorms)—the main mechanism for warm season precipitation in the central part 11 

of the United States—have increased in occurrence and precipitation amounts since 1979 12 

(medium confidence).  13 

3. The frequency and intensity of heavy precipitation events are projected to continue to 14 

increase over the 21st century (high confidence). Mesoscale convective systems in the 15 

central United States, are expected to continue to increase in number and intensity in the 16 

future (medium confidence). There are, however, important regional and seasonal 17 

differences in projected changes in total precipitation: the northern United States, 18 

including Alaska, is projected to receive more precipitation in the winter and spring, and 19 

parts of the southwestern United States are projected to receive less precipitation in the 20 

winter and spring (medium confidence). 21 

4. Northern Hemisphere spring snow cover extent, North America maximum snow depth, 22 

snow water equivalent in the western United States, and extreme snowfall years in the 23 

southern and western United States have all declined, while extreme snowfall years in 24 

parts of the northern United States have increased (medium confidence). Projections 25 

indicate large declines in snowpack in the western United States and shifts to more 26 

precipitation falling as rain than snow in the cold season in many parts of the central and 27 

eastern United States (high confidence). 28 

Introduction 29 

Changes in precipitation are one of the most important potential outcomes of a warming world 30 

because precipitation is integral to the very nature of society and ecosystems. These systems 31 

have developed and adapted to the past envelope of precipitation variations. Any large changes 32 

beyond the historical envelope may have profound societal and ecological impacts.  33 

Historical variations in precipitation, as observed from both instrumental and proxy records, 34 

establish the context around which future projected changes can be interpreted, because it is 35 
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1 within that context that systems have evolved. Long-tenn station observations from core climate 

2 networks serve as a primary source to establish observed changes in both means and extremes. 

3 Proxy records, which are used to reconstmct past climate conditions, are varied and include 

4 sources such as tree ring and ice core data . Projected changes are examined using the Coupled 

5 Model Intercomparison Project Phase 5 (C:rvtIPS) suite of model simulations. TIley establish the 

6 likelihood of distinct regional and seasonal pattems of change. 

7 7.1 Historical Changes 

8 7.1.1 Mean Changes 

9 Annual precipitation averaged across dIe United States has increased approximately 4% over dIe 

10 1901-20 15 period, slightly less than dIe 5% increase reported in the TIllrd National Climate 

11 Assessment (NCA3) over dIe 1901-20 12 period (Walsh et al. 20 14). There continue to be 

12 important regional and seasonal differences in precipitation changes (Figure 7 .1 ). Seasonally, 

13 national increases are largest in the fall , while little change is observed for winter. Regional 

14 differences are apparent , as dIe Northeast , Midwest , and Great Plains have had increases while 

15 parts of dIe Southwest and Southeast have had decreases. The slight decrease in the change in 

16 annual precipitation across the United States since NCA3 appears to be the result of dIe recent 

17 lingering droughts in the westem and southwestem United States (NOAA 2016a; Bamston and 

18 Lyon 2016) . However , dIe recent meteorological drought in Califomia that began in late 2011 

19 (Seager et al. 20 15; NOAA 20 16b) now appears to be largely over, due to dIe substantial 

20 precipitation and snowpack the state received in the winter of 2016--2017 . The year 2015 was dIe 

21 third wettest on record , just behind 1973 and 1983 (all of which were years marked by El Nino 

22 events). Interannual variability is substantial , as evidenced by large multiyear meteorological and 

23 agricultural droughts in the 1930s and 1950s . 

24 [INSERT FIGURE 7.1 HERE] 

25 Changes in precipitation differ markedly across dIe seasons, as do regional pattems of increases 

26 and decreases. For the contiguous United States, fall exhibits the largest (10%) and most 

27 widespread increase, exceeding 15% in much of the Northem Great Plains, Soudleast , and 

28 Northeast. Winter average for dIe United States has dIe smallest increase (2%), with drying over 

29 most of the westem United States as well as parts of the Southeast. In particular , a reduction in 

30 streamflow in dIe northwestem United States has been linked to a decrease in orographic 

31 enhancement of precipitation since 1950 (Luce et al. 2013) . Spring and summer have comparable 

32 increases (about 3.5%) but substantially different pattems . In spring, the northem half of the 

33 contiguous United States has become wetter , and the southem half has become drier . In summer , 

34 there is a mixture of increases and decreases across the Nation . Alaska shows little change in 

35 annual precipitation (+ 1.5%); however , in all seasons, central Alaska shows declines and dIe 

36 panhandle shows increases. Hawai ' i shows a decline of more than 15% in annual precipitation. 

Subject to Final Copyedit 302 28 June 2017 
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7.1.2 Snow 1 

Changes in snow cover extent (SCE) in the Northern Hemisphere exhibit a strong seasonal 2 

dependence (Vaughan et al. 2013). There has been little change in winter SCE since the 1960s 3 

(when the first satellite records became available), while fall SCE has increased. However, the 4 

decline in spring SCE is larger than the increase in fall and is due in part to higher temperatures 5 

that shorten the time snow spends on the ground in the spring. This tendency is highlighted by 6 

the recent occurrences of both unusually high and unusually low monthly (October–June) SCE 7 

values, including the top 5 highest and top 5 lowest values in the 48 years of data. From 2010 8 

onward, 7 of the 45 highest monthly SCE values occurred, all in the fall or winter (mostly in 9 

November and December), while 9 of the 10 lowest May and June values occurred. This reflects 10 

the trend toward earlier spring snowmelt, particularly at high latitudes (Kunkel et al. 2016). An 11 

analysis of seasonal maximum snow depth for 1961–2015 over North America indicates a 12 

statistically significant downward trend of 0.11 standardized anomalies per decade and a trend 13 

toward the seasonal maximum snow depth occurring earlier—approximately one week earlier on 14 

average since the 1960s (Kunkel et al. 2016). There has been a statistically significant decrease 15 

over the period of 1930–2007 in the frequency of years with a large number of snowfall days 16 

(years exceeding the 90th percentile) in the southern United States and the U.S. Pacific 17 

Northwest and an increase in the northern United States (Kluver and Leathers 2015). In the snow 18 

belts of the Great Lakes, lake effect snowfall has increased overall since the early 20th century 19 

for Lakes Superior, Michigan-Huron, and Erie (Kunkel et al. 2010). However, individual studies 20 

for Lakes Michigan (Bard and Kristovich 2012) and Ontario (Harnett et al. 2014) indicate that 21 

this increase has not been continuous. In both cases, upward trends were observed till the 22 

1970s/early 1980s. Since then, however, lake effect snowfall has decreased in these regions. 23 

Lake effect snows along the Great Lakes are affected greatly by ice cover extent and lake water 24 

temperatures. As ice cover diminishes in winter, the expectation is for more lake effect snow 25 

until temperatures increase enough such that much of what now falls as snow instead falls as rain 26 

(Wright et al. 2013; Vavrus et al. 2013). 27 

End of season snow water equivalent (SWE)—especially important where water supply is 28 

dominated by spring snow melt (for example, in much of the American West)—has declined 29 

since 1980 in the western United States, based on analysis of in situ observations, and is 30 

associated with springtime warming (Pederson et al. 2013). Satellite measurements of SWE 31 

based on brightness temperature also show a decrease over this period (Gan et al. 2013). The 32 

variability of western United States SWE is largely driven by the most extreme events, with the 33 

top decile of events explaining 69% of the variability (Lute and Abatzoglou 2014). The recent 34 

drought in the western United States was highlighted by the extremely dry 2014–2015 winter 35 

that followed three previous dry winters. At Donner Summit, CA, (approximate elevation of 36 

2,100 meters) in the Sierra Nevada Mountains, end-of-season SWE on April 1, 2015, was the 37 

lowest on record, based on survey measurements back to 1910, at only 0.51 inches (1.3 cm), or 38 

less than 2% of the long-term average. This followed the previous record low in 2014. The 39 
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1 estimated rehml period of dtis drought is at least 500 years based on paleoclimatic 

2 reconstructions (Belmecheri et al. 20 16) . 

3 7.13 Observed changes in UB. seasonal extreme precipitation. 

4 Extreme precipitation events occur when the air is nearly completely saturated. Hence , extreme 

5 precipitation events are generally observed to increase in intensity by about 6% to 7% for each 

6 degree Celsius of temperature increase, as dictated by the Clausius-Clapeyron relation. Figure 

7 7.2 shows the observed change in dIe 20-year return value of dIe seasonal maximum I-day 

8 precipitation totals over the period 1948-2015 . A mix of increases and decreases is shown. widl 

9 the Nordlwest showing very small changes in all seasons, dIe southern Great Plains showing a 

10 large increase in winter , and the Southeast showing a large increase in the fall . 

11 [INSERT FIGURE 7.2 HERE] 

12 A U.S . index of extreme precipitation from NCA3 was updated (Figure 7.3) through 2016. TIlls 

13 is the number of 2-day precipitation events exceeding the threshold for a 5-year recurrence. The 

14 values were calculated by first arithmetically averaging the station data for all stations widun 

15 each 10 by 10 latitudellongitude grid for each year and then averaging over dIe grid values across 

16 CONUS for each year during the period of 1896-20 15. The number of events has been well 

17 above average for the last drree decades. TIle slight drop from 2006-2010 to 2011-2016 reflects 

18 a below average number during the widespread severe meteorological drought year of 2012 , 

19 wlule the odler years in tlus pentad were well above average . The index value for 2015 was 80% 

20 above the 1901-1960 reference period average and dIe third lughest value in the 120 years of 

21 record (after 1998 and 2008) . 

22 [INSERT FIGURE 7.3 HERE] 

23 Maximum daily precipitation totals were calculated for consecutive 5-year blocks from 190 1 

24 (190 1-1 905, 1906-1910 , 19 11-19 15, ... ,2011-2016) for individuallong-tenn stations. For each 

25 5-year block , dlese values were aggregated to the regional scale by fust arithmetically averaging 

26 the station 5-year maximum for all stations witlun each 20 by 20 latitudellongitude grid and dlen 

27 averaging across all grids widun each region to create a regional time series . Finally, a trend was 

28 computed for dIe resulting regional time series. The difference between dlese two periods 

29 (Figllfe 7.4 , upper left panel) indicates substantial increases over the eastem United States , 

30 particularly the northeastem Ututed States with an increase of 27% since 1901. TIle increases are 

31 much smaller over dIe westem United States, with the soudlwestem and northwestem Ututed 

32 States showing little increase. 

33 Another index of extreme precipitation from NCA3 (the total precipitation falling in dIe top 1 % 

34 of all days with precipitation) was updated tlrrough 20 16 (Figllfe 7 .4, upper right panel) . TIus 

35 analysis is for 1958- 20 16 . There are increases in all regions, with dIe largest increases again in 

36 the northeastem Ututed States. TIlere are some changes in dIe values compared to NCA3, with 

Subject to Final Copyedit 304 28 June 2017 
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1 small increases in some regions such as the Midwest and Southwest and small decreases in 

2 others such as dIe Northeast , but the overall picture of changes is the same. 

3 The national results shown in Figure 7.3 were disaggregated into regional values for two periods: 

4 1901-20 16 (Figure 7 .4, lower left panel) and 1958- 20 16 (Figure 7 A, lower right panel) for 

5 comparison with Figure 7 .4 , upper right panel. As with dIe other metries, there are large 

6 increases over dIe eastem half of the United States while dIe increases in dIe western United 

7 States are smaller and there are actually small decreases in the Soudlwest. 

8 There are differences in dIe magnitude of changes among the four different regional metrics in 

9 Figure 7 .4. but the overall picture is the same: large increases in the eastem half of dIe United 

10 States and smaller increases, or slight decreases , in dIe western United States. 

11 [INSERT FIGURE 7.4 HERE] 

12 7.1A Extratropical Cyclones and Mesoscale Convective Systems 

13 As described in Chapter 9: Extreme Stonns, there is uncertainty about future changes in winter 

14 extratropical cyclones (ETCs) (Colle et al. 2013). TIms, the potential effects on winter extreme 

15 precipitation events is also uncertain . SUllllnertime ETC activity across North America has 

16 decreased since 1979, with a reduction of more than 35% in the number of strong summertime 

17 ETCs (Chang et al. 20 16) . Most climate models simulate litde change over tlllS same Illstorical 

18 period, but they project a decrease in summer ETC activity during the remainder of the 21 st 

19 century (Chang et al. 20 16) . Tills is potentially relevant to extreme precipitation in the 

20 northeastern quadrant of dIe Utllted States because a large percentage of the extreme 

21 precipitation events in tillS region are caused by ETCs and their associated fronts (Kunkel et al. 

22 20 12) . This suggests that in dIe future there may be fewer opportunities in the SUllllner for 

23 extreme precipitation, although increases in water vapor are likely to overcompensate for any 

24 decreases in ETCs by increasing the likelihood dlat an ETC will produce excessive rainfall 

25 amounts. A very idealized set of climate simulations (Pfahl et al. 20 15) suggests dlat substantial 

26 projected warming will lead to a decrease in dIe number of ETCs but an increase in dIe intensity 

27 of the strongest ETCs. One factor potentially causing dlls model ETC intensification is an 

28 increase in latent heat release in these stonns related to a moister atmosphere . Because of the 

29 idealized nature of these simulations, dIe implications of dlese results for dIe real earth-

30 atmosphere system is uncertain . However , dIe increased latent heat mechanism is likely to occur 

31 given the high confidence in a future moister atmosphere. For eastem North America , CMIP5 

32 simulations of the future indicate an increase in strong ETCs (Colle et al. 2013) . TIms, it is 

33 possible dlat dIe most extreme precipitation events associated with ETCs may increase in the 

34 future. 

35 Mesoscale convective systems (MCSs), which contribute substantially to wann season 

36 precipitation in the tropics and subtropics (Nesbitt et al. 2006), account for about half of rainfall 

37 in dIe central United States (Frisch et al. 1986). Schumacher and Johnson (2006) reported dlat 

Subject to Final Copyedit 305 28 June 2017 
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74% of all warm season extreme rain events over the eastern two-thirds of the United States 1 

during the period 1999–2003 were associated with an MCS. Feng et al. (2016) found that large 2 

regions of the central United States experienced statistically significant upward trends in April–3 

June MCS rainfall of 0.4–0.8 mm per day (approximately 20%–40%) per decade from 1979 to 4 

2014. They further found upward trends in MCS frequency of occurrence, lifetime, and 5 

precipitation amount, which they attribute to an enhanced west-to-east pressure gradient 6 

(enhanced Great Plains Low-Level Jet) and enhanced specific humidity throughout the eastern 7 

Great Plains. 8 

7.1.5 Detection and Attribution  9 

TRENDS 10 

Detectability of trends (compared to internal variability) for a number of precipitation metrics 11 

over the continental United States has been examined; however, trends identified for the U.S. 12 

regions have not been clearly attributed to anthropogenic forcing (Anderson et al. 2015; 13 

Easterling et al. 2016). One study concluded that increasing precipitation trends in some north-14 

central U.S. regions and the extreme annual anomalies there in 2013 were at least partly 15 

attributable to the combination of anthropogenic and natural forcing (Knutson et al. 2014). 16 

There is medium confidence that anthropogenic forcing has contributed to global-scale 17 

intensification of heavy precipitation over land regions with sufficient data coverage (Bindoff et 18 

al. 2013). Global changes in extreme precipitation have been attributed to anthropogenically 19 

forced climate change (Min et al. 2011, 2013), including annual maximum 1-day and 5-day 20 

accumulated precipitation over northern hemisphere land regions and (relevant to this report) 21 

over the North American continent (Zhang et al. 2013). Although the United States was not 22 

separately assessed, the parts of North America with sufficient data for analysis included the 23 

continental United States and parts of southern Canada, Mexico, and Central America. Since the 24 

covered region was predominantly over the United States, these detection/attribution findings are 25 

applicable to the continental United States.  26 

Analyses of precipitation extreme changes over the United States by region (20-year return 27 

values of seasonal daily precipitation over 1948–2015, Figure 7.2) show statistically significant 28 

increases consistent with theoretical expectations and previous analyses (Westra et al. 2013). 29 

Further, a significant increase in the area affected by precipitation extremes over North America 30 

has also been detected (Dittus et al. 2015). There is likely an anthropogenic influence on the 31 

upward trend in heavy precipitation (Dittus et al. 2016), although models underestimate the 32 

magnitude of the trend. Extreme rainfall from U.S. landfalling tropical cyclones has been higher 33 

in recent years (1994–2008) than the long-term historical average, even accounting for temporal 34 

changes in storm frequency (Kunkel et al. 2010).  35 

Based on current evidence, it is concluded that detectable but not attributable increases in mean 36 

precipitation have occurred over parts of the central United States. Formal detection-attribution 37 
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studies indicate a human contribution to extreme precipitation increases over the continental 1 

United States, but confidence is low based on those studies alone due to the short observational 2 

period, high natural variability, and model uncertainty.  3 

In summary, based on available studies, it is concluded that for the continental United States 4 

there is high confidence in the detection of extreme precipitation increases, while there is low 5 

confidence in attributing the extreme precipitation changes purely to anthropogenic forcing. 6 

There is stronger evidence for a human contribution (medium confidence) when taking into 7 

account process-based understanding (increased water vapor in a warmer atmosphere), evidence 8 

from weather and climate models, and trends in other parts of the world. 9 

EVENT ATTRIBUTION 10 

A number of recent heavy precipitation events have been examined to determine the degree to 11 

which their occurrence and severity can be attributed to human-induced climate change. Table 12 

7.1 summarizes available attribution statements for recent extreme U.S. precipitation events. 13 

Seasonal and annual precipitation extremes occurring in the north-central and eastern U.S. 14 

regions in 2013 were examined for evidence of an anthropogenic influence on their occurrence 15 

(Knutson et al. 2014). Increasing trends in annual precipitation were detected in the northern tier 16 

of states, March–May precipitation in the upper Midwest, and June–August precipitation in the 17 

eastern United States since 1900. These trends are attributed to external forcing (anthropogenic 18 

and natural) but could not be directly attributed to anthropogenic forcing alone. However, based 19 

on this analysis, it is concluded that the probability of these kinds of extremes has increased due 20 

to anthropogenic forcing.  21 

The human influence on individual storms has been investigated with conflicting results. For 22 

example, in examining the attribution of the 2013 Colorado floods, one study finds that despite 23 

the expected human-induced increase in available moisture, the GEOS-5 model produces fewer 24 

extreme storms in the 1983–2012 period compared to the 1871–1900 period in Colorado during 25 

the fall season; the study attributes that behavior to changes in the large-scale circulation 26 

(Hoerling et al. 2014). However, another study finds that such coarse models cannot produce the 27 

observed magnitude of precipitation due to resolution constraints (Pall et al. 2017). Based on a 28 

highly conditional set of hindcast simulations imposing the large-scale meteorology and a 29 

substantial increase in both the probability and magnitude of the observed precipitation 30 

accumulation magnitudes in that particular meteorological situation, the study could not address 31 

the question of whether such situations have become more or less probable. Extreme 32 

precipitation event attribution is inherently limited by the rarity of the necessary meteorological 33 

conditions and the limited number of model simulations that can be performed to examine rare 34 

events. This remains an open and active area of research. However, based on these two studies, 35 

the anthropogenic contribution to the 2013 Colorado heavy rainfall-flood event is unclear.  36 

[INSERT TABLE 7.1 HERE] 37 
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7.2 Projections 1 

Changes in precipitation in a warmer climate are governed by many factors. Although energy 2 

constraints can be used to understand global changes in precipitation, projecting regional 3 

changes is much more difficult because of uncertainty in projecting changes in the large-scale 4 

circulation that plays important roles in the formation of clouds and precipitation (Shepherd 5 

2014). For the contiguous United States (CONUS), future changes in seasonal average 6 

precipitation will include a mix of increases, decreases, or little change, depending on location 7 

and season (Figure 7.5). High-latitude regions are generally projected to become wetter while the 8 

subtropical zone is projected to become drier. As the CONUS lies between these two regions, 9 

there is significant uncertainty about the sign and magnitude of future anthropogenic changes to 10 

seasonal precipitation in much of the region, particularly in the middle latitudes of the Nation. 11 

However, because the physical mechanisms controlling extreme precipitation differ from those 12 

controlling seasonal average precipitation (Section 7.1.4), in particular atmospheric water vapor 13 

will increase with increasing temperatures, confidence is high that precipitation extremes will 14 

increase in frequency and intensity in the future throughout the CONUS. 15 

Global climate models used to project precipitation changes exhibit varying degrees of fidelity in 16 

capturing the observed climatology and seasonal variations of precipitation across the United 17 

States. Global or regional climate models with higher horizontal resolution generally achieve 18 

better skill than the CMIP5 models in capturing the spatial patterns and magnitude of winter 19 

precipitation in the western and southeastern United States (e.g., Mearns et al. 2012; Wehner 20 

2013; Bacmeister et al. 2014; Wehner et al. 2014), leading to improved simulations of snowpack 21 

and runoff (e.g., Rauscher et al. 2008; Rasmussen et al. 2011). Simulation of present and future 22 

summer precipitation remains a significant challenge, as current convective parameterizations 23 

fail to properly represent the statistics of mesoscale convective systems (Boyle and Klein 2010). 24 

As a result, high-resolution models that still require the parameterization of deep convection 25 

exhibit mixed results (Wehner et al. 2014; Sakaguchi et al. 2015). Advances in computing 26 

technology are beginning to enable regional climate modeling at the higher resolutions (1–4 km), 27 

permitting the direct simulation of convective clouds systems (e.g., Ban et al. 2014) and 28 

eliminating the need for this class of parameterization. However, projections from such models 29 

are not yet ready for inclusion in this report. 30 

Important progress has been made by the climate modeling community in providing multimodel 31 

ensembles such as CMIP5 (Taylor et al. 2012) and NARCCAP (Mearns et al. 2012) to 32 

characterize projection uncertainty arising from model differences and large ensemble 33 

simulations such as CESM-LE (Kay et al. 2015) to characterize uncertainty inherent in the 34 

climate system due to internal variability. These provide an important resource for examining the 35 

uncertainties in future precipitation projections. 36 

  37 
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1 7.2.1 Future Changes in U.S. Seasonal Mean Precipitation 

2 In the United States, projected changes in seasonal mean precipitation span the range from 

3 profound decreases to profound increases. And in many regions and seasons, projected changes 

4 in precipitation are not large compared to natural variations. TIle general pattem of change is 

5 clear and consistent with theoretical expectations. Figure 7.5 shows the weighted CMIP5 

6 multimodel average seasonal change at the end of the century compared to dIe present under the 

7 RCP8.5 scenario (see eh. 4: Projections for discussion of Reps). In tIllS figure , changes 

8 projected with high confidence to be larger than natural variations are stippled. Regions where 

9 future changes are projected with high confidence to be smaller than natural variations are 

10 hatched. In winter and spring, dIe northem part of dIe country is projected to become wetter as 

11 the global climate wanns. In the early to middle parts of tlus century, this will likely be 

12 matufested as increases in snowfall (O'Gonnan 2014). By dIe latter half of the century, as 

13 temperature continues to increase, it will be too wann to snow in many current snow-producing 

14 situations, and precipitation will mostly be rainfall . In dIe southwestem Ututed States, 

15 precipitation will decrease in the spring but the changes are only a little larger than natural 

16 variations. Many odler regions of dIe country will not experience sigtuficant changes in average 

17 precipitation. Tlus is also dIe case over most of dIe country in the summer atld fall. 

18 [INSERT FIGURE 75 HERE] 

19 This pattem of projected precipitation Chatlge arises because of changes in locally available 

20 water vapor and weather system shifts. In the nordlem part of the continent , increases in water 

21 vapor , together with Chatlges in circulation dlat are the result of expansion of the Hadley cell, 

22 bring more moisture to dlese latitudes while maintaining or increasing the frequency of 

23 precipitation-producing weather systems. This change in the Hadley circulation (see Ch. 5: 

24 Circulation and Variability for discussion of circulation changes) also causes the subtropics, the 

25 region between the northem and southem edges of the tropics atld the nudlatitudes (about 35° of 

26 latitude) , to be drier in wanner climates as well as moving the mean stoml track northward and 

27 away from the subtropics, decreasing the frequency of precipitation-producing systems. The 

28 combination of these two factors results in precipitation decreases in the soudlwestem Ututed 

29 States, Mexico, atld the Caribbeatl (Collins et al. 2013) . 

30 PROJECTED CHANGES IN SNOW 

31 The Third National Climate Assessment (Georgakakos et al. 20 14) projected reductions in 

32 annual snowpack of up to 40% in the westem United States based on dIe SRES A2 emissions 

33 scenario in dIe C:rvtIP3 stute of climate model projections. Recent research using the CMIPS stute 

34 of climate model projections forced widl the RCP8 .5 scenario and statistically downscaled for 

35 the westem Ututed States continues to show the expected declines in various snow metrics, 

36 including snow water eqtuvalent , dIe number of extreme snowfall events, atld number of 

37 snowfall days (Lute et al. 20 15) . A nordlward shift in dIe rain-snow tratlsition zone in dIe central 
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1 and eastern United States was found using statistically downscaled CMIPS simulations forced 

2 with RepS.5. By the end of the 21 st century, large areas dial are currently snow-dominated in 

3 the cold season are expected to be rainfall dominated (Ning and Bradley 2015) . 

4 The Variable Infiltration Capacity (VIC) model has been used to investigate dIe potential effects 

5 of climate change on SWE. Declines in SWE are projected in all western U.S. mountain ranges 

6 during dIe 21 st century with dIe virtual disappearance of snowpack in the southenllllost 

7 mountains by the end of the 21st century under both dIe RCP4.5 and RCP8.5 scenarios (Gergel 

8 et al. 2017) . TIle projected decreases are most robust at dIe lower elevations of areas where 

9 stlowpack accumulation is now reliable (for example , the Cascades and northern Sierra Nevada 

10 ranges). In dlese areas, future decreases in SWE are largely driven by increases in temperature . 

11 At higher (colder) elevations, projections are driven more by precipitation changes and are thus 

12 more uncertain . 

13 7.2.2 Extremes 

14 HEAVY PRECIPITATION EVENTS 

15 Studies project that the observed increase in heavy precipitation events will continue in the future 

16 (e.g. Janssen et al. 2014, 2016) . Similar to observed changes, increases are expected in all 

17 regions, even those regions where total precipitation is projected to decline, such as the 

18 southwestern United States. Under the RCP85 scenario the number of extreme events 

19 (exceeding a S-year return period) increases by two to three times dIe historical average in every 

20 region (Figure 7 .6) by the end of the 2 1st century, with the largest increases in the Northeast . 

21 Under the RCP4.5 scenario , increases are 50%-100% . Research shows that there is strong 

22 evidence, both from dIe observed record and modeling studies, that increased water vapor 

23 resulting from higher temperatures is the primary cause of dIe increases (Kunkel et al. 2013a,b; 

24 Wehner 20 13) . Additional effects on extreme precipitation due to changes in dynamical 

25 processes are poorly understood . However atmospheric rivers (ARs), especially along dIe West 

26 Coast of dIe United States, are projected to increase in number and water vapor transport 

27 (Dettinger 2011) and experience landfall at lower latitudes (Shields and Kiehl 2016) by dIe end 

28 of the 21 st century. 

29 [INSERT FIGURE 7.6 HERE] 

30 Projections of changes in the 20-year retlml period amount for daily precipitation (Figure 7 .7) 

31 using Locally Constructed Analogs (LOCA) downscaled data also show large percentage 

32 increases for both dIe middle and late 21st century. The lower emissions projections (RCP4.5) 

33 show increases of around 10% for mid-century and up to 14% for the late century projections. 

34 The higher emissions projections show even larger increases for both mid-century and late 

35 century projections, widl increases of around 20% by late 20dl century. No region in either 

36 emissions scenario shows a decline in heavy precipitation. The increases in extreme precipitation 
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1 tend to increase widl return level , such that increases for the loo-year retlmlleve1 are about 30% 

2 by the end of the century under a high emissions scenario . 

3 [INSERT FIGURE 7.7 HERE] 

4 Projections of changes in the distribution of daily precipitation amounts (Figure 7.8) indicate an 

5 overall more extreme precipitation climate. Specifically, the projections indicate a slight increase 

6 in dIe numbers of dry days and the very lightest precipitation days and a large increase in the 

7 heaviest days. TIle number of days with precipitation amounts greater than dIe 95 th percentile of 

8 all nOll-zero precipitation days increases by more than 25% . At the same time. the number of 

9 days with precipitation amounts in the 10th-80th percentile range decreases. 

10 [INSERT FIGURE 7.8 HERE] 

11 Most global climate models lack sufficient resolution to project changes in MCSs in a changing 

12 climate (Koopemian et al. 2013). However, research by Cook et al. (2008) attempted to identify 

13 clues to changes in dynamical forcing that create MCSs. To do this, they examined dIe ability of 

14 18 coupled ocean-atmosphere global climate models (GCMs) to simulate potential 21st century 

15 changes in wann-season flow and the associated U.S . Midwest hydrology resulting from 

16 increases in greenhouse gases . They selected a subset of six models dlat best captured the low-

17 level flow and associated dynamics of the present-day climate of the central United States and 

18 then analyzed diese models for changes due to enhanced greenhouse gas forcing . In each of these 

19 models, springtime precipitation increases significantly (by 20%--40%) in the upper Mississippi 

20 Valley and decreases to the south . The enhanced moisture convergence leading to modeled 

21 future climate rainfall increases in the U.S . Midwest is caused by meridional convergence at 850 

22 hPa , connecting the rainfall changes with the Great Plains Low-Level Jet intensification (Higgins 

23 et al. 1997). TIus is consistent with findings from Feng et al. (2016) in dIe observational record 

24 for the period 1979-2014 and by Pan et al. (2004) by use of a regional climate model. 

25 Changes in intense hourly precipitation events were simulated by Prein et al. 20 17 where dley 

26 found the most intense hourly events (99 .9 percentile) in the central Uluted States increase at dIe 

27 expense of moderate intense (97.5 percentile) hourly events in the wann season. They also found 

28 the frequency of seasonal hourly precipitation extremes is expected to increase in all regions by 

29 up to five titnes in the same areas dlat show the highest increases in extreme precipitation rates. 

30 HURRICANE PRECIPITATION 

31 Regional model projections of precipitation from landfal ling tropical cyclones over the United 

32 States, based on downscaling of CMIP5 model climate changes, suggest that the occurrence 

33 frequency of post-landfall tropical cyclones over the United States will change litde compared to 

34 present day during dIe 21st century, as the reduced frequency of tropical cyclones over the 

35 Atlantic domain is mostly offset by a greater landfalling fraction . However, when downscaling 

36 from CMIP3 model climate changes, projections showed a reduced occurrence frequency over 

Subject to Final Copyedit 311 28 June 2017 



CSSR 5OD: FINAL CLEARANCE Chapter 7 

Subject to Final Copyedit 28 June 2017312

U.S. land, indicating uncertainty about future outcomes. The average tropical cyclone rainfall 1 

rates within 500 km (about 311 miles) of the storm center increased by 8% to 17% in the 2 

simulations, which was at least as much as expected from the water vapor content increase factor 3 

alone. 4 

Several studies have projected increases of precipitation rates within hurricanes over ocean 5 

regions (Knutson et al. 2010), particularly for the Atlantic basin (Knutson et al. 2013). The 6 

primary physical mechanism for this increase is the enhanced water vapor content in the warmer 7 

atmosphere, which enhances moisture convergence into the storm for a given circulation 8 

strength, although a more intense circulation can also contribute (Wang et al. 2015). Since 9 

hurricanes are responsible for many of the most extreme precipitation events in the southeastern 10 

United States (Kunkel et al. 2010, 2012), such events are likely to be even heavier in the future. 11 

In a set of idealized forcing experiments, this effect was partly offset by differences in warming 12 

rates at the surface and at altitude (Villarini et al. 2014). 13 

  14 
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TRACEABLE ACCOUNTS 1 

Key Finding 1 2 

Annual precipitation has decreased in much of the West, Southwest, and Southeast and increased 3 

in most of the Northern and Southern Plains, Midwest, and Northeast. A national average 4 

increase of 4% in annual precipitation since 1901 is mostly a result of large increases in the fall 5 

season. (Medium confidence) 6 

Description of evidence base 7 

The key finding and supporting text summarizes extensive evidence documented in the climate 8 

science peer-reviewed literature. Evidence of long-term changes in precipitation is based on 9 

analysis of daily precipitation observations from the U.S. Cooperative Observer Network 10 

(http://www.nws.noaa.gov/om/coop/) and shown in Figure 7.1. Published work, such as the 11 

Third National Climate Assessment (Melillo et al. 2014), and Figure 7.1 show important regional 12 

and seasonal differences in U.S. precipitation change since 1901.  13 

Major uncertainties 14 

The main source of uncertainty is the sensitivity of observed precipitation trends to the spatial 15 

distribution of observing stations and to historical changes in station location, rain gauges, the 16 

local landscape, and observing practices. These issues are mitigated somewhat by new methods 17 

to produce spatial grids through time (Vose et al. 2014). 18 

Assessment of confidence based on evidence and agreement, including short description of 19 

nature of evidence and level of agreement 20 

Based on the evidence and understanding of the issues leading to uncertainties, confidence is 21 

medium that average annual precipitation has increased in the United States. Furthermore, 22 

confidence is also medium that the important regional and seasonal differences in changes 23 

documented in the text and in Figure 7.1 are robust. 24 

Summary sentence or paragraph that integrates the above information 25 

Based on the patterns shown in Figure 7.1 and numerous additional studies of precipitation 26 

changes in the United States, there is medium confidence in the observed changes in annual and 27 

seasonal precipitation over the various regions and the United States as a whole. 28 

 29 

Key Finding 2 30 

Heavy precipitation events in most parts of the United States have increased in both intensity and 31 

frequency since 1901 (high confidence). There are important regional differences in trends, with 32 
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the largest increases occurring in the northeastern United States (high confidence). In particular, 1 

mesoscale convective systems (organized clusters of thunderstorms)—the main mechanism for 2 

warm season precipitation in the central part of the United States—have increased in occurrence 3 

and precipitation amounts since 1979 (medium confidence).  4 

Description of evidence base 5 

The key finding and supporting text summarizes extensive evidence documented in the climate 6 

science peer-reviewed literature. Numerous papers have been written documenting observed 7 

changes in heavy precipitation events in the United States, including those cited in the Third 8 

National Climate Assessment and in this assessment. Although station based analyses (e.g., 9 

Westra et al. 2013) do not show large numbers of statistically significant station-based trends, 10 

area averaging reduces the noise inherent in station-based data and produces robust increasing 11 

signals (see Figures 7.2 and 7.3). Evidence of long-term changes in precipitation is based on 12 

analysis of daily precipitation observations from the U.S. Cooperative Observer Network 13 

(http://www.nws.noaa.gov/om/coop/) and shown in Figures 7.2, 7.3, and 7.4. 14 

Major uncertainties 15 

The main source of uncertainty is the sensitivity of observed precipitation trends to the spatial 16 

distribution of observing stations and to historical changes in station location, rain gauges, and 17 

observing practices. These issues are mitigated somewhat by methods used to produce spatial 18 

grids through gridbox averaging. 19 

Assessment of confidence based on evidence and agreement, including short description of 20 

nature of evidence and level of agreement 21 

Based on the evidence and understanding of the issues leading to uncertainties, confidence is 22 

high that heavy precipitation events have increased in the United States. Furthermore, confidence 23 

is also high that the important regional and seasonal differences in changes documented in the 24 

text and in Figures 7.2, 7.3, and 7.4 are robust. 25 

Summary sentence or paragraph that integrates the above information 26 

Based on numerous analyses of the observed record in the United States there is high confidence 27 

in the observed changes in heavy precipitation events, and medium confidence in observed 28 

changes in mesoscale convective systems. 29 

 30 

Key Finding 3 31 

The frequency and intensity of heavy precipitation events are projected to continue to increase 32 

over the 21st century (high confidence). Mesoscale convective systems in the central United 33 
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States, are expected to continue to increase in number and intensity in the future (medium 1 

confidence). There are, however, important regional and seasonal differences in projected 2 

changes in total precipitation: the northern United States, including Alaska, is projected to 3 

receive more precipitation in the winter and spring, and parts of the southwestern United States 4 

are projected to receive less precipitation in the winter and spring (medium confidence). 5 

Description of evidence base 6 

Evidence for future changes in precipitation is based on climate model projections and our 7 

understanding of the climate system’s response to increasing greenhouse gases and of regional 8 

mechanisms behind the projected changes. In particular, Figure 7.7 documents projected changes 9 

in the 20-year return period amount using the LOCA data, and Figure 7.6 shows changes in 2 10 

day totals for the 5-year return period using the CMIP5 suite of models. Each figure shows 11 

robust changes in extreme precipitation events as they are defined in the figure. However, Figure 12 

7.5, which shows changes in seasonal and annual precipitation, indicate where confidence in the 13 

changes is higher based on consistency between the models and that there are large areas where 14 

the projected change is uncertain. 15 

Major uncertainties 16 

A key issue is how well climate models simulate precipitation, which is one of the more 17 

challenging aspects of weather and climate simulation. In particular, comparisons of model 18 

projections for total precipitation (from both CMIP3 and CMIP5, see Sun et al. 2015) by NCA3 19 

region show a spread of responses in some regions (for example, the Southwest) such that they 20 

are opposite from the ensemble average response. The continental United States is positioned in 21 

the transition zone between expected drying in the sub-tropics and wetting in the mid- and 22 

higher-latitudes. There are some differences in the location of this transition between CMIP3 and 23 

CMIP5 models and thus there remains uncertainty in the exact location of the transition zone. 24 

Assessment of confidence based on evidence and agreement, including short description of 25 

nature of evidence and level of agreement 26 

Based on evidence from climate model simulations and our fundamental understanding of the 27 

relationship of water vapor to temperature, confidence is high that extreme precipitation will 28 

increase in all regions of the United States. However, based on the evidence and understanding 29 

of the issues leading to uncertainties, confidence is medium that that more total precipitation is 30 

projected for the northern U.S. and less for the Southwest. 31 

Summary sentence or paragraph that integrates the above information 32 

Based on numerous analyses of model simulations and our understanding of the climate system 33 

there is high confidence in the projected changes in precipitation extremes and medium 34 

confidence in projected changes in total precipitation over the United States. 35 
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Key Finding 4 1 

Northern Hemisphere spring snow cover extent, North America maximum snow depth, snow 2 

water equivalent in the western United States, and extreme snowfall years in the southern and 3 

western United States have all declined, while extreme snowfall years in parts of the northern 4 

United States have increased (medium confidence). Projections indicate large declines in 5 

snowpack in the western United States and shifts to more precipitation falling as rain than snow 6 

in the cold season in many parts of the central and eastern United States (high confidence). 7 

Description of evidence base 8 

Evidence of historical changes in snow cover extent and a reduction in extreme snowfall years is 9 

consistent with our understanding of the climate system’s response to increasing greenhouse 10 

gases. Furthermore, climate models continue to consistently show future declines in snowpack in 11 

the western United States. Recent model projections for the eastern United States also confirm a 12 

future shift from snowfall to rainfall during the cold season in colder portions of the central and 13 

eastern United States. Each of these changes is documented in the peer-reviewed literature and 14 

are cited in the main text of this chapter.  15 

Major uncertainties 16 

The main source of uncertainty is the sensitivity of observed snow changes to the spatial 17 

distribution of observing stations and to historical changes in station location, rain gauges, and 18 

observing practices, particularly for snow. Another key issue is the ability of climate models to 19 

simulate precipitation, particularly snow. Future changes in the frequency and intensity of 20 

meteorological systems causing heavy snow are less certain than temperature changes. 21 

Assessment of confidence based on evidence and agreement, including short description of 22 

nature of evidence and level of agreement 23 

Given the evidence base and uncertainties, confidence is medium that snow cover extent has 24 

declined in the United States and medium that extreme snowfall years have declined in recent 25 

years. Confidence is high that western United States snowpack will decline in the future, and 26 

confidence is medium that a shift from snow domination to rain domination will occur in the 27 

parts of the central and eastern United States cited in the text. 28 

Summary sentence or paragraph that integrates the above information 29 

Based on observational analyses of snow cover, depth and water equivalent there is medium 30 

confidence in the observed changes, and based on model simulations for the future there is high 31 

confidence in snowpack declines in the Western United States and medium confidence in the 32 

shift to rain from snow in the eastern United States. 33 

  34 
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TABLE 1 

Table 7.1: A list of U.S. extreme precipitation events for which attribution statements have been 2 

made. In the last column, “+” indicates that an attributable human-induced increase in frequency 3 

and/or magnitude was found, “-“ indicates that an attributable human-induced decrease in 4 

frequency and/or magnitude was found, “0” indicates no attributable human contribution was 5 

identified. As in tables 6.1 and 8.2, several of the events were originally examined in the Bulletin 6 

of the American Meteorological Society’s (BAMS) State of the Climate Reports and reexamined 7 

by Angélil et al. (2017). In these cases, both attribution statements are listed with the original 8 

authors first. Source: M. Wehner. 9 

Authors Event year and 

duration 

Region Type Attribution 

statement 

Knutson et al. 2014 / 

Angélil et al. 2017 

ANN 2013 U.S. Northern 

Tier 

Wet +/0 

Knutson et al. 2014 / 

Angélil et al. 2017 

MAM 2013 U.S. Upper 

Midwest 

Wet +/+ 

Knutson et al. 2014 / 

Angélil et al. 2017 

JJA 2013 Eastern U.S. 

Region 

Wet +/- 

Edwards et al. 2014 October 4-5, 2013 South Dakota  Blizzard 0 

Hoerling et al. 2014 September 10-14, 

2013 

Colorado Wet 0 

Pall et al. 2017 September 10-14, 

2013 

Colorado Wet + 

 10 

  11 
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standard deviation is calculated from the 14 or 16 model values that represent the aggregated 1 

average over the regions, over the decades, and over the ensemble members of each model. The 2 

average frequency for the historical reference period is 0.2 by definition and the values in this 3 

graph should be interpreted with respect to a comparison with this historical average value. 4 

(Figure source: Janssen et al. 2014).  5 

  6 
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