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[1] Precipitation downscaling improves the coarse resolu-
tion and poor representation of precipitation in global cli-
mate models and helps end users to assess the likely
hydrological impacts of climate change. This paper integrates
perspectives from meteorologists, climatologists, statisti-
cians, and hydrologists to identify generic end user (in partic-
ular, impact modeler) needs and to discuss downscaling
capabilities and gaps. End users need a reliable representation
of precipitation intensities and temporal and spatial variabil-
ity, as well as physical consistency, independent of region
and season. In addition to presenting dynamical downscal-

ing, we review perfect prognosis statistical downscaling,
model output statistics, and weather generators, focusing on
recent developments to improve the representation of space‐
time variability. Furthermore, evaluation techniques to assess
downscaling skill are presented. Downscaling adds consider-
able value to projections fromglobal climatemodels. Remaining
gaps are uncertainties arising from sparse data; representation
of extreme summer precipitation, subdaily precipitation, and
full precipitation fields on fine scales; capturing changes in
small‐scale processes and their feedback on large scales; and
errors inherited from the driving global climate model.

Citation: Maraun, D., et al. (2010), Precipitation downscaling under climate change: Recent developments to bridge the gap

between dynamical models and the end user, Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

1. INTRODUCTION

[2] Global climate models (GCMs) are the primary tool

for understanding how the global climate may change in the

future. (Italicized terms are defined in the glossary, after the

main text.) However, these currently do not provide reliable

information on scales below about 200 km [Meehl et al.,

2007] (for an illustration, see Figure 1). Hydrological pro-

cesses typically occur on finer scales [Kundzewicz et al.,

2007]. In particular, GCMs cannot resolve circulation pat-

terns leading to hydrological extreme events [Christensen

and Christensen, 2003]. Hence, to reliably assess hydro-

logical impacts of climate change, higher‐resolution sce-

narios are required for the most relevant meteorological

variables.

[3] Downscaling attempts to resolve the scale discrepancy

between climate change scenarios and the resolution required

for impact assessment. It is based on the assumption that

large‐scale weather exhibits a strong influence on local‐

scale weather but, in general, disregards any reverse effects

from local scales upon global scales. Two approaches to

downscaling exist. Dynamical downscaling nests a regional

climate model (RCM) into the GCM to represent the atmo-

spheric physics with a higher grid box resolution within a
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limited area of interest. Statistical downscaling establishes

statistical links between large(r)‐scale weather and observed

local‐scale weather.

[4] During the last 2 decades, extensive research on down-

scaling methods and applications has been carried out. For a

comprehensive overview of applications, see Christensen

et al. [2007]; see also Prudhomme et al. [2002] and Fowler

et al. [2007a], who focus on hydrology. Several reviews of

downscaling methods have been published [e.g., Hewitson

and Crane, 1996; Zorita and von Storch, 1997; Wilby and

Wigley, 1997; Xu, 1999a; Hanssen‐Bauer et al., 2005]. In

addition to updating these methodological reviews, this paper

aims to integrate different perspectives on precipitation

downscaling, in particular, from meteorologists, climatolo-

gists, statisticians, and impact modelers such as hydrolo-

gists. As such, we focus on laying out concepts and

discussing methodological advances.

[5] In general, the most relevant meteorological variables

for hydrological impact studies are precipitation and tem-

perature [Xu, 1999b; Bronstert et al., 2007]. For freshwater

resources in particular, precipitation is the most important

driver [Kundzewicz et al., 2007], though it is considerably

more difficult to model than temperature mostly because of

its high spatial and temporal variability and its nonlinear

nature. The overall objective of this paper is to define a

set of generic end user needs (in particular, for impact

modelers) for downscaled precipitation and then to discuss

how these needs are met by various downscaling approaches

and what gaps are remaining.

[6] Statistical downscaling has received considerable atten-

tion from statisticians. Their contributions have, however,

largely been unrecognized by the climate community,

although they attempt to address important end user needs.

An essential part of this paper is therefore to review recent

statistical models that have been developed to improve the

representation of spatial‐temporal variability and extremes.

We attempt to bring these recent approaches together with

classical statistical downscaling methods and discuss differ-

ences and similarities between individual methods and

approaches, as well as their advantages and drawbacks.

[7] Traditionally, statistical downscaling has been seen as

an alternative to dynamical downscaling. With the increas-

ing reliability and availability of RCM scenarios, recent

work on statistical downscaling has aimed to combine the

benefits of these two approaches. Under the name model

output statistics (MOS), gridded RCM simulations are sta-

tistically corrected and downscaled to point scales. We

describe MOS approaches in detail and discuss their relation

to other statistical downscaling approaches.

[8] To seriously evaluate the skill of downscaling approaches

to meet the end user needs, a quantitative evaluation is neces-

sary. Therefore, an important part of the paper is a review of

validation techniques.

[9] In section 2 we identify a set of generic end user needs.

The state of the art in dynamical and statistical downscaling is

presented in sections 3 and 4, respectively, and in section 5,

validation techniques are introduced. Finally, in section 6

we discuss how the approaches presented in sections 3

and 4 meet the specific needs identified in section 2. In

particular, section 6 seeks to address the following ques-

tions: How does dynamical downscaling address a particular

end user need? How can MOS improve the RCM simula-

Figure 1. Average UK winter precipitation (mm/d) for 1961–2000 simulated by the Hadley Centre
global climate model (GCM) HadCM3 and the regional climate model (RCM) HadRM3 at 50 and
25 km resolutions compared with gridded observations (E. Buonomo et al., unpublished data, 2009).
The GCM does not provide regional precipitation information. The RCM reproduces basic regional struc-
ture but is limited in mountain areas (western UK); in addition, this particular RCM exaggerates the rain
shadow effect (east Scotland).
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tions and close potential gaps? How does statistical down-

scaling perform as alternative to dynamical downscaling?

What are the remaining gaps? Sections 3–5 are quite tech-

nical in nature, while sections 2 and 6 are written to be

accessible to the nonexpert.

2. NEEDS OF THE END USER

[10] Downscaling precipitation, in most cases, is not an

end in itself but provides a product (in the form of data or

information) to an “end user.” Their goal may be, for

example, to understand and potentially act upon the impacts

that are likely to be caused by a localized climate extreme or

by a future change in the climate. End users range from

policy makers, through planners and engineers, to impact

modelers. As well as the product, the end user might also

require a clear statement of the assumptions involved and

limitations of the downscaling procedure, a transparent

explanation of the method, a description of the driving vari-

ables used in the downscaling procedure and their source,

a clear statement of the validation method and performance,

and some characterization of the uncertainty or reliability of

the supplied data. Fowler et al. [2007a] note that very few

downscaling studies consider hydrological impacts and

those that do seldom provide any consideration of how results

might enable end users to make informed, robust decisions

on adaptation in the face of deep uncertainty about the

future. To be able to successfully make such a decision,

nonspecialist end users (e.g., the policy maker) might ben-

efit from including social scientists with experience in

translating between nonspecialists and natural scientists

[Changnon, 2004; Gigerenzer et al., 2005; Pennesi, 2007].

This communication process can ensure that the downscaled

product can, in fact, be used as intended and is understood

correctly. This paper mainly addresses the hydrological

impact modeler, but sections 6 and 7, especially, provide

useful information for other types of end user.

[11] In hydrological impact studies, whether using observed

or simulated precipitation, assumptions about the spatial and

temporal distribution of precipitation are required, and the

pertinent question is what assumptions are appropriate given

the nature of the specific problem being addressed. Hydro-

logical impact analyses can have different objectives and

hence focus on different components of the hydrological

cycle. They are applied in differing environments (e.g., dif-

ferent climates, land use, and geology), and it is essential that

the processes and pathways involved in a particular study

area are well understood and represented in the model.

Furthermore, they employ models of varying complexity

and temporal resolution, depending on their purpose and

model availability (e.g., empirical models on an annual base,

“water balance models” on a monthly base, “conceptual

lumped parameter models” on a daily base, and “process‐

based distributed parameter models” on an hourly or finer

base [Xu, 1999a]). Therefore, the objective, study area

characteristics, and type of model used will determine the

sensitivity of the system to different precipitation character-

istics (spatial and temporal distribution) and the form of

the precipitation required (e.g., continuous time series, sea-

sonal averages, and annual extremes).

[12] It is well established that the minimum standard for

any useful downscaling procedure is that the historic

(observed) conditions must be reproducible [Wood et al.,

1997], but it is also necessary that the simulated condi-

tions are appropriate for the particular hydrological problem

being addressed. This can be achieved using a hydrological

evaluation step in the downscaling procedure [Bronstert

et al., 2007], whereby the usefulness of the climatic data

to the hydrological impact analysis is assessed. Fowler et al.

[2007a] suggest using a sensitivity study to define the cli-

matic variables that need to be accurately downscaled for

each different impact application. This should apply not

only to different variables but also to different characteristics

of particular variables, i.e., different precipitation indices.

[13] In sections 2.1–2.6, a set of generic end user needs is

identified, giving specific examples. The skill of the various

downscaling methods to meet these needs is described in

section 6.

2.1. Regional and Seasonal Needs

[14] The needs of the end user will vary regionally and

seasonally as a function of socioeconomic needs and pres-

sures, land use, and the climatological context. Depending

on the particular end user, in some regions it may therefore

be important to provide reliable precipitation characteristics

for a particular season. In monsoonal climates, such as the

Indian subcontinent [Zehe et al., 2006] and West Africa

[Laux et al., 2008], the prediction of the onset and strength

of monsoon rainfall is critical for management of water

resources and agriculture. In temperate climates there is

much less of a seasonal pattern in rainfall, though seasonal

evaporation can significantly impact the water cycle. For

instance, groundwater resources in southeast England are

recharged (i.e., replenished with water originating from

precipitation, infiltrating and percolating through the over-

lying rock) primarily in the winter months when precipita-

tion exceeds evaporation, whereas during the summer much

of the precipitation is lost to evaporation. Therefore, under

current climate conditions, resource availability is consid-

ered primarily a function of winter precipitation (see, e.g.,

the recharge models discussed by Ragab et al. [1997]).

Herrera‐Pantoja and Hiscock [2008] have suggested that

under climate change potential winter recharge will increase,

while summer recharge will reduce (reflecting changes in

both precipitation and potential evaporation). Therefore, the

impact in terms of flood or drought risk will depend on a

more complicated balance of these two seasonal components.

Mean summer rainfall is an important control on agricultural

yield, while extreme rainfall events, especially during the

summer, can damage crops, reduce pesticide efficiency,

erode soil, and cause flooding, all of which have a negative

impact on crop yield [Rosenzweig et al., 2001]. Therefore,

agricultural impacts require reliable predictions of summer

average and extreme rainfall conditions.
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2.2. Event Intensity

[15] Many hydrological applications require continuous

simulation and as such have a requirement for reliable

precipitation intensities, from light to heavy events. Inten-

sities are often characterized by their return level and return

period. The return level is defined as the event magnitude

which, in a stationary climate, would be expected to occur

on average once within the return period. In this paper we

refer to heavy precipitation as events having a return period

of the order of months or a few years. The intensities of

events with return periods of decades or centuries are rarely

observed and probably exceed the range of observed inten-

sities. To correctly assess such rare events, extreme value

theory [e.g., Coles, 2001; Katz et al., 2002; Naveau et al.,

2005] is necessary. We will refer to such events as

extreme precipitation. In particular, extreme precipitation

intensities are required for the design of urban drainage

networks. The UK Department for Environment, Food and

Rural Affairs sets a target of a 100 year return period pro-

tection for urban areas, prioritized on cost/benefit grounds

[Wheater, 2006].

2.3. Temporal Variability and Time Scales

[16] Different temporal characteristics of precipitation are

important depending on the catchment characteristics. The

flooding in Boscastle, southwest England, in August 2004

was caused by 181 mm of rain which fell in 5 h [Wheater,

2006]. By contrast, groundwater flooding in Chalk catch-

ments in Hampshire and Berkshire, south England, in 2001

was caused by the highest 8 month total precipitation in a

record starting in 1883 [Marsh and Dale, 2002]. Daily

precipitation totals during this period were unexceptional

and not in themselves “flood producing” [Department for

Environment, Food and Rural Affairs, 2001]. These are

both examples of different types of extreme precipitation. In

the case of Hampshire and Berkshire, it is necessary that the

statistics of extremely long duration (up to 8 month) pre-

cipitation totals are projected reliably, while daily precipi-

tation totals are much less important. In order to project the

statistics of future flood events similar to the 2004 Boscastle

flood, the downscaler should be able to supply reliable esti-

mates of daily or even subdaily extreme precipitation.

Another example where rainfall intensity over short durations

is highly important is urban flooding [Cowpertwait et al.,

2007].

2.4. Spatial Coherence and Event Size

[17] In principle, downscaling can provide point scale,

areal average, or spatially distributed precipitation fields,

though the latter is challenging. Which of these is required

by the end user will depend on the extent to which the spatial

structure of precipitation is likely to affect the response of a

system under study. For example, in the context of rainfall‐

runoff modeling there is evidence that spatial structure is

important for small, rapidly responding catchments and for

catchments that are larger than the scale of typical precipi-

tation events [Ngirane Katashaya and Wheater, 1985;

Michaud and Sorooshian, 1994; Singh, 1997; Segond et al.,

2007; Wheater, 2008], but other factors, such as catchment

geology, may serve to damp out the effects [Naden, 1992].

2.5. Physical Consistency

[18] Many hydrological responses are affected by variables

other than precipitation, notably evaporation and snowmelt

(exceptions are short time scale responses to large rainfall

events). Ignoring the coherence of these variables, i.e.,

treating them as though they were independent, may in some

circumstances be inappropriate. In certain regions warmer

winters might mean that precipitation falls as rainfall rather

than snowfall, leading to lower snowmelt, lower spring‐

summer runoff, and hence potential drought risk [Rosenzweig

et al., 2001].

2.6. Downscaling for Future Climate Change

[19] End user needs for future scenarios fall into two

categories: projections of the long‐term (several decades to

100 years) trend and predictions of variability over the next

1 or 2 decades. The long‐term trend is important for design

of flood defenses and general infrastructure, as well as

strategic planning regarding agriculture, water resources,

and water‐related hazards. The prediction of shorter‐term

climate variability has more immediate applications, such as

predicting crop yields.

3. HOW FAR HAVE RCMs COME?

[20] RCMs contain the same representations of atmo-

spheric dynamical and physical processes as GCMs. They

have a higher resolution (50 km or less) but cover a subglobal

domain (e.g., Europe). Because of their higher resolution,

RCMs typically require a reduced model time step (5 min or

less) compared to GCMs (typically 30 min time step)

to maintain numerical stability, although semi‐Lagrangian

semi‐implicit RCMs such as the Canadian Regional Climate

Model are able to use time steps as large as GCMs. RCMs

are driven by winds, temperature, and humidity imposed at

the boundaries of the domain and sea surface temperatures,

supplied by the global model, which usually leads to large‐

scale fields in the RCM being consistent with the driving

GCM.

[21] In general, the larger the domain size, the more the

RCM is able to diverge from the driving model [Jones et al.,

1995]. The consistency of large‐scale features can be further

increased by forcing the large‐scale circulation within the

RCM domain to be in close agreement with the global

model [von Storch et al., 2000]. In these one‐way nesting

approaches there is no feedback from the RCM to the

driving GCM [Jones et al., 1995].

[22] Because of their higher spatial resolution, RCMs

provide a better description of orographic effects, land‐sea

contrast, and land surface characteristics [Jones et al., 1995;

Christensen and Christensen, 2007]. They also give an

improved treatment of fine‐scale physical and dynamical

processes and are able to generate realistic mesoscale circu-

lation patterns which are absent from GCMs [Buonomo et al.,

2007]. They provide data that are coherent both spatially

and temporally and across multiple climate variables, con-
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sistent with the passage of weather systems. The fact that

RCMs can credibly reproduce a broad range of climates

around the world [Christensen et al., 2007] further increases

our confidence in their ability to realistically downscale

future climates.

[23] Climate models need to represent processes at scales

below those that they can explicitly resolve, such as radiation,

convection, cloud microphysics, and land surface processes.

This is done using parameterization schemes, which repre-

sent a simplification of the real world and hence lead to

inherent modeling uncertainty. For example, the simulation

of precipitation in an RCM is divided into a large‐scale

scheme, accounting for clouds and precipitation which result

from atmospheric processes resolved by the models (e.g.,

cyclones and frontal systems), and a convection scheme

describing clouds and precipitation resulting from subgrid‐

scale convective processes. For example, a convection

schememaymodel convective clouds in a grid box as a single

updraft, with the amount of convection determined by the

rate of uplift at the cloud base. Convective activity is

restricted to a single time step, and thus, there is no memory

of convection in previous time steps. In addition, there is

no horizontal exchange regarding convective activity in

neighboring grid boxes.

[24] There are many different RCMs currently available,

for various regions, developed at different modeling centers

around the world. The different RCMs produce different

high‐resolution scenarios for a given boundary forcing [e.g.,

Buonomo et al., 2007], due to differences in model formu-

lation, but also due to small‐scale internal variability gener-

ated by the RCM. There has been considerable international

effort recently to quantify uncertainty in regional climate

change through the intercomparison of multiple RCMs,

for example, the Prediction of Regional Scenarios and Un-

certainties for Defining European Climate Change Risks and

Effects (PRUDENCE) [Christensen and Christensen, 2007]

and ENSEMBLES [Hewitt and Griggs, 2004; van der Linden

and Mitchell, 2009] projects for Europe and the North

American Regional Climate Change Assessment Program

project (http://www.narccap.ucar.edu/) [Mearns et al., 2009]

for North America. The recentCoordinated Regional Climate

Downscaling Experiment (CORDEX) initiative from the

World Climate Research Program promotes running multiple

RCM simulations at 50 km resolution for multiple regions.

[25] The typical grid size of RCM simulations to date has

been 25 or 50 km. However, recently, a few RCM simula-

tions with grid scales below 20 km have become available

for Europe: the REMO‐UBA (10 km) and the CLM (18 km)

simulations of the Max Planck Institute for Meteorology and

the HIRHAM (12 km) simulations of the Danish Meteoro-

logical Institute [Dankers et al., 2007; Früh et al., 2010;

Hollweg et al., 2008; Tomassini and Jacob, 2009]. In addi-

tion, RCMs with grid sizes of 5 km or less are being devel-

oped at several modeling centers. For example, a 5 km RCM

has been developed over Japan [Kanada et al., 2008]. Also,

preliminary results using cloud‐resolving models on cli-

mate time scales spanning small domains are becoming

available, e.g., for the Alpine region at a grid scale of 2.2 km

[Hohenegger et al., 2008].

3.1. Skill of RCMs to Downscale Precipitation

[26] Precipitation is one of the climate variables most

sensitive to model formulation, being strongly dependent on

several parameterization schemes and their interplay with

the resolved model dynamics. For this variable, it has been

shown that RCMs are able to contribute significant added

value compared to the driving GCMs [e.g., Durman et al.,

2001; Frei et al., 2006; Buonomo et al., 2007].

[27] Compared to the driving GCM, RCMs produce an

intensification of precipitation [Durman et al., 2001], lead-

ing to an improved representation of the daily precipitation

distribution, including extreme events [Christensen and

Christensen, 2007]. Also, RCMs can reproduce many fea-

tures of the precipitation distribution over regions of complex

topography not resolved in the GCM [Frei et al., 2006].

Significant biases in the simulation of mean precipitation on

large scales can be inherited from the driving GCM [Durman

et al., 2001]. To provide a clearer assessment of the perfor-

mance of an RCM, it can be driven by reanalysis data (see

also section 5). These provide quasi‐observed boundary

conditions and allow RCM downscaling skill to be isolated

[Frei et al., 2003]. Reanalysis‐driven RCM simulations not

only exclude systematic biases in the large‐scale climate but,

in contrast to standard simulations, also are able to repro-

duce the actual day‐to‐day sequence of weather events,

which allows for a more comprehensive and exact assessment

of the downscaling skill. For instance, the ENSEMBLES

project provides a set of European Centre for Medium‐Range

Weather Forecasts 40 Year Reanalysis (ERA40)‐driven RCMs.

Recent work within this project has shown that 25 km RCMs

driven by ERA40 boundary conditions give a good repre-

sentation of rainfall extremes over the UK, with model

biases of a similar order to the differences between the

25 km ENSEMBLES and 5 km Met Office gridded obser-

vational data sets (E. Buonomo et al., manuscript in prepa-

ration, 2010).

[28] There is evidence that RCM skill in simulating the

spatial pattern and temporal characteristics of precipitation

increases with increasing model resolution. Improved skill

may result from the improved representation of complex

topography and the resolution of fine‐scale dynamical and

physical processes and also through the sensitivity of physical

parameterization to model grid size [Giorgi and Marinucci,

1996]. A recent study by Rauscher et al. [2010] compared

the downscaling skill of RCMs at 25 and 50 km grid spa-

cings over Europe. They found improved skill at higher

resolution during summer, although not in winter in some

regions. However, this apparent geographic dependence in

the sensitivity to model resolution may, in part, reflect

regional variations in observational station density.

[29] For a given RCM, downscaling skill has been shown

to depend on the region, season, intensity, and duration of

the precipitation event considered. In general, RCMs show

better downscaling skill in winter than in summer and for

moderate compared to very heavy precipitation. We will
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discuss these issues in detail in section 6, where we compare

the skill of RCMs with statistical downscaling approaches.

[30] We note that in the context of climate change pro-

jections, the effects of model biases may be reduced. In

particular, biases in RCM precipitation may, in part, cancel

out on taking differences between the control and future

scenarios. For example, Buonomo et al. [2007] find that two

RCMs give similar precipitation changes, despite significant

differences in model biases for the present day. However,

recent work by Christensen et al. [2008] suggests that biases

may not be invariant in a warming climate. In particular,

models tend to show a greater warm bias in those regions

that are hot and dry, while wet (dry) months tend to show a

greater dry (wet) bias.

3.2. Limitations of RCMs

[31] RCMs only provide meaningful information on pre-

cipitation extremes on the scale of a few grid cells, with con-

siderable noise on the grid cell scale [Fowler and Ekström,

2009]. Thus, for RCMs with a typical grid spacing of

25–50 km, this equates to providing information on scales of

∼100 km (although this also depends on other factors such

as season and topography). Spatial pooling, whereby daily

precipitation data from neighboring grid cells are concate-

nated to give one long time series, is effective at improving

the signal to noise ratio and thus provides improved sta-

tistics of local heavy precipitation [Kendon et al., 2008].

We note, however, that this technique is only applicable

where neighboring grid cells are effectively sampling from

the same precipitation distribution and also that spatial

dependence needs to be accounted for when assessing

uncertainties. As RCMs with grid scales of less than 20 km

become available [e.g., Dankers et al., 2007; Hollweg et al.,

2008], the spatial scale on which meaningful information is

provided will decrease. Nevertheless, a discrepancy will

remain between the spatial scale of RCM precipitation,

which should be interpreted as areal average values [Chen

and Knutson, 2008], and site‐specific data needed for

many impacts studies.

[32] Linked to the spatial resolution of RCMs, there is also

a minimum temporal scale on which RCMs can provide

meaningful information. In particular, current RCMs show

skill in capturing statistics of the daily precipitation distri-

bution but do not well represent subdaily precipitation and

the diurnal cycle of convection [Brockhaus et al., 2008;

Lenderink and van Meijgaard, 2008]. As the spatial reso-

lution of RCMs increases and, in particular, convection‐

resolving scales are achieved, models give an improved

representation of the diurnal cycle [Hohenegger et al., 2008]

and may provide meaningful information on hourly time

scales. It should be noted, however, that a 30 year RCM

integration just represents one possible 30 year realization

of the climate and not the actual sequence of weather events.

In particular, natural variability on daily to decadal time

scales is a key source of uncertainty when estimating pre-

cipitation extremes.

[33] A key source of model deficiencies in the simulation

of precipitation is the convective parameterization. In par-

ticular, many of the parameterization schemes used in

RCMs may not be appropriate, having been developed for

coarser‐resolution GCMs and tropical regions [Hohenegger

et al., 2008]. This is particularly likely to be an issue in

summer, when rainfall is predominantly convective in nature,

and on subdaily time scales, when the highest precipita-

tion intensities are usually related to convective showers

[Lenderink and van Meijgaard, 2008].

[34] Moreover, the simulation of precipitation in RCMs

is also highly sensitive to other aspects of the model formu-

lation, including the grid resolution, the numerical scheme,

and other physical parameterizations [Fowler and Ekström,

2009]. A number of parameters in the model physics are

not well constrained, and varying these parameters within

reasonable bounds leads to differences in the simulated

precipitation [Bachner et al., 2008; Murphy et al., 2009].

RCMs developed at different modeling centers around the

world use different formulations, leading to differences in

downscaling skill. There is some evidence that regions and

seasons showing the greatest model biases in the simulation

of precipitation are also those with the greatest intermodel

differences [Frei et al., 2006; Fowler et al., 2007b]. Past

experience has shown that no single RCM is best for all cli-

mate variables and statistics considered [Jacob et al., 2007;

Christensen and Christensen, 2007], and it is not trivial

to develop an objective scheme for weighting different

RCMs. Indeed, it has been argued that when using multiple

outputs from climate models, it is necessary to develop

methodologies that exploit each model predominantly for

those aspects where it performs competitively [Leith and

Chandler, 2010].

4. METHODS TO BRIDGE THE GAP: STATISTICAL
DOWNSCALING

[35] There are many statistical approaches to bridge the

gap between GCM or RCM outputs and local‐scale weather

required to assess impacts. In the simplest form, the idea of

statistical downscaling comprises some kind of mapping

between a large‐ (or larger‐) scale predictor X and the

expected value of a local‐scale predictand Y,

EðY jX Þ ¼ f ðX ; �Þ; ð1Þ

where b represents a vector of unknown parameters that

must be estimated to calibrate the downscaling scheme.

More advanced downscaling approaches may also explicitly

model variability that is not explained by the dependence of

Y upon X, as a random variable h.

[36] Wilby and Wigley [1997] classified statistical down-

scaling into regression methods, weather type approaches,

and stochastic weather generators (WGs). As an alternative

classification, Rummukainen [1997] suggested a categoriza-

tion based on the nature of the chosen predictors, which

distinguished between perfect prognosis (PP; also referred

to as “perfect prog”) and MOS. To integrate these sugges-
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tions, we classify statistical downscaling approaches into

PP, MOS, and WGs. This classification should only be seen

as a means to sensibly structure sections 4.1–4.3.

[37] Classical statistical downscaling approaches, which

include regression models and weather pattern–based

approaches, establish a relationship between observed large‐

scale predictors and observed local‐scale predictands (see

Figure 2a). Applying these relationships to predictors from

numerical models in a weather forecasting context is justi-

fied if the predictors are realistically simulated, and thus,

these methods are known as perfect prognosis downscaling

[e.g., Klein et al., 1959; Kalnay, 2003; Wilks, 2006]. In the

context of climate change projections PP methods are based

on the assumption that the simulated large‐scale predictors

represent a physically plausible realization of the future cli-

mate. Common to these downscaling approaches, the weather

sequences of the predictors and predictands can directly be

related to each other event by event.

[38] PP approaches establish statistical relationships

between variables at large (synoptic) scales and local scales.

Physical processes on intermediate scales are usually ignored.

With the increasing skill of RCMs and the availability of

RCM scenarios (see section 3), alternative statistical down-

scaling approaches that make use of simulated mesoscale

weather are becoming popular. These approaches are known

as MOS. The idea of MOS is to establish statistical

relationships between variables simulated by the RCM

and local‐scale observations to correct RCM errors (see

Figures 2b and 2c).

[39] WGs are statistical models that generate local‐scale

weather time series resembling the statistical properties of

observed weather. In their most basic unconditional form,

WGs are calibrated against observations on local scales only

and are hence not downscaling approaches. Historically,

the most common way of using such unconditional WGs in

conjunction with climate change scenarios was to apply so‐

called change factors, derived from regional climate models

[e.g., Kilsby et al., 2007]. This approach can be considered

as simple MOS (see Figure 2b). Other WGs condition their

parameters on large‐scale weather [Wilks and Wilby, 1999].

Such weather generators are thus hybrids between uncon-

ditional weather generators and PP statistical downscaling

(Figure 2a).

4.1. Perfect Prognosis Statistical Downscaling

[40] This section reviews statistical downscaling approaches

that establish links between observed large‐scale predictors

and observed local‐scale predictands. The large‐scale ob-

servations are often replaced by surrogate observational data

such as those obtained from reanalysis products. For a dis-

Figure 2. Statistical downscaling approaches. Two‐headed arrow refers to a calibration, and regular
arrow refers to a downscaling step. (a) Perfect prognosis (PP) is calibrated on large‐scale and local‐scale
observations. For the projection, large‐scale predictors are simulated by a GCM or RCM. Model output
statistics (MOS) calibrates model output against observations. (b) The whole model (GCM+RCM) is cor-
rected. Therefore, the same GCM and RCM have to be used in the projection. In this setting, the calibra-
tion is based on the distributions of model output and observations only. (c) Only the RCM output is
corrected. In the projection, an arbitrary GCM can be used (this is a PP step). This setting allows for a
calibration based on the whole time series of model output and observations. MOS can also be applied
directly to GCMs, e.g., in a forecasting situation. Here the GCM is forced to closely follow observational
data for the calibration. Conditional weather generators can be used either in a PP setting (Figure 2a) by
using large‐scale predictors or in a MOS setting (Figures 2b and 2c) by using change factors.
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cussion of problems related to observational data, refer to

section 5. Many state‐of‐the‐art PP approaches are used in a

weather generator context. These specific applications will

then be discussed in section 4.3.

[41] In a PP framework, equation (1) defines a relationship

between a large‐scale predictor X and the expected value of a

local‐scale predictand Y for times t, with some noise h not

explained by the predictor. This is often achieved by

regression‐relatedmethods, in which case the predictorsX are

also called covariates. Since for every observed large‐scale

event, there is a corresponding observed local‐scale event, the

calibration can be done event‐wise, i.e., relating the time series

of predictors and predictands to each other in sequence rather

than only relating the distribution of predictors and pre-

dictands to each other.

[42] The model shown by equation (1) can be used to

generate local‐scale time series, by predicting Y(t) from

observed or simulated predictors X(t) = (X1(t), X2(t), …).

Simple PP approaches disregard any residual noise term hi,

whereas state‐of‐the‐art PP approaches explicitly provide a

noise model to represent variability and extremes. The for-

mer are often called deterministic, and the latter are often

called stochastic.

[43] The construction of the actual downscaling scheme

can be divided into two steps: first, the selection of infor-

mative large‐scale predictors and second, the development

of a statistical model for the link between large‐scale predictors

and local‐scale predictand (i.e., the f (.) in equation (1)).

Often, the first step also requires transformation of the raw

predictors into a useful form. To avoid both overfitting or

ignoring valuable information, a model selection according to

statistical criteria should be carried out.

4.1.1. Predictor Selection
[44] The selection of suitable predictors is crucial when

developing a statistical downscaling model. The most basic

requirement for a predictor is that it is informative; that is, it

has a high predictive power. Informative predictors can be

identified by statistical analyses, typically by correlating

possible predictors with the predictands. Various predictors

representing the atmospheric circulation, humidity, and

temperature have been used to downscale precipitation.

According to Charles et al. [1999], measures of relative

humidity (e.g., dew point temperature depression) are more

useful than measures for specific humidity. In general, the

predictor choice depends on the region and season under

consideration [Huth, 1996, 1999; Timbal et al., 2008a].

[45] In a climate change context, predictors that capture

the effect of global warming [Wilby et al., 1998] are neces-

sary. In particular, measures of humidity are necessary to

capture changes in the water‐holding capacity of the atmo-

sphere under global warming [Wilby and Wigley, 1997],

whereas temperature adds little predictive power to predict

long‐term changes in precipitation. Suitable predictors need

to be reasonably well simulated by the driving dynamical

models (PP assumption), and the relationship between pre-

dictors and predictands needs to be stationary, i.e., tempo-

rally stable.

[46] These requirements are summarized in the Statistical

and Regional Dynamical Downscaling of Extremes for

European Regions (STARDEX) project [Goodess et al.,

2010]. A list of predictors used for precipitation downscal-

ing is given by Wilby and Wigley [2000], along with a com-

parison of observed and simulated predictors and a stationarity

assessment. A comparison of predictors for different regions

is given by Cavazos and Hewitson [2005].

4.1.2. Predictor Transformation
[47] Raw predictors are generally high‐dimensional fields

of grid‐based values. Moreover, the information at neigh-

boring grid points is not independent. It is thus common to

reduce the dimensionality of the predictor field and to

decompose it into modes of variability.

[48] Principal component analysis (PCA) [Preisendorfer,

1988; Hannachi et al., 2007] is the most prominent method

for dimensionality reduction. It provides a set of orthogonal

basis vectors (empirical orthogonal functions) allowing for a

low‐dimensional representation of a large fraction of the

variability of the original predictor field [e.g., Huth, 1999].

PCA, however, does not account for any information about

the predictands, and the predictor/predictand correlation

might thus not be optimal. Different in this respect is

canonical correlation analysis or maximum covariance anal-

ysis. These methods simultaneously seek modes of both the

predictor and the predictand field (e.g., a set of rain gages),

such that their temporal correlation or covariance is max-

imal [Bretherton et al., 1992; Huth, 1999; von Storch and

Zwiers, 1999; Widmann, 2005; Tippett et al., 2008].

[49] Physically motivated transformations of the raw pre-

dictor field can provide predictors that are easily interpret-

able and influence the predictands in a straightforward way.

For instance, Wilby and Wigley [2000] have used airflow

strength and direction instead of the zonal and meridional

components of the wind field. In a similar manner, airflow

indices (strength, direction, and vorticity), derived from sea

level pressure [Jenkinson and Collison, 1977; Jones et al.,

1993], have been used to downscale and model UK precip-

itation [Conway and Jones, 1998; Maraun et al., 2010b].

Also, the North Atlantic Oscillation index is a transformation

of the North Atlantic pressure field.

[50] Weather types (circulation patterns/regimes) can be

considered as another meteorologically motivated predictor

transformation. The large‐scale atmospheric circulation is

mapped to a usually small and discrete set of categories

[Michelangeli et al., 1995; Stephenson et al., 2004; Philipp

et al., 2007]. Weather types are a straightforward way to

allow for nonlinear relations between the raw predictors and

predictands; the price paid is a potential loss of information

due to the coarse discretization of the predictor field. Typ-

ical examples are patterns defined for geopotential heights

[Vautard, 1990], sea level pressure [Plaut and Simonnet,

2001; Philipp et al., 2007], or wind fields [Moron et al.,

2008a]. The number of types can range from small values

(e.g., 4 in the case of North Atlantic circulation patterns

[Vautard, 1990; Plaut and Simonnet, 2001]) to almost

30 (Großwetterlagen [Hess and Brezowsky, 1977]). A Euro-

pean cooperation in science and technology action has

Maraun et al.: PRECIPITATION DOWNSCALING RG3003RG3003

8 of 34



been initiated to compare different weather types (http://

www.cost733.org).

[51] Weather types can be defined subjectively by visually

classifying synoptic situations or objectively using cluster-

ing and classification algorithms. The latter can be based on

ad hoc or heuristic methods such as k means [MacQueen,

1967; Plaut and Simonnet, 2001], hierarchical clustering

[Ward, 1963; Casola and Wallace, 2007], fuzzy rules

[Bárdossy et al., 2005], or self‐organizing maps (SOMs)

[Kohonen, 1998;Wehrens and Buydens, 2007; Leloup et al.,

2008]. Also, a variant of PCA, the T mode PCA, can be used

for weather typing [e.g., Jacobeit et al., 2003]. A relatively

new and promising approach is model‐based clustering,

such as mixtures of Gaussian distributions to model the state

space probability density function [Bock, 1996; Fraley and

Raftery, 2002; Vrac et al., 2007a; Rust et al., 2010]. Many

of these approaches have been compared with respect to

circulation clustering by Huth [1996].

4.1.3. Statistical Models for PP
[52] In sections 4.1.3.1–4.1.3.6, we will describe a range

of statistical models that are commonly used for PP statis-

tical downscaling.

4.1.3.1. Linear Models
[53] One of the most widely used methods for statistical

downscaling is linear regression. Here the relationship in

equation (1) between the predictor X and the mean m of the

predictand Y, e.g., local‐scale precipitation, is written as a

linear model,

� ¼ �0 þ �1X1 þ �2X2 þ . . . ; ð2Þ

where bi represents the strength of the influence of Xi. In

general, the predictors X explain only part of the variability

of the predictands Y; thus, early downscaling approaches,

which modeled the predictands according to equation (2),

generally underrepresented the local‐scale variance. Karl

et al. [1990] suggested “inflating” (i.e., to scale) the mod-

eled variance to match the observed. As noted by von Storch

[1999], however, inflation fails to acknowledge that local‐

scale variation is not completely explained by the predictors;

instead, it is preferable to randomize the predictand, i.e., to

add an explicit noise term h, as in the methods that follow.

In a standard linear regression framework, the unexplained

variability h is assumed to be Gaussian distributed. Thus,

the predictand Y is itself Gaussian, with mean m and some

variance representing the unexplained variability.

4.1.3.2. Generalized Linear and Additive Models
[54] The Gaussian assumption might be feasible for pre-

cipitation accumulated to annual totals. However, on shorter

time scales, precipitation intensities become more and more

skewed, and daily precipitation is commonly modeled with

a gamma distribution [e.g., Katz, 1977]. A framework that

extends linear regression to handle such situations is the

generalized linear model (GLM) [e.g., Dobson, 2001]. Here

the predictand Y is no longer assumed to be Gaussian dis-

tributed but may follow a wide range of distributions, e.g., a

gamma distribution. The conditional mean m of the chosen

distribution, i.e., the expected value of Y, is still modeled as

a linear function of a set of predictors, but by contrast to a

linear model, m may be transformed by a link function g(.) to

a scale where the influence of the predictors X on m can be

considered linear:

gð�Þ ¼ �0 þ �1X1 þ �2X2 þ . . . ð3Þ

Simulation of downscaled time series is achieved by draw-

ing random numbers from the modeled distribution of Y,

thus intrinsically representing the unexplained variability.

[55] In the context of precipitation downscaling, most

applications of GLMs are effectively weather generators;

see section 4.3. An extension of the GLM is the generalized

additive model (GAM) [Hastie and Tibshirani, 1990],

where the linear dependence is replaced by nonparametric

smooth functions. The nonparametric framework generally

requires more data for accurate estimation of relationships,

however. GAMs have been employed, in a paleoclimate

context, with large‐scale data and geographical character-

istics as predictors to downscale climatological monthly

temperature and precipitation representative of the Last

Glacial Maximum [Vrac et al., 2007b]. GAMs in the context

of weather generators will be discussed in section 4.3.

4.1.3.3. Vector Generalized Linear Models
[56] GLMs are capable of describing the mean of a wide

class of distributions conditional on a set of predictors. In

some situations, especially when studying the behavior of

extreme events, one is additionally interested in the depen-

dence of the variance or the extreme tail on a set of pre-

dictors. For instance, Maraun et al. [2009] and Rust et al.

[2009] have shown that the annual cycles of location and

scale parameters of monthly maxima of daily precipitation

in the UK are slightly out of phase and are better modeled

independently. For this purpose, vector generalized linear

models (VGLMs) have been developed [Yee and Wild,

1996; Yee and Stephenson, 2007]. Instead of the condi-

tional mean of a distribution only, a vector of parameters

p = (p1, p2, …) of a distribution is predicted:

gkðpkÞ ¼ �k;0 þ �k;1X1 þ �k;2X2 þ . . . ð4Þ

The vector p could, for instance, include the mean p1 = m and

the variance p2 = s of a distribution. In extreme value sta-

tistics, these models have long been used when modeling the

extreme value parameters dependent on covariates [Coles,

2001]. VGLMs have recently been applied to downscale

precipitation occurrence in the United States [Vrac et al.,

2007d], and a VGLM developed to model UK precipita-

tion extremes [Maraun et al., 2010a] could easily be adopted

to downscaling.

4.1.3.4. Weather Type–Based Downscaling
[57] The popular approach to condition local‐scale pre-

cipitation on weather types can be thought of as a special

case of a linear model. Instead of a continuous predictor

field, a set of categorical weather types Xk are used to predict

the mean of local precipitation:

� ¼ �ðXkÞ; ð5Þ
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where k gives the index of the actual weather type and m(Xk)

is the mean rainfall in this weather type. As in the case of

standard linear regression, weather type approaches can, in

principle, be extended to model an additional noise term

hk, such as generalized linear models and vector generalized

linear models do. Weather types are mostly applied to

condition weather generators; for examples, see section 4.3.

4.1.3.5. Nonlinear Regression
[58] There are also models available that aim to capture

nonlinear and nonadditive relationships between the predictors

and predictands. For instance, Biau et al. [1999] basically

used a nonlinear regression to model the link between North

Atlantic sea level pressure in winter and precipitation across

the Iberian peninsula. Another nonlinear regression technique

that has been applied in statistical downscaling is the artificial

neural network (ANN). ANNs have, for instance, been used

to downscale precipitation over South Africa [Hewitson and

Crane, 1996], Japan [Olsson et al., 2001] and the UK

[Haylock et al., 2006].

4.1.3.6. Analog Method
[59] The analog method has been developed for short‐term

weather forecasting [Lorenz, 1969]. In statistical downscal-

ing, the large‐scale weather situation is compared with the

observational record. According to a selected metric (e.g.,

Euclidean distance), the most similar large‐scale weather

situation in the past is identified, and the corresponding local‐

scale observations Y( ) are selected as prediction for the

desired local‐scale weather [Zorita and von Storch, 1999]:

Yi ¼ Y ðanalogðXiÞÞ: ð6Þ

Lall and Sharma [1996] proposed not to select the most

similar historic situation but to randomly choose between the

k most similar ones. Potential limitations of the resampling

scheme have been extensively discussed in the literature [e.g.,

Young, 1994; Yates et al., 2003; Beersma and Buishand,

2003]. In particular, the standard analog method does not

produce precipitation amounts that have not been observed in

the past. Therefore, Young [1994] proposed a perturbation of

observed values to overcome this problem. It is also pointed

out that daily standard deviations of variables are under-

estimated because of the so‐called “selection effect,” a sys-

tematic underselection of certain days.

4.1.4. Model Selection
[60] In general, a range of physically plausible models

exists for a given model structure (e.g., linear regression and

GLM). For example, multiple variables exist that can be

employed as predictors, but in many cases it is a priori not

clear which of these are informative and which predictor

transformation best conveys the information for the pre-

diction. Taking too many predictors into account would lead

to overfitting and would decrease the predictive power.

Considering too few predictors would ignore valuable

information. To objectively select a model, various statistical

criteria have been developed. They are based on the likeli-

hood of the model and assess whether an improvement in

likelihood justifies an increased model complexity. Examples

are likelihood ratio statistics and information criteria, such

as the Bayes and Akaike information criteria [see, e.g.,

Davison, 2003]. Once an appropriate model has been

selected, a model validation (section 5) assesses the skill of

this model to predict certain desired properties of the process

under consideration.

4.2. Model Output Statistics

[61] As precipitation simulated in RCMs and GCMs is

partly unrealistic (section 3, see also Figure 1) and represents

areal means at the model resolution rather than local values, it

cannot be directly used in many impact studies. The potential

deviations from real precipitation make it unsuitable as a

predictor in a PP context because it does not satisfy the crucial

“perfect prognosis” assumption. However, despite potential

errors, simulated precipitation may contain valuable infor-

mation about the real precipitation.

[62] Statistical models that link simulated precipitation to

local‐scale, real precipitation have been developed recently

for applications to RCMs, and there are also some feasibility

studies for GCMs. Such methods are a form of so‐called

MOS models, which have been applied in numerical

weather forecasting for a long time [e.g., Glahn and Lowry,

1972; Klein and Glahn, 1974; Carter et al., 1989; Kalnay,

2003; Wilks, 2006]. In contrast to PP methods, the statisti-

cal relationship between predictors and predictands is cali-

brated not using observed predictors and predictands but

using simulated predictors and observed predictands. In

principle, predictors and predictands can be on the same

spatial scale, in which case MOS would constitute a mere

correction for a numerical model, but in most applications

the predictand is local‐scale precipitation, which means that

MOS combines a correction and a downscaling step. The

MOS corrections are specific to the numerical model for

which they have been developed and cannot be used with

other numerical models.

[63] Depending on the type of simulations used for MOS

calibration the predictors can either be simulated precipita-

tion time series or properties of the simulated intensity

distribution (see Figure 2). Similarly, predictands can either

be local precipitation series or properties of the local‐scale

intensity distribution. MOS can be used to transform deter-

ministic predictors into probabilistic predictands (which is

also possible with PP, see section 4.1.3). More general ver-

sions of MOS that link simulated and observed variables of

different types are also conceivable [e.g.,Themeßl et al., 2010];

for such versions, the model structure should carefully be

selected according to statistical criteria (see section 4.1.4).

However, most examples in climate applications employ

simulated precipitation to predict precipitation.

[64] If the MOS calibration is based on an RCM driven by

a standard GCM simulation for the recent climate, in which

the link to the real climate is established only via the

external forcings (such as insolation and concentrations of

greenhouse gases and aerosols), the observed and simulated

day‐to‐day weather sequences are not related, and thus,

MOS can only be used to link distributions of simulated and

observed precipitation. The same is true when using stan-

dard GCM‐simulated precipitation as predictors. In such a
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setting there is a risk that differences in simulated and

observed distributions, for instance, biases, are falsely attrib-

uted to model errors and thus falsely modified by the MOS

approach, when they are actually caused by the random dif-

ferences in the simulated and observed distribution of large‐

scale weather states on long time scales.

[65] If, however, the RCM is driven by an atmospheric

reanalysis [Kalnay et al., 1996; Kistler et al., 2001; Uppala

et al., 2005] or GCMs forced toward observations are used,

there is a direct correspondence between simulated and

observed weather states, and thus, simulated and observed

precipitation time series can be directly related, for instance,

through regression techniques as discussed in section 4.1.3.

Regional or global short‐range weather forecast simulations

also fall in this category as the synoptic‐scale meteorolog-

ical situation is usually well predicted, and thus, simulated

and observed precipitation for individual days can be sta-

tistically linked. This setting does not apply for standard

GCM simulations. This fact explains why MOS has first

been developed in weather forecasting, has recently seen

increasing popularity applied to RCMs, and is only in the

development phase for GCMs.

4.2.1. Methods for MOS
[66] Most of the examples of MOS applied to RCMs are

based on reanalysis‐driven RCMs. The simplest method

assumes that the scenario precipitation yi+T
f at a time i + T in

the future can be represented by (observed) precipitation (or

corrected RCM simulations [see Lenderink et al., 2007])

xobs,i
p at time i in the observational record, corrected by the

ratio of the mean simulated future precipitation ymod
f and the

mean control run (or reanalysis‐driven run) precipitation

xmod
p :

y
f
iþT ¼ x

p
obs;i

y
f
mod

x
p
mod

: ð7Þ

This method is sometimes misleadingly called the delta

method because it was developed for temperature, where the

change is additive rather than multiplicative. A mathemati-

cally similar but conceptually different approach is the so‐

called scaling method [e.g.,Widmann and Bretherton, 2000;

Widmann et al., 2003]. Here the corrected scenario precip-

itation yi
f at a time i in the future is represented by the

(modeled) future scenario xmod,i
f at time i, scaled with the

ratio of the mean observed precipitation yobs
p and the mean

control run (or reanalysis driven) precipitation xmod
p :

y
f
i ¼ x

f
mod;i

y
p
obs

x
p
mod

: ð8Þ

This method is sometimes called the direct approach [e.g.,

Lenderink et al., 2007] and has been applied to GCMs

[Widmann and Bretherton, 2000; Widmann et al., 2003] and

RCMs [e.g., Leander and Buishand, 2007; Graham et al.,

2007b; Engen‐Skaugen, 2007]. Schmidli et al. [2006] fur-

ther extended the approach by using a separate correction

for precipitation occurrence and precipitation intensity. The

aforementioned methods correct mean and variance by the

same factor, such that the coefficient of variation (the ratio

of the two) is unchanged.

[67] A generalized approach is quantile mapping, which

considers different intensities individually [e.g., Panofsky

and Brier, 1968; Hay and Clark, 2003; Dettinger et al.,

2004; Wood et al., 1997; Ines and Hansen, 2006; Déqué,

2007; Piani et al., 2009]. For the calibration period, the

cumulative distribution function of simulated precipitation is

adjusted to match the cumulative distribution function of

observed precipitation. The mapping is usually done between

empirical quantiles or quantiles of gamma distributions fitted

to the observed and modeled precipitation. For modeling

of values beyond the observed range, Boé et al. [2007]

extrapolated the correction function by using a constant

correction, using the correction of the highest quantile from

the control simulation. This assumption, however, is, in

general, not valid for the extreme tail of the precipitation

distribution. A possible solution could be to adapt the

mixture model by Vrac and Naveau [2007] (first developed

by Frigessi et al. [2002] for temperature data) to shift

between a gamma distribution for the core and an extreme

value distribution for the tail.

[68] All of these methods can account for the annual cycle,

for example, by applying them to individual months or sea-

sons separately. As they calibrate only distributions but dis-

regard any pairwise relationships between predictor and

predictand, we refer to these methods as distribution‐wise.

4.2.2. MOS for GCMs
[69] Most publications using MOS in a climate change

context are related to correcting RCM output, while MOS

for GCM‐simulated precipitation is still in the development

stage. MOS on GCMs might be very useful in areas where

no RCM output is available. The potential usefulness of

MOS corrections for GCMs was demonstrated by Widmann

et al. [2003], who used the National Centers for Environ-

mental Prediction and National Center for Atmospheric

Research (NCEP‐NCAR) reanalysis [Kalnay et al., 1996] as

an example for a GCM in which the synoptic‐scale circu-

lation is in agreement with reality because of the assimila-

tion of meteorological data such as pressure, wind speeds,

and temperature but in which the precipitation is still cal-

culated according to model physics.

[70] The corrections for the NCEP‐NCAR reanalysis

model cannot be transferred to other GCMs, and thus, the

development of MOS corrections for GCMs used for cli-

mate change experiments is difficult. The GCM simulations

for the 20th and 21th century do not represent the real

temporal evolution of large‐scale weather states in the past.

As a consequence only distribution‐wise MOS would be

possible, but it is difficult to assess whether the simulated

precipitation is actually a skillful predictor. For this reason,

MOS has been applied so far to nonreanalysis GCMs only in

the context of seasonal prediction [Landmann and Goddard,

2002; Feddersen and Andersen, 2005; Shongwe et al., 2006],

where the simulated and true atmospheric circulation partly

match, and in the simple form of climatology‐based local

debiasing of precipitation over the Alps for climate change

simulations [Schmidli et al., 2007].
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[71] In order to provide the foundation for comprehensive

MOS for future precipitation, J. Eden et al. (Reassessing the

skill of GCM‐simulated precipitation, submitted to Journal

of Climate, 2010) nudged the European Center/Hamburg

(ECHAM5) GCM toward the circulation and temperature in

the ERA40 reanalysis and showed that the correlation of

simulated and observed monthly mean precipitation over

large parts of the Earth is larger than 0.8. This suggests that

MOS corrections would provide precipitation estimates with

small errors.

4.3. Weather Generators

[72] Weather generators, such as WGEN [Richardson,

1981; Richardson and Wright, 1984] and EARWIG [Kilsby

et al., 2007], are statistical models that generate random

sequences of (usually several) weather variables, with sta-

tistical properties resembling those of observed weather. At

the core of most weather generators is a precipitation gen-

erator, with any remaining variables usually simulated

conditional on the generated precipitation.

[73] The general motivations for using weather generators

are their capacity to provide synthetic series of unlimited

length [Hulme et al., 2002], the possibility of infillingmissing

values by imputation (i.e., sampling missing observa-

tions from their conditional distribution given the available

observations [see Yang et al., 2005]), and their computa-

tional efficiency [Semenov et al., 1998] that allows for mul-

timodel probabilistic projections or other impact assessments

[Jones et al., 2009]. The early weather generators (e.g.,

WGEN) were originally developed for providing surrogate

climate time series to agricultural and hydrological models

in case weather observations are too short or have quality

deficiencies.

[74] In previous studies [e.g., Fowler et al., 2007a; Wilks

and Wilby, 1999; Semenov et al., 1998], weather generators

are distinguished on the basis of the implemented parame-

terization, the assumed distributions, and the suitability for

particular application. Here, however, because of the impor-

tance of a proper representation of spatial rainfall [Segond

et al., 2007] and the limitations of spatial consistency asso-

ciated with manyweather generators [e.g., Jones et al., 2009],

we distinguish two groups of precipitation generators: single‐

station generators and multistation generators. In addition,

weather generators have been developed that attempt to

model a full precipitation field in continuous space. However,

these methods have only recently been extended into a

downscaling context. We will therefore present these methods

as a brief outlook.

[75] Pure PP and MOS approaches do not explicitly model

either temporal or spatial correlations; any structure is imposed

by correlations present in the predictors. Weather generators

explicitly aim to generate time series or spatial fields with the

observed temporal or spatial structure.

4.3.1. Single‐Station Generators
4.3.1.1. Unconditional Weather Generators
[76] Unconditional weather generators are calibrated to

local observations only; that is, they do not directly use large‐

scale conditions from RCMs or GCMs. As discussed in

section 4.1.3, at finer (e.g., daily) time scales, the distribu-

tion of precipitation tends to be strongly skewed toward low

values, with a generally high number of zero values

representing dry intervals. Moreover, precipitation sequences

usually exhibit temporal dependence, particularly in the

sequence of wet and dry intervals. Early weather generators

treated single‐site precipitation as a two‐component process,

describing precipitation occurrence and precipitation inten-

sity separately. In the simplest case, introduced by Gabriel

and Neumann [1962], the wet day occurrence is modeled

as a two‐state first‐order Markov process. This structure

implies that the occurrence or nonoccurrence of precipita-

tion is only conditioned on the occurrence of precipitation

on the previous day. Letting I(t) denote the binary occur-

rence event (wet or dry) on day t, the transition proba-

bilities pij(t) are defined as

pijðtÞ ¼ PrðIðtÞ ¼ jjIðt � 1Þ ¼ iÞ; i; j ¼ 0; 1: ð9Þ

The first‐order Markov chain has been widely used as a

simple model for rainfall occurrence [Katz, 1977; Wilks,

1998; Wilks and Wilby, 1999]. However, first‐order models

usually underrepresent long dry spells, and this has led to the

use of more complex higher‐order models [Mason, 2004;

Stern and Coe, 1984].

[77] To model the skewed distribution of rainfall intensi-

ties, the two‐parameter gamma distribution is often used

[Katz, 1977; Vrac et al., 2007d], although this is not the

only choice; for example, Wilks [1998] uses a mixture of

two exponential distributions. In the simplest daily weather

generators, nonzero intensities are sampled independently

for each wet day. To incorporate seasonality in these weather

generators, parameters are typically estimated separately for

each month or season.

[78] As an alternative to the separate modeling of precipi-

tation occurrence and intensity, some authors have proposed

modeling the two components together. The most common

way of achieving this is using a power‐transformed and trun-

cated normal distribution [e.g., Bárdossy and Plate, 1992]. For

example, if Yt is the rainfall at time t, then a common family

of transformations is

Yt ¼
Z
�
t Zt > 0

0 otherwise

�

; ð10Þ

where Zt is a Gaussian random variable and b is a trans-

formation parameter. Glasbey and Nevison [1997] and

Allcroft and Glasbey [2003] use a more complex transfor-

mation in an attempt to reproduce the rainfall distribution

more closely, but the power transformation equation (10) is

by far the most widely used. More recently, innovative

distributions such as those in the Tweedie family have been

suggested as an alternative to transformed Gaussian vari-

ables [Dunn, 2004].

[79] The weather generators reviewed above take as their

starting point a distribution of precipitation in each time

interval. An alternative starting point is to consider explic-

itly the temporal structure of precipitation within a time

interval: this forms the basis of cascade models, which are
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used for subdaily downscaling because they are able to

model correlated rain [Olsson, 1998; Marani and Zanetti,

2007]. As with other weather generators, the simplest way

to incorporate seasonality is to calibrate the models sepa-

rately for each month or season [e.g., Furrer and Naveau,

2007].

[80] A final class of precipitation generators is based on

Poisson cluster processes [e.g., Rodriguez‐Iturbe et al., 1987,

1988; Cowpertwait, 1991]. This class again attempts to char-

acterize the temporal structure of precipitation sequences but

now by explicitly considering the mechanisms of precipita-

tion generation in a simplified stochastic framework: a pre-

cipitation time series is considered as a sequence of “storms”

(rain events), each consisting of a collection of “rain cells”

with random intensity and duration. The models are param-

eterized using physically interpretable quantities such as

storm arrival rate, mean cell intensity, and mean number of

cells per storm and have been found to provide useful simu-

lations of precipitation sequences at time scales down to

hourly. For reviews of these models, see Onof et al. [2000]

and Wheater et al. [2005].

4.3.1.2. Weather Generators and Downscaling
[81] A simple way to use unconditional weather gen-

erators for climate change scenarios is to perturb the para-

meters by so‐called change factors [e.g., Kilsby et al., 2007]:

in a pair of RCM simulations, one of present day and one of

the future climate, the change of the weather generator

parameters (e.g., mean temperature or precipitation) from

present to future is calculated for the grid box containing the

location of the weather station of interest. These so‐called

change factors (usually differences for temperature and

ratios for precipitation) are then used to modify the observed

parameters for a future climate. Once these change factors

are calculated, no large‐scale drivers are needed to generate

weather time series. A prominent example for change factor

conditioned weather generators are the regional scenarios

from the UK climate projections (UKCP09) [Jones et al.,

2009]. Deriving change factors for the statistical properties

between the RCM control and scenario runs and applying

these change factors to the statistical properties of the

weather generator is mathematically equivalent to deriving a

correction factor between the statistical properties of the

RCM control run and the weather generator and then

applying this correction factor to correct the statistical prop-

erties in the RCM scenario run. In that sense, change factor

conditioned weather generators can be seen as a simple MOS

(section 4.2).

[82] However, such weather generators often underesti-

mate the interannual variability (overdispersion) and the fre-

quency of extremes [e.g., Katz and Parlange, 1998] because

the climatic processes influencing local weather exhibit

longer‐term variability, which is not captured by stationary

low‐order Markov models. A possible solution to the over-

dispersion problem is to condition specific parameters on

covariates [Katz and Parlange, 1993; Wilks, 1989] control-

ling the low‐frequency variability of the local weather, e.g.,

the large‐scale atmospheric circulation. Such weather gen-

erators can be considered as PP (section 4.1). Besides large‐

scale weather predictors, transformations of lagged rainfall

values, representations of seasonality, and topographic con-

trols may also be used as covariates. Interaction terms can also

be used in situations where one covariate modulates the effect

of another [e.g., Chandler, 2005].

[83] One way to incorporate covariates into stochastic

weather generators is based on GLMs (section 4.1.3). GLMs

for rainfall usually use logistic regression to model the

changing probability of rainfall occurrence and then con-

sider nonzero rainfall intensities to be drawn from gamma

distributions with means that are related (usually via a log

link function) to linear combinations of covariates. In their

simplest form, such GLMs can be regarded as extensions of

the Markov Chain [see, e.g., Coe and Stern, 1982; Grunwald

and Jones, 2000]. GLMs are being used increasingly for the

analysis and downscaling of precipitation sequences [e.g.,

Fealy and Sweeney, 2007; Furrer and Katz, 2007], as are

GAMS [e.g., Hyndman and Grunwald, 2000; Beckmann and

Buishand, 2002; Underwood, 2009]. For parameter estima-

tion of these models software routines are freely available, for

example, in the stats package of the R software environment

[R Development Core Team, 2008].

[84] Another way of incorporating large‐scale information

is via weather typing (see section 4.1.3). For example,

Hewitson and Crane [2002] used SOMs to define a col-

lection of weather states on the basis of January sea level

pressure spatial fields for the northeast United States and,

for each state, determined the mean and variance of daily

rainfall for a gage in the center of the region. As another

example of this kind of approach, Fowler et al. [2000]

present a Poisson cluster model (see section 4.3.1.1) in

which the parameters for each day are conditional on the

particular weather state observed on that day.

4.3.2. Multistation Generators
[85] Multisite generation is challenging, essentially because

of the need to model the joint (i.e., multivariate) distribution

of precipitation simultaneously at all sites. Relatively few

tractable models are available for multivariate distributions;

hence, many approaches to multisite precipitation generation

are based, at some level, on transformations of the multivar-

iate Gaussian distribution. The use of transformed and trun-

catedGaussian distributions tomodel single‐site precipitation

has been discussed in section 4.3.1; the extension to the

multisite setting is accomplished by specifying an intersite

correlation structure for the Gaussian variables at each loca-

tion. Generation of a multisite rainfall sequence therefore

proceeds at each time instant by sampling a correlated vector of

Gaussian variables (there is a standard algorithm for this [see,

e.g., Monahan, 2001, section 11.3]) and back‐transforming

according to equation (10). The multisite generator of Wilks

[1998] operates on a similar principle except that here the

transformation to Gaussianity is determined by an assump-

tion that the nonzero rainfall amounts at each site follow

mixed exponential distributions.

[86] In a downscaling context, dependence on predictors

can be incorporated into such models as discussed in section

4.1, either in a regression‐like framework as by Sansó and

Guenni [2000] or in conjunction with a weather typing
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scheme whereby different sets of model parameters are used

at each time instant, depending on the underlying sequence

of weather states [Bárdossy and Plate, 1992; Stehlík and

Bárdossy, 2002; Ailliot et al., 2009; Moron et al., 2008b].

In early applications of this type of methodology, weather

types were typically defined solely in terms of the predictor

variables.

[87] However, the more recent literature tends to focus on

model variants employing so‐called weather states: here

precipitation patterns themselves are allowed to influence

the weather state definitions, so that the resulting weather

classifications can be interpreted as corresponding to distinct

rainfall regimes. This includes a growing body of work

based on nonhomogeneous and hidden Markov models, in

which the link between weather states and predictors is

probabilistic rather than deterministic [e.g., Hughes et al.,

1999; Bellone et al., 2000; Charles et al., 2004; Vrac and

Naveau, 2007; Vrac et al., 2007d]. For a schematic of such

a weather generator, see Figure 3. In early versions of this

type of model, the underlying weather states were considered

to be entirely responsible for intersite dependence so that

precipitation can be sampled independently at each site given

the weather state. However, this may be inadequate at smaller

spatial scales in particular, and this has led to the development

of more complex models [e.g., Ailliot et al., 2009; Vrac et al.,

2007c]. Bayesian hierarchical models also open a promising

way forward here [e.g., Cooley et al., 2007]. For all of the

approaches outlined above, model calibration can be a

challenging task that is nowadays accomplished most easily

using computationally intensive Bayesian methods (avail-

able software packages are WinBUGS [Lunn et al., 2000],

OpenBUGS [Thomas et al., 2006] (software available at

http://mathstat.helsinki.fi/openbugs), and BayesX (C. Belitz

et al., BayesX—Software for Bayesian inference in structured

additive regression models, version 2.0.0, available at http://

www.stat.uni‐muenchen.de/bayesx)). The appropriate use

of such methods can require considerable technical expertise,

however. Thus, there is arguably a market for simpler

methods that are suitable for routine implementation.

[88] One such method uses GLMs to model precipitation

sequences at individual sites (see sections 4.1.3 and 4.3.1),

in conjunction with appropriately defined spatial depen-

dence structures that enable the simulation of multisite

sequences with realistic joint distributional properties. The

potential for dependence between sites raises statistical issues

when fitting models, however; for a review of these and

straightforward ways of overcoming them, see Chandler

[2005] and Chandler and Bate [2007]. The GLIMCLIM

software package [Chandler, 2002] incorporates all of these

features, as well as the possibility to include large‐scale

atmospheric variables as predictors and to handle missing

data. These ideas are illustrated in the applications of GLMs

to multisite rainfall simulation by Yang et al. [2005].

[89] A further approach to generate multisite weather is to

apply the analog method (see section 4.1.3) in a weather

generator context. For instance, Buishand and Brandsma

[2001] proposed a nearest‐neighbor resampling scheme

conditioned on current large‐scale atmospheric circulation

patterns in order to derive local weather observations. To

improve the temporal structure, some implementations of the

analog method compare not only the large‐scale weather

situation at one point in time with historical weather but also

the weather on preceding days. For a more realistic chro-

nology of events, Orlowsky et al. [2008] suggested the

resampling of time blocks instead of single events. Because

multisite time series are sampled simultaneously, spatial

correlations between stations are preserved and physically

consistent. In this context no assumptions about the distri-

bution and spatial correlations are necessary. However, in

addition to the resampling of intensities, as discussed in

section 4.1.3, spatial patterns are also resampled as a whole,

and no unobserved patterns are generated.

[90] Most of the papers cited above focus on the generation

of rainfall sequences at a daily time scale, which is considered

adequate for many climate impact studies. However, in some

specialized applications (for example, urban flooding studies

and radio telecommunication links), data may be required at

finer time scales. Models for the generation of single‐site

subdaily rainfall have been reviewed in section 4.3.1. At

present, there are few extensions of these that provide for the

generation of multisite subdaily sequences in a downscaling

context.Fowler et al. [2005] describe one possibility inwhich

a spatial‐temporal Poisson cluster model is used as the basic

multisite generator, with different parameters corresponding

to distinct weather states. By contrast, Segond et al. [2006]

suggested that subdaily sequences could be generated by

first generating multisite daily sequences using one of the

Figure 3. State‐of‐the‐art weather generator using weather
states [after Vrac and Naveau, 2007]. Weather time series
are generated as follows: at each time step, the weather
jumps into a specific weather state (red dots, spatial rain
pattern); the transition probability from state to state is given
by the state at the previous time step (red arrows, hidden
Markov model) and depends on the large‐scale atmospheric
circulation at the particular time step (magenta arrows; this
makes the Markov model nonhomogeneous). Furthermore,
the atmospheric circulation determines the probability of
having a dry or a wet day (blue arrows, logistic regression).
If a wet day is generated, the actual amount of rain is
generated from a distribution dependent on the weather
state.
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many available methods and then disaggregating the daily

totals to the time scale of interest.

4.3.3. Full‐Field Generators
[91] An important area of investigation in rainfall modeling

is the development of models able to simulate a field of

precipitation at any required fine scale and thereby provide

inputs to distributed hydrological models. Currently, a

number of techniques are available for such unconditional

full‐field simulation. They generally fall into one of the fol-

lowing three categories (see Ferraris et al. [2003] for a

comparison). These are models based upon transformed

Gaussian processes [Guillot and Lebel, 1999], point process

models [Wheater et al., 2005; Cowpertwait et al., 2002;

Northrop, 1998], and spatial‐temporal implementations of

multifractal cascade models [Lovejoy and Schertzer, 2006;

Marsan et al., 1996; Over and Gupta, 1996].

[92] Currently, aside from the simple scaling model of spa-

tial rainfall fluctuations by Perica and Foufoula‐Georgiou

[1996], there are, in the literature, no implementations of

such approaches for the downscaling of climate model

output. But the potential of the existing methodologies is

very clear. Multifractal representations of rainfall fields are

well suited to downscaling implementations as they are

simulated through cascade models [Deidda, 2000]. Similar

but also allowing for nonfractal subgrid‐scale structures is a

downscaling algorithm based on spectral methods, for which

an implementation for cloud fields already exists [Venema

et al., 2010]. Disaggregation methods using point process

approaches [Koutsoyiannis and Onof, 2001] could, in prin-

ciple, be extended to the spatial dimension. Transformed

Gaussian processes can be conditioned by the average areal

rainfall [Onibon et al., 2004].

5. EVALUATION TECHNIQUES
FOR DOWNSCALING METHODS

[93] Here we review methods which can be used to vali-

date the performance of downscaling approaches to simulate

specific characteristics of precipitation. These are often called

metrics and are related to the end user needs, which we

have introduced in section 2, and, in principle, form the

basis of the discussion of downscaling skill to meet these

end user needs in section 6.

[94] Any validation method ultimately relies upon the

quality and quantity of observational data. Typical quality

problems are inhomogeneities, outliers, and biases due

to wind‐induced undercatch (i.e., precipitation is under-

estimated by the rain gage because a nonnegligible amount

of rain is blown over the gage). Inhomogeneities may induce

spurious trends [e.g., Yang et al., 2006] and increase uncer-

tainty and may potentially weaken predictor/predictand

relationships. Estimates of extreme events are particularly

sensitive to outliers and inhomogeneities. For an appropriate

signal to noise ratio, sufficiently long time series are needed,

in particular, to reliably estimate extremes and infer trends.

The validation of how natural variability is represented is

limited by the length of observational records, typically a

few decades. Furthermore, a sparse rain gage network limits

the possibility for validation or may even render it impos-

sible. For this reason, high‐resolution data sets have been

developed in some regions [e.g., Haylock et al., 2008]. For

an impression of the global rain gage network, see Figure 4.

Data are particularly sparse in the high latitudes, deserts,

central Asian mountain ranges, and large parts of South

America.

[95] Reanalysis data, such as NCEP/NCAR [Kalnay et al.,

1996] or ERA40 [Uppala et al., 2005], are frequently used as

surrogates for observational data for validation of large‐scale

processes. Such data are basically interpolations of obser-

vational data based on a dynamical model (so‐called data

assimilation) and are therefore complete and physically

consistent. However, they are subject to model biases and

can significantly deviate from real weather. Precipitation is

a variable which is generally not assimilated but completely

generated by the parameterizations in the model, which may

induce considerable biases in some locations [Zolina et al.,

2004]. Furthermore, the resolution of reanalysis data is too

low to resolve local‐scale precipitation. Therefore, NCEP/

NCAR has developed the North American Regional Reanal-

ysis [Mesinger et al., 2006] that assimilates, among other

variables, precipitation in order to provide a more realistic

regional hydroclimatology.

[96] Reanalysis data are used to drive RCMs for valida-

tion purposes. First, this setting isolates the RCM model bias

from any possible GCM bias [e.g., Sanchez‐Gomez et al.,

2009; Prömmel et al., 2009; Vidale et al., 2003; Jaeger et al.,

2008]. Second, this setting accounts for natural variability.

As discussed in the context of MOS calibration (section 4.2),

the output of a GCM‐driven RCM represents just one pos-

sible realization of the climate. Discrepancies might simply

result from differences between the realization and the

observed weather on long time scales rather than model

errors. In a reanalysis‐driven RCM, however, the sequence

of synoptic weather in the RCM will be the same as

observed. A remaining issue, though, is small‐scale vari-

ability generated by the RCM that might be different from

observed variability. In particular, if validating precipitation

extremes, these may differ between the RCM and observa-

tions just because of natural variability.

Figure 4. Rain gages used in the monthly CRU TS data set
[e.g., Mitchell and Jones, 2005], which have been in situ for
at least 40 years.
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5.1. Evaluated Metrics

[97] Depending on the application of the impact study,

different metrics, or indices, of the downscaled precipitation

may be of interest, including intensity metrics and temporal

and spatial characteristics as well as metrics characterizing

relevant physical processes.

[98] Metrics regarding precipitation intensity are mean,

variance, and quantiles (i.e., return levels [Frei et al., 2006;

Halenka et al., 2006; May, 2007; Friederichs and Hense,

2007; Fowler and Ekström, 2009; Maraun et al., 2010a])

or parameters of the precipitation distribution. A typical

metric for heavy precipitation is the 90th percentile of pre-

cipitation on wet days [Goodess et al., 2010; Haylock et al.,

2006]. Validation of extreme precipitation intensities (e.g.,

50 or 100 year return levels), which are perhaps beyond the

range of observed values, should be carried out on the basis

of extreme value theory [e.g., Coles, 2001; Katz et al., 2002;

Naveau et al., 2005]. Studies applying this framework are

still rare; for some notable exceptions in a model inter-

comparison context, see Frei et al. [2006], Beniston et al.

[2007], and Kendon et al. [2008].

[99] Temporal metrics are the autocorrelation function, the

annual cycle, interannual and decadal variability [Maraun

et al., 2010b] and trends, or metrics focusing on the pre-

cipitation occurrence such as wet day probabilities, transition

probabilities (wet‐wet), and the length of wet and dry spells

[e.g., May, 2007; Semenov et al., 1998]. Extremal measures

for temporal metrics are, e.g., the maximum number of

consecutive dry days. Spatial characteristics are spatial cor-

relations [Rauscher et al., 2010; Achberger et al., 2003],

cluster sizes, or spatial patterns [Bachner et al., 2008].

[100] In addition, it is important to assess whether the

processes leading to long‐term changes in local precipitation

are well captured by the models, in order for their projec-

tions of future change to be reliable [e.g., Kendon et al.,

2009; D. Maraun et al., manuscript in preparation, 2010].

This may be examined through the validation of process‐

based metrics, for example, relationships of precipitation

with the large‐scale circulation or with temperature [e.g.,

Lenderink and van Meijgaard, 2008; Maraun et al., manu-

script in preparation, 2010] or the mechanisms of soil‐

precipitation feedback [Schär et al., 1999].

[101] There have been several attempts to standardize

indices; see the Expert Team on Climate Change Detection

and Indices [e.g., Peterson et al., 2001; Nicholls and Murray,

1999] and STARDEX project [Goodess et al., 2010] for a full

overview. Furthermore, a set of metrics and criteria has been

defined in the ENSEMBLES project [van der Linden and

Mitchell, 2009] in order to evaluate different aspects of the

downscaling model. These aspects are (1) large‐scale circu-

lation and weather regimes, (2) temperature and precipitation

mesoscale signal, (3) probability distribution functions of

daily precipitation and temperature, (4) temperature and

precipitation extremes, (5) temperature trends, and (6) tem-

perature and precipitation annual cycle for RCMs and addi-

tionally of the stability of the predictor‐predictand relationships

for statistical downscaling (see a forthcoming special issue

in Climate Research (E. Kjellström et al., manuscript in

preparation, 2010)).

[102] The simulated and observed characteristics need to

enter the validation procedure on comparable spatial scales;

that is, point observations may need to be averaged to rep-

resent areal means. Scale mismatches, typically occurring

when comparing areal model outputs with point measure-

ments, might induce representativeness errors because of the

lower variance of averaged values [Ballester and Moré,

2007; Tustison et al., 2001; Ivanov and Palamarchuk,

2007]. This is especially important for RCMs since not

only is the grid point average smoothed over a large area,

but neighboring grid points are also more correlated than in

reality [Déqué, 2007].

5.2. Validation Measures

[103] Downscaling models (either dynamical or statistical)

might be driven by GCM simulations or by observational

data (often reanalysis data as surrogates). Validation for

these two settings is fundamentally different. In the former

case, simulated and observed weather are independent.

Therefore, validation is limited to evaluating the distribution

of precipitation over long periods in a particular grid box or

the spatial structure of the climatology (section 5.2.2). In the

latter case (called “perfect boundary conditions” in the case

of dynamical downscaling), simulated and observed weather

events can directly be related to each other. Here, in addition

to validating the simulated distributions, validation techni-

ques which have been developed for forecast verification

can be applied. These techniques use the simulated time

series as a prediction of the observed time series and assess

the quality of the prediction (section 5.2.3). First, we will

present measures that can be applied for the evaluation of

both settings.

5.2.1. General Performance Measures
[104] Simple performance measures that can be applied to

time series as well as to distributions and spatial patterns are

bias, correlation, mean absolute error, and (root‐) mean‐

square error. To visualize pattern correlation, root‐mean‐

square error, and ratio of standard deviations simultaneously,

Taylor diagrams have been introduced [Taylor, 2001] (see

Figure 5 for an example where time series are compared). To

assess the significance of discrepancies, statistical tests such

as Student’s t test may be carried out. For precipitation,

nonparametric alternatives based on bootstrap resampling

[Efron and Tibshirani, 1993; Davison and Hinkley, 1997]

might prove useful [e.g., Bachner et al., 2008]. A complex

validation diagnostic for spatial characteristics is SAL,

which considers aspects of structure (S), amplitude (A), and

location (L) of precipitation in a certain region [Wernli et al.,

2008].

5.2.2. Measures to Validate Distributions
[105] A framework to compare the distributions of simu-

lated and observed precipitation characteristics consists of

statistical tests, such as the c2 test or the Kolmogorov‐

Smirnov test [e.g., Semenov et al., 1998; Bachner et al.,

2008]. Another more graphical technique, especially for the
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validation of the extreme tail, consists of (quantile‐)quantile

plots [e.g., Déqué, 2007; Coles, 2001], where observed and

predicted quantiles are plotted against each other. For simple

validation methods based on quantiles, see Ferro et al. [2005].

Validation of extremal properties (such as return levels) may

be done parametrically, i.e., by fitting a generalized extreme

value distribution to block maxima or by fitting a general-

ized Pareto distribution to threshold excesses [Coles, 2001].

5.2.3. Measures to Validate Time Series
[106] Typical measures to compare simulated binary events

(e.g., wet/dry) with the actual observed outcome are hit rate,

false alarm rate, frequency bias, and log odds ratio [e.g.,

Jolliffe and Stephenson, 2003; Wilks, 2006; Stephenson,

2000]. For these measures, the simulated weather sequence

needs to correspond to the observed weather sequence; there-

fore, the downscaling model needs to be driven by observed

(or surrogate) large‐scale weather. Continuous events can be

considered, e.g., by defining a threshold. These measures can

be displayed in 2 × 2 contingency tables. A powerful tool to

evaluate them graphically is the two‐dimensional relative

operating characteristics diagram, which displays the hit rate

against the false alarm rate.

[107] Some of the downscaling approaches discussed in

section 4 predict distributions rather than individual values.

Here classical measures comparing actual values are not

directly applicable. Performance measures for such purpose

are probability scores. The classical probability score to

validate binary events, e.g., precipitation occurrence, is the

Brier score [Brier, 1950]. To validate continuous events (e.g.,

precipitation amount) the (continuous) ranked probability

score [Hersbach, 2000; Jolliffe and Stephenson, 2003] and

the quantile verification score (see Friederichs and Hense

[2007] and Maraun et al. [2010a] for examples) have been

developed.

[108] Absolute values of performance measures are often

not meaningful and are therefore compared with scores of

reference predictions, such as the climatological mean. When

developing a new downscaling method, a sensible reference

prediction would be the best previously available down-

scaling. When assessing the predictive power of a certain

predictor, a reference prediction would be the statistical

model without this particular predictor. Relative measures of

performance are skill scores, which can be derived from all

of the aforementioned performance measures. Further skill

scores are the Heidke skill score or the equitable threat

score [see, e.g., Jolliffe and Stephenson, 2003; Wilks, 2006;

Stephenson, 2000].

[109] To assess the performance of a downscaling approach

on different time scales, Maraun et al. [2010b] applied the

squared coherence [Brockwell and Davis, 1991]. They have

investigated the performance of a statistical downscaling

model on subannual, interannual, and decadal scales.

[110] To ensure robust results, any meaningful validation

of time series needs to be carried out as cross validation; that

is, the data used for the validation need to be independent of

the data used for the model calibration. To this end, the data

set is divided into a training subset and a validation subset.

Splitting can be done either in time, by leaving out a certain

time period for the validation, or in space, i.e., by leaving

out a certain rain gage. Often, all disjunct subsets are suc-

cessively left out.

5.3. Pseudorealities for Validation

[111] To overcome limitations in observational data and to

better isolate different sources of error, validation in a

pseudoreality has been suggested. Often, RCM validation is

limited because of too sparse an observational network.

Furthermore, it is difficult to isolate the contributions of the

different components in the whole simulation to discrepancies

between simulated and observed local variables. This prob-

lem can partly be overcome by driving the RCM with

reanalysis data. However, even in this setting, errors caused

by the nesting (i.e., the actual downscaling step) and the

imperfection in the RCM itself cannot be discriminated. To

address these issues, Denis et al. [2002] suggested what they

call the “Big Brother Experiment”: a model world is created

by a high‐resolution large‐area RCM simulation (“Big

Brother”). A perfect prognosis large‐scale representation of

this pseudoreality is then created by spatially filtering the

high‐resolution field, which is then used as boundary con-

ditions for the same RCM but on a smaller domain (“Little

Brother”). Because of the perfect prognosis construction, the

Figure 5. Taylor diagram showing the performance of
18 RCMs to simulate annual precipitation over the Thames
catchment, UK. The 18 RCMs are driven with ERA40
reanalysis data, such that observed and simulated time series
represent the same weather sequence and can be directly
compared. The angle is given by the correlation between
simulated and observed times series, and the norm is given
by the ratio of simulated and observed standard deviation.
The distance between the observation point (1, 1) and a
model point gives the root‐mean‐square error between
observed and modeled time series, normalized with the
observed standard deviation (F. Wetterhall, unpublished
data, 2009).
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discrepancies between the Big Brother (pseudo‐observed)

and Little Brother (modeled) variables can exclusively be

attributed to errors in the downscaling itself.

[112] Given the limited availability of long observational

time series, each validation is limited by the simple fact that

the time scales of interest are longer than the maximum

available calibration period. This is crucial especially for

statistical downscaling because stationarity issues are poten-

tially more serious for statistical models than for models

based on physical relationships. To address this potentially

serious disadvantage, Vrac et al. [2007e] proposed a general

method to validate statistical downscaling for future climate

change in a model world. In addition to validating the sta-

tistical downscaling method against observations, they sug-

gest evaluating whether the GCM driven statistical method

is able to simulate realistic statistics. Furthermore, they

suggest calibrating the statistical downscaling method on

pseudo‐observations from an RCM, driven by a GCM

control run, and evaluating whether this calibrated statistical

downscaling model performs well in a future scenario sim-

ulated with the same GCM and RCM.

6. SKILL OF DOWNSCALING APPROACHES
TO MEET THE END USER’S NEEDS

[113] In sections 3 and 4, we have presented the state of the

art in regional climate modeling and statistical downscaling.

Here we discuss the extent to which the different approaches

are able to meet the end user needs defined in section 2. In

each case, we first present the performance of RCMs and then

discuss MOS as a method of closing potential gaps between

RCMoutput and the end user need.We then consider the skill

of PP approaches and weather generators as stand‐alone

alternatives to dynamical downscaling.

[114] A recurring element in the discussion of downscaling

skill is the difference between frontal and summertime con-

vective precipitation. The former usually is quite homoge-

neous over large spatial and temporal scales, with moderate

intensities. The latter is of a fine spatial‐temporal structure,

often with very high intensities. For an illustration, see

Figure 6.

[115] In this section we first discuss the performance of

downscaling approaches for different regions and seasons.

We then discuss skill to simulate particular characteristics of

precipitation related to the end user needs defined in section 2.

We finally address the need for approaches to function in a

changed climate.

6.1. Dependence of Downscaling on Region
and Season

6.1.1. Regional Dependence of Downscaling Skill
[116] When assessing the potential to downscale precipi-

tation it is important to first assess the performance of GCMs

over the region of interest. For example, the GCMs in the

latest Intergovernmental Panel on Climate Change report

have biases in important large‐scale circulation patterns like

the El Niño–Southern Oscillation [e.g., Latif et al., 2001;

Leloup et al., 2008], blocking (blocking occurs when large‐

scale high‐pressure systems persist in a stable state for

several days, effectively “blocking” or redirecting cyclones

[e.g., Hinton et al., 2009] (see also Figure 7), monsoonal

circulation, and tropical and extratropical cyclones [Meehl

et al., 2007]. These deficiencies will affect the ability to

downscale precipitation locally. However, even in these areas

the value added by downscaling in comparison with pre-

cipitation directly taken from GCMs is still substantial

[e.g., Christensen et al., 2007; Schmidli et al., 2006]. Global

maps of correlations between gridded observations and

seasonal precipitation in a GCM (ECHAM5) in which the

large‐scale atmospheric states have been nudged toward a

reanalysis indicate for all seasons a high skill of rescaled

(i.e., MOS corrected) GCM precipitation over most parts

of the Northern Hemisphere midlatitudes, relatively low

skill over Africa and parts of South America, and moderate

or seasonally dependent skill elsewhere (Eden et al., sub-

mitted manuscript, 2010).

[117] RCMs have been developed for many regions of the

world and, in principle, are transferable to other regions.

However, when transferring RCMs to very different cli-

mates, parameterizations may have to be adapted and the

validation might be limited by data sparsity. Statistical

downscaling can technically be performed in any part of the

world, limited only by the requirement for sufficient data to

calibrate and validate the model (see Figure 4).

[118] The number of downscaling studies varies regionally;

a rough estimate from a search on the Web of Science

(20 March 2010, keywords “Statistical Downscaling” and

region, and “Dynamical Downscaling” or “Regional Cli-

mate Model” and region) indicates that most studies have

been carried out for Europe and North America. There is

also a difference in the relative number of studies applying

dynamical and (in general, PP) statistical downscaling. For

Europe and North and South America there are roughly

4 times as many studies using RCMs than PP, whereas for

Africa and Asia there are over 10 times as many, and for

Australia the ratio is nearly 1. These differences can partly

be explained by large initiatives such as PRUDENCE or

ENSEMBLES (which also provides simulations for northern

Africa) and by the availability of reliable and dense obser-

vational data.

[119] An objective assessment of the downscaling skill

depending on region is therefore not possible, but we will

point out some general conclusions. We will mainly draw on

results from the PRUDENCE [Jacob et al., 2007; Graham

et al., 2007a] and ENSEMBLES [van der Linden and

Mitchell, 2009] model intercomparison projects for Europe

and the STARDEX project [Goodess et al., 2010; Haylock

et al., 2006; Schmidli et al., 2007] that compared several

downscaling techniques in terms of their abilities to down-

scale high‐precipitation events.

[120] Results over Europe show that the skill of RCMs is

generally higher in the northern and western, wetter regions

than in the drier, southern and eastern regions, but this varies

from model to model [Murphy, 1999; Jacob et al., 2007].

MOS techniques have the potential to increase the skill of

RCM precipitation across Europe [e.g., Boé et al., 2007;
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Déqué et al., 2007; Lenderink et al., 2007; Yang et al., 2010;

Piani et al., 2009]. Results from the STARDEX project

[Goodess et al., 2010] indicate results for PP statistical

downscaling that are similar to the results for RCMs: higher

skill over northern Europe than over southern Europe,

although the skill strongly depends on the method used.

[121] Over regions with high terrain, RCMs considerably

reduce the precipitation bias compared to GCM‐simulated

precipitation [e.g.,Fowler et al., 2005;Buonomo et al., 2007].

Although some of the remaining bias may be inherited from

the lateral boundary conditions, a large fraction is likely to

be attributable to RCM downscaling error. RCMs over the

Alpine region are able to reproduce the most prominent

Figure 6. Radar images of the region around Bonn, Germany. White indicates no rain, green indicates
light rain, and red indicates heavy rain. (left) Image from 10 February 2000, 1616 LT. A cold front crosses
and causes a wide band of rain of moderate intensity. (right) Image from 22 June 1999, 1043 LT. Many
small convective cells, some of high intensity, cross the Rhineland. Reprinted with kind permission from
the Meteorological Institute, University of Bonn, Bonn, Germany (http://www.meteo.uni‐bonn.de/
forschung/gruppen/radar/index_en.htm).

Figure 7. Mean blocking frequency. Black indicates ERA40 reanalysis, and colors indicate GCMs from
the Development of a European Multi‐model Ensemble System for Seasonal to Interannual Prediction
(DEMETER) project. The dots indicate longitudes where the model climatology is not significantly dif-
ferent from the verification data. The underestimation in blocking frequency would, in turn, underestimate
the occurrence of, e.g., heat waves or wet spells. Reproduced from Palmer et al. [2008, Figure 3].
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features of the spatial pattern of precipitation, but they show

a wet bias along the northwestern windward slopes and a dry

bias along the southeastern leeward slopes; precipitation

intensity and the frequency of heavy events are under-

estimated [Frei et al., 2003, 2006].

[122] Salathe [2003] has shown that to reduce the bias to a

level that allows a reliable simulation of monthly flow in

mountainous catchments, a resolution of 0.125° is needed.

Studies by Piani et al. [2009] and Themeßl et al. [2010]

suggest that MOS could correct bias in high‐elevation

regions in Europe, including the Alpine region. Following an

idea byWidmann et al. [2003], Schmidli et al. [2006] applied

MOS directly to ERA40 precipitation and showed the

potential of directly correcting GCM simulated precipitation.

[123] Regarding the representation of spatial precipitation

variability in mountainous terrain, Hellström et al. [2001]

and Hanssen‐Bauer et al. [2003] concluded that PP statis-

tical downscaling outperforms RCMs (with a spatial reso-

lution of ∼50 km). However, in a study of the Alps Schmidli

et al. [2007] found that RCMs, in general, outperformed PP

in winter but were on a par regarding the summer precipi-

tation. With respect to the regional dependency of down-

scaling, the two major gaps are (1) limited representation of

local‐scale precipitation in areas where the large‐scale

modes of variability are insufficiently represented by GCMs

and (2) the limited availability and/or accuracy of down-

scaled precipitation in data‐sparse regions.

6.1.2. Seasonal Dependence of Downscaling Skill
[124] The assessment of 50 km resolution RCMs from the

PRUDENCE project has shown that downscaling skill is

generally better in winter than in summer across Europe

[Frei et al., 2006; Jacob et al., 2007; Fowler and Ekström,

2009]. In winter, models tend to be too wet in northern

Europe [Christensen et al., 2007], and in summer, models

tend to be too dry over southern and eastern Europe [Jacob

et al., 2007]. In the Alpine domain, biases of up to several

tens of percent have been reported both for mean and for

particularly extreme precipitation [e.g., Frei et al., 2003,

2006]. Recent work within the ENSEMBLES project,

however, has shown that 25 km RCMs driven by ERA40

boundary conditions give a good representation of rainfall

extremes over the UK both in winter and in summer, indi-

cating that higher model resolution might improve the rep-

resentation of summer extremes (Buonomo et al., manuscript

in preparation, 2010). By applying MOS on a seasonal basis,

the representation of the annual cycle can be improved

[Boé et al., 2007; Leander and Buishand, 2007].

[125] Like dynamical downscaling, statistical downscaling

of precipitation shows greater skill in winter than in summer

(for Sweden, see, e.g.,Wetterhall et al. [2007]). Results from

the STARDEX project [Goodess et al., 2010; Haylock et al.,

2006] indicate the same seasonality in the skill to downscale

heavy precipitation. However, for the UK Maraun et al.

[2010a] found no seasonality in the skill to model the

magnitude of monthly maxima of daily precipitation.

[126] Both dynamical and statistical downscaling approaches

show less skill in downscaling precipitation in summer,

which may relate to the difficulty in modeling convective

precipitation. As such, providing accurate downscaled pro-

jections of precipitation in this season remains a challenge

and potentially represents a remaining gap in meeting end

user needs.

6.2. Downscaling Skill to Model Precipitation
Characteristics

6.2.1. Event Intensity
[127] Analysis of the PRUDENCE RCMs showed that

models generally perform well for moderate precipitation

intensities, with the greatest discrepancies for days with

either light precipitation (<5 mm/d) or very heavy precipi-

tation (>80 mm/d) [Boberg et al., 2009]. Most RCMs tend

to overestimate the occurrence of wet days (“drizzle effect”)

but underestimate heavy precipitation [Murphy, 1999;

Fowler et al., 2007b]. There is evidence that this tendency is

not region specific, although to some extent, it varies between

different RCMs [Fowler et al., 2007b]. This tendency is also

found to extend to RCMs with grid scales less than 20 km

[Früh et al., 2010].

[128] Over the UK, for which there is a dense rain gage

network, RCMs have been shown to realistically simulate

extreme precipitation on an annual basis for return periods

of up to 50 years [Fowler et al., 2005; Buonomo et al., 2007].

However, there is evidence that RCMs tend to underestimate

extreme precipitation, in particular, where rainfall is heaviest

[Fowler et al., 2007b; Buonomo et al., manuscript in

preparation, 2010] and for more intense events [Buonomo

et al., 2007]. On the 50 km grid scale model biases are

highly spatially variable, ranging from −50% to +50% for

5 year return period events [Fowler et al., 2005; Buonomo

et al., 2007], and also model dependent.

[129] In general, high precipitation intensities occur in

association with mesoscale convection or because of oro-

graphic enhancement. Thus, the tendency for RCMs to

underestimate high‐intensity events may be due to inadequate

representation of convective processes. While over high

terrain, model biases may be explained by inadequate res-

olution of the topography at the RCM grid scale.

[130] The main rationale for using MOS is to correct RCM

precipitation intensities, in particular, the drizzle effect and

underestimation of heavy precipitation. A simple approach

to correct the drizzle effect is to set all modeled precipitation

values below a certain threshold to zero [e.g., Hay and

Clark, 2003; Schmidli et al., 2006; Piani et al., 2009]. To

improve the representation of precipitation intensities, dif-

ferent methods have been proposed (see section 4.2). Scaling

precipitation corrects the mean and variance of precipitation

by the same factor. This is generally a reasonable assumption

for the core of the intensity distribution, but scaled precipi-

tation might be biased for light and heavy precipitation. A

more flexible tool is quantile mapping, which considers the

whole frequency distribution of observed values. However,

this approach does not explicitly consider the tail of the

distribution, and extreme events might be misrepresented. A

solution, which, to our knowledge, has not been applied in

this context, might be the mixture model suggested by Vrac

and Naveau [2007].
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[131] Early attempts at PP statistical downscaling have

long been recognized to be oversimplistic in terms of re-

presenting the observed intensities: they ignored random

variability (either completely or by using inflation; see

section 4.1.3) and were generally unsuitable for modeling

extremes (see Figure 8). von Storch [1999] therefore sug-

gested to randomize the downscaled time series by adding

noise realizations. Haylock et al. [2006] and Goodess et al.

[2010] compared the performance of several downscaling

approaches regarding the representation of different mea-

sures of precipitation intensity and found no single approach

to perform systematically better than others. Not included in

these intercomparison studies have been approaches based

onGLMs. Thesemodels, in a simple PP setting (section 4.1) or

incorporated into a stochastic weather generator (section 4.3),

elegantly model the unexplained variability, commonly

using a gamma distribution to generate random variability

[e.g., Yang et al., 2005; Furrer and Naveau, 2007] (see also

Figure 8).

[132] Evaluation studies so far have focused on moder-

ately heavy rain. For example, in their study on heavy

precipitation over the United Kingdom, Haylock et al.

[2006] choose the 90th percentile on wet days, roughly

corresponding to subannual return levels. For many impact

studies and design settings, however, much higher return

levels of the order of decades or centuries are relevant. In

general, there is no guarantee that statistical models for the

core of the distribution will provide an adequate representa-

tion of extremes [Wilks and Wilby, 1999] (see also Figure 8).

The distribution of precipitation tends to be heavy tailed

[Katz, 1977], and statistical downscaling schemes that do

not account for this are likely to be heavily biased for high

extremes. Recently, statistical models based on extreme

value theory have been developed for precipitation [Maraun

et al., 2010a, 2010b], which can easily be extended for

downscaling. However, as these approaches only model the

extreme tail but not the core of moderate precipitation, they

are limited in their applicability. Yang et al. [2005] dem-

onstrated that it is possible to obtain heavy‐tailed distribu-

tions by incorporating nonlinear dependence structures into

GLMs based on gamma distributions; however, at present,

the conditions under which heavy‐tailed distributions can be

obtained from this kind of model are poorly understood. A

possible alternative solution could be mixture models such

as the one suggested by Vrac and Naveau [2007]. Here the

authors combine a gamma distribution to model moderate

precipitation and a generalized Pareto distribution to model

extremes. The performance of these approaches has not yet

been compared with standard statistical downscaling schemes.

To summarize, downscaling has the potential to reliably

simulate event intensities, in particular, when correcting

RCM output by MOS or using PP methods to predict full

distributions.

6.2.2. Temporal Variability and Time Scales
[133] Studies for the UK have shown that the extent to

which model biases increase or decrease for longer‐duration

events depends on the region and the RCM [Fowler et al.,

2007b; Fowler and Ekström, 2009]. For Hadley Centre

RCMs, Buonomo et al. [2007] find greater biases for longer‐

duration (30 day accumulation) extremes compared to 1 day

events in regions of heavy precipitation but quite different

behavior where long‐duration extremes are strongly influ-

enced by lighter precipitation events.

[134] There are relatively few studies to date examining

RCM skill in simulating subdaily precipitation. A recent

study by Lenderink and van Meijgaard [2008], however,

shows deficiencies in the ability of the 25 km RACMO

RCM to capture hourly precipitation for temperatures above

20°C. This deficiency is likely to be particularly important

in summer months where convective processes may domi-

nate and temperatures are high. Hohenegger et al. [2008]

have shown that very high resolution (grid scale ≤5 km)

climate modeling improves the diurnal cycle of convection.

The representation of short‐duration precipitation extremes

is also significantly improved at high resolution [Wakazuki

et al., 2008]. These resolutions are now common practice

in numerical weather prediction [Roberts and Lean, 2008]

Figure 8. (a) Distribution of daily winter precipitation for
Cambridge, Botanical Garden, 2 January 1898 to 31 Decem-
ber 2006. Grey histogram shows all observed wet day
amounts. Red histogram shows amounts predicted by a sim-
ple multiple linear regression using airflow strength, direc-
tion, and vorticity as predictors. The variability is greatly
underestimated and is not skewed. Blue line indicates
gamma distribution, providing a suitable model for the core
of the distribution. (b) The tail (>20 mm). Blue line indicates
gamma distribution, which considerably underestimates the
tail of the distribution. Orange line indicates exponential tail
(or short/light tail), and green line indicates generalized Par-
eto (GP) distribution with a shape parameter of approxi-
mately 0.2 (heavy tail). For the plot, both extreme value
distributions are rescaled to match the scale of the full dis-
tribution. The extreme value distributions suitably model
the observed threshold exceedances, although further diag-
nostic plots (not shown) reveal a better fit of the GP distri-
bution. (c) The exponential tail considerably underestimates
the occurrence of extremes beyond the observed values.
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but are computationally very expensive and thus are cur-

rently limited to either short time periods or small spatial

domains. For an illustration of model deficiencies in simu-

lating subdaily precipitation, see Figure 9.

[135] As MOS is designed to correct precipitation inten-

sities, it does not improve the temporal structure. Even the

adjustment of the number of wet days does not guarantee an

improved representation of the lengths of dry and wet spells.

However, the representation of seasonality can be improved

by applying MOS to different seasons [Boé et al., 2007] or

months separately or to even shorter parts of the year (e.g.,

5 day periods [Leander and Buishand, 2007]). If precipita-

tion sums over longer time periods such as monthly totals

are of interest, MOS could be applied to time aggregated

precipitation.

[136] In PP statistical downscaling the temporal structure

is not explicitly modeled. However, the large‐scale pre-

dictors impose their time structure on the local‐scale pre-

cipitation. For instance, Haylock et al. [2006] and Goodess

et al. [2010] have shown that the maximum number of

consecutive dry days is generally better modeled than the

intensity of heavy rainfall, indicating that a reasonable

fraction of the time dependency is captured by the predictors.

Maraun et al. [2010b] found that predictors representing the

large‐scale atmospheric circulation explain a significant

fraction of themonthly, interannual, and decadal variability of

high precipitation intensities. Weather generators explicitly

model the short‐term day‐to‐day variability (see section 4.3)

but require large‐scale predictors to correctly simulate long‐

term variability [Wilks and Wilby, 1999].

[137] Weather generators, such as Poisson cluster models,

can provide subdaily precipitation. They can, in principle,

be implemented without subdaily data but perform better

when calibrated against subdaily data [Cowpertwait et al.,

1996]. For a reasonable calibration, at least 10 years of

data are required; to calibrate the models for subdaily extreme

precipitation, even longer time series are required. Further-

more, they are generally conditioned on daily RCM change

factors and thus cannot provide subdaily information on

climate change [Jones et al., 2009].

[138] In summary, deficiencies remain in the ability of

downscaling methods to generate local precipitation time

series with the correct temporal variability. Many of these

deficiencies are inherited from the driving GCMs, with

deficiencies in the representation of blocking and tropical

modes of variability [e.g., Ringer et al., 2006] (see also

section 6.1). RCMs and PP weather generators can “add

value” in terms of the representation of short temporal

variability.

6.2.3. Spatial Coherence and Event Size
[139] In terms of spatial variability, two potential pro-

blems need to be considered: misrepresentation of event

size, structure, and spatial coherence, e.g., by overestimating

the extent of convective cells, and misplacement of precip-

itation events, e.g., due to orographic effects.

[140] RCMs tend to overestimate the spatial coherence of

precipitation events. As discussed in section 3, convective

events are difficult to model, and therefore, these events are

often too low in intensity and extend over too large an area.

This problem might be solved in the future with higher

resolution and improved numerical schemes. Large‐scale

frontal precipitation is generally well simulated by RCMs,

although the coarse orography, especially in mountainous

regions, can cause erroneous spatial distributions of pre-

cipitation [Frei et al., 2003]. In addition to improving sub-

daily precipitation representation, very high resolution climate

modeling ensures more accurate localization of rainfall

maxima over regions of complex topography [Hohenegger

et al., 2008].

[141] Most MOS approaches are not designed for cor-

recting errors in spatial correlations since the predictand still

inherits much of the spatial correlation structure of the sim-

ulated precipitation [Boé et al., 2007]. However, Widmann

et al. [2003] suggested a nonlocal MOS: they applied sin-

gular value decomposition to derive coupled spatial patterns

of simulated and observed precipitation. These patterns can

have a different structure with high values over different

locations, such that this approach, in principle, can correct

unrealistic aspects in the location and spatial structure of the

simulated precipitation, which may be caused, for instance,

by an unrealistic topography in a numerical model.

[142] Within individual grid boxes, He et al. [2009] have

attempted to account for subgrid orography by distributing

the simulated precipitation according to observed patterns.

There are examples of MOS weather generators (using

change factors derived from RCMs to represent climate

change) that have been extended to a high‐resolution grid

(e.g., 5 km [Jones et al., 2009]), but these are run inde-

pendently for each grid point.

[143] Standard PP statistical downscaling is facing a

dilemma: in a “deterministic” context, i.e., without explicitly

Figure 9. Intensity‐duration plot: 5 year return period of
precipitation intensities for subdaily durations, from Stock-
holm, Sweden. Black line indicates observed data, and blue
line indicates regional climate model RCA driven by
ERA40 reanalysis data.
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adding noise to the downscaled variables, the predictors

impose a strong spatial coherence. Yet randomization in the

form of adding uncorrelated noise might weaken the spatial

coherence too much. The same holds for weather generators

based on weather states, which themselves induce intersite

correlations. At large spatial scales, it may be reasonable to

consider that all of the intersite dependence is captured.

Often, however, and particularly at smaller spatial scales,

the induced dependence is weaker than that found in

observations. A way out is the explicit modeling of spatial

dependence, i.e., using multisite weather generators (section

4.3.2) or full‐field weather generators (section 4.3.3). The

analog method, either in a simple PP setting (section 4.1.3)

or extended to a weather generator (section 4.3.2), provides

an easy way to simulate spatially coherent and realistic

fields. However, this method cannot simulate unobserved

weather patterns which might emerge because of changes in

the atmospheric circulation. Therefore, its use for climate

change projections is limited, especially in simulating fields

of extreme precipitation. All PP methods, including PP

weather generators, can, in principle, correctly represent

orographic influences as their calibration intrinsically

accounts for the interplay between the large‐scale atmospheric

circulation and the orography, such as lee and rain shadow

effects.

[144] The representation of spatial variability is limited by

the density of the rain gage network. Still unresolved is the

issue of full‐field precipitation, i.e., the provision of down-

scaled precipitation between rain gages. Often, this problem

is addressed by interpolation from neighboring sites. How-

ever, such techniques are a form of smoothing that leads to

underestimation of rainfall variability, especially on short

time scales and for extremes [e.g., Hofstra et al., 2008]. This

is particularly serious in mountain areas, where the relation-

ships between orography and precipitation are very complex

and the rain gage network is generally sparse compared to

the high spatial variability (for a notable exception, see Frei

and Schär [1998]).

6.2.4. Physical Consistency
[145] RCMs model the full atmospheric state and therefore

intrinsically address physical coherence. However, small

temperature biases might lead to considerable biases in

impact models when temperature and precipitation are

required. Yang et al. [2010] showed that a MOS correction

of temperature and precipitation bias could improve the

simulation of river discharge in spring. In general, however,

it should be noted that MOS may disrupt internal consis-

tency between weather variables, especially between tem-

perature and precipitation.

[146] Pure PP statistical downscaling does not, in general,

explicitly model physical coherence between variables unless,

for example, large‐scale temperature is used as predictor for

precipitation [e.g., Chun et al., 1999]. This is, however,

problematic since high summer temperatures may be a con-

sequence of dry conditions (i.e., due to clear skies) or a cause

of convective wet conditions, so the correlations are difficult

to interpret [Wilby and Wigley, 2000]. Unlike other PP

approaches, the analog method intrinsically captures physical

coherence.

[147] Most weather generators attempt to model the

relationships between relevant variables, mostly by regres-

sing other variables on the generated precipitation [Kilsby

et al., 2007; Jones et al., 2009]. An advancement of this

approach based on GLMs was developed by Furrer and

Naveau [2007]. In these methods, the other variables are

derived from the downscaled precipitation without referenc-

ing the actual variable (e.g., temperature) in the driving GCM.

6.3. Downscaling for Future Climate Change

[148] Downscaling of climate change scenarios requires

the chosen methodology to function in a perturbed climate,

i.e., under conditions different from those for which it was

developed [Huth and Kyselý, 2000]. Therefore, skill for the

present‐day climate, although necessary, may not be a suf-

ficient indicator of skill for the future climate [e.g., Charles

et al., 1999; Christensen and Christensen, 2007]. It is also

difficult to objectively quantify model skill as different

models perform better for different variables and processes.

[149] When discussing skill to downscale future climate

scenarios, two points affecting the skill have to be addressed,

both for dynamical and statistical downscaling. First, sta-

tionarity of the physical and statistical relationships has to be

established, and second, the driving GCM simulation needs

to be informative for the downscaled variable. Closely

connected with downscaling of future scenarios is the ques-

tion of predictability and uncertainty. Often, model consensus

is taken as evidence for robust skill. This assumption will be

critically reviewed.

6.3.1. Model Consensus as a Measure of Skill
[150] Model consensus does not imply reliability since

there may be missing processes or deficiencies common to

all models. An understanding of the underlying processes

and mechanisms of change, and their evaluation in models,

is key to assessing reliability. Modeling, theory, and obser-

vational studies suggest that increases in extreme precipita-

tion are reliable, at least on large scales, since they are

dominated by increases in atmospheric moisture with

warming [Allen and Ingram, 2002; Allan and Soden, 2008;

Kendon et al., 2009]. However, for local precipitation

extremes, small‐scale dynamics of clouds and the subcloud

layer and cloud microphysics as well as changes in precip-

itable water may play an important role [Lenderink and van

Meijgaard, 2008]. These small‐scale processes are not well

represented in current RCMs, as evident from deficiencies in

the simulation of high precipitation intensities for the present‐

day climate. The same holds for statistical downscaling as

predictors used in different approaches are often similar, if

not identical, and all approaches ultimately rely on a small

number of driving GCMs.

[151] Some degree of confidence might be gained from

comparing dynamical and statistical downscaling techniques

[e.g., Murphy, 1999; Haylock et al., 2006]. For other model

comparison examples, see Semenov et al. [1998], Zorita and

von Storch [1999], Schmidli et al. [2007], and Timbal et al.

[2008b]. In fact, dynamical downscaling and statistical
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downscaling can be used to mutually validate one another.

For instance, an RCM pseudoreality can be used to validate

statistical downscaling approaches (section 5.3) [Vrac et al.,

2007e], and statistical downscaling can be used to validate

physical relationships in the RCM (section 5.1) [Kendon

et al., 2009; Maraun et al., manuscript in preparation, 2010].

6.3.2. Stationarity
[152] In the case of dynamical downscaling, assumptions

need to be made for RCM parameterizations to be valid in a

perturbed climate. This may be a significant issue for RCMs

that have been developed for a specific region. For RCMs

that have been shown to perform well for multiple regions,

there is greater confidence in the applicability of the param-

eterization schemes in future climates [Christensen et al.,

2007].

[153] When correcting the RCM output, the stationarity

issue might become more serious. Most MOS methods

described in section 4.2 correct the distribution of modeled

precipitation, estimated over a long time interval. However,

this distribution is, in fact, a mixture of various other dis-

tributions, depending on the different weather conditions.

Since the relative frequency of different weather conditions

might change in a future climate, the resulting mixed dis-

tribution might also change, such that the correction func-

tion is potentially not valid under climate change. For

instance, Christensen et al. [2008] suggest that biases may

not be invariant in a warming climate. This argument holds,

in particular, for methods that scale observed or control run

precipitation, which do not account for possible dynamic

changes in temporal variability, for instance, in the fre-

quency of circulation patterns [e.g., Lenderink et al., 2007].

[154] The stationarity issue is also significant for PP sta-

tistical downscaling. The more heuristic and less physical

the predictor/predictand relationship, the less confident one

can be that the relationship might remain stable under cli-

mate change. A way to gage the transferability of statistical

relationships into the future is to use a sensitivity analysis

when calibrating a statistical downscaling method [Frías

et al., 2006]. One way is to build the model on data from

the coldest (driest) years and then validate it on data from

the warmest (wettest) years, thus testing the scheme on two

different climate situations. The model can also be tested

against extreme years in order to test the stability [Wilby,

1994]. If the time series used for calibration are long

enough, it is reasonable to believe that they are representa-

tive of those situations that will be more frequent in a future

climate [Zorita and von Storch, 1999]. Confidence in the

approach is highest if it can model such situations and if the

range of variability of the large‐scale variable in a future

climate is of the same order as today.

[155] Sometimes, nonstationarity in the relationships is

only an artifact because the chosen predictors do not convey

enough information about long‐term variability. Wilby and

Wigley [1997] showed that certain changes in the relation-

ship between weather types and precipitation in the UK

could be explained by a modulating effect of the central

England temperature. Therefore, it is necessary to identify

all predictors informative for climate change and to incor-

porate them in a multivariate approach. A similar issue is

discussed by Wilby et al. [2004] regarding nondynamical

shifts of predictors due to climate change. Spurious effects

on rainfall could be corrected by subtracting the mean shift

from the predictors.

6.3.3. Capturing Climate Change
[156] For reliable simulations of future climate, the

mechanisms of future change in precipitation need to be

represented [e.g., Kendon et al., 2009]. Thus, it is important

that the processes leading to long‐term changes in local

precipitation, such as relationships of precipitation with the

large‐scale circulation or with temperature [e.g., Lenderink

and van Meijgaard, 2008] or the mechanisms of soil‐

precipitation feedback [Schär et al., 1999], are well captured

by the models.

[157] Biases in the GCM‐simulated large‐scale atmo-

spheric circulation might considerably bias the RCM sim-

ulation. For instance, Leander et al. [2008] noted that the

representation of extreme precipitation events is potentially

sensitive to the driving GCM, limiting the overall possibility

to correctly downscale high‐intensity rainfall.

[158] A similar argument holds for MOS applications,

only on smaller scales. Any correction yields meaningful

results only if the temporal variability or the long‐term

changes in the simulated precipitation are good predictors

for the changes in the real world. In the case of MOS cal-

ibrated on the basis of reanalysis‐driven RCMs or GCMs

nudged toward reanalyses this can be assessed directly by

comparing the simulated and observed changes in the past,

whereas in control run calibrated setups that allow only

distribution‐wise MOS it is difficult to judge whether the

application of MOS corrections is justified. Where the

simulated precipitation has simply no skill the application of

distribution‐wise MOS would not be justified, even if the

corrected and observed precipitation intensity distributions

could be brought into perfect agreement.

[159] In PP statistical downscaling, the choice of pre-

dictors is crucial to capture climate change (see section 4.1).

Predictors that are informative on relatively short time scales

might not capture long‐term variability and, in particular,

trends induced by global warming. PP statistical down-

scaling approaches also rely on the skill of the driving GCM

to correctly simulate the relevant predictors. A predictor that

is characterized as informative might be of little use if it

cannot be assumed to be reliably modeled in the GCM/RCM

(in particular, moisture‐related quantities are generally

considered problematic [Cavazos and Hewitson, 2005]).

6.3.4. Uncertainty and Predictability
[160] An important aspect in assessing predictability is the

quantification of the total uncertainty of the downscaled

result and the sources that contribute to it. For predictability,

the main sources of uncertainty are model formulation,

which includes the numerical schemes, parameterizations,

and resolution; uncertainty in anthropogenic climate forcing

factors; and natural variability [Palmer, 1999; Hawkins and

Sutton, 2009], which includes internal variability of the
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chaotic climate system dependent on initial conditions and

natural forced variability due to, e.g., solar forcing.

[161] The range of uncertainty due to model formulation in

general, parameterizations in particular, and natural vari-

ability can be assessed by ensemble simulations based on

different GCMs and RCMs (multimodel ensembles), per-

turbed parameterizations (perturbed physics ensembles),

and different initial conditions. Notable initiatives are the

PRUDENCE, ENSEMBLES, and CORDEX projects, which

study the uncertainty due to structural errors of different

GCMs and/or RCMs. For the development of the probabi-

listic UKCP09 national climate change projections, a large

GCM ensemble with perturbed physics parameterizations

was used to drive the Hadley Centre regional climate model

HadRM3 [Murphy et al., 2009].

[162] The relative roles of these different sources of

uncertainty depend on the time scales under consideration.

On decadal time scales, the climate change signal is small

compared to natural variability, such that uncertainty caused

by initial conditions and natural forcing dominates. Mem-

ory, and thus predictability, of natural variability on decadal

time scales is generated by the oceans. However, because of

limited availability of (deep) ocean data to initialize the

prediction, predictability is, in practice, limited. Research on

decadal climate predictions is just emerging [e.g., Collins

et al., 2006; Smith et al., 2007; Keenlyside et al., 2008],

and no regional climate predictions on decadal scales exist.

As natural decadal variability increases with decreasing

spatial scale, the extent to which regional decadal predic-

tions are possible is largely unknown.

[163] On longer time scales, the signal to noise ratio

between climate change signal and natural variability in-

creases, and uncertainty due to model formulation becomes

dominant. For instance, results from the PRUDENCE project

suggest that GCM uncertainty dominates in the case of

changes in seasonal mean climate [Rowell, 2006; Déqué

et al., 2007], and variations in RCM formulation are impor-

tant at fine scales and for changes in precipitation extremes,

particularly in summer [Frei et al., 2006]. However, recent

studies [Kendon et al., 2009; Kendon et al., 2010] suggest a

still dominant role of natural variability for summertime

precipitation and precipitation extremes, such that a sin-

gle 30 year climate projection is not robust. It should be

noted that a climate projection represents just one possible

realization of the future climate, conditional on a given

scenario of natural and anthropogenic forcing.

7. CONCLUSIONS AND OUTLOOK

[164] Reliable downscaling for precipitation is needed,

independent of region and season. Depending on the appli-

cation, generic needs are the correct representation of

(1) intensities, (2) temporal variability, (3) spatial variability,

and (4) consistency between different local‐scale variables,

and these are required for future scenarios.

[165] To meet these specific needs, there have been con-

siderable efforts to further develop dynamical and statistical

downscaling. We reviewed several recent developments in

statistical downscaling, which have not yet received much

attention in the climate community. These developments

focus on capturing intensities, especially extremes, and the

representation of spatial‐temporal variability. However, there

are still major gaps which currently are not resolved by

downscaling:

[166] 1. Downscaling in regions with sparse data is still

highly uncertain, mainly in remote areas or developing

countries (see Figure 4). RCMs can, in principle, be set up in

these regions, but they may not correctly represent region‐

specific processes. With data sparsity, their validation is

limited. Statistical downscaling is even more restricted in

such regions, especially to assess precipitation extremes

and spatial variability. This problem will make it harder for

end users operating in these countries to make optimal

planning decisions in all areas, e.g., from water resources,

to flood risk management, to urban design, to agricultural

activities.

[167] 2. The performance of both dynamical and statistical

downscaling schemes is currently better for synoptic and

frontal systems than for convective precipitation. End users

that are adversely affected by this limitation would be the

flood risk managers in arid regions subject to flash flooding

or in temperate regions subject to summer flooding. In these

cases, improvements in the representation of heavy, local-

ized convective precipitation are needed (see also Figure 6).

[168] 3. Representation of subdaily rainfall is still poor,

especially for extremes, both by RCMs and by statistical

downscaling. Furthermore, few statistical models are cur-

rently available that attempt to capture subdaily information

on climate change. The end user community most seriously

impacted by this limitation consists of urban planners since

runoff generation from largely impermeable urban areas

occurs rapidly and is highly sensitive to the fine temporal

scale distribution of precipitation (see also Figures 6 and 9).

[169] 4. Downscaling to a fully distributed spatial field at

scales smaller than RCM grid size is still unresolved. Full‐

field weather generators are under development but have not

yet been implemented for downscaling. One end user affected

by this limitation is the hydrological impact modeler using a

spatially distributed model for areas sensitive to the spatial

distribution of precipitation, such as small catchments or

catchments with an impermeable underlying geology (see

also Figure 6).

[170] 5. Changes in small‐scale processes (on sub–RCM

grid scales) and their feedback on the large scale are not

adequately captured in projections of precipitation change.

Currently, it is difficult to identify how significant this

shortcoming may be and, indeed, which end users may be

more affected. For instance, the importance is likely to be

seasonally and regionally dependent. This shortcoming

remains a challenge for climate modelers.

[171] 6. All downscaling approaches inherit errors in the

representation of temporal variability from the driving

GCM. Examples are blocking over Europe (see Figure 7)

and tropical modes of variability. The former example is

especially relevant for agriculture as blocking strongly in-

fluences the length of dry spells. Summer drought often
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comes along with heat waves and thus affects health

authorities as well.

[172] These gaps are caused by poor data availability,

process understanding, and quality of the GCMs and lim-

itations with the downscaling procedure itself. In the fol-

lowing, we lay out directions in research to address the

remaining gaps.

[173] In regions with sparse rain gage networks, the

installation of new gages will improve the situation in the

long run. However, in many regions networks do exist, but

the data have not been made available by the responsible

institutions such as national weather services. Here efforts

should be undertaken to make these data readily available

and to assemble high‐resolution gridded data sets as input

for hydrological models (where these require spatially

averaged rainfall inputs) or for climate model validation; see

Haylock et al. [2008] for an example in Europe. Further-

more, digitizing handwritten reports can help to extend

the daily database [Moberg and Jones, 2005]. Especially in

urban areas, denser networks of subdaily data need to be

set up.

[174] The quality of GCM climate projections is con-

stantly improving, and the latest generation of models shows

better representation of climate variability [Shaffrey et al.,

2009].

[175] In terms of future RCM development there are two

competing strands. The first concentrates on developing

multimodel ensemble systems, including multiple RCMs as

well as multiple GCMs, to quantify modeling uncertainty.

Performance‐based weighting of different RCMs could add

value [e.g., Fowler and Ekström, 2009], although model

weighting is a nontrivial task. The second aims to improve

the simulation of local processes through the development

of RCMs of increasing resolution (which includes im-

provements in the parameterizations). This is expected to

lead to improvements not only in terms of the spatial scale

on which meaningful information is provided but also the

accuracy of subdaily precipitation.

[176] A key feature of statistical downscaling is the ability

to generate complete distributions. They can be used to

randomize the downscaled result and thus better represent

local variability and extremes. These techniques should

be used by default, in particular, when downscaling of

extremes is required. However, these methods mostly involve

a considerable statistical and computational knowledge;

therefore, especially for multistation downscaling, accessible

implementations suitable for routine use by researchers and

practitioners are needed.

[177] Because of the still limited understanding of multi-

variate extreme value statistics [e.g., Coles, 2001], multi-

station weather generators have not yet been extended

to explicitly capture extremes. The characterization and

modeling of spatial extremes is currently an active area of

statistical research.

[178] A promising direction of research is the application

of MOS to correct climate model output. Currently, the

proposed methods almost exclusively use modeled precipi-

tation as predictors and mostly correct distributions only.

None of the approaches explicitly account for extremes. It

has been shown that MOS could be applied to directly

correct GCM simulations [Widmann et al., 2003]. This

approach might prove useful for regions where no RCM

simulations are available.

[179] We presented the potential usefulness of full‐field

weather generators for hydrological modeling. The com-

plexity of existing full‐field spatial‐temporal models may

suggest that it is not currently a realistic research aim.

However, rather than add complexity to a spatial‐temporal

model, conditioning upon climate model outputs may pro-

vide useful information for the difficult task of representing

advection. Research into linking parameter models with

climatological information should be seen as a first step in

this direction.

[180] Providing probabilistic climate projections is a key

challenge. Initiatives such as PRUDENCE, ENSEMBLES,

CORDEX, UKCP09, and Climate Prediction Net provide a

first step toward probabilistic climate projections. They have

generated a wealth of information about uncertainty in

model formulation, but they still do not cover the full

plausible range of model uncertainty and do not sufficiently

address uncertainty due to natural variability. In particular,

on decadal time scales, probabilistic predictions are needed

because the anthropogenic climate change signal is still low

compared to natural variability. We note that while GCM

and downscaling uncertainties can partly be reduced in the

future, the internal variability leads to fundamental limita-

tions of predictability, which can be expected to strongly

depend on the location and on the precipitation properties

under consideration.

[181] In almost all forms of downscaling today, the coarse‐

scale conditions given by the GCM are taken as fixed.

However, this does not reflect the reality of the real climate

system in which there are feedbacks between coarse and fine

scales. This has been noted by Wilby et al. [2004] as a

limitation of statistical downscaling schemes, but of course,

it applies equally to RCMs. To represent these feedbacks in

any climate simulation will require coupled runs of the

coarse‐ and fine‐scale models, and although the implica-

tions for impacts applications are unknown at present, this

represents an exciting challenge for a future generation of

downscaling techniques.

GLOSSARY

Climate Prediction Net: Initiative to enable probabi-

listic predictions of future climate conditional on a scenario

[Stainforth et al., 2005]. A GCM is run on thousands of

home computers to create a large ensemble of future pro-

jections, each of which is given a certain likelihood given

observational data. (See http://climateprediction.net/.)

Coordinated Regional Climate Downscaling Experi-
ment (CORDEX): Recent initiative from the World Cli-

mate Research Program for running multiple RCM

simulations at 50 km resolution for multiple regions. (See

http://copes.ipsl.jussieu.fr/RCD_CORDEX.html.)

Maraun et al.: PRECIPITATION DOWNSCALING RG3003RG3003

26 of 34



Dynamical downscaling: Nests a high‐resolution

regional climate model into a lower‐resolution global cli-

mate model to represent the atmospheric physics with a

higher grid box resolution within a limited area of interest.

ENSEMBLES: Project of the European Union 6th frame-

work program. The project created ensembles of general

circulation models and regional climate models for Europe

and North Africa, developed statistical downscaling models

and tools, and constructed a high‐resolution gridded valida-

tion data set. (See http://ensembles‐eu.metoffice.com; RCM

data are available at http://ensemblesrt3.dmi.dk/.)

European Centre for Medium-Range Weather Fore-
casts 40 Year Reanalysis (ERA40): Six hourly reanalysis

of the European Centre for Medium‐Range Weather Fore-

casts, September 1957 to August 2002. Basic resolution of

2.5° × 2.5°, full resolution of 1.125° × 1.125°. (See http://

www.ecmwf.int/research/era/.)

Global climate model (GCM): The acronym GCM

usually stands for general circulation model, but it is often,

as in this paper, also used for global climate model. A gen-

eral circulation model is a dynamical model that numeri-

cally integrates the Navier‐Stokes equations for either

atmosphere or ocean across the globe, typically of a reso-

lution of 100–200 km. Atmosphere and ocean general circu-

lation models are key components of global climate models,

which, in general, additionally include sea ice and land sur-

face components.

Model output statistics (MOS): A statistical down-

scaling approach that corrects dynamical model simulations.

The statistical model is calibrated against simulated predic-

tors and observed predictands. Therefore, the statistical

model is only valid for the dynamical model it was cali-

brated with.

National Centers for Environmental Prediction and
National Center for Atmospheric Research (NCEP/
NCAR) reanalysis: Six hourly reanalysis of the National

Centers for Environmental Prediction (NCEP) and the

National Center for Atmospheric Research (NCAR), 1948

to present. Available at 2.5° × 2.5° and 1.875° × 1.875°.

(See http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.

shtml.)

Perfect prognosis (PP): a statistical downscaling

approach that assumes that the predictor variables are per-

fectly modeled by the dynamical model used. The statistical

model is calibrated against large‐scale and local‐scale

observed data and then is transferred to an arbitrary dynam-

ical model that is assumed to fulfill the PP assumption.

Prediction: An estimate of a future climate state (or a

range of states) that is assigned a certain probability (which

might be low or subjective) to occur. Climate predictions

are possible only for relatively short time scales (seasons

to decades) because beyond these time scales the influence

of different emission scenarios begins to dominate (see

projection).

Prediction of Regional Scenarios and Uncertainties
for Defining European Climate Change Risks and Effects
(PRUDENCE): Project of the European Union 5th frame-

work program. (See http://prudence.dmi.dk/.)

Projection: A simulation of the response of the future

climate to a forcing scenario that is not assigned a certain

probability. A projection is therefore only a plausible state

of the future climate.

Reanalysis data: Combination of observational data

and the forecast of a high‐resolution global climate model

to build a best estimate of a consistent global weather state.

They fill gaps in observational data and provide estimates of

nonobserved variables.

Regional climate model (RCM): High‐resolution

dynamical climate model, typically of a resolution of 25–

50 km, though some recent models provide a resolution of

10 km or less. Usually a limited area model nested into a

GCM over a specific region.

Statistical and Regional Dynamical Downscaling of
Extremes for European Regions (STARDEX): Project

of the European Union 5th framework program. (See

http://www.cru.uea.ac.uk/projects/stardex/.)

Statistical downscaling: Establishes statistical links

between large‐scale weather and observed local‐scale

weather. Either PP or MOS.

UK climate projections (UKCP09): A project funded

by the Department for Environment, Food and Rural

Affairs to create regional probabilistic climate projections

and a weather generator for the United Kingdom. (See

http://ukclimateprojections.defra.gov.uk/.)

Weather generator: A stochastic model to create ran-

dom time series which resemble the observed weather statis-

tics (marginal distribution, short‐term temporal variability,

and sometimes spatial dependence between multiple sites)

at a certain point. To account for variability on longer time

scales, weather generators can be run in a downscaling con-

text, either PP or MOS.
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