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One sentence summary: Global and local climate conditions predict variation in natural 

selection across diverse plant and animal populations.  

 

Abstract:  

Climate change has the potential to affect the ecology and evolution of every species on Earth. 

While the ecological consequences of climate change are increasingly well documented, the 

effects of climate on the key evolutionary process driving adaptation—natural selection—is 

largely unknown. We report that aspects of precipitation and potential evapotranspiration, along 

with the North Atlantic Oscillation, predicted variation in selection across plant and animal 

populations throughout many terrestrial biomes, whereas temperature explained little variation. 

By showing that selection was influenced by climate variation, our results indicate that climate 

change may cause widespread alterations in selection regimes, potentially shifting evolutionary 

trajectories at a global scale. 
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Main text: 

Climate affects organisms in ways that ultimately shape patterns of biodiversity (1). 

Consequently, the rapid changes in Earth’s recent climate impose challenges for many 

organisms, often reducing population fitness (2-4). While some species may migrate and undergo 

range shifts to avoid climate-induced declines and potential extinction (5), an alternative 

outcome is adaptive evolution in response to selection imposed by climate (6). However, we lack 

a general understanding of whether local and global climatic factors such as temperature, 

precipitation, and water availability influence selection (2, 7). Understanding these effects is 

critical for predicting the consequences of increasing droughts, heat waves, and extreme 

precipitation events that are expected in many regions (8, 9). 

To quantify how climate variation influences selection, we assembled a large database of 

standardized directional selection gradients and differentials from spatially (mean = 4.6 ± 5.4 

[standard deviation, SD] populations, range = 2 - 59 populations) and temporally (mean = 5.2 ± 

6.8 [SD] years, range = 2 - 45 years) replicated selection studies (N = 168) in plant and animal 

populations (Table 1, Database S1). We focused on directional selection (selection that can 

generate increases or decreases in trait values) because it is well-characterized and is likely to 

drive rapid evolution (10) in response to variation in climatic factors. However, selection acting 

on trait combinations and trait variance may also be affected by climate (7). Selection gradients 

estimate the strength and direction of selection acting directly on a trait, while differentials 

estimate ‘total selection’ on a trait via both direct and indirect selection because of trait 

correlations (11). These standardized selection coefficients describe selection in terms of the 

relationship between relative fitness and quantitative traits measured in standard deviations, thus 

facilitating cross-study comparisons (11, 12).  

Geographically, the database contains many estimates of selection from temperate, mid-

latitude regions centered at 40° N (Fig. 1A). The populations in this database span many 

terrestrial biomes on Earth, with the exception of tundra and tropical rainforests where selection 
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has rarely been quantified (Fig. 1B). This exception is concerning because tundra and tropical 

rainforests are likely to face severe effects of climate change (1, 13). Spatially and temporally 

replicated studies of selection in aquatic environments are also uncommon (Table 1), so our 

results pertain mainly to terrestrial systems. Additionally, the majority of studies are from 

vertebrate and plant populations, use fecundity or survival as a fitness measure, and use 

morphological traits (Table 1). 

These data allowed us to determine whether directional selection covaries with changes 

in climatic factors among populations or across time within a given population. For each set of 

selection estimates, we geo-referenced the population and cross-referenced each population and 

time point with corresponding values of both local and global climatic factors (Database S2). We 

then used a random effects Bayesian Markov chain Monte Carlo meta-analysis to estimate the 

proportion of variation in selection within spatially and temporally replicated studies that was 

associated with climatic factors (14). This analysis is a hierarchical model, which separates the 

observation process (accounting for statistical noise in inference of individual selection 

coefficients because of sampling error) from a process model (modelling variation in the 

selection coefficients in relation to climate variables) (14). Under this analytical framework, we 

used a random regression mixed model component to model the distribution of within-study 

variation in the dependence of selection on climatic factors (14). As a measure of effect size, we 

present the mean and 95% credible intervals of the proportion of within-study variation in 

selection explained by a given climatic factor. 

To investigate the role of local (0.5 x 0.5 degree cells) climatic factors, we analyzed air 

temperature, precipitation, and potential evapotranspiration (PET). While there is likely climate 

variation within a 0.5 degree grid, the populations where selection was quantified will often be 

spread out over this grid area, and the scale of climate variation is typically at an even larger 

geographic scale. We analyzed the data in two ways: with spatially and temporally replicated 

selection estimates both included together and treated separately. We modeled how mean annual 
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values of climatic factors influenced directional selection, as well as variation (the standard 

deviation [SD]), and the influence of extremes (minimum and maximum monthly values for a 

year) in these climatic factors because climate extremes frequently determine fitness and are 

expected to increase with climate change (15, 16).  

When combining spatial and temporal studies, models that included temperature factors 

did not explain variation in selection (Fig. 2A, B). However, 20-40% of the variation in selection 

was associated with precipitation mean, maximum, and SD (Fig. 2C, D). Because precipitation 

factors are correlated (Table S1), our results collectively illustrate the potentially general 

importance of local precipitation as a selective force. In addition, minimum PET explained more 

than 20% of the variation in selection across the dataset (Fig. 2E, F). When we ran the analyses 

separately for spatial and temporal selection, the results largely mirrored the patterns in the 

combined analysis (Figs. S1-S2). However, we found that for selection gradients, but less so for 

differentials, precipitation factors were more strongly associated with temporal rather than spatial 

variation in selection (Figs. S1-S2). A multivariate model that included means and SDs of both 

precipitation and temperature together (14) supports the finding that variation in selection is most 

closely associated with precipitation factors (Table S2). However, given the low levels of 

replication typical of individual studies, we cannot unambiguously attribute a direct effect to any 

one of these four climate factors (Table S2).  

We also explored whether within-study variation in selection associated with local 

climatic factors differed among subsets of major trait types, fitness components, and taxonomic 

groups (14). This analysis also indicated effects of precipitation and PET, although, there is 

substantial variation across the different subsets (Tables S3-S5). Among fitness components, no 

precipitation or PET climatic factors were consistently most associated with selection through 

mating success; however, selection through fecundity and survival were affected by 

precipitation, and survival alone was also affected by minimum PET (Table S3). Selection on 

morphological traits was most associated with precipitation factors, but not size or phenological 



 6 

traits (Table S4). Precipitation also explained variation in selection on plants, whereas minimum 

PET consistently explained variation in selection among all major taxonomic groups (Table S5). 

While these findings are intriguing, it is important to note that the overall analysis revealed 

somewhat low precision in the estimates of the dependence of selection on climatic factors (Fig. 

2, S1 and S2), and these subset analyses resulted in many estimates. With these important 

caveats in mind, we encourage a cautious interpretation of the above subset findings (14).  

In addition to local climate variation, global climate cycles are known to be powerful 

agents of selection (17), but their capacity to operate as drivers of selection more broadly is 

unclear. To explore how annual global climate cycles may affect selection, we modeled the 

relationship between temporal variation in selection and the North Atlantic Oscillation (NAO) 

and the Oceanic Niño Index (ONI), which provide measures of inter-annual variability in 

atmospheric circulation for northern hemisphere and equatorial regions, respectively (14).  

We found that the NAO explained between 10-30% of the variation in selection, whereas 

the ONI explained no appreciable variation (Fig. 3). The NAO was also most associated with 

selection through fecundity as a fitness component (Table S3), selection on morphological traits 

(Table S3), and on invertebrate and plant populations (Table S5). The overall stronger effect of 

the NAO (Fig. 3) relative to the ONI index is perhaps not unexpected because the ONI index 

would presumably be more important at equatorial latitudes (where studies of selection are rare), 

whereas the NAO index would be more important at northern latitudes (where selection is well 

documented; Fig. 1A). Indeed, although global in their reach, there are frequently correlations 

between large-scale climatic indices and local variation in climatic conditions that have 

subsequent effects on ecological and evolutionary processes (18, 19). Moreover, these global 

climate cycles are changing in response to climate change (20) and may therefore have cascading 

effects on selection at a global scale. 

Previous studies have predicted the greatest fitness consequences associated with climate 

variation, especially related to precipitation, should occur at northern latitudes (2). Our results 
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add a further nuance to these potential climate effects and suggest that variation in fitness 

associated with precipitation may also influence selection (Fig. 2, S1-2). Increases in strong 

precipitation events that are predicted for the near future (21) could therefore result in 

considerable shifts in patterns of selection. Similarly, variation in selection was associated with 

variation in minimum PET—conditions when water deficits are low. While correlative, our 

findings do not support the idea that short-term moisture stress, as indicated by minimum 

precipitation or maximum PET, is a major driver of selection. Conversely, the effects of changes 

in mean precipitation could result from sustained drought conditions or changes in resource 

abundance related to water availability (17).  

Whether climate-selection coupling will lead to local adaptation and reduce the risk of 

extinction is difficult to predict (3, 6), because adaptive evolution also depends on genetic 

variation in the traits under selection (3, 11). Moreover, if selection is strong relative to existing 

genetic variation, and if the rate of climate change is rapid, selection might result in population 

extinction faster than adaptation and evolutionary rescue (3, 22). Phenotypic plasticity might also 

therefore have a key role in promoting population persistence due to climate change (6, 7). 

Our analysis benefits from drawing on decades of accumulated inferences about natural 

selection. However, we acknowledge a potential limitation: annual measures of local climate 

factors may not always reflect the most relevant scale underpinning selection in a population 

(19). Although annual variation at even larger geographic scales such as the NAO (Fig. 3) often 

have considerable predictive power for explaining variation in demographic rates (18, 19), short-

term climatic and extreme weather events, including winter storms and heat waves, can also 

generate strong selection (23). Our finding of no effect of temperature on selection, despite case 

studies showing an influence of temperature (24), suggests that such selection may be 

occasionally driven by shorter-term thermal variation. The association between selection and 

PET is consistent with this interpretation because PET is calculated from temperature, but 

reflects temperature during the growing season when selection is most often studied. In contrast, 
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the observed relationship between precipitation and selection at the annual scale makes sense 

because moisture availability is determined by precipitation over longer periods. Ultimately, to 

more fully understand and predict the consequence of climate variation on selection we also need 

replicated transplant experiments across broad climate gradients in diverse systems (6). 

Transplant experiments would be especially beneficial because past selection may have eroded 

trait variation as populations locally adapted to a given climate regime, and such experiments 

would force populations to experience potentially stronger selective climate conditions, much 

like they could under climate change.  

We have identified a signature of the effects of climate on selection in a phylogenetically 

diverse dataset across multiple environments. This provides evidence that local and global 

climate cycles are likely important drivers of selection in the wild. Thus, rather than selection 

being driven entirely by the local idiosyncrasies of each system, selection is partly predictable 

based on shared environmental features. Although ecologists and biogeographers have long 

recognized the importance of climate for explaining major ecological patterns, our analyses 

reveal a role for climate in explaining a key evolutionary process. In this era of unprecedented 

change to Earth’s climate (8, 9), and as future climatic conditions are expected to become 

increasingly more variable (15), natural populations will likely have to contend with greater 

climate variation than they have in the recent past. Such shifting climatic conditions, particularly 

changing precipitation patterns (2, 21), may present a challenge for many organisms (7, 16).  
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Figure legends: 

Fig. 1. Selection estimates included in this study are broadly distributed geographically and 

in climate space. (A) Red circles denote individual study locations of natural selection. (B) 

Shown are individual studies overlaid on Whittaker’s terrestrial biome plot, which demarks 

biomes as a function of mean annual precipitation and temperature (14). Points represent mean 

annual temperature and precipitation across the years of investigation for each study and lines 

denote the minimum and maximum across the time period of each study.  
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Fig. 2. Variation in selection is explained by local climate factors. Shown are mean and 95% 

credible intervals of the proportion of within-study variation in selection (combining temporal 

and spatial variation; see fig. S1 and S2 for temporal and spatial variation analyzed separately, 

respectively) explained by a given climatic factor. Little variation in selection gradients (A) and 

differentials (B) is accounted for by temperature, whereas considerable variation in gradients (C) 

and differentials (D) is accounted for by precipitation. Likewise, minimum PET also consistently 

explains variation in selection for both selection gradients (E) and differentials (F). 

 

Figure 3. Variation in selection is explained by global climate indices. Shown are mean and 

95% credible intervals of the proportion of within-study variation in selection gradients (black 

circles) and differentials (grey circles) explained by the North Atlantic Oscillation (NAO) index 

and the Oceanic Niño Index (ONI).  
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Table 1. Summary of records in the selection database.  

Numbers refer to the number of items in the database.  

Only those records with SE’s were used in analyses (14). 

 

 

Replicate type 

Item Spatial 

 

 

Temporal 

 

Studies 84 120 

Selection coefficients 

 
 

   Linear differentials 1608 2539 

   Linear gradients 2658 3120 

Species 70 97 

Habitat 

 
 

    Terrestrial 3098 4409 

    Freshwater 527 713 

    Marine 8 73 

Taxon type   

   Invertebrates 1050 627 

   Plants 1381 1046 

   Vertebrates 1202 3522 

Trait Type 

 
 

   Behavioral 21 54 

   Other 126 286 

   Morphological 2298 1818 

   Life History 334 542 

   Principal Components 158 307 

   Phenology 327 1154 

   Size 369 1034 

Fitness Component 

 
 

   Fecundity/Fertility 1848 1758 

   Mating Success 847 863 

   Other 227 35 

   Survival 656 2481 

   Survival and Fecundity 16 0 

   Total Fitness 39 58 
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Materials and Methods 

Selection database construction 

 

We assembled a database of spatially (2 or more populations) and/or temporally (2 or 

more annual estimates from a given population) replicated studies of phenotypic selection 

on quantitative traits in the wild. By and large, the data sets were either spatially or 

temporally replicated; only 23 % of the selection estimates included both spatial and 

temporal replication in the same study. The database consists of standardized measures of 

selection coefficients: differentials and gradients. These standardized selection 

coefficients reflect selection on traits in terms of the relationship between relative fitness 

and variation in a quantitative trait measured in standard deviation units, and are desirable 

because they allow for cross-study comparisons, irrespective of study organism, fitness 

measure, or trait studied (11, 12). 

 

To begin, we combined earlier published databases that compiled studies on spatially 

(25) and temporally (26) replicated estimates of selection. Because the initial temporal 

database included studies published up until March 2008 and the spatial database studies 

up December 2011, we performed an additional literature search from March 2008 

through December of 2012 to identify additional studies for inclusion. We reviewed the 

published literature for additional spatially and temporally replicated selection studies 

using the Web of Science indexing database system with the goal of identifying all 

studies estimating selection on multiple populations or multiple temporal replicates 

within populations. This search resulted in an additional 723 studies that we screened for 

inclusion in our final database. We also included two additional studies published shortly 

after December 2012 that we became aware of during our study.  

 

Our inclusion requirements included criteria used in previous database compilations 

(12, 25, 26). Specifically, we only included studies that (i) focused on wild, un-

manipulated populations, (ii) estimated selection on quantitative traits that showed 

continuous variation, (iii) presented variance standardized selection differentials and/or 

gradients (11, 12) to facilitate comparisons across studies, and (iv) estimated selection in 

at least two populations or two annual temporal replicates within a population. When 

articles reported that selection had been measured on different populations, but data from 

multiple populations were combined for analyses, we contacted the authors to ask for 

population-specific selection coefficients. These later estimates were published in the 

appendix of (26). We relied on the author’s designations of populations being unique if 

the populations were either noted by the authors as geographically distinct, or were 

reported in the article to be genetically distinct. We suspect some level of dispersal might 

occur between some populations, but most studies lacked information (e.g., analysis of 

neutral genetic markers) to evaluate this possibility. Three studies estimated selection 

over multiple years, but presented their data averaged over the duration of their study, 

and so we contacted these authors directly to obtain year-specific selection coefficients. 

These later estimates were published in the appendix of (25). When data were presented 

in figure format, we contacted authors directly to obtain values of the selection 

coefficients. Each article was entered into the database by one author and error checked 
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by a different author. The database is available from the Dryad Digital Repository and as 

Database S1. 

 

In many studies, multiple datasets existed within studies. These within-study datasets 

represent selection estimated on different subsets of data defined by species, trait, fitness 

component, sex, age, etc. For clarity, we use the term “dataset” to refer to each unique 

combination of the above within studies. 

 

Climate variables 

 

We obtained local climate data at a resolution of 0.5 x 0.5 degree cells from the CRU-TS 

3.1 Climate Database (27) spanning the years of data collected in the selection database. 

These climate data are one of the finest scale climate databases available at a global scale 

and are frequently used in large scale biological analyses such as ours (28, 29). Although 

the 0.5 degree cell size changes with latitude, our use of a 0.5 degree grid was simply the 

mechanism that rendered the opportunity to resolve the climate and selection databases. 

That is, with matched projections for coordinates and climate grids, the decrease in 

grid cell size with increasing latitude had little bearing on the fact that we simply 

extracted climate data from the 0.5 x 0.5 degree cell within which each population 

coordinate resides.  

 

From these data, we generated grid files reflecting annual mean, annual standard 

deviation, and annual monthly minimum and maximum values for precipitation, 

temperature, and potential evapotranspiration (PET) across the study period. PET is an 

informative climatic index because it integrates the effects of temperature, humidity, and 

radiation to quantify the overall potential moisture deficit for a location (30). To obtain 

appropriate temporal and spatial climatic information for each study location, we 

performed a spatial overlay of study site coordinates over each climatic grid using the 

function over in the R package sp (31). This procedure was performed to estimate climate 

values experienced at each study location during the year in which the data were 

collected for a given population. This database is available from the Dryad Digital 

Repository and as Database S2. 

 

We obtained annual global climate indices (ONI and NAO) from the National 

Weather Service at the National Oceanic and Atmospheric Administration. These indices 

relate variability in atmospheric forcing of climate change in northern and southern 

hemisphere mid-latitude regions.  We used the Oceanic Niño Index (ONI) as a measure 

of the El Niño Southern Oscillation retrieved from 

http://www.esrl.noaa.gov/psd/data/correlation/oni.data [Accessed February, 2014].  The 

North Atlantic Oscillation (NAO) index was retrieved from 

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml [Accessed 

September, 2013].  For each year of study in our database we used the mean value of the 

monthly reported ONI and NAO indices. 

 

We generated the Whittaker’s biome plot (Fig. 1B of the main text) overlaid with 

selection estimates using the BIOMEplot package in R (32), where biomes are plotted 
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using annual mean cumulative precipitation and annual mean temperature that had been 

digitized from Ricklefs (33). To display the environments represented in our study 

samples through an overlay on Whittaker’s biome plot, we used the annual mean 

temperature and annual cumulative precipitation generated from the CRU dataset for 

each location to calculate annual mean temperature and annual mean cumulative 

precipitation for each study across the duration of the study. Additionally, for the 

timeframe of each study we also calculated the lowest and highest annual mean 

temperature and annual mean cumulative precipitation to represent the climatic extremes 

experienced in each study. 

 

Meta-analytical model and analysis 

From earlier analyses, we know that there is non-trivial, detectable variation in selection 

in space and time (25, 26, 34), and progress has been made in developing meta-analytical 

methods to get at this variation accounting for the fact that variation in selection can be 

inflated by sampling error (25, 34). Thus, to control for sampling error we only used 

those records from the database that had associated standard errors with the selection 

coefficients (n = 2385 selection gradients and n = 946 selection differentials).  

We used a random effects meta-analysis to determine the proportion of variation 

in selection across the entire database that could be accounted for by different climate 

variables after taking into account sampling error.  This analysis can be most intuitively 

represented as a hierarchical model, separating the observation process (i.e., modelling 

statistical noise in inference of individual selection coefficients) and a process model 

(i.e., modelling variation in the underlying selection coefficients).  

We model the observation process according to 

(1)       !",$ ∼ & !",$ , '(",$
)

  , 

where !",$   is the ith selection coefficient (linear gradient or differential) estimate for the 

jth trait/study combination (that is, a given combination of phenotypic traits and/or fitness 

components, etc. for a given study; hereafter “trait”). Each selection gradient estimate 

!",$   is assumed to be drawn from a normal distribution with a mean corresponding to the 

true, unobserved (i.e., latent), corresponding selection gradient βi,j, and with a known 

variance defined by the square of the corresponding standard error SEi,j . 

We model the distribution of (latent) selection gradients according to 

(2)     !",$ = &$ + ($×*",$ + +",$ ,   

where aj is the intercept for trait j and bj is a trait-specific slope of the regression of the 

selection gradient on the climate variable ei,j (e.g., precipitation, temperature, PET, NAO, 

etc.) for the ith selection coefficient of the jth trait, and ei,j is the residual (the deviation of 

the ith selection coefficient from its associated trait-specific regression). For all analyses, 

the climate variable is standardized within each dataset (as described above) to have a 

mean of zero and a variance of one. Under this standardization, trait-specific intercepts 
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are interpretable as trait-specific mean selection gradients. Note that unlike most 

applications of mixed models, the ei,j are not simply random noise, but are the variation in 

selection among replicates (i.e., within traits), and as such is a parameter of biological 

interest. We assume 

(3)     !",$ ∼ & 0, ()
* ,   

where !"
#
  is the estimated residual variance.  The random intercepts (aj) and random 

slopes (bj) were modelled with a bivariate normal distribution with means !"   and !"   , and 

standard deviations !"
#
  and !"

# ,   respectively, and covariance !α,b   

(4)    
!"

#"
∼ %

&'
&(

,
*'
+ *',(

*',( *(
+

  , 

 

where the mean intercept µα  and slope µb, and their covariance matrix, are estimated 

parameters.  

 

 We implemented all analyses in a mixed model framework, using MCMCglmm 

(35).  We used default diffuse normal priors on the fixed parameters (i.e., the overall 

intercept and average slope), parameter-expanded priors (36, 37) for the random 

(co)variance components (i.e., of the random slopes and intercepts), and a diffuse inverse 

gamma prior for the residual variance. The analysis is thus similar to the meta-analytic 

models of selection gradients in (25) and (34) for estimating within-study variance in 

selection, but with the extension to a random regression component to model the 

distribution of among-study variation in the dependence of selection on climate variables, 

via equation 4. 

 

This model can be summarized in terms of the amount of variance in slopes (i.e., 

!
"

#
  ), but a more intuitive summary is obtained by considering how much (within-study) 

variance in selection coefficients is implied by the family of regressions between each 

climate factor (ei,j) and its corresponding selection estimate (βi,j) that is estimated by the 

random regression mixed model. Given that within-study environmental covariates are 

standardized to mean zero and unit variance, the variance among studies is σα
2
 (note that 

in a linear random regression model, the covariance of slopes and intercepts, σα,b does not 

enter into the among study variance). The variance within studies associated with 

environmental variables is σb
2
, and the variance within studies that is not associated with 

the environment is the residual variance. The sum of these is the total variance in 

selection.   

In the analyses of all replicates (combined space and time) we did not decompose 

the residual variance into that associated with space, time, and their interaction. These 

possible separate components of the residual variance are not separable because very few 

studies report on both temporal and spatial replicates together (only 23 % of selection 
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estimates).  Rather, the great majority report on variation in selection only in space or in 

time.  It is for this reason that we can conduct analyses where we combine space and 

time, and then analyze space and time separately as we have done. Those few studies that 

report both spatial and temporal replication jointly typically have very low levels of 

replication in both, and will therefore not contribute sufficient information to separate 

these different, and potentially interesting, components of variation in selection.  The 

residual variance, in the combined analysis, is thus simply interpretable as the total 

variance in selection, accounting for the climate variables, across both classes of 

replication. 

Multivariate extension  

 

Whether individual climate-selection associations are attributable to the climate variable 

in question, or whether they arise largely via associations with other climate variables, is 

of interest. However, with the generally low level of replication in individual studies 

(e.g., typically 2-5 data points for any given trait within any given study) it is infeasible 

to include many climate variables simultaneously in a multivariate model. Thus, to target 

the most relevant comparisons in a multivariate analysis, we developed a model that 

included the means and standard deviations of both temperature and precipitation in a 

single model by expanding equations 2 and 4 to accommodate four, rather than one, 

estimates of variance in slopes.   

 

To manage the complexity of the model, we did not estimate covariances among 

the random slope terms, and we applied the analysis only to selection gradients, which is 

the measure of selection for which we have the most data (Table 1). The variance 

explained by the random slopes in this model depends on the within-study correlations 

among variables, which varies among studies. Therefore, rather than presenting variance 

associated with each climate variable as a proportion of the within-study variance in 

selection, as done for the univariate models, we present the variances in direct effects for 

each climate covariate (Table S2).  

 

Sub-set analysis of trait types, fitness components, and taxonomic groups 

 

We also conducted analyses where we estimated how much variation in selection 

associated with local and global climatic factors varied among fitness components, trait 

types, and major taxonomic groups. These subsets are typical of meta-analyses such as 

ours (12, 25, 26). We conducted these analyses using selection gradients, and those 

fitness components, trait types, and taxonomic groups where we had the most substantial 

data (Table 1).  

 

Results from this analysis reveal some very intriguing patterns of heterogeneity in 

the possible effects of climate on selection through fitness components (Table S3), trait 

types (Table S4) and taxonomic groups (Tables S5). However, interpretation of the 

results requires some caution. While the analysis benefits from drawing on a large 

database assembled from decades of accumulated inferences about natural selection 

(Table 1, Database S1) that are based on a solid theoretical framework (11), and the 

opportunity to resolve these selection inferences with detailed climate data, the somewhat 



 

 

7 

 

low precision of the resulting estimates of the dependence of selection on climate 

variables (e.g., Figs. 2 and 3, S1 and S2) requires caution because such analyses result in 

many estimates, and their interpretation in isolation would likely be unreliable (38, 39). 

The causes of the low precision, despite large quantities of data (Table 1 and S1) is two-

fold: the imprecision of individual selection estimates (34) and the somewhat limited 

extent of temporal and spatial replication of most studies (25, 26, 34). It is therefore 

important to note that apparently significant (i.e., non-overlapping 95% credible 

intervals), large estimated effect sizes would be inevitable given the low precision noted 

above (e.g., type M errors, 38, 39, 41). These issues highlight the need for studies with 

larger sample sizes, and continued long-term and spatially replicated studies for tackling 

longstanding questions in ecology and evolution (40). Additionally, experimental 

approaches are needed to further investigate these patterns (6). Importantly, though, these 

cautionary statements do not in any way preclude the potential biological significance of 

these findings. 
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Fig. S1. 

Temporal variation in selection explained by local climate factors. Shown are mean 

and 95% credible intervals of the proportion of within-study temporal variation in 

selection explained by a given climate variable ((A) and (B) temperature, (C) and (D) 

precipitation, and (E) and (F) PET) from a Bayesian meta-analytical model. Across all 

panels, the left column shows climate-selection associations with selection gradients and 

the right column selection differentials.  
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Fig. S2. 

Spatial variation in selection explained by local climate factors. Shown are mean and 

95% credible intervals of the proportion of within-study spatial variation in selection 

explained by a given climate variable ((A) and (B) temperature, (C) and (D) precipitation, 

and (E) and (F) PET) from a Bayesian meta-analytical model. Across all panels, the left 

column shows climate-selection associations with selection gradients and the right 

column selection differentials.  
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Table S1.  

Correlation matrix of climate variables across studies. Min. = minimum, max. = 

maximum, SD = standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean 

temp. 

Min. 

temp. 

Max 

temp. 

SD 

temp. 

Mean 

precip. 

Min. 

precip. 

Max 

precip. 

SD 

precip. 

Mean 

PET 

Min. 

PET 

Max. 

PET 

SD 

PET 

Mean temp. 1.000 

           
Min. temp. 0.868 1.000 

          
Max temp. 0.666 0.280 1.000 

         
SD temp. -0.575 -0.864 0.147 1.000 

        
Mean precip. 0.020 0.236 -0.393 -0.403 1.000 

       
Min. precip. -0.135 -0.006 -0.384 -0.125 0.738 1.000 

      
Max precip. 0.107 0.305 -0.278 -0.451 0.890 0.530 1.000 

     
SD precip. 0.177 0.365 -0.211 -0.498 0.826 0.368 0.968 1.000 

    
Mean PET 0.701 0.395 0.878 -0.086 -0.322 -0.406 -0.157 -0.061 1.000 

   
Min. PET 0.865 0.686 0.666 -0.464 -0.021 -0.164 0.085 0.163 0.834 1.000 

  
Max. PET 0.317 0.038 0.776 0.234 -0.536 -0.575 -0.351 -0.255 0.818 0.421 1.000 

 
SD PET -0.231 -0.423 0.402 0.580 -0.591 -0.527 -0.461 -0.407 0.336 -0.206 0.787 1.000 
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Table S2. 

 

Results from a multivariate model simultaneously estimating the variance of slopes of 

regressions of selection gradients on four key climate variables (mean and SD of 

temperature, and mean and SD of precipitation). Shown are intercepts and slopes with 

their 95% credible intervals (in parentheses) from a Bayesian meta-analytical model. 

The variances of slopes represent the variance in the partial effects (i.e., conditioning on 

the other climate variables) of each climate variable across study systems. Not 

surprisingly, given the typically low levels of replication within studies, we cannot 

unambiguously attribute a direct effect to any one of the four modelled key climate 

variables (the slope variances of each climate factor have similarly very low lower 

bounds to their CIs).  However, the results are consistent with patterns revealed in the 

univariate analyses of climate variables that variation in selection within studies tends to 

be most strongly associated with variation in precipitation (Fig. 1, Figs. S1 and S2). All 

covariates were standardized within studies to a variance of one, so fixed and random 

slopes are in units of changes in standardized selection gradients per standard deviation 

of the environmental variable.  

Coefficient Fixed intercept or slope Random variance of 

intercepts or slopes 

Intercept 0.053 (0.026 - 0.080) 0.042 (0.035-0.051) 

Mean temp. -2.9×10
-4

 (-6.3×10
-3

 - 6.5×10
-3

) 4.1×10
-5

 (1.6×10
-10

 – 1.6×10
-4

) 

SD temp. 3.7×10
-3

 (-3.8×10
-3

 – 0.011) 2.5×10
-4

 (7.8×10
-10

 – 9.2×10
-4

) 

Mean precip. -1.9×10
-3

 (-0.012 - 7.7×10
-3

) 1.1×10
-3

 (1.6×10
-10

 – 2.4×10
-3

) 

SD precip. -1.8×10
-3

 (-0.012 - 6.4×10
-3

) 4.0×10
-4

 (6.5×10
-10

 – 1.3×10
-3

) 

Residual - 3.9×10
-3

 (3.1×10
-3

 – 4.8×10
-3

) 
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Table S3. 

 

Variation in selection explained by local and global climate factors among different 

fitness components. We only considered those fitness components that were well-

represented in the database (Table 1). Shown are mean and 95% credible intervals (in 

parentheses) of the proportion of within-study variation (combining both spatial and 

temporal replication; temporal replication only for NAO and ONI) explained by a given 

climatic factor from a Bayesian meta-analytical model.  

  

Climatic factor 

 

Fitness component 

 

 

Fecundity Mating Survival 

Min. temp. 0.001 (0 - 0.277) 0.001 (0 - 0.239) 0.001 (0 - 0.113) 

Max. temp. 0.001 (0 - 0.16) 0 (0 - 0.121) 0.001 (0 - 0.253) 

Mean temp. 0.001 (0 - 0.143) 0.001 (0 - 0.174) 0.003 (0 - 0.417) 

SD temp. 0.419 (0.062 - 0.612) 0.001 (0 - 0.181) 0 (0 - 0.077) 

Min. precip. 0.001 (0 - 0.209) 0.001 (0 - 0.16) 0.608 (0.069 - 0.789) 

Max. precip. 0.637 (0.395 - 0.78) 0.002 (0 - 0.284) 0.132 (0 - 0.44) 

Mean precip. 0.002 (0 - 0.354) 0.001 (0 - 0.271) 0.351 (0.032 - 0.652) 

SD precip. 0.579 (0.33 - 0.75) 0.001 (0 - 0.303) 0.059 (0 - 0.192) 

Min. PET 0.389 (0 - 0.544) 0.003 (0 - 0.578) 0.422 (0.083 - 0.645) 

Max. PET 0.001 (0 - 0.14) 0.001 (0 - 0.153) 0 (0 - 0.085) 

Mean PET 0 (0 - 0.14) 0.001 (0 - 0.212) 0.474 (0 - 0.643) 

SD PET 0 (0 - 0.112) 0.001 (0 - 0.145) 0.004 (0 - 0.585) 

NAO 0.815 (0.44 - 0.912) 0.002 (0 - 0.301) 0.002 (0 - 0.235) 

ONI 0.409 (0 - 0.76) 0.001 (0 - 0.187) 0 (0 - 0.032) 
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Table S4. 

 

Variation in selection explained by local and global climate factors among different trait 

types. We only considered those trait types that were well-represented in the database 

(Table 1). Shown are mean and 95% credible intervals (in parentheses) of the proportion 

of within-study variation (combining both spatial and temporal replication; temporal 

replication only for NAO and ONI) explained by a given climatic factor from a Bayesian 

meta-analytical model.  

 

  

Climatic factor 

 

         Trait type 

 

 

Size Morphology Phenology 

Min. temp. 0.325 (0 - 0.662) 0.004 (0 - 0.665) 0.001 (0 - 0.195) 

Max. temp. 0.005 (0 - 0.604) 0.526 (0.039 - 0.706) 0.001 (0 - 0.207) 

Mean temp. 0.579 (0.099 - 0.837) 0.471 (0.019 - 0.713) 0.001 (0 - 0.162) 

SD temp. 0.005 (0 - 0.649) 0.003 (0 - 0.551) 0.001 (0 - 0.1) 

Min. precip. 0.003 (0 - 0.475) 0.695 (0.377 - 0.842) 0.001 (0 - 0.154) 

Max. precip. 0.001 (0 - 0.44) 0.522 (0.211 - 0.693) 0.001 (0 - 0.213) 

Mean precip. 0.707 (0.288 - 0.85) 0.719 (0.484 - 0.841) 0.002 (0 - 0.323) 

SD precip. 0.003 (0 - 0.447) 0.486 (0.189 - 0.727) 0.001 (0 - 0.217) 

Min. PET 0.004 (0 - 0.633) 0.002 (0 - 0.293) 0.174 (0.022 - 0.556) 

Max. PET 0.529 (0 - 0.707) 0.169 (0.008 - 0.604) 0.001 (0 - 0.149) 

Mean PET 0.003 (0 - 0.66) 0.606 (0.002 - 0.725) 0.002 (0 - 0.307) 

SD PET 0.407 (0.071 - 0.75) 0.003 (0 - 0.47) 0.001 (0 - 0.192) 

NAO 0.467 (0 - 0.683) 0.663 (0.424 - 0.783) 0.003 (0 - 0.5) 

ONI 0.001 (0 - 0.201) 0.397 (0.159 - 0.691) 0.001 (0 - 0.199) 
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Table S5. 

 

Variation in selection explained by local and global climate factors among different 

taxonomic groups. Shown are mean and 95% credible intervals (in parentheses) of the 

proportion of within-study variation (combining both spatial and temporal replication; 

temporal replication only for NAO and ONI) explained by a given climatic factor from a 

Bayesian meta-analytical model. 

 

  

Climatic factor 

 

Taxonomic group 

 

 

Invertebrates Plants Vertebrates 

Min. temp. 0.869 (0.352 - 0.974) 0.003 (0 - 0.424) 0 (0 - 0.05) 

Max. temp. 0.005 (0 - 0.814) 0.001 (0 - 0.188) 0 (0 - 0.061) 

Mean temp. 0.958 (0.659 - 0.996) 0.002 (0 - 0.245) 0 (0 - 0.044) 

SD temp. 0.765 (0 - 0.927) 0.561 (0.208 - 0.712) 0 (0 - 0.061) 

Min. precip. 0.745 (0.243 - 0.966) 0.002 (0 - 0.402) 0 (0 - 0.061) 

Max. precip. 0.004 (0 - 0.719) 0.666 (0.503 - 0.829) 0.001 (0 - 0.188) 

Mean precip. 0.005 (0 - 0.715) 0.006 (0 - 0.466) 0.092 (0 - 0.384) 

SD precip. 0.003 (0 - 0.627) 0.708 (0.47 - 0.811) 0 (0 - 0.094) 

Min. PET 0.959 (0.184 - 0.996) 0.462 (0.114 - 0.725) 0.229 (0.051 - 0.456) 

Max. PET 0.003 (0 - 0.618) 0.003 (0 - 0.396) 0 (0 - 0.048) 

Mean PET 0.855 (0.219 - 0.981) 0.006 (0 - 0.426) 0 (0 - 0.084) 

SD PET 0.003 (0 - 0.471) 0.001 (0 - 0.254) 0.001 (0 - 0.129) 

NAO 0.629 (0.227 - 0.97) 0.896 (0.344 - 0.983) 0.001 (0 - 0.202) 

ONI 0.002 (0 - 0.325) 0.789 (0.053 - 0.96) 0 (0 - 0.023) 
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Database S1 (separate file) 

Database of selection coefficients for spatially and temporally replicated studies of 

selection.  

Database S2 (separate file) 

Database of local climate factors cross-referenced for each selection estimate in Database 

S1.  

 


	Title: Precipitation drives global variation in natural selection
	Affiliations:
	Abstract:
	Main text:
	References and Notes:
	Supplementary Materials:
	Materials and Methods
	Databases S1 and S2
	References (25-41)
	Figure legends:
	Fig. 1. Selection estimates included in this study are broadly distributed geographically and in climate space. (A) Red circles denote individual study locations of natural selection. (B) Shown are individual studies overlaid on Whittaker’s terrestria...
	Table 1. Summary of records in the selection database.
	Numbers refer to the number of items in the database.
	Only those records with SE’s were used in analyses (14).

