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ABSTRACT

Because of the coarse resolution of general circulation models (GCM), ‘downscaling’ techniques have emerged as a
means of relating meso-scale atmospheric variables to grid- and sub-grid-scale surface variables. This study
investigates these relationships. As a precursor, inter-variable correlations were investigated within a suite of 15
potential downscaling predictor variables on a daily time-scale for six regions in the conterminous USA, and observed
correlations were compared with those based on the HadCM2 coupled ocean/atmosphere GCM. A comparison was
then made of observed and model correlations between daily precipitation occurrence (a time series of zeroes and
ones) and wet-day amounts and the 15 predictors. These two analyses provided new insights into model performance
and provide results that are central to the choice of predictor variables in downscaling of daily precipitation. Also
determined were the spatial character of relationships between observed daily precipitation and both mean sea-level
pressure (mslp) and atmospheric moisture and daily precipitation for selected regions. The question of whether the
same relationships are replicated by HadCM2 was also examined. This allowed the assessment of the spatial
consistency of key predictor–predictand relationships in observed and HadCM2 data. Finally, the temporal stability
of these relationships in the GCM was examined. Little difference between results for 1980–1999 and 2080–2099 was
observed.

For correlations between predictor variables, observed and model results were generally similar, providing strong
evidence of the overall physical realism of the model. For correlations with precipitation, the results are less
satisfactory. For example, model precipitation is more strongly dependent on surface divergence and specific humidity
than observed precipitation, while the latter has a stronger link to 500 hPa divergence than is evident in the model.
These results suggest possible deficiencies in the model precipitation process, and may indicate that the model
overestimates future changes in precipitation. Correlation field patterns for mslp versus precipitation are remarkably
similar for observed data and HadCM2 output. Differences in the correlation fields for specific humidity are more
noticeable, especially in summer. In many cases, maximum correlations between precipitation and mslp occurred
away from the grid box; whereas correlations with specific humidity were largest when the data were propinquitous.
This suggests that the choice of predictor variable and the corresponding predictor domain, in terms of location and
spatial extent, are critical factors affecting the realism and stability of downscaled precipitation scenarios. Copyright
© 2000 Royal Meteorological Society.
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1. INTRODUCTION

It is widely acknowledged that the direct outputs of climate change simulations from general circulation
models (GCMs) are inadequate for assessing land-surface impacts on regional scales (DOE, 1996). This is
primarily for two reasons: first, because the spatial resolution of GCMs (typically 50000 km2) is often
larger than that required for input to impacts models; and second, because of doubts about the reliability
of some GCM output variables (particularly those, like precipitation, that are critically dependent on
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sub-grid-scale processes such as those involving clouds). This leads to a scale mismatch between the
information that GCMs are able to supply most confidently and that which is generally required by the
climate change impacts community (e.g. Hostetler, 1994). Consequently, statistical ‘downscaling’ tech-
niques have emerged as a means of relating meso-scale GCM output (frequently atmospheric circulation
data) to sub-grid-scale surface variables (such as precipitation), under the assumption that the former
GCM outputs are more reliable than the latter.

Statistical downscaling, therefore, is based on the assumptions that (i) suitable relationships can be
developed between grid- and larger-scale versus grid- and smaller-scale predictor variables; (ii) these
observed, empirical relationships are valid under future climate conditions; and (iii) the predictor variables
and their changes are well characterised by GCMs. If these assumptions hold, it is then possible to
produce scenarios of regional and smaller-scale climate from future climate change data produced by
GCMs, that are both more reliable and of finer resolution than the ‘raw’ GCM data.

The theory and practice of statistical downscaling are well described in the literature (e.g. Kim et al.,
1984; Karl et al., 1990; Wigley et al., 1990; Giorgi and Mearns, 1991; von Storch et al., 1993; Wilby and
Wigley, 1997). However, there is little consensus among such studies as to the choice of atmospheric
predictor variables. For example, Table I shows some of the wide variety of downscaling predictors that
have been employed in recent studies of daily precipitation. From this limited sample, it is evident that
there has been a tendency to use circulation data as predictors, although a smaller sub-set of papers has
stressed the value of incorporating atmospheric moisture and other variables in downscaling schemes (e.g.
Karl et al., 1990; Crane and Hewitson, 1998; Charles et al., 1999). Since the explanatory power of any
given predictor will vary both spatially and temporally (e.g. Huth, 1999), the results of an objective
comparison of different predictors and their spatial character should be a useful addition to current
downscaling research.

The goal of the present paper is to throw some light on the choice of predictor variables
in regression-based (or similar) downscaling methods. In previous studies, it was rare to find any

Table I. Downscaling daily precipitation: predictor variables and techniques used in recent studies

Author(s) Technique(s)Predictor variable(s)

Weather classificationBardossy and Plate 500 hPa heights
(1992)

Vorticity Semi-stochastic, regression and resamplingConway et al. (1996)
Crane and Hewitson Geopotential heights, specific humidity Artificial neural nets

(1998)
Mean sea-level pressure, airflow indices Weather classificationGoodess and Palutikof

(1998)
Wind direction, cloud coverHay et al. (1992) Weather classification
Geopotential heights and thicknesses,Karl et al. (1990) Principal Components Analysis and

Canonical Correlationsea-level pressure, relative humidity
Katz and Parlange StochasticSea-level pressure anomalies

(1996)
Vorticity, sea-level pressure, airflowKilsby et al. (1998) Regression
strength and direction, altitude, distance
from coast, grid reference

Matyasovszky and Weather classification500 & 700 hPa heights
Bogardi (1996)

Perica and Stochastic-dynamicThermodynamic parameters
Foufoula-Georgiou
(1996)

Semi-stochastic, regressionWilby (1998) Vorticity, sea surface temperature
anomalies, North Atlantic Oscillation
index
Monthly precipitationWilks (1992) Stochastic

Rotated Principal Components AnalysisTeleconnection indicesWoodhouse (1997)
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comprehensive assessment of a range of possible predictors, and equally rare to see results where the
strengths of individual predictor–predictand correlations are documented. Both aspects are considered
here. Furthermore, while such downscaling work is predicated on the assumption that GCMs can provide
credible ‘forcing’ data for driving relationships derived from observed data, GCMs have rarely, if ever,
been validated in ways that mesh with their application to downscaling. This deficiency will be remedied
by exploring a number of new methods for GCM validation.

2. METHODS

2.1. Data sources

The GCM used was the UK Meteorological Office, Hadley Centre’s coupled ocean/atmosphere model
(HadCM2) forced by combined CO2 and albedo (as a proxy for sulphate aerosol, SUL) changes (Johns
et al., 1997; Mitchell and Johns, 1997). In this ‘SUL’ experiment, the model run begins in 1861 and is
forced with an estimate of historical forcing to 1990 and a projected future forcing scenario over
1990–2100. The historical forcing is only an approximation of the ‘true’ forcing, with the result that the
GCM results for model years 1980–1999, for example, would not be expected to represent present-day
conditions exactly (see Appendix A in Wilby et al., 1998b). Nonetheless, HadCM2 output for 1980–1999
has been employed as a proxy of the present climate for downscaling daily precipitation, temperature,
humidity, sunshine totals and wind speeds in selected regions of the USA (Wilby et al., 1998b), Europe
(Conway et al., 1996) and Japan (Wilby et al., 1998a).

In the present study, observed and HadCM2 daily precipitation data were evaluated for six climatically
distinct regions in the USA (Figure 1 and Table II) centred on: (i) 45°N/123.75°W [Salem, Oregon;
abbreviated SLM]; (ii) 40°N/120°W [Sierra Nevada, CA; SNV]; (iii) 35°N/97.5°W [Oklahoma City, OK;
OKC]; (iv) 45°N/93.75°W [Minneapolis, MA; MSP]; (v) 32.5°N/90°W [Jackson, MS; JKS]; and (vi)
40°N/75°W [Philadelphia, PA; PHL]. The HadCM2 precipitation data were provided by the Hadley

Figure 1. Location of the six downscaling study regions in relation to the HadCM2 North American grid boxes. Refer to Table II
for individual site details. Note that the bold (3×3) boxes correspond to the domains used for calculating the daily vorticity,

divergence, geostrophic wind speed and direction
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Table II. Downscaling study regions: central latitudes and longitudes for the primary
HadCM2 grid boxes together with an identifying geographical location

Abbreviation Latitude Longitude Location

1 SLM 45°N 123.75°W Salem, OR
2 MSP 45°N 93.75°W Minneapolis, MN
3 SNV 40°N 120°W Sierra Nevada. CA
4 PHL 40°N 75°W Philadelphia, PA
5 OKC 35°N 97.5°W Oklahoma City, OK
6 JKS 32.5°N 90°W Jackson, MS

Centre for the model years 1980–1999 and 2080–2099 (D. Viner, personal communication, UK Climate
LINK project, Climatic Research Unit).

Observed daily precipitation, maximum (Tmax) and minimum (Tmin) temperature series were obtained
for five stations in each of the six central grid boxes shown in Figure 1. The grid box average was
calculated using the unweighted mean of the daily totals at the five sites. The ‘target’ regions were 2.5°
latitude by 3.75° longitude grid boxes corresponding to the HadCM2 grid. The station data were obtained
from the US National Climatic Data Center (NCDC) archive. The chosen analysis period (1979–1995)
corresponds to the availability of NCEP (National Center for Environmental Prediction) re-analysis data
(Kalnay et al., 1996) at the time this study was initiated (see below).

Parallel sets of explanatory variables were obtained from HadCM2 (1980–1999) and re-analysis data
(see Table III). Daily grid-point data for mean sea-level pressure (mslp) and 500 hPa geopotential heights
(H500) for the entire North American field, including points centred on each of the six study regions, were
taken from the NCEP re-analysis for the period 1979–1995, and re-gridded to the HadCM2 grid. Daily
grid-point vorticity (Zs), geostrophic flow strength (Fs), flow velocity (resolved into zonal (Us) and
meridional (Vs) components), and divergence (Ds) were calculated for each grid-point using both
HadCM2 and re-analysis daily mslp. Equivalent circulation indices (i.e. Z500, F500, U500, V500 and D500)
were also calculated for the upper atmosphere using the HadCM2 and re-analysis 500 hPa geopotential
heights. The first three indices (i.e. mean sea-level vorticity, geostrophic flow strength and direction of
flow) have been employed by Jones et al. (1993) and Hulme et al. (1993) in developing an objective
weather typing system for the British Isles, and have since been applied in several statistical downscaling
studies (e.g. Conway et al., 1996; Kilsby et al., 1998; Pilling et al., 1998; Wilby et al., 1998b).

Table III. Definition of predictor variables

Predictors Abbreviation

Surface 6ariables
Specific humidity (g/kg) q
Maximum temperature (°C) Tmax

Minimum temperature (°C) Tmin

Mean sea-level pressure (hPa) mslp
Zonal velocity component Us

Meridional velocity component Vs

Strength of the resultant flow (hPa) Fs

Vorticity (hPa) Zs

Divergence (hPa) Ds

Upper-atmosphere 6ariables (500 hPa)
500 hPa geopotential height (m) H500

Z500Vorticity (hPa)
Strength of the resultant flow (hPa) F500

Zonal velocity component U500

V500Meridional velocity component
Divergence (hPa) D500
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Finally, daily maximum (Tmax), minimum (Tmin) and mean temperatures were obtained for the six target
regions from HadCM2 output (using the 1980–1999 means of daily Tmax and Tmin). (Note that, for the
observations, station temperature data were employed rather than re-analysis data, since these were
considered to be more reliable. However, the daily station means and re-analysis data are highly
correlated). In addition, daily mean surface relative humidity and 0.995 sigma level relative humidity were
obtained for all regions using both HadCM2 (1980–1999) and re-analysis (1979–1995) output. In both
cases, because specific humidity (q) has been shown to be a valuable downscaling predictor (Crane and
Hewitson, 1998), daily mean temperatures and relative humidities were used to estimate daily mean
specific humidities using Richards’ (1971) non-linear approximation. This estimation procedure was
necessary because only relative humidity had been archived at daily time-steps for the HadCM2
experiment.

2.2. Methods of analysis

Relationships between the 15 predictor variables (listed in Table III), daily time series of precipitation
occurrence (Oi=0 if dry, Oi=1 if wet) and wet-day amounts (Ri in mm/day) were investigated using two
methods; by examining propinquitous (i.e. same location) relationships, and by examining relationships
where the predictors were spatially remote from the predictands. Following Karl et al. (1990), predictor
variables were chosen that were expected to be important in predicting daily rainfall (under the constraint
of limitation to variables for which HadCM2 data were archived). The choice of predictors also broadly
reflects those most commonly employed in recent statistical downscaling studies (Table I). For the
predictand, rather than using precipitation as a continuous daily time series, data were split into dry and
wet days and a separate examination took place of the occurrence series, Oi (i.e. a time series of zeroes
and ones), and the wet-day amounts series, Ri (i.e. ignoring dry days). This allows the results of the
present analyses to be transferred more directly to weather generator and downscaling applications than
similar previous analyses.

Inter-relationships were first examined between the predictor variables for each region, for winter
(December, January, February, DJF) and summer (June, July, August, JJA), and for observed (NCEP)
and model (HadCM2) data using standard product-moment correlation coefficients. This analysis allows
a determination of which predictors are most strongly correlated, which in turn helps in making a
parsimonious selection of predictors for downscaling. These results can also assist in choosing a set of
quasi-independent predictor variables that will reduce the problem of multicollinearity in developing
regression equations. Comparing observed and HadCM2 results provides a means of validating the
GCM—few, if any, such tests of the internal consistency of GCMs have been carried out before.

Following this, predictor–precipitation correlations were computed for each region using observed and
HadCM2 data, for winter (DJF) and summer (JJA), using grid box, area-average precipitation (Oi and
Ri). For each region and season the strongest (negative and positive) correlations were identified, and the
percentage of variance in Oi or Ri explained by each predictor was calculated. This procedure identifies
the most powerful predictor variables by site and season. It also quantifies similarities and differences
between the observed and HadCM2 predictor–precipitation relationships, thus providing a further means
of validating the GCM.

Finally, the spatial patterns of correlations between daily precipitation (Oi and Ri) and two of the
predictor set variables (daily mslp and specific humidity) were determined to obtain some insight into the
degree of propinquity in correlations involving these variables. (Similar analyses, using 700 hPa height
data, have been carried out by Stidd, 1954; Klein, 1963 and McCabe and Dettinger 1995.) Daily mslp was
selected for analysis because it is the basis of derived variables such as surface vorticity, airflow strength,
meridional and zonal flow components, and divergence, and is readily interpretable in terms of the
continental-scale atmospheric circulation. Similarly, daily specific humidity was chosen because of the
reported significance of this variable to GCM precipitation schemes (e.g. Hennessy et al., 1997). This type
of pattern analysis identifies the optimum predictor domain (spatial extent and position) for the chosen
predictor variable and downscaling region. In carrying out these pattern analyses with both observed and
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HadCM2 data, yet another means of validating the GCM is provided. If the correlation fields are similar,
then HadCM2 precipitation is being forced by realistic linkages to atmospheric circulation, which in turn
means that downscaled precipitation scenarios using circulation indices should be consistent with
observed data.

Ideally, these correlation pattern analyses should be undertaken for all combinations of regions, seasons
and predictor variables. However, for illustrative purposes, the present analysis was restricted to the
correlation fields for mslp and q versus grid box area-average Oi (occurrence) and Ri (wet-day amounts)
only at Sierra Nevada (SNV) and Oklahoma (OKC) in summer and winter. The SNV grid box was
selected because of its relative proximity to an oceanic moisture source and the strong orographic
component to its rainfall. In contrast, the OKC grid box was chosen because of its relative continentality
and limited orographic influences. At this point, the analyses are not intended to be definitive, but instead
are meant to demonstrate a technique that can assist in the choice of downscaling predictor variables and
domain size. Note that area-average precipitation data are used for these analyses in order to maintain
correspondence between observed and GCM analyses.

3. RESULTS

3.1. Predictor 6ariable correlations

Table IV lists the strongest inter-variable correlations, on a daily scale, arising from the analysis of
propinquitous predictor variables and lumping all regions together. Given the large sample sizes,
correlation coefficients exceeding 0.1 are significant at a significance level of a=0.001 (even when using
the effective sample sizes, n %, in order to account for autocorrelation; n % is always\100). However,
significance does not necessarily imply that the variable is a useful predictor since the amount of explained
variance may be low. Furthermore, certain variable pairs are necessarily strongly correlated: such as Ds

and Vs, or D500 and V500, because of the way divergence is defined. Strong correlations are also expected
a priori between Tmax and Tmin, and between q and both Tmax and (especially) Tmin given the temperature
dependency of the saturation specific humidity. These variable pairs aside, the strongest DJF correlations
were between H500 and Tmax/Tmin, H500 and q, Zs and mslp, and the equivalent upper atmosphere
correlation between Z500 and H500. The same or stronger correlations occur in JJA, with the exception of
the weaker correlation between Tmax and q. Additional strong correlations that are either non-existent or
noticeably weaker in DJF occur between F500 and H500, Tmax and F500 (partly because of high correlations
between Tmax and H500, and F500 and H500), q and Ds, q and Vs (because of the strong Vs–Ds link), and
Tmin and Ds (arising partly through the correlations between Tmin and q, and q and Ds).

Overall, the inter-variable correlation strengths for observed and HadCM2 daily data were remarkably
similar in both seasons providing a strong indication of the GCM’s internal consistency and realism
relative to the real world. In terms of explained variance the most notable differences occur in the
correlations between: Tmax and Tmin (both seasons, with the GCM showing a stronger link in JJA and a
weaker link in DJF); Tmax and H500 (DJF, GCM correlation weaker); Tmin and q (JJA, GCM correlation
weaker); Tmin and Vs (JJA, GCM correlation stronger); Tmin and H500 (DJF, GCM correlation weaker);
q and Vs and Ds (JJA, GCM correlations stronger); and q and H500 (GCM correlation weaker). Thus, the
inter-variable correlation skill of the GCM was generally greater in DJF than in JJA.

3.2. Propinquitous precipitation relationships

The above results show how the choice of downscaling predictors may be complicated by differences in
the relative strengths in the correlations involving observed data versus those for GCM data, and by
covariances amongst the predictors. Keeping these issues in mind, Table V shows the power of each
predictor variable in ‘explaining’ variations in Oi and Ri in terms of the squared correlation coefficients
for all sites and seasons combined, comparing observed and HadCM2 data. In general, the highest
explained variances for observed data are in winter, and explained variances tend to be higher for Oi than
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Table IV. Strongest inter-variable correlations on a daily time-scale for the current
climate

Variable pair DJF JJA

Observed HadCM2 Observed HadCM2

Tmax Tmin 0.87 0.77 0.65 0.81
q 0.69 0.73 0.32 0.21
Ds −0.37 −0.38 −0.28 −0.41
H500 0.71 0.60 0.81 0.84
F500 −0.21 0.03 −0.55 −0.50
Z500 −0.32 −0.27 −0.46 −0.48

Tmin q 0.79 0.79 0.82 0.59
Vs 0.33 0.41 0.52 0.65
Ds −0.37 −0.47 −0.58 −0.67
H500 0.62 0.44 0.73 0.75
Z500 −0.27 −0.29 −0.33 −0.44

q Vs 0.29 0.36 0.48 0.62
Ds −0.33 −0.43 −0.52 −0.63
H500 0.49 0.49 0.48 0.32

Ds Vs −0.88 −0.87 −0.89 −0.91
H500 −0.40 −0.33 −0.39 −0.45
Z500 0.47 0.45 0.29 0.30

Zs mslp −0.55 −0.55 −0.55 −0.56
H500 Vs 0.37 0.30 0.34 0.47

F500 H500 −0.28 −0.15 −0.60 −0.54
U500 0.31 0.25 0.36 0.43

D500 mslp 0.38 0.44 0.17 0.29
V500 −0.87 −0.88 −0.85 −0.85

Z500 Vs −0.41 −0.40 −0.24 −0.30
H500 −0.63 −0.56 −0.64 −0.62

The pairs listed are the top 25 when ranked according to the overall strength of correlations, with
all regions, both seasons and both data sources combined. Correlations in bold are discussed in the
main body text.

for Ri. These results do not indicate weaknesses in the potential for statistical downscaling but, rather, the
relative importance of the stochastic and deterministic components in any such downscaling scheme.
Essentially, the correlations represent the amount of variability in Oi or Ri that may be explained by a
deterministic regression equation. In statistical downscaling, a common method is to simulate the
remaining variability stochastically (see, for example, Wilby et al., 1998b).

The explained variances define those predictor variables that are likely to be most useful. The largest
percentages of variance in observed Oi are explained by q, Tmax (JJA) or Tmin (DJF), mslp, Us, H500 (and
its correlate, V500) and D500. For observed Ri, the most important predictors are q (DJF only), Tmax (JJA)
or Tmin (DJF), Ds, H500 (and its correlate, V500). Note that q covaries strongly with temperature, so the
Tmax and Tmin relationships may largely reflect primary linkages with q.

In comparison, for HadCM2 the two strongest predictors overall are q and Ds. Except for Oi in DJF
for q, these linkages are always stronger in the GCM than in the observed data. Conversely, almost all
linkages with 500 hPa variables are weaker in the GCM than in the observations. These differences
between how strongly precipitation depends on moisture and circulation predictors, observations versus
model, point to possible deficiencies in the way the precipitation process is quantified in the model
(although part of the difference here may reflect inadequacies in the way we have defined area-average
precipitation in the observations).

Copyright © 2000 Royal Meteorological Society Int. J. Climatol. 20: 641–661 (2000)
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Table V shows the overall precipitation–predictor relationships. It is also informative to examine
spatial variations in the relative strength of the 15 predictors within both observed and HadCM2 data.
Accordingly, Figures 2–5 show, by region, correlation coefficients between the various predictors and the
equivalent observed and HadCM2 precipitation. Perfect agreement in the correlations obtained from
observed and HadCM2 data would result in the 15 points lying on the 1:1 line. Large departures, either
above or below this line, highlight discrepancies in the realism of the GCM–precipitation relationships.
For example, Figure 2 indicates that HadCM2 slightly underestimates the positive influence of Us on
wintertime wet-day occurrence (Oi) at the two most western locations (SLM and SNV), and significantly
understates the negative effect of D500 at all sites. Similarly, the relationship between V500 or Zs and
wintertime Oi is mostly weaker in HadCM2, whereas the correlation with Tmin is overly strong relative to
observations.

Similar diagnostic results are presented in Figures 3–5. For summertime Oi, Figure 3 suggests that the
strength of the correlations with q are significantly exaggerated in HadCM2, whilst correlations with the
circulation indices Zs, V500 and D500 are too weak. The serious discrepancies in the HadCM2 correlations
between precipitation and Ds, Us, F500 and Z500 at SNV are particularly noteworthy.

Observed Tmax is the variable that is most negatively correlated with precipitation at SLM, SNV and
OKC. However, temperature–precipitation correlations are difficult to interpret, given that high summer
temperatures may be symptomatic of clear skies and lower rainfall probabilities (i.e. a consequence rather
than a cause of dry conditions). Conversely, in other regions high summer temperatures may imply more
convective activity.

Figure 4 indicates that the strengths of correlations with D500 and Zs are underestimated for wintertime
Ri in HadCM2. In contrast, HadCM2 exaggerates the magnitude of (negative) correlations with Ds and
Z500, and (positive) correlations with Fs when compared with observed data. Finally, Figure 5 once again
demonstrates that for summertime Ri, HadCM2 significantly exaggerates the magnitude of correlations
with q. The general scatter in the points shown in Figure 5 suggests that, qualitatively, correlations
between grid box predictors and grid box rainfall amounts are least realistically modelled by HadCM2 at
the chosen sites in summer.

Table V. Mean percentage of variance in observed grid box daily precipitation occur-
rence (Oi) and wet-day amounts (Ri) explained by observed grid box predictor variables

(all sites combined)

Predictor/season

Ri/JJARi/DJFOi/JJAOi/DJF

12.2 (11.7) 10.3 (19.4)Lag-1 4.7 (6.1) 2.8 (13.3)
12.6 (8.6) 6.0 (13.5)q 10.6 (11.2) 1.4 (15.1)

9.1 (14.5)2.2 (5.7)11.1 (7.5)1.8 (4.5)Tmax

Tmin 10.8 (15.3) 3.9 (4.1) 8.4 (16.0) 1.5 (5.2)
mslp 10.4 (4.5) 5.2 (1.9) 6.0 (4.7) 3.6 (2.5)

2.2 (5.0)5.3 (7.9)6.9 (5.8)12.7 (8.8)Us

6.7 (10.4)4.7 (7.6) 5.1 (7.6)6.2 (6.1)Vs

Fs 2.0 (2.2) 1.5 (6.1) 7.2 (18.2) 1.3 (2.7)
6.0 (2.5) 7.3 (4.8) 2.1 (1.1)Zs 2.2 (1.5)

Ds 5.9 (6.4) 5.8 (10.6) 10.6 (19.9) 5.9 (9.1)
H500 6.1 (5.3) 8.5 (5.3) 2.3 (3.9) 4.5 (6.0)
U500 3.0 (6.0) 3.8 (3.0) 2.4 (3.6) 1.3 (3.3)
V500 5.5 (2.7)16.6 (7.1) 3.5 (1.2)10.4 (9.1)
F500 4.3 (2.8) 1.8 (2.4) 4.7 (3.5) 1.6 (2.4)
Z500 4.7 (8.3)2.0 (2.1) 1.4 (1.8)2.7 (6.5)

15.5 (5.4)D500 10.2 (6.5)5.9 (2.7) 4.6 (1.5)

Corresponding results for HadCM2 are shown in parentheses. For comparative purposes, the
percentage of variance explained by the lag-1 predictand is also included. The most powerful
predictors (\10% explained variance) are highlighted in bold.
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Figure 2. The strength of relationships between daily grid box predictors and winter wet-day/dry-day sequences, Oi : observed
(NCEP re-analysis) versus HadCM2 1980–1999 correlation coefficients. �, Zs; , Fs; �, Us; �, Vs; + , Ds; , mslp; 
, q ; �,

Tmax; ", Tmin; 	, H500; 5, Z500; , F500; , U500; �, V500; �, D500

3.3. Spatial correlation patterns for mslp

Figures 6 and 7 show the spatial patterns of correlation between daily precipitation (Oi and Ri) and
mslp at SNV and OKC in observed and HadCM2 data, for winter and summer, respectively. Following
McCabe and Dettinger (1995), regions of negative correlation are assumed to represent areas of
anomalous (i.e. enhanced) cyclonic circulation, while the direction of the isolines over the target region
represents the time-averaged (anomalous) storm tracks. In general, the spatial distributions of correlations
produced by HadCM2 are very similar to observed distributions in terms of the patterns, locations of
maxima and alignment of isolines.

Figure 6 shows that for winter precipitation occurrence (Oi) at SNV in both observed and HadCM2
data, maximum negative correlations lie to the north and northwest, implying that the greatest likelihood
of precipitation is associated with a predominantly westerly flow over the target region. In the case of
OKC, the domain of the maximum correlation lies to the southwest with isolines aligned in a prominent
southeast–northwest direction.

For precipitation amount (Ri), although the locations of the maximum DJF correlations with mslp are
broadly similar for observed and HadCM2 precipitation amounts, the HadCM2 patterns at SNV are
slightly stronger and cover a larger spatial domain than in the observations. At OKC, HadCM2 identifies
an area of weak positive correlations to the northeast of the target region over the Great Lakes that is
absent in observed data (Figure 6, bottom two panels). From Figure 6, it is also evident that there are
differences between the correlation fields for daily Ri and Oi, but these are quite subtle and may merely
represent the effects of statistical uncertainty. For example, winter Ri at SNV correlates with airflows
from a more southerly trajectory than Oi.
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As might be anticipated from the greater influence of convective processes in JJA, the correlations for
summer Oi and Ri (Figure 7) are generally weaker and more spatially heterogeneous than in the winter
case for both the observed and HadCM2 patterns. The location of the maximum correlation, the spatial
extent and the alignment of the maximum gradient have also shifted slightly relative to DJF (to the
southwest in the case of SNV and to the east for OKC). However, once again, the level of correspondence
between the observed and HadCM2 patterns is encouraging.

3.4. Spatial correlation patterns for q

Figures 8 and 9 show the correlation fields between daily precipitation and specific humidity in winter
and summer, respectively. For winter (Figure 8), the strength and spatial distribution of the correlations
are remarkably similar for Oi and Ri. Observed and HadCM2 results are also very similar. The greater
propinquity of the maximum correlations to the target sites (compared with the cases for mslp) is
noteworthy. The summer situation (Figure 9), however, reveals significant differences between observed
and HadCM2 precipitation correlations. For example, at SNV, HadCM2 returns stronger correlations for
both Oi and Ri relative to observed conditions. Whereas the observed data imply little or no correlation
between daily q and daily Ri, HadCM2 suggests that q could account for approximately 20% of the
variance in daily wet-day amounts at this site. Similarly, at OKC the maximum correlations and spatial
extent of the positive correlation field produced by HadCM2 are much greater than in observed data. This
larger influence of specific humidity on precipitation in the GCM relative to the observations was noted
earlier. It may point to some oversimplifications in the model physics controlling both the amounts and
frequency of precipitation.

Figure 3. The same as Figure 2, but for summer wet-day/dry-day sequences, Oi
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Figure 4. The same as Figure 2, but for winter wet-day amount sequences, Ri

4. DISCUSSION

Before evaluating the significance of the preceding results to statistical downscaling, some caveats should
be noted. First, the HadCM2 1980–1999 climate scenario is unlikely to be a faithful representation of the
present-day observed (1979–1995) climate. Wilby et al. (1998b) noted that even though the model
simulation begins in the year 1861, the initial state of the ocean in the HadCM2 SUL experiment does not
correspond to 1861 conditions (rather, ‘present-day’ ocean temperatures were employed). Furthermore,
changes in atmospheric forcing from 1861 onwards do not correspond precisely to real-world changes.
For model years 1980–1999 the SUL run partially simulates historical aerosol forcing effects, but has a
CO2 level that corresponds to conditions anticipated around 2020–2040. As a result of this, in none of the
experiments performed with HadCM2 is the present-day climate simulated in a fully consistent way. The
validation of HadCM2 against observed data, as performed here, therefore rests on the assumptions that
the various relationships between variables that we have evaluated remain reasonably constant with time
as the climate state changes. This is judged to be a reasonable and physically well-founded assumption.
It has, furthermore, been tested to a limited extent by comparing precipitation–mslp relationships in
2080–2099, with those in 1980–1999 (see below). Future and ‘present-day’ relationships are identical
within statistical sampling uncertainty.

Second, it has been assumed that the unweighted five-station, areal mean of daily observed precipita-
tion is a ‘true’ grid box mean that can legitimately be compared with results for the HadCM2 grid. In fact,
results from the Atmospheric Model Intercomparison Project (Gates et al., 1999) suggest that the direct
use of station data, as performed in this experiment, will tend to underestimate the frequency of grid
box-area rain days (Osborn and Hulme, 1998). This effect is most pronounced in summer when average
correlation decay lengths between pairs of stations in a grid box are lower due to the predominance of
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convective precipitation events (Osborn and Hulme, 1997). This denotes a failure to identify ‘marginal’
wet-days (i.e. those days where rainfall occurs over a relatively small area of the grid box, between
stations), which in turn will lead to a slight bias in the Oi and Ri samples used for the correlation analyses.
However, the fact that the HadCM2 and observed correlation fields shown in Figures 6 and 7 are so
similar, for two contrasting regions, suggests that this problem is relatively minor.

For the application of statistical downscaling results to future, GCM-simulated climate, the following
are required: reasonable fidelity (at least) of the model in terms of inter-variable relationships and
relationships between precipitation characteristics and predictor variables; and long time-scale stability of
precipitation-predictor relationships. The correlation analyses (Table IV) have shown that the GCM used
here reproduces well most of the observed correlations between potential predictor variables at the grid
box level and daily time-scale. There were no cases where a strong relationship in the observed data was
not reflected in the HadCM2 data, or 6ice 6ersa. There were, however, a number of cases where the
strengths of relationships differed noticeably, particularly in JJA. In spite of these differences, these results
are considered to be a strong endorsement of the physical realism of the model.

In terms of precipitation–predictor relationships (Table V), there are a number of differences between
observations and the model: First, in JJA, both Oi (precipitation occurrence) and Ri (wet-day amount) are
far more dependent on atmospheric moisture level (q) in the GCM than in the real world. This result
probably arises from oversimplifications in the GCM’s modelling of the precipitation process.

Second, in DJF, both precipitation variables have much stronger relationships with Tmin in the model
than in the observations. In addition, surface divergence (Ds) is a stronger predictor in the model
(especially for Ri in DJF and Oi in JJA), a result reflected in the surface meridional wind component (Vs)
by virtue of the necessarily strong Ds–Vs correlation. The model also displays a stronger link between
precipitation (both Oi and Ri) and geostrophic wind speeds at the surface than in the observations. It is

Figure 5. The same as Figure 2, but for summer wet-day amount sequences, Ri
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Figure 6. Correlations for winter between daily mslp versus daily precipitation occurrence (Oi) and amount sequences (Ri) at SNV
and OKC, based on observed data (1979–1995) and simulations from HadCM2 (1980–1999)
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Figure 7. The same as Figure 6, but for summer
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Figure 8. Correlations for winter between daily specific humidity versus daily precipitation occurrence (Oi) and amount sequences
(Ri) at SNV and OKC, based on observed data (1979–1995) and simulations from HadCM2 (1980–1999)
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Figure 9. The same as Figure 8, but for summer
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likely that these results arise from differences in orography between the model and the real world—if so,
one might expect higher resolution models to give results that bear a greater resemblance to the
observations. (Some of these differences may also arise from the relative crudeness of our observed ‘grid
box’ precipitation estimates, noted above.)

Third, for Oi in DJF, 500 hPa divergence (D500) (and the closely-related variable V500) is a much
stronger predictor variable in the observed data than in the model. Mean sea-level pressure (mslp) (which
is related to D500 in DJF—see Table IV) is also a stronger observed predictor than in the model. It is
suspected that these are differences that arise from deficiencies in model physics. The mslp case, however,
appears to reflect only a very minor difference between model and observed Oi–mslp relationships. At
OKC, propinquitous relationships are very similar (Figure 6). At SNV, the observed propinquitous
relationship is stronger than in the GCM, but only by virtue of a slight offset in the spatial pattern of
correlations (Figure 6, top two panels).

Finally, both Oi and Ri are much more strongly autocorrelated in JJA in the GCM than in the real
world (Table V). The reason for this persistence is unclear, given that it is not evident in DJF. It is
possible that the split between convective and large-scale precipitation in the model is unrealistic; no
access to appropriate model data in order to test this hypothesis was possible in this case.

Overall, the results shown in Table V highlight the importance of atmospheric circulation in the
provision of conditions necessary for precipitation to occur in both the model and the real world, and of
atmospheric moisture content in the provision of the source material. No single variable is a dominant
predictor variable, however, implying that multivariate prediction equations are essential in order to
produce high quality downscaling schemes. Table V also shows that, in some instances, indirect predictors
can be of considerable value (such as temperature as a proxy for atmospheric moisture content).

In terms of model performance, the most striking result is the much stronger dependence of model
precipitation on atmospheric moisture content in JJA compared with observations, especially at the SNV
site. This is illustrated in Figure 9 (compare the right-hand maps of the GCM correlation patterns with
the left-hand column of observed correlations). Given these results, it is not surprising that the GCM
yields significant increases in precipitation under future, warmer climate scenarios (Johns et al., 1997).
These increases contrast with the relatively modest changes in precipitation arising from circulation-based
downscaling methods (Wilby and Wigley, 1997). This outcome is also a function of the relative
insensitivity of circulation indices produced by HadCM2 to future radiative forcing (Wilby et al., 1998a).

A fundamental assumption made in statistical downscaling is temporal stability of predictor variable
relationships. By way of an example, Figure 10 shows the HadCM2 correlation distributions for
relationships between mslp and both precipitation occurrence and amounts at SNV and OKC, for the
period 2080–2099. Comparing the distributions shown in Figure 10 with the HadCM2 simulations for
1980–1999 in Figure 6 (summer, cf. left panel of Figure 10) and Figure 7 (winter, cf. right panel of Figure
10) shows that for mslp as a predictor, relationships with Oi or Ri are indeed stationary even though the
model’s overall climate in 2080–2099 differs markedly from that in 1980–1999. These results imply that
the strength of circulation–precipitation correlations in HadCM2 is unaffected by changes in other
variables, such as temperature and specific humidity.

In many statistical downscaling studies, only propinquitous relationships are considered, i.e. no direct
account is taken of possible spatial offsets in the correlation patterns between predictors and predictands.
The results presented in Figures 6–9 show that such offsets do indeed exist. These figures provide insights
into both the most appropriate focal point, and the predictor domain size(s) for downscaling. It is evident
that the strength and spatial extent of the optimal predictor, for a given target precipitation region, vary
both seasonally and geographically. For example, the centroid for the observed Ri versus mslp correlation
for SNV in winter (Figure 6) is located approximately at 130°W, 40°N (r= −0.6) compared with 120°W,
45°N (r= −0.2) in summer (Figure 7). Furthermore, the use of gridded circulation predictors for the
atmosphere directly overlying the target grid box consistently fails to capture the strongest correlations,
as in observed winter Ri at OKC (Figure 6). This may account for the relatively low percentage of
variance explained by daily precipitation models based on single grid box circulation predictors. In
contrast, the optimal domain(s) for atmospheric moisture content tended to overlap with the target grid
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Figure 10. Winter and summer season correlations between daily mslp and daily precipitation occurrence (Oi) and amount
sequences (Ri) at SNV and OKC, based on simulations from HadCM2 (2080–2099)
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box and were geographically smaller in extent than the circulation domains (e.g. summer Oi at SNV,
Figure 9).

Finally, it is often assumed in multivariate downscaling that the location and spatial extent of the
predictor domain are the same for different predictors and different surface variables. As Figures 6–9
reveal, this may not necessarily be a valid assumption. For example, there are subtle differences in the
observed correlation distributions between Ri and Oi at both sites. As noted previously, the optimal
predictor domains also vary according to the choice of predictor variable, whether daily mslp (Figures 6
and 7) or daily moisture level (Figures 8 and 9).

5. CONCLUSIONS

Observed and HadCM2-simulated correlations between 15 explanatory variables and daily precipitation
occurrence/amounts were examined using gridded data for six locations in the USA. Daily precipitation
was chosen as the focus of the study because of its still problematic representation in statistical
downscaling schemes. A focus of the study was the validation of the GCM in terms of inter-variable
correlations and correlations between precipitation and the suite of explanatory variables. For the former,
model and observed correlations were generally similar: all high correlations in the observed data were
reflected in high model correlations, and 6ice 6ersa. These results provide a strong endorsement of the
physical realism of the GCM.

Correlations involving precipitation were, however, less satisfactory. In line with previous research (e.g.
Stidd, 1954; McCabe and Dettinger, 1995) observed correlations between grid box circulation indices and
grid box daily precipitation were strongest at locations near oceanic sources in winter, where the advection
of atmospheric moisture is important. However, the strengths of such circulation-based correlations
differed between HadCM2 and the real world. At the surface, observed dependencies on mslp were
stronger (especially for precipitation occurrence [Oi ] in winter) while HadCM2 precipitation tended to
show a stronger dependence on divergence (especially for precipitation amounts [Ri ] in winter). At 500
hPa, observed precipitation was much more dependent on divergence than was model precipitation,
particularly in winter. In all cases, the dependence of precipitation on vorticity, previously used as primary
predictor in downscaling studies, was relatively weak. HadCM2 placed much greater emphasis on grid
box specific humidity as the leading explanatory variable, especially in summer.

Given that circulation indices simulated by HadCM2 are less sensitive than atmospheric moisture
content to future radiative forcing, it is expected that downscaling methods based on these two variable
types should yield smaller changes in grid box precipitation than HadCM2. Such differences are likely to
be greatest during summer when the correlation between precipitation and specific humidity is noticeably
stronger in the GCM than in reality. The stronger dependence of model precipitation on specific humidity
suggests that model precipitation changes might be overestimated. There is some danger, however, in
extrapolating the present results, which are based on inter-annual variations, to the context of longer
time-scale anthropogenic change.

In addition to the above propinquitous relationships, correlations between daily precipitation occur-
rence and amounts (Oi and Ri) and mslp and specific humidity remote from the precipitation site were
also examined. The correlation patterns obtained for Oi at two grid boxes centred on the Sierra Nevada
(SNV) and Oklahoma (OKC) were broadly similar for observed data and HadCM2 output. This suggests
that, for the chosen sites at least, regional relationships between Oi and atmospheric circulation are
captured realistically by HadCM2. However, the correlation patterns for wet-day amounts (Ri) were not
so faithfully reproduced by HadCM2, particularly at OKC in summer. Similarly, differences between
observed and HadCM2 correlation fields for specific humidity were greater in summer at both sites. These
results imply that the choice of the predictor and its corresponding domain, in terms of location and
spatial extent, may be critical factors affecting the realism and stationarity of downscaled precipitation
scenarios. Further research is required to determine the generality of these findings for other regions,
predictors, surface variables and GCMs.
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