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ABSTRACT Wedeveloped amethod for the precise estimation of the 3D trajectory of a baseball bymodeling

the movement of the baseball and estimating the capture delay, using multiple unsynchronized cameras.

To develop the proposed algorithm, wemimicked the real-world process of capturing a baseball in simulation

space, and analyzed the capture process using a multiple unsynchronized camera system. We represented

the movement of the baseball using a piece-wise spline model, and predicted the position of the baseball

in the subframes in a manner which is robust to position error and change in direction of movement of the

baseball. This method accurately predicts the baseball position over time by modeling the movement of the

baseball in a real baseball game environment, and improves the accuracy of the reconstructed 3D baseball

trajectories. We defined an objective function to estimate the capture delay, and estimate the optimal capture

delay parameter using non-linear optimization method. In addition, we evaluated the performance of the

proposed method in simulation space and in a real-world situation. The experimental results show that the

proposed method can estimate a 3D baseball trajectory precisely using a multiple unsynchronized camera

system and is robust to variations in capture delay, both in the simulation space and in real-world situations.

INDEX TERMS Stereo vision, 3D pitching trajectory, multiple unsynchronized cameras, camera calibration.

I. INTRODUCTION

In recent years a number of different baseball pitching anal-

ysis systems have been used to help viewers and players

better understand the game. Many broadcasters and baseball

clubs have adopted the use of trajectory analysis systems, and

trajectory information output from these systems can be used

as content for baseball broadcasts, VR baseball game data,

and pitching training information. Major League Baseball

(MLB) has used trajectory information for training profes-

sional baseball players and baseball referees [1]. A trajectory

analysis system uses different types of image capture devices

to detect a baseball. Initial systems simply highlighted the

baseball’s location and showed its position on the broadcast

screen [2]. This type of system only shows discrete ball loca-

tions from a specific viewing angle, and cannot obtain other

data such as spin, velocity or 3D location. Several studies

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahammad Abdul Hannan .

into the acquisition of 3D information about a ball have been

conducted to obtain information that can be used for training.

A 3D baseball pitching analysis system can be categorized

as either radar-based or camera-based, depending upon the

sensor type. One example of a radar-based system is Track-

Man Baseball. TrackMan Baseball uses a military-grade

Doppler radar and measures every object in the baseball

stadium [3], including the 3D baseball position, speed, spin

rate, angle, and baseball player. MLB has been using Track-

Man Baseball because it can acquire data about players’

movements and is compatible with the Statcast system [1].

Statcast is a tool for analyzing data about the performance

of baseball players. However, the radar-based system is dif-

ficult to operate in real time because the radar sensor can

be overwhelmed with information. For an amateur or senior

baseball league the sensor is very expensive compared to

camera-based systems [4].

Camera-based systems capture the baseball pitching area

using single or multiple cameras installed in the baseball
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stadium. Camera-based systems only detect the trajectory of

the ball, and so can be operated in real time. This system

only detects 2D baseball locations and the data can be used to

reconstruct 3D information, so it is feasible for the system to

operate in real time. Rapsodo is an example of a monocular

camera-based system [5]. This system analyzes the pitch-

ing trajectory in front of a catcher using a camera installed

behind the catcher. The system measures the spin rate and

axis of a thrown baseball and estimates the entire pitching

trajectory from partial data. Since Rapsodo only uses data

collected near the catcher, it is difficult for it to estimate all

of the pitching trajectory data and the location of the baseball

in 3D [4]. This system cannot be used in professional baseball

leagues because no devices can be installed on the field.

To address these limitations and acquire information from

cameras installed outside the baseball field, we developed a

multiple-camera based system. We installed cameras near the

stand or dugout, and captured images of the area between the

catcher and the pitcher. Pitchf/x is a well-regarded multiple

camera-based pitch analysis system that uses two cameras

installed on the high first and high home plate positions [6].

To obtain 3D pitching trajectory information, this system

detects ball positions in 2D and estimates the coefficients of

the 3D trajectory using a physical pitching model calibrated

for each camera. However, this system only shows the 3D

trajectory shape, and cannot calculate the location of the ball

in 3D in the field. This system also requires a long calibration

process and it is not possible to change the cameras’ positions

after calibration.

A stereo-based pitch analysis system has been developed

for the calculation of baseball locations in 3D [7], [8]. This

stereo-based system calculates baseball locations in 3D using

triangulation. The system has fewer restrictions related to the

camera installation and the extrinsic parameter calibration

process, because it can use the 2D baseball positions as

input to the calibration process. In this paper, we describe

our research into the implementation of a low-cost trajec-

tory analysis system with easy installation and minimum

space requirements. Our objective is to produce a system

which is applicable to as many baseball leagues as possi-

ble, from amateur to professional. To achieve this objective,

we investigated the acquisition of 3D baseball trajectories

via triangulation with a multiple-camera system. However,

triangulation with multiple cameras typically requires the

synchronization of the timings of image captures between

cameras.

Since unsynchronized cameras do not capture images at

exactly the same time, we cannot be certain that the objects

captured by each camera have the same position; therefore,

a basic assumption underlying the process of triangulation is

notmet. An unsynchronized camera system cannot accurately

calculate 3D baseball trajectories, even if the calibration of

the cameras has been performed perfectly. Table 1 shows that

the average error of the baseball location in 3D of an unsyn-

chronized system increases depending upon the difference in

image capture timing.

TABLE 1. 3D reconstruction error by capture timing difference.

As shown in Table 1, if the timing of multiple cameras

is out by more than one frame, the 3D reconstruction error

becomes greater than 6cm. Given that the diameter of a

baseball is around 7cm, such an error is not acceptable.

To synchronize multiple cameras using a hardware-based

method, an additional signal generator that sends syn-

chronization triggers to the cameras is used. However,

hardware-based methods cannot handle the capture delay that

occurs after each camera module receives the captured sig-

nal. Algorithm-based synchronization methods estimate the

temporal offsets between multiple unsynchronized cameras,

correct for the temporal offsets, and calculate extrinsic param-

eters. To estimate the temporal offsets, these methods capture

images of the moving object and calculate the temporal offset

of the trajectory of the moving object [8]–[16]. The temporal

offset is the capture delay between the unsynchronized cam-

eras, and several methods for estimating temporal offset in

frame units have previously been proposed [10], [11]. If the

computed temporal offset is in units of subframes, the loca-

tions of the moving object that are not actually captured

by the camera are needed. To calculate the location of a

moving object at a subframe level, themovement of the object

over time is modeled, and the object location is predicted

using an object trajectory model. To model the trajectory of

the moving object linear, cubic and quadratic models have

been proposed [8], [12], [14]. In particular, optimization

algorithms have been used to estimate the optimal temporal

offset parameters [8], [12]. Amethod for calculating temporal

offsets using information about fewer objects has also been

proposed [15]. The periodic motion of moving objects in

tennis or ping pong [13] and in free fall motion [16] has also

been used to estimate temporal offsets. However, as shown

in Figure 1, since a baseball is a small object having a high

velocity, its shape has severe motion blurs in the image.

Therefore, it is difficult to detect its center accurately, so the

ball movement model that is robust to the position error and

motion change of a baseball is needed.

Since previous linear and cubic modeling methods only

consider the positions of objects in two consecutive frames,

modeling accuracy is reduced if the direction of motion of the

baseball changes, or if the estimated position of the baseball

is incorrect. In addition, since baseball pitching is neither

periodic nor a free falling motion, it is hard to apply the

previous method for estimating 3D baseball trajectories. The

work most closely related to our method involved modelling

the movement of the baseball with a quadratic model using

the positions of the baseball and estimating the temporal

offset using line search optimization [8]. However, this study
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FIGURE 1. Baseball image captured during an actual game. The image
resolution is 2048 × 512 and the baseball radius is about 3 pixels.

did not take into account the problem that uniform acceler-

ation movement in a 3D space is not fully represented by a

quadratic model in the image plane, due to the transformation

of perspective. In addition, since linear optimization was

used, the accuracy of the estimation of the temporal offset

was limited.

Here we describe a 3D baseball trajectory estimation

method using multiple unsynchronized cameras. The pro-

posed method makes the following contributions:

(1) It analyzes a multiple unsynchronized camera system

in a simulated space that mimics a real-world situa-

tion, describes the proposed algorithm, and verifies the

method’s feasibility in a simulation space.

(2) It models a baseball’s trajectory using piece-wise spline

function, an approach that is robust to error in the

estimation of the center and changes in the direction

of movement of the baseball. An objective function

for optimizing capture delay and extrinsic parameters,

using a non-linear optimization algorithm is defined

and analyzed.

(3) The proposed method’s performance is evaluated using

both simulation and a real-world implementation, and

the experimental results show that the proposedmethod

can estimate the 3D baseball trajectory robustly with

various capture delay parameters.

The remainder of the paper is organized as follows.

Section II describes the simulation configuration of the pro-

posed method. Section III describes the proposed calibra-

tion method based on an unsynchronized camera system.

Section IV presents the experimental results and Section V

presents our conclusions.

II. ANALYSIS OF THE MULTIPLE UNSYNCHRONIZED

CAMERA SYSTEM IN SIMULATION

This section describes the implementation of the multiple

unsynchronized-camera system in simulation and the capture

process of the unsynchronized system.

A. CONFIGURATION OF THE SIMULATION ENVIRONMENT

To construct a simulation environment that resembles the real

world, we first define the home plate as the origin in the

FIGURE 2. Results of the algorithm applied in a simulated baseball
stadium with a multiple-camera configuration. The home plate is the
origin in the simulation coordinates.

3D simulation space. The remaining elements of the stadium

such as the first, second, and third bases are then defined

according to the standard baseball field diagram in the official

baseball rules [17]. Since no capture device is allowed to be

installed on the baseball field, the cameras are placed near

either the dugout or stands. Figure 1 shows an example of

the simulation space for the multiple-camera system set-up

results. As shown in Figure 2, the 3D location of the ith

camera in the simulation space is defined as Ci(i = 1, 2, . . .)

and we assume that every camera is a simple pinhole camera

model [18].

B. IMPLEMENTATION OF THE CAPTURE PROCESS OF A

MULTIPLE UNSYNCHRONIZED-CAMERA SYSTEM IN A

SIMULATION SPACE

Here we define the unsynchronized system and describe the

implementation of the unsynchronized system in a simulation

space. We then obtain the 2D baseball points captured by

cameras using the projection matrix of each unsynchronized

camera. In this work, we deem a system to be unsynchronized

when there are non-zero capture delays between cameras.

Since a capture delay is defined as the difference in capture

timing between two cameras, we select C1 as a reference

camera to define capture delays for all other cameras. In other

words, in the unsynchronized system, the ith (i = 2, 3, . . .)

camera has a non-zero capture delay relative to C1 and these

capture delay parameters are denoted by τi (ms). The capture

moment for the baseball in an unsynchronized system is

illustrated in Figure 3.

As shown in Figure 3(a), we assume that C2 and C3 have

a negative capture delay τ2 (τ2 < 0) and a positive capture

delay τ3 (τ3 > 0) relative to the capture timing of the refer-

ence camera, and these three unsynchronized cameras cap-

ture the location of the baseball at time t5. Compared to

the location captured by C1 in Figure 3(b), C2 captures a

baseball located at t5+τ2 on the same trajectory. Similarly,C3

captures a baseball located at t5 + τ3 on the same trajectory.

Even though unsynchronized cameras attempt to capture the

baseball at the same time, captured baseballs have different

3D locations, although they all lie on the same trajectory

of the baseball captured by a reference camera. Therefore,
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FIGURE 3. Illustration of the moment of capture in a multiple
unsynchronized-camera system.

if we know the 3D trajectory of the baseball captured by the

reference camera, we can calculate the 3D baseball location

captured by other unsynchronized cameras by considering

capture delays in the trajectory.

We can mimic real-world baseball movements in a simu-

lation space; we assume that a thrown baseball has uniform

acceleration, hence the 3D baseball movement can be mod-

eled as quadratic equations with respect to time t [19]. Let

T
k
1 (t) denote the k th 3D baseball trajectory function of C1 at

time t and define T k1 (t) as

T
k
1 (t) =

(

xk (t) , yk (t) , zk (t)
)

=















xk0 + vkx t +
1

2
akx t

2,

yk0 + vky t +
1

2
aky t

2,

zk0 + vkz t +
1

2
akz t

2















(1)

where
(

xk0 , yk0, z
k
0

)

is an initial release point of the reference

baseball trajectory and vkx , a
k
x , v

k
y , a

k
y , v

k
z , and a

k
z are coeffi-

cients of the reference baseball trajectory. Equation (1) have

six degrees of freedom, so the coefficients can be calculated

by fitting more than two known 3D points. In this paper,

FIGURE 4. The four different 3D baseball trajectories of the reference
camera (C1) in the simulation space.

we selected three points (release, highest, and end points)

for T k1 (t) in the simulation space and generated 3D points,

X
k
1 with time interval 1/fps s from t = 0 to t = tend . The

tend represents the flight time for the ball until it reaches

the strike zone and we set the value by considering the

average fastball speed in the MLB. In this paper, fps is

179frame/s, tend is 0.6s, and X
k
1 from four different trajec-

tories T k1 (t) (k = 1, 2, 3, 4) are used in the simulation space

as shown in Figure 4.

The k th 3D baseball trajectories captured by the

ith (i = 2, 3, . . .)unsynchronized camera that has τi can be

represented as

T
k
i (t) = T

k
1 (t − τi) , i = 2, 3, .. (2)

The 3D baseball points generated from T
k
i (t) are denoted by

X
k
i (i = 2, 3, . . .), andXk

i is calculated in the same manner as

X
k
1. After generating the 3D baseball points, we calculate the

2D baseball points projected onto the image plane of each

camera. Each camera captures different 3D baseball points

X
k
i , so the projected 2D baseball points of the ith camera are

calculated using the corresponding 3D baseball pointsXk
i that

the camera captures. Let xki denote the projected 2D baseball

points on the image plane of the ith camera from X
k
i . The

homogenous coordinate x̃ki of the projected 2D points xki can

be calculated as

x̃
k
i = Ki [Ri|ti] X̃

k
i (3)

where Ki,Ri and ti are the intrinsic parameter, rotation

matrix, and translation matrix of the ith camera, respectively.

In this paper, the parameters in (3) are set empirically to

capture the entire pitching area and we assume that each

camera has an image resolution of 1280 × 720 without lens

distortion. Figure 5(a) shows an example of the 2D projected

points from the three unsynchronized cameras with non-zero

capture delays (τ2 < 0 and τ3 > 0) and with the same

extrinsic parameters (R1 = R2 = R3, t1 = t2 = t3).

As shown in Figure 5(b), the 2D points projected on

the image plane of the camera that have negative capture

delay are located behind the reference position. In contrast,

as shown in Figure 5(c), the 2D points projected on the
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FIGURE 5. Differences in the projected 2D baseball points from the
camera with different capture times for the same [R|t]. (a) 3D baseball
projection environment in simulation space, (b)-(c) 2D projected point
from reference camera (red points), negative capture.

image plane of a camera that has a positive capture delay are

located ahead of the reference position. Through this process,

we canmimic the real-world process of capturing the location

of a baseball using multiple unsynchronized cameras in a

simulation space and get 2D baseball points projected onto

each camera image plane.

C. ESTIMATING MULTIPLE SOURCES OF NOISE AND

THEIR PARAMETERS

In a real-world environment, let us assume that there are three

noise sources that may produce errors while estimating 3D

baseball positions: capture delay noise, quantization noise,

and detection noise. Figure 6 shows an example that considers

three noise sources.

The capture delay noise Nc represents a random capture

timing inconsistency added to τi. Capture delay noise occurs

after a camera receives a capture request. When a camera

receives a capture request operation, it starts to store image

data in the image-streaming buffer. When the buffer is full,

the camera acquires image data from the image-streaming

buffer. In this process, due to CPU load or camera hardware

problems, the image data acquisition time may not be con-

stant; this non-uniform acquisition time is represented as Nc.

In this paper, we assume that Nc follows a Gaussian distri-

bution @mathcalN (0, σc). The quantization noise NQ occurs

while the image sensor digitizes the scene. Since we cannot

avoid this type of noise while using digital devices, the lower

boundaries of the 3D reconstruction errors are determined

by NQ.

To consider NQ, we rounded off the projected baseball

positions in a process denoted as Q
[

x
k
i

]

. The detection noise

ND occurred when the algorithm detected the 2D center

FIGURE 6. The process of adding three noise sources that can occur when
cameras capture and detect a baseball in the real world.

FIGURE 7. The reprojected 2D baseball points under different sources of
noise. (a) Entire baseball trajectory points locations and highlighted
region (back box), (b) Comparison with the ideal baseball locations (red
circle) and locations with added noise (black circle).

position of the baseball in the image. In the real world, it is

difficult to accurately find the center position of a baseball

because of shadows, image blurring, and the occlusion of the

baseball, as shown in Figure 1. Since the size of a baseball

is very small compared to the captured image, it can be

expected that differences in the center error in the noisemodel

will not be large. Therefore, in this paper, we assume that

ND can be approximated by a Gaussian normal distribution

@mathcalN (0, σD). The ND added result is represented by
(

x
k
i + ND

)

. Figure 7 shows the 2D baseball positions with

various noise sources.

These 2D baseball points with noise provide the

information that can be obtained using a multiple

unsynchronized-camera system in a real-world situation.

Therefore, in the simulation space, we compute the extrinsic
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FIGURE 8. Flowchart of the proposed method.

parameters of unsynchronized cameras and reconstruct the

3D trajectory information using only x
k
i as correspondences

between cameras.

III. MULTIPLE UNSYNCHRONIZED CAMERA

CALIBRATION OPTIMIZATION

In this section we describe the calibration of a multiple

unsynchronized-camera system using 2D baseball points.

Figure 8 shows the process of the proposed method for

accurately estimate the trajectory in multiple unsynchronized

camera system. The algorithm is divided into three parts: a

trajectory modeling process; extrinsic parameter calibration;

and capture delay parameter estimation. In the trajectory

modeling process, the trajectory model Pki (t) is calculated

as a piece-wise spline function using x
k
i from the multiple

unsynchronized cameras. The Pki (t) is are used to correct the

baseball position, taking into account the estimated capture

delay, τ in the following process. In the extrinsic parameter

calibration process, using the estimated τ n and P
k
i (t), we cal-

culate the corrected baseball position, xik∗. The extrinsic

parameters are calculated using xik∗ and the 3D informa-

tion, Xk∗ about the trajectory is calculated. In the capture

delay parameter estimation process, the accuracy of Xk∗ is

calculated. If the reconstruction error of the 3D trajectory is

not minimum, the estimated τ is updated, and the extrinsic

FIGURE 9. Results of trajectory modeling (a) Example of 3D baseball
trajectory and camera location in the simulation environment, (b)-(c)
Trajectory modeling results based on the modeling method. The quadratic
form cannot model the perspective transformed trajectory in the pinhole
camera model compared with the proposed piece-wise spline fitting.

parameter calibration process is repeated. The optimization

algorithm is used to update τ . Unfortunately, these two prob-

lems lack closed-form solutions, so we need to carry out two

algorithms iteratively to solve the problems.

A. CALIBRATION OF THE EXTRINSIC PARAMETERS USING

2D BASEBALL POINTS CONSIDERING CAPTURE

DELAY PARAMETERS

We calibrated the extrinsic parameters using corrected base-

ball correspondences considering the estimated capture delay

parameters. To correct the 2D baseball points, we needed to

obtain two pieces of information: the 2D pitching trajectory

model and the capture delay parameters. The trajectorymodel

is necessary to estimate the baseball’s position corrected by

the capture delay time from the given positions. Since the tra-

jectory model is fitted by a given xki , the modeling algorithm

is robust to noise sources and trajectory shape. For example,

Miyata et al. modeled the 2D baseball points using quadratic

equations [8]. However, the perspective transform of the pin-

hole camera model makes it difficult to model all 2D trajec-

tories as quadratic equations. The proposed method solves

this problem by modeling the trajectories using a piece-wise

spline function [26], [27], because the entire form of a 2D

trajectory is difficult to model using a single quadratic form.

Figure 9 shows the trajectory modeling results. As shown

in Figure 9, the quadratic form cannot represent the projected

2D baseball trajectory but the piece-wise spline function can

model the way in which the 2D baseball trajectory follows
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FIGURE 10. The baseball points with noise-source correction results
applied using the proposed trajectory-modeling method.

the original trajectory. Since the proposed system captures the

baseball trajectory at over 150 fps and there aremany baseball

points detected on the trajectory, the fitting results are almost

the same as the original 2D trajectory. The average distance

error between the baseball position and the fitted data is

6.0179 pixels in the quadratic model and 0.0304 pixels in the

piece-wise spline model. The average distance error between

the baseball position and the fitted data is 6.0179 pixels in the

quadratic model and 0.0304 pixels in the piece-wise spline

model.

In addition, the trajectory model has to be robust to noise

sources; Figure 10 shows the trajectory modeling results of

the 2D baseball points with noise sources. In Figure 10,

the proposed method can model the 2D baseball points in a

manner which is robust to noise sources and trajectory fitting

results and produces results which are almost the same as the

original trajectory. After modeling the 2D projected baseball

trajectory, the 2D projected baseball points are converted

to 2D points that incorporate the capture delay parameters.

In this process, if the trajectory is divided into too many

pieces, the local fitting error in the trajectory is reduced, but

global motion of trajectory may not be considered. Therefore,

in this work, we used empirically determined spline pieces =

8 and equation order = 3 as the parameters of the piece-wise

spline function.

If the 2D baseball points captured by the camera have τ ,

it is possible that the 2D baseball captured by synchronized

cameras is calculated by inverse delay at time τ . Let the

converted 2D baseball points and trajectory model be denoted

by x
k∗
i and Pki (t). In the nth iteration step, xk∗i that considers

τ n can be calculated as

x
k∗
i = P

k
i (t − (−τ n)) (4)

To use xk∗i as the correspondence between cameras, we must

calibrate the extrinsic parameters. The fundamental matrix

Fij between C i and C j is calculated using a five-point algo-

rithm [20] and the MLESAC algorithm is used to reject

outliers [21]. Afterwards, the essential matrixEij is computed

from K i, K j, and Fij, and the rotation and translation matrixes

are calculated by the decomposition of Eij. These new rota-

tion and translation matrixes are denoted by [R∗
i |t

∗
i ] And the

3D baseball trajectory X
k∗ is calculated from these extrinsic

parameters by using the DLT algorithm [18]. Through this

process, if the capture delay parameters are provided in the

nth iteration step, we can convert the 2D baseball points by

FIGURE 11. Objective function space of the proposed cost function.

considering the capture delay parameters, calibrating extrin-

sic parameters, and calculating the 3D baseball trajectory.

B. ESTIMATION OF THE OPTIMAL CAPTURE DELAY

PARAMETERS

To obtain accurate capture delay parameters, we need to

define a measurement that can determine whether the esti-

mated capture delay parameters are correct. As mentioned

before, the extrinsic calibration accuracy is high when the 2D

baseball points are synchronized. Therefore, if the capture

delay parameter can be estimated precisely, the calibration

accuracy increases because the synchronized 2D baseball

points can be calculated when the capture delay parameters

are correct. The calibration accuracy can be computed using

the error of the Euclidean distance between X
k and X

k∗.

Using this constraint, when the nth capture delay parameters

are given, we define the cost function E (−τ n) considering

τn as

E (−τ n) =
1

K

K
∑

k=1

Dist
(

X
k ,Xk∗

)

(5)

where Dist (X,Y) is the Euclidean distance between two 3D

points. As shown in equation (5), the higher the calibration

accuracy, the closer E (−τ n) is to 0 and this process can be

represented by minimizing problems denoted as

τ
∗ = argmin

τ n

E(−τ n) (6)

where the τ
∗ is the optimal capture delay parameters. In the

nth iteration step, if E(−τ n) is not the minimum value,

the iteration step is increased and τ n is updated. However,

if the E(−τ n) has its minimum value then the algorithm

stops and the optimal τ
∗ = τ n value and extrinsic cal-

ibration results are obtained. The proposed method adapts

the optimization algorithm to update τ n properly. To select

the optimization algorithm, we verify the objective function

space of E (τ n). Figure 10 is the objective function space of

E (−τ n), τn = {τ 2, τ 3}.

As shown in Figure 11, the proposed objective function

is a nonlinear convex function. Since the proposed object
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TABLE 2. The list of test parameters in the simulation space.

function is not differentiable, this paper adopts nonlinear

convex optimization algorithms that does not require dif-

ferential algorithm such as the Quasi-Newton method [22]

and Nelder–Mead simplex algorithm [23] to estimate τ
∗.

In this work, we used the optimization algorithm from the

MATLAB R©optimization toolbox.

IV. EXPERIMENTAL RESULTS

The proposed method’s performance for calibrating a multi-

ple unsynchronized-camera system is conducted in a simula-

tion space and the real world. The experiments were evaluated

with two measures: a capture delay parameter estimation

error and a 3D reconstruction error. Since the main idea of

the proposed method is to estimate the capture delay and

restore the baseball trajectory before the capture delay can

occur, we measure the capture delay estimation accuracy.

In addition, the 3D trajectory reconstruction accuracy of an

unsynchronized system can be measured by the extrinsic

calibration accuracy. The proposed method was run on a PC

with AMD Ryzen 7 2700X 3.70 GHz CPU and 64 GB of

RAM.

A. CALIBRATION PERFORMANCE EVALUATION IN A

SIMULATION SPACE

In a simulation space, we set three cameras and manually

changed the τ2 and τ3 from−2 frames to+2 frameswith a 0.5

frame interval. After setting the capture system, we measured

the capture delay estimation error and extrinsic calibration

error in various noise sources, trajectory fitting models, and

optimization methods. The capture delay estimation error can

be calculated by the difference between τ and τ
∗ and the

3D reconstruction error can be calculated by averaging the

3D distance between X
k and X

k∗. Table 2 shows the various

parameters used in this experiment.

As shown in Table 2, we had seven presets for the noise

source combinations and four extrinsic calibration algo-

rithms, depending on the combination of trajectory fitting

model and optimization method. For example, algorithm

[F2O2] means that 2D baseball points are modeled as a

piece-wise spline and extrinsic parameters are optimized by

the Nelder–Mead simplex method. The proposed method is

represented by F2O1 and F2O2. For each selected noise

preset and calibration algorithm, the error matrix is calculated

as shown in Figure 12.

FIGURE 12. Example of an error matrix for performance evaluation.

FIGURE 13. Performance evaluation results of estimated τ2.

FIGURE 14. Performance evaluation results of estimated τ3.

As shown in Figure 12, the error matrix has dimen-

sions 9 × 9, and the rows and columns of the matrix

represent different τ2 and τ3 values, which are selected

manually before the synthetic 3D baseball trajecto-

ries are generated in the simulation space (τ2, τ3 ∈

{−2, −1.5, −1, −0.5, 0, +0.5, +1, +1.5, +2}). Themth ele-

ment of the nth row represents the estimation error of τ2, τ3
or the 3D reconstruction error when the capture delay was

set to mthτ2 and nth τ3, respectively. The capture delay

estimation error of τi was calculated using the absolute

difference between τi and τ ∗
i . The 3D reconstruction error

was calculated using E(−τ
∗). The closer the color of the

matrix element is to red, the larger the error. Figures 13–15

show the error matrices of the τ2 and τ3 values and the 3D

reconstruction error, respectively. The horizontal and vertical

axes of each figure represent the noise presets and calibration

algorithms used for the test.
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FIGURE 15. Performance evaluation results of the 3D reconstruction.

FIGURE 16. Average performance evaluation results of estimated τ2.

As shown in Figures 13 and 14, the capture delay estima-

tion error is close to zero for all noise presets when the 2D

baseball trajectory is modeled by F2. The optimized delay

parameter error increases when the 2D baseball trajectory

is modeled using F1 because the 2D baseball location has

not been precisely corrected to its original location. This is

because F1 cannot model the 2D baseball trajectory accu-

rately. Figure 15 shows the 2D baseball location restoration

results compared to F1 and F2 when all noise sources are

added to the projected 2D baseball locations. Figures 16–

18 shows the average error of the estimated capture delay

parameter and the 3D reconstruction at each test. The test

results are represented using the mean and standard deviation

of all estimated error values.

As shown in Figures 16 and 17, the τ2 and τ3 optimization

results of the proposed method have the best performance

with a low standard deviation. This indicates that the pro-

posed method has reliably robust estimations for various

capture delay changes and noise sources. When NDoccurs,

the error is high because the 2D baseball location changes the

most. However, the proposed method can robustly and accu-

rately estimate the capture delay parameters even with the

addition of various noise sources, because the proposed base-

ball trajectory fitting model reliably restores the 2D baseball

location that contains noise sources to its original location

FIGURE 17. Average performance evaluation results of estimated τ3.

FIGURE 18. Average performance evaluation results of the 3D
reconstruction.

better than the previous model. As can be seen in Figure 18,

the proposed method also has the best performance in 3D

reconstruction. It is noteworthy that when using the previous

trajectory fitting method, even if the optimal capture delay

time is estimated, the standard 3D reconstruction accuracy is

low compared to the proposed method. When 2D trajectories

are modeled by a simple quadratic equation, it is difficult to

accurately reconstruct the 3D baseball trajectory information

even if the capture delays are estimated using the optimization

process. Figure 18 shows that the proposed 2D trajectory

modeling method provides good performance regardless of

the optimization method.

B. REAL-WORLD CALIBRATION PERFORMANCE

EVALUATION

We verified the performance of the proposed method by

testing the algorithm at a real baseball field with two

trajectory-fitting models, as shown in Table 2. We captured

real baseball pitches using two high-speed cameras at a

baseball stadium in Seoul. We installed the cameras below

the first dugout roof and set the camera lens to capture the

entire pitching area. We used a Toshiba Telicam BU405M

camera with an AZURE-1040Z3M zoom lens, and captured

the pitching area at 175 fps with 2048×1024 px resolution.
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FIGURE 19. Real-world test system environment (a) Baseball field and
camera positions, (b) High-speed camera installation behind the dug-out,
(c) Captured image examples.

This camera supports automatic synchronization using a bus

synchronization technique, and the user can specify the cap-

ture delay between cameras. We implemented the capture

program using Toshiba TeliCamAPI. This experiment also

was run on a PC with AMD Ryzen 7 2700X 3.70 GHz CPU

and 64 GB of RAM. The intrinsic parameters of the cam-

eras were calculated using the method of Zhang et al. [24].

Figure 19 shows the camera installation environment and the

corresponding captured images.

To evaluate the performance of the proposed method

at various capture delay times, we set four capture delay

presets
(

1
3
frame, 1

2
frame, 2

3
frame, 1 frame

)

. In addition,

we obtained six different pitch trajectories in the pitching

area for use in extrinsic calibration and trajectory recon-

struction. Figure 20 shows the pitching trajectories that were

used for calibration. The center of the baseball was detected

usingKim’s algorithm [25]. This baseball detection algorithm

detects the peak positions as the center of the baseball from

the difference image without using the shape of the baseball.

In a continuous image captured by a high-speed camera,

it can be assumed that the background does not change, so a

moving object region can be obtained from the difference

image between two continuous images. In order to detect a

baseball in a manner which is robust to detection error and

occlusion, we used Hong’s baseball tracking algorithm [28].

Figure 21 represents the baseball center detection results. The

same trajectories between two cameras are represented by the

FIGURE 20. Pitching trajectories for calibration. (Left column: Camera 1,
Right column: Camera 2).

FIGURE 21. Detected 2D baseball points for extrinsic calibration.

same color and the baseball points between the two cameras

correspond in the order of left to right within the individual

same trajectory.

In Figure 21, we can see that the noise sources considered

in the simulation situation are included in the 2D center of the

baseball detection results. In particular, some baseball-center

detection results deviated from the trajectory because shad-

ows occurred on the baseball or the baseball disappeared

into a background of a similar color. These center detection

errors are represented by ND in the previous process and

this error can be corrected in the trajectory modeling pro-

cess as tested in the simulation experiment. We apply the

optimization method by modifying the cost function of the
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TABLE 3. Calibration results in a real-world experiment (τ2 = 1
3

frame).

TABLE 4. Calibration results in a real-world experiment (τ2 = 1
2

frame).

TABLE 5. Calibration results in a real-world experiment (τ2 = 2
3

frame).

proposed objective function using a reprojection error instead

of the 3D distance error since we cannot measure the real 3D

location of the pitching trajectories in the real world. The

test was conducted with four different capture time delay

settings (τ2 = 1
3
frame, 1

2
frame, 2

3
frame, 1 frame) and each

optimization process was performed four times to evaluate

the average performance. The real-world calibration perfor-

mance was evaluated with the capture delay estimation error

and an extrinsic calibration error that was similar to testing

in the simulation space. The real-space extrinsic calibration

error was calculated using the average reprojection error of

all trajectory points. Tables 3–6 show the performance eval-

uation results of each capture delay parameter.

As shown in Tables 3–6, the proposed method achieves

the highest accuracy in capture delay estimation and extrinsic

calibration results for all capture delay settings. In particular,

the real-world test results are very similar to the experimental

results in the simulation environment, which indicates that

the calibration method of the unsynchronized system that is

verified in the simulation environment can be used effectively

TABLE 6. Calibration results in a real-world experiment (τ2 = 1frame).

FIGURE 22. Errors in average capture delay parameter estimation.

FIGURE 23. Errors in average 3D reconstruction. The 3D reconstruction
error of the synchronized system is denoted by a red triangle.

in real-world situations. Figure 22 and 23 summarizes the

results. It shows that the average capture delay estimation

error of the proposed method is 0.0077 frames and that of the

previous method is 0.0881 frames; the proposed method can

estimate the capture delay parameters about 10 times more

accurately than the previous method. In addition, the average

calibration error of the proposed method is 0.1003 pixels and

that of the previous method is 0.1726 pixels. Considering

that the calibration accuracy of the synchronized system is

0.083 pixels, the proposed method is able to reconstruct the

3D pitching trajectories to error of 0.02 pixels only whereas

the previous method shows an error of about 0.09 pixels.

The performance comparison between previous method and

proposed method as summarized in Table 7.
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TABLE 7. Comparison of the experimental results between the proposed
method and [8] in real-world experiments.

V. CONCLUSION

We have developed a 3D trajectory reconstruction method

involving modeling the motion of a baseball using piece-wise

spline function and optimizing the optimal capture delay

parameters in a multiple unsynchronized camera system.

We derived a method to analyze the capture process of

multiple unsynchronized cameras in a simulation space that

mimics the real-world environment. To predict the position

of a baseball at a subframe level, and estimate the optimal

capture delay parameters precisely, we defined an objec-

tive function for capture delay and estimated the capture

delay using a non-linear optimization algorithm. The perfor-

mance of the proposed method has been evaluated in both

simulation and real-world situations, and the experimental

results show that the proposed method reliably reconstructs

a 3D baseball trajectory even in the presence of capture

delay.

Compared with other methods, the proposed method pro-

vides an effective trajectory reconstruction algorithm which

analyzes the multiple unsynchronized camera capture system

in the simulation space. The proposed system has shown

high accuracy in 3D trajectory reconstruction, due to the use

of a piece-wise spline model that can accurately model the

trajectory of a baseball in a real baseball game situation.

In future work we will consider approaches to perspective

transformations of the camera, in order to further improve the

modelling of 2D baseball trajectories.
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