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We present a precise calculation of the dilepton invariant-mass spectrum and the decay rate for

B�
→ π�lþl− (l� ¼ e�; μ�) in the Standard Model (SM) based on the effective Hamiltonian approach

for the b → dlþl− transitions. With the Wilson coefficients already known in next-to-next-to-leading

logarithmic (NNLL) accuracy, the remaining theoretical uncertainty in the short-distance contribution

resides in the form factors fþðq2Þ, f0ðq2Þ and fTðq2Þ. Of these, fþðq2Þ is well measured in the charged-

current semileptonic decays B → πlνl, and we use the B-factory data to parametrize it. The corresponding

form factors for the B → K transitions have been calculated in the lattice QCD approach for large q2

and extrapolated to the entire q2 region using the so-called z expansion. Using an SUð3ÞF-breaking ansatz,
we calculate the B → π tensor form factor, which is consistent with the recently reported lattice B → π

analysis obtained at large q2. The prediction for the total branching fraction BðB�
→ π�μþμ−Þ ¼

ð1.88þ0.32
−0.21 Þ × 10−8 is in good agreement with the experimental value obtained by the LHCb Collaboration.

In the low-q2 region, heavy-quark symmetry (HQS) relates the three form factors with each other.

Accounting for the leading-order symmetry-breaking effects, and using data from the charged-current

process B → πlνl to determine fþðq2Þ, we calculate the dilepton invariant-mass distribution in the low-q2

region in the B�
→ π�lþl− decay. This provides a model-independent and precise calculation of the

partial branching ratio for this decay.
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I. INTRODUCTION

Recently, the LHCb Collaboration reported the first

observation of the B�
→ π�μþμ− decay, using 1.0 fb−1

integrated luminosity in proton-proton collisions at the

Large Hadron Collider (LHC) at
ffiffiffi

s
p ¼ 7 TeV [1]. Unlike

the b → slþl− transitions, which have been studied at the

B factories and hadron colliders in a number of decays,

such as B → ðK;K�Þlþl− and Bs → ϕlþl− [2], the B�
→

π�μþμ− decay is the first b→ dlþl− transition measured

so far. Phenomenological analysis of this process, under

controlled theoretical errors, will provide us with indepen-

dent information concerning the b→ d flavor-changing

neutral-current (FCNC) transitions in the B-meson sector.

Hence, B�
→ π�μþμ− decay is potentially an important

input in the precision tests of the SM in the flavor sector

and, by the same token, also in searches for physics

beyond it.

The measured branching ratio BðBþ
→ πþμþμ−Þ ¼

½2.3� 0.6ðstatÞ � 0.1ðsystÞ� × 10−8 [1] is in good agree-

ment with the SM expected rate [3], which, however, like a

number of other estimates in the literature [4,5], is based on

model-dependent input for the B → π form factors. The

Light-Cone Sum Rules (LCSR) approach (see, for exam-

ple, Refs. [6] and [7]) is certainly helpful in the low-q2

region and has been used in the current phenomenological

analysis of the data [1]. However, theoretical accuracy of

the LCSR-based form factors is limited due to the depend-

ence on numerous input parameters and wave function

models. Hence, it is very desirable to calculate the form

factors from first principles, such as the lattice QCD, which

have their own range of validity restricted by the recoil

energy (here, the energy Eπ of the π meson), as the

discretization errors become large with increasing Eπ .

With improved lattice technology, one can use the lattice
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form factors to predict the decay rates in the B → π and

B → K transitions (as well as in other heavy-to-light meson

transitions) in the low-recoil region, where the lattice

results apply without any extrapolation, in a model-

independent manner. At present, the dimuon invariant-

mass distribution in the Bþ
→ πþμþμ− decay is not at

hand, and only the integrated branching ratio is known. We

combine the lattice input with other phenomenologically

robust approaches to calculate the dilepton invariant-mass

spectrum in the entire q2 region to compute the corre-

sponding integrated decay rates for comparison with the

data [1]. Our framework makes use of the methods based

on the heavy-quark symmetry (HQS) in the large-recoil

region, data from the B-factory experiments on the

charged-current processes [8] B0
→ π−lþνl and Bþ

→

π0lþνl to determine one of the form factors, fþðq2Þ, and
the available lattice results on the B → π and B → K
transition form factors in the low-recoil region.

We recall that the decay B�
→ π�lþl− involves three

form factors, two of which, fþðq2Þ and f0ðq2Þ, characterize
the hadronic B → π matrix element of the vector current

J
μ
VðxÞ ¼ b̄ðxÞγμdðxÞ, and the third of which, fTðq2Þ,

enters in the corresponding matrix element of the tensor

current J
μ
TðxÞ ¼ b̄ðxÞσμνqνdðxÞ, where qμ ¼ p

μ
B − p

μ
π is the

momentum transferred to the lepton pair l
þ
l
− [see

Eqs. (10) and (11) below]. Using the isospin symmetry,

the first two form factors are the same as the ones

encountered in the charged-current processes Bþ
→

π0lþνl and B0
→ π−lþνl. Of these, the contribution to

the decay rate proportional to f0ðq2Þ is strongly suppressed
by the mass ratio m2

l
=m2

B (for l ¼ e; μ). The form factor

fþðq2Þ has been well measured (modulo jVubj) in the entire
q2 range by the BABAR [9,10] and Belle [11,12] collab-

orations. We have undertaken a χ2 fit of these data, using

four popular form-factor parametrizations of fþðq2Þ: (i) the
Becirevic-Kaidalov (BK) parametrization [13], (ii) the

Ball-Zwicky (BZ) parametrization [6], (iii) the Boyd-

Grinstein-Lebed (BGL) parametrization [14], and (iv) the

Bourrely-Caprini-Lellouch (BCL) parametrization [15].

All these parametrizations yield good fits measured in

terms of χ2min=ndf, where ndf is the number of degrees of

freedom (see Table III). However, factoring in theoretical

arguments based on the Soft Collinear Effective Theory

(SCET) [16] and preference of the lattice-QCD-based

analysis of the form factors fþðq2Þ, f0ðq2Þ, and fTðq2Þ
in terms of the so-called z expansion and a variation thereof
(see Ref. [17] for a recent summary of the lattice heavy-to-

light form factors), we use the BGL parametrization as our

preferred choice for the extraction of fþðq2Þ from the

B → πlνl data. It should be noted that our analysis for the

extraction of fþðq2Þ is model independent, as it is based

on the complete set of experimental data. Meanwhile, there

are also several theoretical nonperturbative methods which

allow one to determine this form factor, but usually in a

limited q2 range—for example, the LCSRs [7,18,19] and

the kT-factorization approach [20], which are often invoked
in estimating the vector B→ π transition form factor.

In order to determine the other two form factors, f0ðq2Þ
and fTðq2Þ, in the entire q2 domain, we proceed as follows:

Lattice QCD provides them in the high-q2 region. A

number of dedicated lattice-based studies of the heavy-

to-light form factors are available in the literature. In

particular, calculations of the form factors in the B →
ðK;K�Þlþl− decays, based on the (2þ 1)-flavor gauge

configurations generated by the MILC Collaboration [21],

have been undertaken by the FNAL/MILC [22,23],

HPQCD [24,25] and Cambridge/Edinburgh [26,27] lattice

groups. We make use of the B → K lattice results,

combining them with an ansatz on the SUð3ÞF symmetry

breaking to determine the fTðq2Þ form factor for the B→ π

transition. Very recently, new results on the B → π form

factors—in particular, the first preliminary results on the

tensor form factor fBπT ðq2Þ—have also become available

from the lattice simulations [28,29]. While the analysis

presented in Ref. [29] by the FermiLab Lattice and MILC

collaborations is still blinded with an unknown offset

factor, promised to be disclosed when the final results

are presented, we use the available results on the fBKT ðq2Þ
form factor by the HPQCD Collaboration [24,25] as input

in the high-q2 region to constrain our ansatz on the SUð3ÞF
symmetry breaking. Thus, combining the extraction of

fþðq2Þ from the B→ πlνl data, the lattice QCD data on

fTðq2Þ for the large-q2 domain, and the BGL-like para-

metrization [14] in the form of z expansion to extrapolate

this form factor to the lower-q2 range, we obtain the

following branching ratio:

BðBþ
→ πþμþμ−Þ ¼ ð1.88þ0.32

−0.21Þ × 10−8; (1)

which has a combined accuracy of about�15%, taking into

account also the uncertainties in the CKM matrix elements,

for which we have used the values obtained from the fits of

the CKM unitarity triangle [30]. This result is in agreement

(within large experimental errors) with the experimental

value reported recently by the LHCb Collaboration [1]:

BðBþ
→ πþμþμ−Þ¼ ð2.3�0.6ðstat:Þ�0.1ðsyst:ÞÞ×10−8:

(2)

As the lattice calculations of the B → π form factors

become robust and the dilepton invariant-mass spectrum

in Bþ
→ πþμþμ− is measured, one can undertake a

completely quantitative fit of the data in the SM, taking

into account correlations in the lattice calculations and data.

In the SM, the b→ dlþl− transition is suppressed

essentially by the factor jVtd=Vtsj relative to the b→
slþl− transition. In terms of exclusive decays, the first

measurement of the ratio BðBþ
→πþlþl−Þ=BðBþ

→

Kþ
l
þ
l
−Þ has been reported by the LHCbCollaboration [1]:
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BðBþ
→ πþμþμ−Þ

BðBþ
→ Kþμþμ−Þ ¼ 0.053� 0.014ðstat:Þ

� 0.001ðsyst:Þ: (3)

In the SM, this ratio can be expressed as follows:

BðBþ
→ πþμþμ−Þ

BðBþ
→ Kþμþμ−Þ ¼

�

�

�

�

Vtd

Vts

�

�

�

�

2

F
π=K
tot ; (4)

where F
π=K
tot is the ratio resulting from the convolution

of the form factors and the q2-dependent effective Wilson

coefficients. Using F
π=K
tot ¼ 0.87, and neglecting the

errors on this quantity, LHCb has determined the ratio of

the CKM matrix elements, yielding jVtd=Vtsj ¼ 0.266�
0.035ðstat:Þ � 0.003ðsyst:Þ [1]. At present, this method

is not competitive with other determinations of jVtd=Vtsj,
such as from the BðsÞ − B̄ðsÞ mixings [2], but with greatly

improved statistical error, anticipated at the LHC and

Super-B factory experiments, this would become a valuable

and independent constraint on the CKM matrix. A reliable

estimate of the quantity F
π=K
tot is also required. In particular,

we expect that the error on the corresponding quantity,

F
π=K
HQSðq2 ≤ q20Þ, denoting the ratio of the partial branching

ratios restricted to the low-q2 domain, can be largely reduced

with the help of the heavy-quark symmetry. We hope to

return to improved theoretical estimates of F
π=K
tot and

F
π=K
HQSðq2 ≤ q20Þ in a future publication.

In the large-recoil limit, the form factors in the B →
ðπ; ρ;ωÞ and B → ðK;K�Þ transitions obey the heavy-

quark symmetry, reducing the number of independent form

factors [31]. In particular, the B→ π form factors f0ðq2Þ
and fTðq2Þ are related to fþðq2Þ in the HQS limit [see

Eqs. (62) and (63) below]. Taking into account the leading-

order symmetry-breaking corrections, these relations get

modified [32], bringing in their wake a dependence on the

QCD coupling constant αsðμhÞ and αsðμhcÞ, where the hard
scale μh ≃mb and the intermediate (or hard-collinear) scale

μhc ¼
ffiffiffiffiffiffiffiffiffi

mbΛ
p

, with Λ≃ 0.5 GeV, reflect the multiscale

nature of this problem. In addition, a nonperturbative

quantity ΔFπ, which involves the leptonic decay constants

fB and fπ and the first inverse moments of the leading-twist

light-cone distribution amplitudes (LCDAs) of the B and π

meson also enters [see Eqs. (68) and (69) below]. We have

used the HQS-based approach to determine the fTðq2Þ
form factor in terms of the measured fþðq2Þ form factor

from the semileptonic B → πlνl data, discussed above.

This provides a model-independent determination of the

dilepton invariant-mass distribution in the low-q2 region.

Leaving uncertainties from the form factors aside,

the other main problem from the theoretical point of view

in the b → dlþl− transitions is presented by the so-called

long-distance contributions, which are dominated by

the c̄c and ūu resonant states, which show up as charmonia

[J=ψ ; ψð2SÞ; …] and light vector (ρ and ω) mesons,

respectively. Only model-dependent descriptions (in a

Breit-Wigner form) of such long-distance effects are

known at present, which compromises the precision in

the theoretical predictions of the total branching fractions.

Excluding the resonance-dominated regions from the

dilepton invariant-mass distributions is therefore the pre-

ferred way to compare data and theory. With this in mind,

we calculate the following partially integrated branching

ratio:

BðBþ
→ πþμþμ−; 1GeV2 ≤ q2 ≤ 8GeV2Þ

¼ ð0.57þ0.07
−0.05Þ × 10−8; (5)

where the lower and upper q2-value boundaries are chosen
to remove the light-vector (ρ and ω mesons) and

charmonium-resonant regions. However, with the product

branching ratios [30] BðBþ
→ρ0πþÞ×Bðρ0→μþμ−Þ¼

ð3.78�0.59Þ×10−10 and BðBþ
→ωπþÞ×Bðω→μþμ−Þ¼

ð6.2�2.2Þ×10−10, the long-distance effects in the low-q2

region are numerically not important.

Due to the small branching ratio, it will be a while before

the entire dimuon invariant mass is completely measured in

the Bþ
→ πþμþμ− decay. Anticipating this, and following

similar procedures adopted in the analysis of the data in the

B→ ðK;K�Þlþl− decays [33,34], we present here results

for the partial branching ratios dBðBþ
→ πþμþμ−Þ=dq2,

binned over specified ranges ½q2min; q
2
max� in eight q2

intervals. They would allow the experiments to check

the short-distance (renormalization-improved perturbative)

part of the SM contribution in the b→ dlþl− transitions

precisely.

This paper is organized as follows: In Sec. II, we

present the dilepton invariant-mass spectrum dBðBþ
→

πþμþμ−Þ=dq2 in the effective weak Hamiltonian approach

based on the SM and the numerical values of the effective

Wilson coefficients. Section III is devoted to the four popular

parameterizations of the vector, scalar and tensor form

factors. Section IV describes the fits of the semileptonic

data on the B → πlνl decays using the form-factor para-

metrizations discussed earlier. Section V describes the

calculation of the form factors f0ðq2Þ and fTðq2Þ for the
B→ π transition, using lattice data as input in the high-q2

region and the z expansion to extrapolate it to low q2.
Section VI contains the calculation of the dilepton invariant-

mass spectrum in the low-q2 region, using methods based

on the heavy-quark symmetry. In Sec. VII, we present the

dilepton invariant-mass spectrum in the entire q2 region, as
well as the partial decay rates, integrated over eight different

q2 intervals. A summary and outlook are given in Sec. VIII.

II. THE Bþ
→ π

þ
l
þ
l
− DECAY

The effective weak Hamiltonian encompassing the

transitions b → dlþl− (l� ¼ e�, μ�, or τ�) in the

Standard Model can be written as follows [35]:
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Hb→d
eff ¼ 4GF

ffiffiffi

2
p

�

VudV
�
ubðC1O

ðuÞ
1 þ C2O

ðuÞ
2 Þ þ VcdV

�
cbðC1O1

þ C2O2Þ − VtdV
�
tb

X

10

i¼3

CiOi

�

; (6)

where GF is the Fermi constant, and Vq1q2
are the CKM

matrix elements which satisfy the unitary condition

VudV
�
ub þ VcdV

�
cb þ VtdV

�
tb ¼ 0 (which can be used to

eliminate one combination). In contrast to the b→ s
transitions, all three terms in the unitarity relation are of

the same order in λ (V�
ubVud ∼ V�

cbVcd ∼ V�
tbVtd ∼ λ3), with

λ ¼ sin θ12 ≃ 0.2232 [30].

The local operators appearing in Eq. (6) are the

dimension-6 operators, and they are defined at an arbitrary

scale μ as follows [36,37]:

O
ðuÞ
1 ¼ ðd̄LγμTAuLÞðūLγμTAbLÞ; (7a)

O
ðuÞ
2 ¼ ðd̄LγμuLÞðūLγμbLÞ; (7b)

O1 ¼ ðd̄LγμTAcLÞðc̄LγμTAbLÞ; (7c)

O2 ¼ ðd̄LγμcLÞðc̄LγμbLÞ; (7d)

O3 ¼ ðd̄LγμbLÞ
X

q

ðq̄γμqÞ; (7e)

O4 ¼ ðd̄LγμTAbLÞ
X

q

ðq̄γμTAqÞ; (7f)

O5 ¼ ðd̄LγμγνγρbLÞ
X

q

ðq̄γμγνγρqÞ; (7g)

O6 ¼ ðd̄LγμγνγρTAbLÞ
X

q

ðq̄γμγνγρTAqÞ; (7h)

O7 ¼
emb

g2s
ðd̄LσμνbRÞFμν; (7i)

O8 ¼
mb

gs
ðd̄LσμνTAbRÞGA

μν; (7j)

O9 ¼
e2

g2s
ðd̄LγμbLÞ

X

l

ðl̄γμlÞ; (7k)

O10 ¼
e2

g2s
ðd̄LγμbLÞ

X

l

ðl̄γμγ5lÞ; (7l)

where e is the electric elementary charge; gs is the strong

coupling; TA (A ¼ 1;…; N2
c − 1) are the generators of the

color SUðNcÞ group with Nc ¼ 3, σμν ¼ iðγμγν − γνγμÞ=2;
the subscripts L and R refer to the left- and right-handed

components of the fermion fields,ψL;RðxÞ¼ð1∓γ5ÞψðxÞ=2;
Fμν and GA

μν are the photon and gluon fields, respectively;

and mb is the b-quark mass. (The terms in the O7 and O8

operators proportional to the d-quark mass md are omitted,

as their contributions to the amplitudes are suppressed by the

ratio md=mb ∼ 10−3 and negligible at the present level of

accuracy.) Sums over q and l denote sums over all quarks

(except the t quark) and charged leptons, respectively.

The Wilson coefficients CiðμÞ (i ¼ 1;…; 10) depending
on the renormalization scale μ are calculated at the

matching scale μW ∼MW , the W-boson mass, as a

perturbative expansion in the strong coupling constant

αsðμWÞ [37]:

CiðμWÞ ¼ C
ð0Þ
i ðμWÞ þ

αsðμWÞ
4π

C
ð1Þ
i ðμWÞ

þ
�

αsðμWÞ
4π

�

2

C
ð2Þ
i ðμWÞ þ � � � ; (8)

They can be evolved to a lower scale μb ∼mb, using the

anomalous dimensions of the above operators to the NNLL

order [37]:

γi¼
αsðμWÞ
4π

γ
ð0Þ
i þ

�

αsðμWÞ
4π

�

2

γ
ð1Þ
i þ

�

αsðμWÞ
4π

�

3

γ
ð2Þ
i þ�� � :

(9)

The Feynman diagram of the Bþ
→ πþlþl− decay is

displayed in Fig. 1, in which the solid blob represents the

effective Hamiltonian Hb→d
eff [Eq. (6)]. The hadronic matrix

elements of the operators Oi between the B- and π-meson

states are expressed in terms of three independent form

factors fþðq2Þ, f0ðq2Þ and fTðq2Þ as follows [38]:

hπðpπÞjb̄γμdjBðpBÞi ¼ fþðq2Þ
�

p
μ
B þ p

μ
π −

m2
B −m2

π

q2
qμ
�

þ f0ðq2Þ
m2

B −m2
π

q2
qμ; (10)

hπðpπÞjb̄σμνqνdjBðpBÞi ¼
ifTðq2Þ
mB þmπ

½q2ðpμ
B þ p

μ
πÞ

− ðm2
B −m2

πÞqμ�; (11)

FIG. 1. Feynman diagram for the Bþ
→ πþlþl− decay.
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where p
μ
B and p

μ
π are the four-momenta of the B and π

mesons, respectively;mB andmπ are their masses; and qμ ¼
p
μ
B − p

μ
π is the momentum transferred to the lepton pair.

The B → π transition form factors fþðq2Þ, f0ðq2Þ and

fTðq2Þ are scalar functions whose shapes are determined

by using nonperturbative methods. Of these, using the

isospin symmetry, fþðq2Þ can also be obtained by perform-

ing a phenomenological analysis of the existing experimen-

tal data on the charged-current semileptonic decays

B → πlνl. In the large-recoil (low-q2) limit, these form

factors are related by the heavy-quark symmetry, as dis-

cussed below.

The differential branching fraction in the dilepton

invariant mass q2 can be expressed as follows:

dBðBþ
→ πþlþl−Þ
dq2

¼ G2
Fα

2
emτB

1024π5m3
B

jVtbV
�
tdj2

×

ffiffiffiffiffiffiffiffiffiffiffi

λðq2Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
4m2

l

q2

s

Fðq2Þ; (12)

where αem is the fine-structure constant, ml is the lepton

mass, τB is the B-meson lifetime,

λðq2Þ ¼ ðm2
B þm2

π − q2Þ2 − 4m2
Bm

2
π (13)

is the kinematic function encountered in three-body decays

(the triangle function), and Fðq2Þ is the dynamical function

encoding the Wilson coefficients and the form factors:

Fðq2Þ ¼ 2

3
λðq2Þ

�

1þ 2m2
l

q2

�

×

�

�

�

�

Ceff
9 ðq2Þfþðq2Þ þ

2mb

mB þmπ

Ceff
7 ðq2ÞfTðq2Þ

�

�

�

�

2

þ 2

3
λðq2Þ

�

1 −
4m2

l

q2

�

jCeff
10fþðq2Þj2

þ 4m2
l

q2
ðm2

B −m2
πÞ2jCeff

10f0ðq2Þj2: (14)

Note that the last term in Eq. (14) containing the form factor

f0ðq2Þ is strongly suppressed by the mass ratio m2
l
=q2 for

the electron- or muon-pair production over most of the

dilepton invariant-mass spectrum and will not be needed in

our numerical estimates. The dynamical function [Eq. (14)]

contains the effective Wilson coefficients Ceff
7 ðq2Þ, Ceff

9 ðq2Þ
and Ceff

10 , which are specific combinations of the Wilson

coefficients entering the effective Hamiltonian [Eq. (6)]. To

the NNLO approximation, the effective Wilson coefficients

are given by [37,39–42]

Ceff
7 ðq2Þ ¼ A7 −

αsðμÞ
4π

×
h

C
ð0Þ
1 F

ð7Þ
1 ðsÞ þ C

ð0Þ
2 F

ð7Þ
2 ðsÞ þ A

ð0Þ
8 F

ð7Þ
8 ðsÞ

i

þ λu
αsðμÞ
4π

½Cð0Þ
1 ðFð7Þ

1;uðsÞ − F
ð7Þ
1 ðsÞÞ

þ C
ð0Þ
2 ðFð7Þ

2;uðsÞ − F
ð7Þ
2 ðsÞÞ�; (15)

Ceff
9 ðq2Þ¼A9þT9hðm2

c;q
2ÞþU9hðm2

b;q
2ÞþW9hð0;q2Þ

−
αsðμÞ
4π

× ½Cð0Þ
1 F

ð9Þ
1 ðsÞþC

ð0Þ
2 F

ð9Þ
2 ðsÞþA

ð0Þ
8 F

ð9Þ
8 ðsÞ�

þλu

�

4

3
C1þC2

�

½hðm2
c;q

2Þ−hð0;q2Þ�

þλu
αsðμÞ
4π

½Cð0Þ
1 ðFð9Þ

1;uðsÞ−F
ð9Þ
1 ðsÞÞ

þC
ð0Þ
2 ðFð9Þ

2;uðsÞ−F
ð9Þ
2 ðsÞÞ�; (16)

Ceff
10 ¼ 4π

αsðμÞ
C10; (17)

where s ¼ q2=m2
B is the reduced momentum squared of the

lepton pair. The quantity λu above is the ratio of the CKM

matrix elements, defined as follows:

λu ≡
VubV

�
ud

VtbV
�
td

¼ −
Rb

Rt

eiα; (18)

which is expressed in terms of the apex angle α and the

sides Rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − ρ̄Þ2 þ η̄2
p

and Rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̄2 þ η̄2
p

[30] of the

CKM unitarity triangle, where ρ̄ and η̄ are the perturba-

tively improved Wolfenstein parameters [43] of the CKM

matrix. The usual procedure is to include an additional

term, usually denoted by Yðq2Þ [41,44], into the Ceff
9 ðq2Þ

Wilson coefficient [Eq. (16)], which effectively accounts

for the resonant states (mostly charmonia decaying into the

lepton pair). The study of the long-distance effects based on

both theoretical tools and experimental data on the two-

body hadronic decays B → Kð�Þ þ V, where V is a vector

meson decaying into the lepton pair V → l
þ
l
−, was

undertaken recently in the context of the FCNC semi-

leptonic decays B → Kð�Þ
l
þ
l
− [45–47]. The resonant

contributions can be largely removed by a stringent cut,

but they may have a moderate impact also away from

the resonant region and are included in the analysis of the

data. Similar analysis can be undertaken for the B →

ðπ; ρ;ωÞlþl− decays also, but it has not yet been per-

formed [47]. We concentrate here on the short-distance part

of the differential branching ratio.

Following the prescription of Ref. [41], the terms ωiðsÞ
accounting for the bremsstrahlung corrections necessary

for the inclusive B → ðXs; XdÞlþl− decays are omitted,

and the following set of auxiliary functions is used:
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A7ðμÞ ¼
4π

αsðμÞ
C7ðμÞ −

1

3
C3ðμÞ −

4

9
C4ðμÞ −

20

3
C5ðμÞ

−
80

9
C6ðμÞ; (19)

A8ðμÞ ¼
4π

αsðμÞ
C8ðμÞ þ C3ðμÞ −

1

6
C4ðμÞ þ 20C5ðμÞ

−
10

3
C6ðμÞ; (20)

A9ðμÞ ¼
4π

αsðμÞ
C9ðμÞ þ

X

6

i¼1

CiðμÞγð0Þi9 ln
mb

μ
þ 4

3
C3ðμÞ

þ 64

9
C5ðμÞ þ

64

27
C6ðμÞ; (21)

T9ðμÞ ¼
4

3
C1ðμÞ þ C2ðμÞ þ 6C3ðμÞ þ 60C5ðμÞ; (22)

U9ðμÞ¼−
7

2
C3ðμÞ−

2

3
C4ðμÞ−38C5ðμÞ−

32

3
C6ðμÞ; (23)

W9ðμÞ¼−
1

2
C3ðμÞ−

2

3
C4ðμÞ−8C5ðμÞ−

32

3
C6ðμÞ; (24)

where the required elements of the anomalous dimension

matrix γ
ð0Þ
ij can be read off from Ref. [37]. The numerical

values of the scale-dependent functions specified above at

three representative scales, μ ¼ 2.45 GeV, μ ¼ 4.90 GeV

and μ ¼ 9.80 GeV, are presented in Table I.

In Eq. (16), mc and mb are the c- and b-quark masses,

respectively, the masses of the light u, d, and s quarks are

neglected, and the standard one-loop function hðz; sÞ is

used [35] (x ¼ 4z=s):

hðz; sÞ ¼ −
4

9
ln

z

μ2
þ 8

27
þ 4

9
x −

2

9
ð2þ xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

j1 − xj
p

×

8

<

:

ln j 1þ
ffiffiffiffiffiffi

1−x
p

1−
ffiffiffiffiffiffi

1−x
p j − iπ; for x < 1;

2 arctanð1=
ffiffiffiffiffiffiffiffiffiffiffi

x − 1
p

Þ; for x ≥ 1.
(25)

The renormalized αs corrections F
ð7Þ
1;2ðsÞ and F

ð9Þ
1;2ðsÞ to

the b→ slþl− matrix element originated by the O1 and

O2 operators from the effective Hamiltonian [Eq. (6)] are

known analytically in both the small-q2 [39,40] and the

large-q2 [48] domains of the lepton invariant mass squared

as expansions in
ffiffiffi

z
p ¼ mc=mb. Note that to obtain the

invariant-mass spectrum and forward-backward asymmetry

in the inclusive B → Xsl
þ
l
− decays, the F

ð7Þ
1;2;8ðsÞ and

F
ð9Þ
1;2;8ðsÞ functions were expressed in terms of master

integrals and evaluated numerically [49]. The functions

F
ð7Þ
1ð2Þ;uðsÞ and F

ð9Þ
1ð2Þ;uðsÞ, which are important in the b →

dlþl− transitions, were also calculated analytically first as

an expansion in powers of s [42] and later exactly [88],

from which the later expressions are used by us, as we are

considering the B → πlþl− decay in the entire q2 region.

The functions F
ð7Þ
1;2ðsÞ (the top two frames) and F

ð9Þ
1;2ðsÞ

(the bottom two frames) are presented in Fig. 2 at the scale

μ ¼ mb and
ffiffiffi

z
p ¼ 0.36. The real and imaginary parts of

these functions are shown by the solid and dashed lines,

respectively. The functions F
ð7Þ
1;2ðsÞ and F

ð9Þ
1;2ðsÞ at

ffiffiffi

z
p ¼ 0,

which are obtained analytically in Ref. [88], are also shown

in Fig. 2. The vertical dashed lines specify the s region,

where the expansions no longer hold. As the correct

analytical functions in this region are not known for realistic

values of
ffiffiffi

z
p

, we have extrapolated the known analytic

expressions from above and below (i.e., using expansions in

s and 1 − s) to a point in the intermediate region where the

differential branching fraction has a minimal discontinuity.

This allow us to get an approximate estimate of the

perturbative part of the differential branching fraction in

the gap between the J=ψ and ψð2SÞ resonances.
In the analysis, we also used the renormalized αs

corrections F
ð7;9Þ
8 ðsÞ from the O8 operator valid in the full

kinematic q2 domain (0 ≤ s ≤ 1) [48]:

F
ð7Þ
8 ðsÞ¼ 4π2

27

2þ s

ð1− sÞ4−
16ð2þ sÞ
3ð1− sÞ4 arcsin

2

ffiffiffi

s
p

2

−
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sð4− sÞ
p

9ð1− sÞ3 ð9−5sþ2s2Þarcsin
ffiffiffi

s
p

2

−
4ð11−16sþ8s2Þ

9ð1− sÞ2 −
8s lns

9ð1− sÞ−
8iπ

9
−
32

9
ln

μ

mb

;

(26)

TABLE I. Wilson coefficients C1, C2, C
eff
10 , and the combina-

tions of the Wilson coefficients specified in Eqs. (19)–(24),

are shown at three representative renormalization scales:

μb ¼ 2.45 GeV, μb ¼ 4.90 GeV and μb ¼ 9.80 GeV. The strong

coupling αsðμÞ is evaluated by the three-loop expression in the

M̄S scheme with five active flavors and αsðMZÞ ¼ 0.1184 [30].

The entries correspond to the top-quark mass mt ¼ 175 GeV.

The superscript (0) denotes the lowest-order contribution, while a

quantity with the superscript (1) is a perturbative correction of

order αs, and X ¼ Xð0Þ þ Xð1Þ.

μ ¼ 2.45 GeV μ ¼ 4.90 GeV μ ¼ 9.80 GeV

αsðμÞ 0.269 0.215 0.180

½Cð0Þ
1 ; C

ð1Þ
1 � ð−0.707;0.241Þ ð−0.492;0.207Þ ð−0.330;0.184Þ

½Cð0Þ
2 ; C

ð1Þ
2 � ð1.047;−0.028Þ ð1.024;−0.017Þ (1.011,0.010)

½Að0Þ
7 ; A

ð1Þ
7 � ð−0.355;0.025Þ ð−0.313;0.010Þ ð−0.278;−0.001Þ

A
ð0Þ
8 −0.164 −0.148 −0.134

½Að0Þ
9 ; A

ð1Þ
9 � ð4.299;−0.237Þ ð4.171;−0.053Þ (4.164,0.090)

½Tð0Þ
9 ; T

ð1Þ
9 � (0.101,0.280) (0.367,0.251) (0.571,0.231)

½Uð0Þ
9 ; U

ð1Þ
9 � (0.046,0.023) (0.033,0.015) (0.023,0.010)

½Wð0Þ
9 ; W

ð1Þ
9 � (0.045,0.016) (0.032,0.012) (0.022,0.008)

½Ceffð0Þ
10 ;C

effð1Þ
10 � ð−4.560;0.378Þ ð−4.560;0.378Þ ð−4.560;0.378Þ
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F
ð9Þ
8 ðsÞ ¼ −

8π2

27

4 − s

ð1 − sÞ4 þ
8ð5 − 2sÞ
9ð1 − sÞ2

þ 16
ffiffiffiffiffiffiffiffiffiffi

4 − s
p

9
ffiffiffi

s
p ð1 − sÞ3 ð4þ 3s − s2Þ arcsin

ffiffiffi

s
p

2

þ 32ð4 − sÞ
3ð1 − sÞ4 arcsin

2

ffiffiffi

s
p

2
þ 16 ln s

9ð1 − sÞ ; (27)

where the b-quark massmb is assumed to be the pole mass.

To perform the numerical analysis, one needs to know

the B → π transition form factors fþðq2Þ, f0ðq2Þ and

fTðq2Þ in the entire kinematic range:

4m2
l
≤ q2 ≤ ðmB −mπÞ2: (28)

Their model-independent determination is the main aim

of this paper, which is described in detail in subsequent

sections.

III. FORM-FACTOR PARAMETRIZATIONS

Several parametrizations of the B → π transition form

factorsfþðq2Þ,f0ðq2Þ andfTðq2Þ have been proposed in the
literature. The four parametrizations of fþðq2Þ discussed

belowhavebeenused in the analysis of the semileptonic data

on B → πlνl. All of them include at least one pole term at

q2 ¼ m2
B� , where mB� ¼ 5.325 GeV [30] is the vector B�-

meson mass. As far as this mass satisfies the condition

mB� < mB þmπ—i. e., it lies below the so-called con-

tinuum threshold—it should be included into the form

factor as a separate pole. Other mesons and multiparticle

states with the appropriate JP ¼ 1− quantum number can be

described either by one or several poles or by some other

rapidly convergent function, both effectively counting the

continuum. The tensor form factor fTðq2Þ shows a similar

qualitative behavior, and its model function obeys the same

shape as the vector one. The case of the scalar form factor

f0ðq2Þ is different, as the first orbitally excited scalar B��

meson with JP ¼ 0þ [50] has the mass squared above the

continuum threshold t0 ¼ ðmB þmπÞ2 ¼ 29.36 GeV2, and

hence, it belongs to the continuum, which makes f0ðq2Þ
regular at q2 ¼ m2

B� , in contrast to fþðq2Þ and fTðq2Þ.

A. The Becirevic-Kaidalov parametrization

The form factor fþðq2Þ in the Becirevic-Kaidalov (BK)

parametrization [13] can be written as follows:

fþðq2Þ ¼
fþð0Þ

ð1 − q̂2�Þð1 − αBKq̂
2
�Þ
; (29)

FIG. 2 (color online). The real (solid lines) and imaginary (dotted lines) parts of the functions F
ð7Þ
1;2ðsÞ (top two frames) and F

ð9Þ
1;2ðsÞ

(bottom two frames) at the scale μ ¼ mb. For plotting the curves with
ffiffiffi

z
p ¼ 0, the exact analytic expressions [88] are used. For nonzero

values of
ffiffiffi

z
p

, the analytic two-loop expressions obtained as double expansions in
ffiffiffi

z
p

and s [39,40] are used in plotting these functions in

the region s ≤ 0.35, whereas the expansions in
ffiffiffi

z
p

and 1 − s [48] are used in the range 0.55 < s < 1. For these curves, we have fixed
ffiffiffi

z
p ¼ 0.36.
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where q̂2� ¼ q2=m2
B� . The fitted parameters are the form-

factor normalization fþð0Þ, and αBK, which defines the

fþðq2Þ shape [13]. This parametrization is one of the

simplest ones. The shape of the tensor form factor fTðq2Þ is
the same [Eq. (29)], as it also has the pole at q2 ¼ m2

B�

below the continuum threshold. The scalar form factor

f0ðq2Þ is also introduced in its simplest form [13]:

f0ðq2Þ ¼
fþð0Þ

1 − q̂2�=βBK
; (30)

with the same normalization factor fþð0Þ but a different

effective pole position determined by the free param-

eter βBK.

This form-factor parametrization should be taken with

caution, since the simple two-parameter shape is overly

restrictive and has been argued to be inconsistent with the

requirements from the Soft Collinear Effective Theory

(SCET) [16].

B. The Ball-Zwicky parametrization

The Ball-Zwicky (BZ) parametrization for the vector

form factor fþðq2Þ is a modified form of the BK para-

metrization, given as [6]

fþðq2Þ ¼
fþð0Þ
1 − q̂2�

�

1þ rBZq̂
2
�

1 − αBZq̂
2
�

�

¼ fþð0Þ½1 − ðαBZ − rBZÞq̂2��
ð1 − q̂2�Þð1 − αBZq̂

2
�Þ

; (31)

where the fitted parameters are fþð0Þ, αBZ, and rBZ. fþð0Þ
sets again the normalization of the form factor, while αBZ
and rBZ define the shape [6]. In particular, for αBZ ¼ rBZ,
one reproduces the BK parametrization [Eq. (29)]. The

same redefinition is also applied to the tensor form factor

fTðq2Þ. In a similar way, the scalar form factor f0ðq2Þ
[Eq. (30)] can be modified by introducing its own second

free parameter r
ð0Þ
BZ.

C. The Boyd-Grinstein-Lebed parametrization

This parametrization was introduced for the form factors

entering both the heavy-to-light [14] and heavy-to-heavy

[51] transition matrix elements and used in the analysis

of the semileptonic B→ Dð�Þlνl [51–53] and B → πlνl
[14,54] decays. The basic idea is to find an appropriate

function zðq2; q20Þ in terms of which the form factor can be

written as a Taylor series with good convergence for all

physical values of q2, so that the form factor can be well

described by the first few terms in the expansion. The

generalization of this parametrization to additional form

factors entering rare semileptonic B → hLl
þ
l
−, where hL

is the pseudoscalar K or the vector ρ or K� mesons, and

Bs → ϕlþl− decays, was undertaken in Ref. [55]. As this

will be our default parametrization in our analysis, we

discuss it at some length.

The following shape for the form factors fiðq2Þ with

i ¼ þ; 0; T is suggested in the BGL parametrization [14]:

fiðq2Þ ¼
1

Pðq2Þϕiðq2; q20Þ
X

kmax

k¼0

akðq20Þ½zðq2; q20Þ�k; (32)

where the following form for the function zðq2; q20Þ is used:

zðq2; q20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
þ − q2

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
þ − q20

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
þ − q2

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
þ − q20

p ; (33)

with the pair-production threshold m2
þ ¼ ðmB þmπÞ2 and

a free parameter q20. The function zðq2; q20Þ maps the entire

range of q2 onto the unit disc jzj ≤ 1 in such a way that the

minimal physical value zmin ¼ zðm2
−; q

2
0Þ corresponds to

the lowest hadronic recoil q2max ¼ m2
− ¼ ðmB −mπÞ2, the

maximal value zmax is reached at q2 ¼ 0, and zðq2; q20Þ
vanishes at q2 ¼ q20. In early studies of the form factors, the

parameter q20 was often taken to be q
2
0 ¼ m2

− [14,51], so that

zmin ¼ 0. In this case, the maximal value zmax ¼ 0.52 for

the B → πlνl decay is not small but is enough to constrain

the form factor fþðq2Þ [54,56]. To decrease the value of

zmax and improve the convergence of the Taylor series in

Eq. (32), it was proposed to take a smaller (optimal) value

of q20 somewhere in the interval 0 < q20 < m2
− [57]. In our

analysis, we make the choice q20 ¼ 0.65m2
− following

Ref. [9], so that −0.34 < zðq2; q20Þ < 0.22 in the entire

range 0 < q2 < m2
−.

The proposed shape [Eq. (32)] for the form factor

contains the so-called Blaschke factor Pðq2Þ, which

accounts for the hadronic resonances in the subthreshold

region q2 < m2
þ. For the semileptonic B → πlνl decay,

where l is an electron or a muon, there is only the B�

meson with the mass mB� ¼ 5.325 GeV satisfying the

subthreshold condition and producing the pole in the form

factor at q2 ¼ m2
B� . In this case, the Blaschke factor is

simply Pðq2Þ ¼ zðq2; m2
B�Þ for fþ;Tðq2Þ, and Pðq2Þ ¼ 1

for f0ðq2Þ.
The coefficients ak (k ¼ 0; 1;…; kmax) entering the

Taylor series in Eq. (32) are the parameters, which are

determined by the fits of the data. The outer function

ϕiðq2; q20Þ is an arbitrary analytic function, whose choice

only affects particular values of the coefficients ak and

allows one to get a simple constraint from the dispersive

bound [54] [58]:

X

∞

k¼0

a2k ≤ 1: (34)

This restriction can be achieved with the following outer

function [59]:
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ϕiðq2; q20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

nI

Kiχ
ð0Þ
fi

s ðm2
þ − q2Þðαiþ1Þ=4

ðm2
þ − q20Þ1=4

× ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
þ − q2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
þ − q20

q

Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
þ − q2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
þ −m2

−

q

Þαi=2

× ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
þ − q2

q

þmþÞ−ð3þβiÞ; (35)

where nI ¼ 3=2 is the isospin factor, while the values ofKi,

αi and βi are collected in Table II. The numerical quantities

χ
ð0Þ
fi

are obtained from the derivatives of the scalar functions

entering the corresponding correlators calculated by the

operator product expansion method [54,55,57]. In the two-

loop order at the scale μb, they are as follows [55]:

χ
ð0Þ
fþ

¼ 3

32π2m2
b

�

1þ CFαsðμbÞ
4π

25þ 4π2

6

�

−
hq̄qi
m5

b

−
hαsG2i
12πm6

b

þ 3hq̄Gqi
m7

b

; (36)

χ
ð0Þ
f0

¼ 1

8π2

�

1þ CFαsðμbÞ
4π

3þ 4π2

6

�

þ hq̄qi
m3

b

þ hαsG2i
12πm4

b

−
3hq̄Gqi
2m5

b

; (37)

χ
ð0Þ
fT

¼ 1

4π2m2
b

�

1þ CFαsðμbÞ
4π

�

10þ 2π2

3
þ 8 ln

mb

μb

��

−
hq̄qi
m5

b

−
hαsG2i
24πm6

b

þ 7hq̄Gqi
2m7

b

; (38)

where CF ¼ 4=3, and mb is the mass of the b quark in the

loops which is identified with the M̄S b-quark mass

m̄bðm̄bÞ ¼ 4.18 GeV [30]. For the evaluation of χ
ð0Þ
fi

it is

enough to use the central values of the input parameters to get

the overall numerical normalization factor for the form

factors, and the existing uncertainties in χ
ð0Þ
fi

are of not much

consequence. The following input values are used:αsðMZÞ¼
0.1184�0.0007 [30], hq̄qið1 GeVÞ ¼ −ð1.65 � 0.15Þ×
10−2 GeV3, hq̄Gqi ¼ hq̄gsσμνGA

μνT
Aqi ¼ m2

0hq̄qi,
m2

0ð1 GeVÞ ¼ ð0.8 � 0.2Þ GeV2, and hðαs=πÞG2i ¼
ð0.005� 0.004Þ GeV4 from Ref. [60]. While the mixed

quark-gluon hq̄Gqi and the two-gluon hðαs=πÞG2i conden-
sates are practically scale-independent quantities [60],

the strong coupling and the quark condensate have to

be evolved to the scale of the b-quark mass, where

they have the values αsðm̄bÞ ¼ 0.227 to two-loop accuracy

and hq̄qiðm̄bÞ ¼ −0.023 GeV3. Numerical values of χ
ð0Þ
fi

are

presented in Table II. They agree well (up to 5%) with

the ones presented in Table 2 of Ref. [55], despite

differences in the input parameters. Note that the BABAR

Collaboration [9] used approximately the same value,

χ
ð0Þ
fþ

¼ 6.889 × 10−4 GeV−2, in the analysis of the B0
→

πþl−νl decays.

Having relatively small values of zðq2; q20Þ in the

physical region of q2, the shape of the form factor can

be well approximated by the truncated series at kmax ¼ 2
or 3 [52].

D. The Bourrely-Caprini-Lellouch parametrization

The problems with the form-factor asymptotic behavior

at jq2j → ∞ and truncation of the Taylor series found in the

BGL parametrization [15,16] were solved by the introduc-

tion of another representation of the series expansion

(called the Simplified Series Expansion—SSE [55]). The

shape suggested for the vector fþðq2Þ form factor [15] was

extended to the other two, the scalar f0ðq2Þ and tensor

fTðq2Þ form factors [55]:

fþðq2Þ ¼
1

1 − q̂2�

X

kmax

k¼0

b
ðþÞ
k ðq20Þ½zðq2; q20Þ�k; (39)

f0ðq2Þ ¼
m2

B

m2
B −m2

π

X

kmax

k¼0

b
ð0Þ
k ðq20Þ½zðq2; q20Þ�k; (40)

fTðq2Þ ¼
mB þmπ

mBð1 − q̂2�Þ
X

kmax

k¼0

b
ðTÞ
k ðq20Þ½zðq2; q20Þ�k; (41)

where q̂2� ¼ q2=m2
B� and the function zðq2; q20Þ is defined in

Eq. (33). In this expansion, the shape of the form factor is

determined by the values of bk, with truncation at kmax ¼ 2
or 3. The value of the free parameter q20 is proposed to

be the so-called optimal one, q20¼q2opt¼ðmBþmπÞ×
ð ffiffiffiffiffiffiffi

mB

p
−

ffiffiffiffiffiffi

mπ

p Þ2 [15], which is obtained as the solution of

the equation zð0; q20Þ ¼ −zðm2
−; q

2
0Þ. (The latter condition

means that the physical range 0 < q2 ≤ m2
− is projected

onto a symmetric interval on the real axis in the complex z
plane.) The prefactors 1=ð1 − q̂2�Þ in fþðq2Þ and fTðq2Þ
allow one to get the right asymptotic behavior ∼1=q2

predicted by the perturbative QCD. In Refs. [15,16], an

additional restriction on the series coefficients was dis-

cussed. In particular, in the case of fþðq2Þ at q2 ∼m2
þ, the

threshold behavior of the form factor results in a constraint

on its derivative, dfþ=dzjz¼−1 ¼ 0 [15], which allows one

to eliminate the last term in the truncated expansion as

follows:

TABLE II. Parameters entering the outer functions ϕiðq2; q20Þ
defined in Eq. (35) with i ¼ þ; 0; T in the B → π transition form

factors.

fi Ki αi βi χ
ð0Þ
i

fþ 48π 3 2 7.005 × 10−4 GeV−2

f0 16π=ðm2
þm

2
−Þ 1 1 1.452 × 10−2

fT 48πm2
þ 3 1 1.811 × 10−3 GeV−2
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b
ðþÞ
kmax

ðq20Þ ¼ −
ð−1Þkmax

kmax

X

kmax−1

k¼0

ð−1ÞkkbðþÞ
k ðq20Þ: (42)

In the case of f0ðq2Þ, the threshold behavior is different and
a similar relation is not applied. A detailed analysis of the

additional constraints based on the threshold behavior of

the tensor fTðq2Þ form factor in the B → π transition has

not yet been performed. This behavior, however, is not

expected to be very different from the one found for the

vector fþðq2Þ form factor. So, one may as well put the

condition on the derivative dfT=dzjz¼−1 ¼ 0 in this case,

which allows us to eliminate the last term in the truncated

expansion for fTðq2Þ. This was used in the analysis applied
for fitting the tensor B → K transition form factor by the

HPQCD Collaboration [25].

IV. EXTRACTION OF THE fþðq2Þ
FORM-FACTOR SHAPE

A. The B0
→ π

−
l
þ
νl branching fraction

The charged-current Lagrangian inducing the b→ u
transition in the SM is

LWðxÞ ¼ −
g

2
ffiffiffi

2
p Vub½ūðxÞγμð1 − γ5ÞbðxÞ�WμðxÞ þ h: c:;

(43)

where g is the SUð2ÞL coupling, Vub is the element of the

CKM matrix, uðxÞ and bðxÞ are the u- and b-quark fields,

and WðxÞ is the W-boson field. The Feynman diagram for

the B0
→ π−lþνl decay is shown in Fig. 3, and the one for

the Bþ
→ π0lþνl decay differs by the exchange of the

spectator-quark flavor (d → u) only. The B→ π transition

matrix element entering the B-meson decay B → πlνl can

be parametrized in terms of two form factors fþðq2Þ and
f0ðq2Þ as follows [61,62]:

hπðpπÞjūγμbjBðpBÞi ¼ fþðq2Þ
�

p
μ
B þ p

μ
π −

m2
B −m2

π

q2
qμ
�

þ f0ðq2Þ
m2

B −m2
π

q2
qμ: (44)

Here, pB (mB) and pπ (mπ) are the four-momenta (masses)

of the B and π mesons, respectively. In the isospin-

symmetry limit, the form factors in the charged-current

matrix element [Eq. (44)] are exactly the same as the ones

in Eq. (10) in the FCNC process B → πlþl−.
Measurements of the B0

→ π−lþνl and Bþ
→ π0lþνl

decays, where l ¼ e; μ, allow us to extract both the CKM

matrix element jVubj and the shape of the fþðq2Þ form

factor. The differential branching fractions of the above

processes can be written in the form [30]

dΓðB → πlþνlÞ
dq2

¼ CP

G2
FjVubj2

192π3m3
B

λ3=2ðq2Þf2þðq2Þ; (45)

where GF is the Fermi constant, CP is the isospin factor

with CP ¼ 1 for the πþ meson and CP ¼ 1=2 for the π0

meson, λðq2Þ is the standard three-body kinematic factor

[Eq. (13)], qμ ¼ p
μ
l
þ p

μ
ν is the total four-momentum

transfer, bounded by m2
l
≤ q2 ≤ ðmB −mπÞ2, and p

μ
l
and

p
μ
ν are the four-momenta of the charged lepton and the

neutrino, respectively. In general, the B → π transition

matrix element [Eq. (44)] depends on two form factors.

In practice, however, only fþðq2Þ is measurable in the B →
πlνl decays with l ¼ e; μ, since the contribution of the

scalar form factor f0ðq2Þ to the decay rate is suppressed by
the mass ratio of the charged lepton to the B meson [62].

The values of GF, mB, and mπ are known with high

accuracy [30], while the experimentally derived value of

jVubj depends somewhat on the extraction method and

B-meson decays considered. This is discussed at great

length in the Particle Data Group (PDG) reviews [30]. The

value quoted from the analysis of the exclusive B → πlνl
decay is listed there as jVubj ¼ ð3.23� 0.31Þ × 10−3. On

the other hand, assuming the SM, the CKM unitarity fits

yield a value of jVubj which is consistent with the previous

value, but is about a factor 2 more precise [30]:

jVubj ¼ ð3.51þ0.15
−0.14Þ × 10−3, which we use as our default

value in the numerical estimates.

The partial branching fractions for the B0
→ π−lþνl

decays have been measured by the CLEO, BABAR and

Belle collaborations, and those for the Bþ
→ π0lþνl

decays have been measured by the Belle Collaboration.

Below we give the total branching fraction of the B0
→

π−lþνl decay, taking into account the recent data from the

BABAR and Belle collaborations [11,12,63,64]:

BðB0
→ π−lþνlÞ

¼

8

>

>

>

>

>

<

>

>

>

>

>

:

ð1.42�0.05stat�0.07systÞ×10−4 ½BABAR;2011�;
ð1.45�0.04stat�0.06systÞ×10−4 ½BABAR;2012�;
ð1.49�0.04stat�0.07systÞ×10−4 ½Belle;2011�;
ð1.49�0.09stat�0.07systÞ×10−4 ½Belle;2013�:

(46)

FIG. 3. Feynman diagram for the B0
→ π−lþνl decay.
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All these measurements are in excellent agreement with

each other, and with the one for the Bþ
→ π0lþνl decay

reported by the Belle Collaboration [12]:

BðBþ
→ π0lþνlÞ ¼ ð0.80� 0.08stat � 0.04systÞ × 10−4:

(47)

Both the collaborations have presented differential distri-

butions in q2 relevant for the extraction of fþðq2Þ from data

[11,12,63,64]. We show them in the next subsection, where

also our fitting procedure is presented.

B. Fitting procedure

In this subsection, the extraction of the fþðq2Þ form-

factor shape from the dilepton invariant-mass spectra in

the B0
→ π−lþνl and Bþ

→ π0lþνl decays measured by

the BABAR [63,64] and Belle [11,12] collaborations is

explained. All four fþðq2Þ form-factor parametrizations

from Sec. III are examined to test their consistency with the

experiment in terms of the best-fit values resulting from the

χ2 distribution function [30].

The fitted form factor is presented as a function of q2

which contains a set of k unknown parameters α1;…; αk:

fþðq2Þ ¼ fðq2;α1;…; αkÞ: (48)

Given the experimental values yi of the partial branching

fractionsΔBðq2Þ=Δq2 in bins of q2, with their uncertainties
σi, the χ2 distribution function is defined as follows [30]:

χ2 ¼
X

N

i¼1

½yi − Fðxi; α1;…; αkÞ�2
σ2i

; (49)

where N is the number of experimental points and

Fðxi; α1;…; αkÞ denotes the theoretical estimates of the

partial branching fractions ΔBðq2Þ=Δq2 for the given

parametrization:

Fðxi; α1;…;αkÞ ¼
Z

xiþai=2

xi−ai=2

dBðq2Þ
dq2

dq2; (50)

with xi and ai being the center and the width of the ith bin.

The standard minimization procedure of the χ2 function

FIG. 4 (color online). Partial ΔBðq2Þ=Δq2 spectra for the B0
→ π−lþνl and Bþ

→ π0lþνl decays, where l ¼ e; μ. The data points
(black dots and squares) are placed in the middle of each bin. The error bars (blue) include the total experimental uncertainties. The

curves show the results of the fit to the data for the four form-factor parametrizations discussed in the text: BK [Eq. (29)] (thick dotted

blue line), BZ [Eq. (31)] (thick dashed purple line), BGL [Eq. (32)] with kmax ¼ 2 (thick dot-dashed yellow line), and BCL [Eq. (39)]

with kmax ¼ 2 (thick solid green line). The upper-left and upper-right plots correspond to the BABAR 2011 [63] and 2012 [64] data sets,

while the lower-left and lower-right plots are plotted based on the Belle 2011 [11] and 2013 [12] data sets.
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(the minimum of this function is denoted as χ2min) allows us

to extract the values of fitted parameters α1;min;…; αk;min,

which are considered to be their best-fit values. The results

obtained by using the four form-factor parametrizations for

different sets of experimental data obtained by the BABAR

[63,64] and Belle [11,12] collaborations are presented in

Figs. 4 and 5, respectively, and the numerical values for

χ2min/ndf, where ndf is the number of degrees of freedom,

and the corresponding p values are presented in Table III.

In this analysis we have assumed that the experimental

points are all uncorrelated.

From Table III, it follows that the smallest value for

χ2min=ndf corresponds to the simplest Becirevic-Kaidalov

parametrization. Among the rest of the specified para-

metrizations, the Boyd-Grinstein-Lebed one has the small-

est χ2min/ndf value, and we will use it for all the form factors

entering the B → πlþl− decay.

The combined analysis of the BABAR and Belle data

yields the following set of fitted parameters entering the

fþðq2Þ form factor expansion in the BGL parametrization,

truncated at kmax ¼ 2:

a0 ¼ 0.0209� 0.0004;

a1 ¼ −0.0306� 0.0031;

a2 ¼ −0.0473� 0.0189: (51)

TABLE III. Summary of the χ2min=ndf values, where ndf is the number of degrees of freedom (with corresponding p values), for

different sets of experimental data (rows) and the four form-factor parametrizations discussed in the text (columns).

BK [13] BZ [6] BGL [52] BCL [15]

BABAR 2011 [63] 9.93=10 (45%) 4.80=9 (85%) 4.12=9 (90%) 3.75=9 (93%)

BABAR 2012 [64] 8.68=10 (56%) 5.50=9 (79%) 5.65=9 (77%) 5.73=9 (77%)

Belle 2011 [11] 15.86=11 (15%) 14.55=10 (15%) 12.97=10 (23%) 14.44=10 (15%)

Belle 2013 [12] 24.41=18 (14%) 23.55=17 (13%) 24.16=17 (12%) 23.26=17 (14%)

BABAR & Belle 44.99=43 (39%) 44.91=42 (35%) 44.56=42 (36%) 44.77=42 (36%)

FIG. 5 (color online). The fþðq2Þ form-factor shapes in the decay B → πlνl multiplied by the CKM matrix element jVubj following
from the BABAR [63,64] and Belle [11,12] data. The curves show the results of the fit to these data: BK [Eq. (29)] (thick dotted blue

line), BZ [Eq. (31)] (thick dashed purple line), BGL [Eq. (32)] with kmax ¼ 2 (thick dot-dashed yellow line), and BCL [Eq. (39)] with

kmax ¼ 2 (thick solid green line) parametrizations.
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The extracted numerical values depend on the CKM matrix

element jVubj and correspond to the PDG value [30]:

jVubj ¼ ð3.51þ0.15
−0.14Þ × 10−3. The errors specified in the

coefficients [Eq. (51)] are the square roots of the covariance

matrix Uij for the BGL form-factor coefficients, which can

be derived from the χ2 function [Eq. (49)] as follows [30]:

ðU−1Þij ¼
1

2

∂2χ2

∂αi∂αj

�

�

�

�

αk¼α̂k

; (52)

where α̂k are the best-fit values of the fitting parameters.

The function Fðxi; α1;…; αkÞ in the BGL form factor

depends linearly on the unknown parameters, which

simplifies the analysis. The corresponding correlation

matrix rij is connected with the covariance matrix by

the relation rij ¼ Uij=ðσiσjÞ, where σ2i is the variance of

αi. For the BGL form factor with the truncation at

kmax ¼ 2, the following ð3 × 3Þ correlation matrix was

obtained:

rij ¼

0

B

@

1 −0.26 −043

−0.26 1 −0.68

−0.43 −0.68 1

1

C

A
: (53)

One can see the sizable correlation of the third coefficient

a2 in the z expansion with the other two a0 and a1. This
is shown in Fig. 6. The relative error on the coefficient a2
is approximately 40%, as can also be seen in Eq. (51).

The results from the combined analysis of the BABAR

[64] and Belle [11,12] data sets are shown in Fig. 7 (upper

plot). Following the numerical analysis presented above,

the resulting shape of the fþðq2Þ form factor is presented

on the lower plot in Fig. 7, using the BGL parametrization

and the PDG value jVubj ¼ ð3.51þ0.15
−0.14Þ × 10−3 [30]. The

FIG. 6 (color online). The two-dimensional correlations among the fitted parameters a0, a1 and a2 entering the BGL parametrization

of the form factor fþðq2Þ: a0 − a1 (upper-left plot), a0 − a2 (upper-right plot), and a1 − a2 (lower-left plot). The three-dimensional

correlation among all three fitted parameters is shown in the lower-right plot.
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existing lattice QCD results [65] on the fþðq2Þ form factor

are presented as vertical bars on the lower plot in Fig. 7,

which are in good agreement with our estimate of the same

in the overlapping q2 region (within the uncertainties of the
lattice data, as indicated).

V. DETERMINATION OF f 0ðq2Þ AND fTðq2Þ
SHAPES

As pointed out earlier, the form factor f0ðq2Þ is not

required for either the charged-current decay B → πlνl or

the FCNCsemileptonicB → πlþl− decaywithl ¼ e; μ, as
its contribution to the branching fraction is suppressed by the

smallness of the lepton mass squared. However, for the sake

of completeness involving the semileptonic processes with

l
� ¼ τ�, we also work out the f0ðq2Þ form factor. The

information on the form factors fþðq2Þ and f0ðq2Þ for

the B → π and B→ K transitions is available, though the

lattice results on the B → π form factor fTðq2Þ are still

scant. For our analysis, we use an ansatz for the SUð3ÞF
symmetry breaking to obtain the shape of fBπT ðq2Þ from the

corresponding B → K form factor fBKT ðq2Þ. We show

subsequently that our ansatz, which assumes that the

SUð3ÞF symmetry breaking in fTðq2Þ is an average of

the corresponding symmetry-breaking effects in the form

factors fþðq2Þ and f0ðq2Þ, yields an fBπT ðq2Þ which is in

good agreement with the preliminary results on this form

factor, obtained from lattice in the low-recoil region.

A. The f 0ðq2Þ form factor

The parameters in f0ðq2Þ can be obtained from the

existing results of the B → π transition form factor calcu-

lated by the HPQCDCollaboration [65]. In addition, we use

the exact relation between fþðq2Þ and f0ðq2Þ at q2 ¼ 0:

fþð0Þ ¼ f0ð0Þ; (54)

which follows from the requirement of the finiteness of the

B → π transition matrix element [Eq. (10)] at this point. To

fix f0ð0Þ, we use the reference point fþð0Þ¼0.261�
0.014, extracted by us from the experimental data. The

form-factor parametrization we use for f0ðq2Þ follows our
default choice from the analysis of fþðq2Þ—the BGL

expansion in zðq2; q20Þ truncated at kmax ¼ 2. The set of

the fitted parameters entering f0ðq2Þ is as follows:
a0 ¼ 0.0201� 0.0007;

a1 ¼ −0.0394� 0.0096;

a2 ¼ −0.0355� 0.0556; (55)

and the correlation matrix (i; j ¼ 1; 2; 3) is

rij ¼

0

@

1 0.72 −0.82

0.72 1 −0.96

−0.82 −0.96 1

1

A: (56)

One sees strong correlations among all the fitted parameters,

which can be well approximated as linear. The resulting

shape is shown in Fig. 8. The solid (green) lines specify the

FIG. 8 (color online). The scalar B → π transition form factor

f0ðq2Þ in the entire kinematic region using the BGL para-

metrization. The solid green lines show the uncertainty in the

form factor. The vertical bars are the lattice QCD data [65] used

for fixing the form-factor shape.

FIG. 7 (color online). Partial ΔBðq2Þ=Δq2 spectra for the

decays B0
→ π−lþνl and Bþ

→ π0lþνl are presented on the

upper plot. The fþðq2Þ form factor is shown on the lower plot.

The BGL parametrization is adopted as the preferred choice.

Results are obtained by combining the experimental data from the

BABAR [64] and Belle [11,12] collaborations, and in addition, the

value jVubj ¼ ð3.51þ0.15
−0.14 Þ × 10−3 [30] is used to extract explicitly

the form-factor shape. The existing lattice QCD data [65] on the

form factor are presented as the vertical bars on the lower plot.

ALI, PARKHOMENKO, AND RUSOV PHYSICAL REVIEW D 89, 094021 (2014)

094021-14



form-factor uncertainty, which grows with increasing q2.
This trend is reflected also in the lattice data [65] (shown by

the vertical bars in Fig. 8).

B. The fTðq2Þ form factor

As already mentioned, there is at present only scant

information from the lattice on the B→ π tensor form

factor fBπT ðq2Þ. So, one needs to find a reliable method to

extract it from the existing model-independent data. We use

an SUð3ÞF-symmetry-breaking ansatz involving both the

B → K and B → π transition form factors. We recall that all

three B → K transition form factors—fBKþ ðq2Þ, fBK0 ðq2Þ,
and fBKT ðq2Þ—have been calculated recently by theHPQCD

Collaboration [24,25], and the two B → π transition form

factors—fBπþ ðq2Þ and fBπ0 ðq2Þ—are also known [65]. Of

course, lattice results are available only in the small-recoil

limit. With this at hand, we first estimate the SUð3ÞF-
symmetry-breaking corrections in the already known vector

and scalar form factors and use these corrections to estimate

the B → π tensor form factor fBπT ðq2Þ from the correspond-

ingB→ K transition form factor fBKT ðq2Þ. We introduce the

following measures of the SUð3ÞF-symmetry-breaking

corrections in the transition form factors:

Riðq2Þ ¼
fBKi ðq2Þ
fBπi ðq2Þ − 1; (57)

where i ¼ þ; 0; T. The curves for the SUð3ÞF-symmetry-

breaking functions Rþðq2Þ and R0ðq2Þ, calculated for the

central values of the form factors from the lattice for the

small-recoil region, are presented in the upper plot in Fig. 9.

As expected, breaking effects of order 10% are seen in both

the ratios. We expect that the SUð3ÞF-symmetry-breaking

effect in the third ratio, RTðq2Þ, is of the same order. For the

sake of definiteness, we assume that the ratio RTðq2Þ of the
tensor form factors is the average of the other two, Rþðq2Þ
and R0ðq2Þ:

RTðq2Þ ¼
1

2
½Rþðq2Þ þ R0ðq2Þ�: (58)

We estimate the accuracy of this relation in the low-q2

region, where the methods based on HQS (and its leading-

order breakings) can be gainfully used to quantify it (see

Sec. VI C for details). We expect that this relation holds

to a good extent in the remaining large-q2 region, and we

estimate the associated uncertainty to be about 5%. The

corresponding functionRTðq2Þ is presented in the upper plot
in Fig. 9 as the central curve. Explicit values of this function

in the small-recoil region are presented in Table IV. The

errors reflect the uncertainties of the lattice calculations, and

we assume that the errors in theB → π andB→ K transition

form factors are uncorrelated.

The values of the fBπT ðq2Þ form factor are then obtained

by rescaling them from the known values of the fBKT ðq2Þ
form factor [25] by utilizing the relation

fBπT ðq2Þ ¼ fBKT ðq2Þ
1þ RTðq2Þ

: (59)

They are presented in Table IV. The variance of fBπT ðq2Þ is
calculated by adding the errors of fBKT ðq2Þ and RTðq2Þ in
quadrature. The normalization at q2¼0 is fBπT ð0Þ ¼ 0.231�
0.013, which results from the value fBπþ ð0Þ¼0.261�0.014,

extracted by us from the experimental data on the

B→ πlνl decays and the heavy-quark symmetry relation

between the form factors in the large-recoil limit of the π

meson [31,38], fBπT ð0Þ ¼ ð1þmπ=mBÞfBπþ ð0Þ.With all this

at hand, we have a fairly constrained model for the fBπT ðq2Þ
form factor.

For the BGL parametrization of the fBπT ðq2Þ form factor,

the fitted parameters entering the expansion in zðq2; q20Þ
and truncated at kmax ¼ 2 are as follows:

FIG. 9 (color online). The SUð3ÞF-symmetry-breaking func-

tions Rþðq2Þ, R0ðq2Þ and RTðq2Þ (the upper plot) in the q2 range
accessible by the lattice QCD simulations, and the tensor B → π

transition form factor fTðq2Þ (the lower plot) in the entire

kinematic region. The sets of vertical bars in the large-q2 region
are the preliminary results from the HPQCD Collaboration [28]

presented at the Lattice 2013 Conference. The legend on the

lower plot specifies the lattice ensembles as used in the B → K
transitions [25] by the HPQCD Collaboration.
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a0 ¼ 0.0458� 0.0027;

a1 ¼ −0.0234� 0.0124;

a2 ¼ −0.2103� 0.1052; (60)

with the corresponding correlation matrix (i; j ¼ 1; 2; 3):

rij ¼

0

B

@

1 0.68 −0.90

0.68 1 −0.83

−0.90 −0.83 1

1

C

A
: (61)

Strong correlations among the fitted parameters are

observed, similarly to the case of fBπ0 ðq2Þ.
The resulting fBπT ðq2Þ form factor is shown in the lower

plot in Fig. 9. Recent preliminary results [66] for this form

factor at large q2 from the HPQCD Collaboration [28] are

also presented in this figure. The symbols (F1, F2, C1, C2,

C3) and the corresponding lattice data points denote the

various lattice ensembles used by this collaboration for

performing the numerical simulations, which are the same

as the ones used in the calculation of the B → K transition

form factors [24,25], namely the MILCNf ¼ 2þ 1Asqtad

gauge configurations. Good agreement of the lattice data on

fBπT ðq2Þ in the large-q2 region with our results based on

using the SUð3ÞF-symmetry-breaking ansatz is evident in

this figure.

As all the form factors in the B→ π transition are now

determined, using data and the lattice QCD, we can now

make model-independent predictions for the short-distance

part of the dilepton invariant-mass spectrum and the decay

width in the semileptonic B → πlþl− decays. As the long-

distance effects dominate in the resonant regions [such as

those of the J=ψ and ψð2SÞ mesons], which at present are

not precisely calculable, a sharper contrast of the SM

predictions and data is obtained in limited regions of q2,
which we present in subsequent sections.

VI. Bþ
→ π

þ
l
þ
l
− DECAY IN THE LOW-q2 REGION

A. HQS limit

As discussed in the Introduction, one can apply the

heavy-quark symmetry techniques to relate the form factor

fTðq2Þ in B�
→ π�lþl− to the measured form factor

fþðq2Þ in the charged-current decay B → πlνl in the

large-recoil (or low-q2) region. As shown in Ref. [38],

in the HQS limit (i. e., without taking into account

symmetry-breaking corrections), f0ðq2Þ and fTðq2Þ are

proportional to fþðq2Þ:

f0ðq2Þ ¼
m2

B − q2

m2
B

fþðq2Þ; (62)

fTðq2Þ ¼
mB þmπ

mB

fþðq2Þ: (63)

In the HQS limit, there is only one independent form factor

fþðq2Þ, the shape of which can be extracted from the

analysis of the B0
→ π−lþνl and Bþ

→ π0lþνl decays,

which we presented in Sec. IV. The decay rate of Bþ
→

πþlþl− in the HQS limit is greatly simplified and takes

the form

dBðBþ
→ πþlþl−Þ
dq2

¼ G2
Fα

2
emτBþ

1024π5m3
B

jVtbV
�
tdj2

×

ffiffiffiffiffiffiffiffiffiffiffi

λðq2Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
4m2

l

q2

s

~Fðq2Þf2þðq2Þ;

(64)

where the dynamical function Fðq2Þ, defined in Eq. (14), is
now reduced to the expression

~Fðq2Þ ¼ 2

3
λðq2Þ

�

1þ 2m2
l

q2

�

jCeff
9 ðq2Þ þ 2mb

mB

Ceff
7 ðq2Þj2

þ 2

3
λðq2ÞjCeff

10 j2 þ
4m2

l

q2
jCeff

10 j2

× ½ð1 − m2
π

m2
B

Þ2ðm2
B − q2Þ2 − 2

3
λðq2Þ�; (65)

and the kinematic function λðq2Þ is given in Eq. (13).

Restricting ourselves to the NLL results for the effective

Wilson coefficients [i. e., dropping the αsðμÞ-dependent
terms in them] and using the fþðq2Þ form-factor shape

extracted in terms of the BGL parametrization from the

combined BABAR and Belle data, and the numerical values

of the different quantities entering Eq. (64) from Table V,

the numerical values of the B�
→ π�μþμ− partial branch-

ing ratio in the ranges 4m2
μ ≤ q2 ≤ 8 GeV2 and 1 GeV2 ≤

q2 ≤ 8 GeV2 are given below:

TABLE IV. Values of the tensor form factor fBπT ðq2Þ at the

indicated values of q2 obtained from the existing lattice QCD data

on the fBKT ðq2Þ transition form factor [25] and the SUð3ÞF-
symmetry-breaking function RTðq2Þ defined in Eqs. (57) and

(58). The variance of fBπT ðq2Þ is calculated by adding the errors of
fBKT ðq2Þ and RTðq2Þ in quadrature.

q2, GeV2 18.4 19.1 19.8 20.6

fBKT ðq2Þ 1.197� 0.047 1.307� 0.051 1.434� 0.057 1.608� 0.069

RTðq2Þ 0.080� 0.021 0.076� 0.021 0.073� 0.023 0.071� 0.023

fBπT ðq2Þ 1.108� 0.126 1.215� 0.115 1.337� 0.117 1.503� 0.123

q2, GeV2 21.3 22.1 22.8 23.5

fBKT ðq2Þ 1.793� 0.082 2.054� 0.106 2.342� 0.135 2.713� 0.176

RTðq2Þ 0.070� 0.037 0.072� 0.050 0.076� 0.067 0.083� 0.090

fBπT ðq2Þ 1.675� 0.144 1.916� 0.169 2.178� 0.211 2.506� 0.302
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BðB�
→ π�μþμ−; 0.05 GeV2 ≤ q2 ≤ 8 GeV2Þ

¼ ð0.80� 0.07Þ × 10−8; (66)

BðB�
→ π�μþμ−; 1 GeV2 ≤ q2 ≤ 8 GeV2Þ

¼ ð0.72� 0.06Þ × 10−8: (67)

B. Including HQS-breaking correction

Heavy-quark symmetry, which holds in the large-recoil

limit, allows one to get relations among the B→ π form

factors [31]. Taking into account the leading-order sym-

metry-breaking corrections, these relations were worked

out in Ref. [38]:

f0ðq2Þ ¼
�

1 −
q2

m2
B

�

fþðq2Þ
�

1þ CFαsðμhÞ
4π

½2 − 2Lðq2Þ�
�

þ CFαsðμhcÞ
4π

q2

m2
B − q2

ΔFπ; (68)

fTðq2Þ ¼
	

1þ mπ

mB




fþðq2Þ

×
h

1þ CFαsðμhÞ
4π

	

ln
m2

b

μ2h
þ 2Lðq2Þ


i

−
CFαsðμhcÞ

4π

mBðmB þmπÞ
m2

B − q2
ΔFπ; (69)

where CF ¼ 4=3. The strong coupling αsðμÞ depends on

the specific scales of the contributing diagrams, which we

take as the hard μh ∼mb and hard-collinear μhc ∼
ffiffiffiffiffiffiffiffiffi

mbΛ
p

scales, where Λ≃ 0.5 GeV is the typical soft hadronic

scale. The auxiliary function Lðq2Þ is defined as

follows [38]:

Lðq2Þ ¼
�

1 −
m2

B

q2

�

ln

�

1 −
q2

m2
B

�

; (70)

with the normalization Lð0Þ ¼ 1, and the contributions

of the hard-spectator diagrams are parametrized by the

quantity [38]

ΔFπ ¼
8π2fBfπ

3mB

hl−1þ iþhū−1iπ: (71)

Here, fB and fπ are the leptonic decay constants of the B
and π mesons, respectively, and the following first inverse

moments of the B and π mesons are used:

hl−1þ iþ ¼
Z

∞

0

dlþ
ϕB
þðlþÞ
lþ

; hū−1iπ ¼
Z

1

0

du
ϕπðuÞ
1 − u

; (72)

which are completely determined by the leading-twist light-

cone distribution amplitudes ϕB
þðlþÞ [68,69] and ϕπðuÞ

[70–78]. With the input parameters mB, fB and fπ from

Table V, and the moments evaluated as hū−1iπð1 GeVÞ ¼
3.30� 0.42 and hl−1þ iþð1.5 GeVÞ ¼ ð1.86� 0.17Þ GeV−1

[79], we estimate ΔFπ ¼ 0.74� 0.12. This is numerically

somewhat smaller than the value ΔFπ ¼ 1.17 used in

Ref. [38]. This difference reflects the observation that

the π meson is well described by the asymptotic form of

the twist-2 LCDA ϕπðuÞ ¼ 6uð1 − uÞ, and the first sub-

leading Gegenbauer moment a2ð1GeVÞ ¼ 0.10� 0.14

[80] is consistent with zero.

Taking into account the symmetry-breaking corrections

and the NNLO effects in the effective Wilson coefficients,

the partial branching fractions, integrated in the ranges of

q2 as in Eqs. (66) and (67), are decreased. We get

BðBþ
→ πþμþμ−; 0.05 GeV2 ≤ q2 ≤ 8 GeV2Þ

¼ ð0.65þ0.08
−0.06Þ × 10−8; (73)

BðBþ
→ πþμþμ−; 1 GeV2 ≤ q2 ≤ 8 GeV2Þ

¼ ð0.57þ0.07
−0.05Þ × 10−8; (74)

which mainly reflects the NNLO effects in the Wilson

coefficients. The corresponding dilepton invariant-mass

distribution in the large-recoil approximation (q2≤8GeV2)

is shown in Fig. 10. The vertical line shows the light-

resonance (ρ,ω, and ϕ) region collectively. The upper bound

on q2 is imposed to avoid the large (resonant) contribution

from the long-distance process B�
→ π�J=ψ → π�lþl−.

C. Estimating the SUð3ÞF breaking in the

B→ π;K tensor form factors

Before presenting the estimates of the Bþ
→ πþlþl−

branching fraction in the entire kinematic range of q2, we
would like to discuss the validity of the ansatz [Eq. (58)]

used by us in calculating the SUð3ÞF-breaking effects in the
B→ π; K tensor form factors. The accuracy of our ansatz

can be easily determined in the kinematic region where

the HQS-based methods apply. These will be worked out

TABLE V. Main input parameters used in the theoretical

evaluations of the Bþ
→ πþlþl− branching fractions taken from

the PDG [30], except for the B-meson leptonic decay constant fB,
whose value is taken from Lattice-NRQCD [67].

GF ¼ 1.11637 × 10−5 GeV−2 α−1em ¼ 129

mB ¼ 5.2792 GeV τBþ ¼ 1.641 ps

mπ ¼ 139.57 MeV fπ ¼ 132 MeV

αsðMZÞ ¼ 0.1184� 0.0007 fB ¼ ð184� 4Þ GeV
mcðmcÞ¼ð1.275�0.025ÞGeV mbðmbÞ¼ð4.18�0.03ÞGeV
λ ¼ 0.22535� 0.00065 A ¼ 0.817� 0.015

ρ̄ ¼ 0.136� 0.018 η̄ ¼ 0.348� 0.014

jVudj ¼ 0.97427 jVtbj ¼ 0.999146

jVubj ¼ ð3.51þ0.15
−0.14 Þ × 10−3 jVtdj ¼ ð8.67þ0.29

−0.31 Þ × 10−3
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below and used to project also the accuracy in the large-q2

region. We note that the lattice data already provide a

reliable estimate of the rhs of Eq. (58), but only preliminary

lattice data [28] are available for the lhs, involving the

tensor form factors.

Taking into account the leading-order HQS-symmetry-

breaking effects, all three B → P transition form factors,

where P is a light pseudoscalar meson, are related, as

shown in Eqs. (68) and (69). This then allows one to relate

the SUð3ÞF-symmetry-breaking measures:

R0ðq2Þ ¼ Rþðq2Þ
�

1þ CFαsðμhcÞ
4π

×
q2=m2

B

ð1 − q2=m2
BÞ2

�

ΔFK

fBKþ ðq2Þ −
ΔFπ

fBπþ ðq2Þ

��

; (75)

RTðq2Þ ¼
1þmK=mB

1þmπ=mB

Rþðq2Þ
�

1 −
CFαsðμhcÞ

4π

×
1

1 − q2=m2
B

�

ΔFK

fBKþ ðq2Þ −
ΔFπ

fBπþ ðq2Þ

��

; (76)

where

fBKþ ðq2Þ ¼ fBπþ ðq2Þ½1þ Rþðq2Þ� (77)

and

ΔFK ¼ ΔFπ

fK
fπ

hū−1iK
hū−1iπ

≃ ΔFπð1þ ΔfKπÞ½1þ aK1 ðμhcÞ�:

(78)

Here, ΔfKπ ¼ fK=fπ − 1≃ 0.23 is the SUð3ÞF symmetry

breaking in the leptonic decay constants (fπ ≃ 130 MeV

and fK ≃ 160 MeV [30]). The first inverse moments of the

K and π mesons, hū−1iPðμhcÞ≃ 3½1þ aP1 ðμhcÞ�, are

approximated by the asymptotic and the first Gegenbauer

terms in the conformal expansion of the LCDAs with

aπ1ð2GeVÞ ¼ 0 and aK1 ð2GeVÞ ¼ 0.05� 0.02 [81,82] (the

other terms in the Gegenbauer decomposition do not affect

the ratio ΔFK=ΔFπ significantly). Keeping terms linear in

ΔfKπ , aK1 ðμhcÞ and Rþðq2Þ only in the hard-collinear

correction, the measures of the SUð3ÞF symmetry breaking

become

R0ðq2Þ¼Rþðq2Þ
�

1þCFαsðμhcÞ
4π

×
q̂2ΔFπ

ð1− q̂2Þ2fBπþ ðq2Þ ½ΔfKπþaK1 ðμhcÞ−Rþðq2Þ�
�

;

(79)

RTðq2Þ¼
1þ m̂K

1þ m̂π

Rþðq2Þ
�

1−
CFαsðμhcÞ

4π

ΔFπ

ð1− q̂2ÞfBπþ ðq2Þ

× ½ΔfKπþaK1 ðμhcÞ−Rþðq2Þ�
�

; (80)

where the reduced mass is m̂P ¼ mP=mB (P ¼ π; K), and
the reduced momentum transfer squared is defined as

q̂2 ¼ q2=m2
B. With m̂π ¼ 0.0265 and m̂K ¼ 0.0947 [30],

their difference m̂K − m̂π ¼ 0.0682 yields ð1þ m̂KÞ=ð1þ
m̂πÞ ¼ 1.07 for the prefactor on the rhs of Eq. (80).

To quantify the validity of the ansatz [Eq. (58)], let us

introduce the following function:

ΔRðq2Þ ¼ 1

2
½Rþðq2Þ þ R0ðq2Þ� − RTðq2Þ; (81)

whose deviation from zero quantitatively determines the

accuracy of our SUð3ÞF-breaking ansatz. Using Eqs. (79)

and (80), ΔRðq2Þ can be estimated as follows:

ΔRðq2Þ≃Rþðq2Þ
�

m̂π − m̂Kþ
CFαsðμhcÞ

4π

ð1− q̂2=2ÞΔFπ

ð1− q̂2Þ2fBπþ ðq2Þ

× ½ΔfKπþaK1 ðμhcÞ−Rþðq2Þ�
�

: (82)

There are two competitive contributions: the first one is

coming from the reduced mass difference, and the second

one combines the perturbative corrections in the form

factors (the HQS-breaking corrections due to the hard-

spectator contributions).

To remove the term induced by the K- and π-meson

difference from ΔRðq2Þ, we define a reduced function
~RTðq2Þ as follows:

~RTðq2Þ≡
mB þmπ

mB þmK

fBKT ðq2Þ
fBπT ðq2Þ − 1; (83)

FIG. 10 (color online). The dilepton invariant-mass distribution

dBðB�
→ π�lþl−Þ=dq2 for 0 ≤ q2 ≤ 8 GeV2, calculated by

taking into account the leading HQS-breaking corrections. The

dashed vertical line indicates collectively the vector ρ-, ω-, and ϕ-

resonance regions.
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and a reduced analogue of the ΔRðq2Þ function:

Δ ~Rðq2Þ≡ 1

2
½Rþðq2Þ þ R0ðq2Þ� − ~RTðq2Þ: (84)

In the low-q2 region (say, 0≤q2≤14GeV2 or 0 ≤ q̂2 ≤
1=2), the deviation of this function from zero is

completely determined by the hard-spectator corrections

in the form factors:

Δ ~Rðq2Þ≃ Rþðq2Þ
CFαsðμhcÞ

4π

ð1 − q̂2=2ÞΔFπ

ð1 − q̂2Þ2fBπþ ðq2Þ
× ½ΔfKπ þ aK1 ðμhcÞ − Rþðq2Þ�: (85)

The input parameters are as follows: CF ¼ 4=3, the hard-

collinear scale μhc ¼ 2 GeV, αsðmτÞ ¼ 0.330� 0.014 [30],

ð1 − q̂2ÞfBπþ ðq2Þ≃ fBπþ ð0Þ ¼ 0.260� 0.014 (our estimate),

ΔFπ ¼ 0.74� 0.12 (our estimate), ΔfKπ ¼ fK=fπ − 1 ¼
0.23 [30], and aK1 ð2 GeVÞ ¼ 0.05� 0.02 [81,82]. In addi-

tion, we need to know Rþðq2Þ. Ignoring the mild q2

dependence, we set Rþðq2Þ≃ Rþð0Þ and discuss some

representative estimates of Rþð0Þ. The most recent

lattice result for the B → K vector form factor is from the

HPQCD Collaboration [24,25]: fBKþ ð0Þ ¼ 0.319� 0.066.

With the determination of the corresponding quantity in the

B → π transition, fBπþ ð0Þ ¼ 0.260� 0.014, we getRþð0Þ ¼
0.231� 0.262 [the error is dominated by the uncertainty in

fBKþ ð0Þ]. Another recent estimate, fBKþ ð0Þ ¼ 0.33� 0.04

[83], yields Rþð0Þ ¼ 0.269� 0.169, where again the error

is mainly due to fBKþ ð0Þ. Note that the LCSR estimate

fBKþ ð0Þ ¼ 0.34þ0.05
−0.02 [45] is compatiblewith the above lattice

predictions within the uncertainties. After the insertion of

the lattice estimates in Eq. (85), the results are as follows:

Δ ~Rðq2Þ≃ 1 − q̂2=2

1 − q̂2

� ð1.15� 2.19Þ × 10−3; ½24; 25�
ð0.31� 1.58Þ × 10−3 ½84�

(86)

So, the effect of the hard-scattering corrections is below 1%

in the kinematic domain considered.

Coming back to the numerical evaluation of ΔRðq2Þ
defined in Eq. (81), using the estimates given above in

Eq. (86), one obtains

ΔRðq2Þ≃ Rþðq2Þðm̂π − m̂KÞ

≃

� ð−1.55� 1.76Þ × 10−2; ½24; 25�
ð−1.81� 1.13Þ × 10−2: ½84�

(87)

So, the uncertainty of the ansatz [Eq. (58)] can be evaluated

to be approximately 3% in the considered range of q2.
The estimates presented above support the ansatz

[Eq. (58)] within an accuracy of about 3%. To what degree

of accuracy this ansatz also holds in the high-q2 domain

will be tested as the lattice calculations of all the B→ π

transition form factors become completely quantitative. We

include an additional error of 5%, ascribed to the error on

the ansatz [Eq. (58)], in the determination of the tensor

form factor fBπT ðq2Þ.

VII. Bþ
→ π

þ
l
þ
l
− DECAY IN THE

ENTIRE q2 RANGE

In the low-hadronic-recoil region (large-q2), heavy-

quark symmetry does not hold, and we have three inde-

pendent form factors fþðq2Þ, f0ðq2Þ and fTðq2Þ in

B�
→ π�lþl−. We have given a detailed account of their

determination in the preceding sections. The vector form

factor fþðq2Þ is determined by taking into account the

Belle and BABAR data on B → πlνl and fitting several

parametrizations, with the BGL-parametrization as our

default choice. We have used the HQS-based method,

including the leading-order symmetry breaking, in the

low-q2 region (q2 ≤ 8 GeV2) and the experimentally con-

strained form factor fþðq2Þ to determine the other two form

factors, f0ðq2Þ and fTðq2Þ. Finally, we have used the

available lattice QCD results for the form factors fBPi ðq2Þ
ði ¼ þ; 0; TÞ in the large-q2 region, obtained for the

B→ K and B→ π transitions. As the lattice data on

fBπT ðq2Þ is still sparse, we have determined this form factor

from the lattice data on fBKT ðq2Þ and an ansatz for the

SUð3ÞF breaking. We have tested the accuracy of this

ansatz in the low-q2 region and find it to hold within 3%.

This dedicated study has removed the largest source of

theoretical uncertainty originating from the form factors.

Before presenting our numerical results, we discuss the

choice for the parameter
ffiffiffi

z
p ¼ mc=mb entering the NNLO

corrections. The NNLO corrections to the b → slþl−

transition matrix element [48], which we have adapted

for the exclusive b → dlþl− case discussed by us here,

are available in the literature in both the Mathematica and

the C++ programs [48], from which the former one was

implemented in our ownMathematica routine.Weneed to fix

this ratio in terms of the c- and b-quark pole masses. The

three-loop relation between the pole mpole and MS-scheme

m̄ðm̄Þ masses [84–86] can be used to get the c- and b-quark
pole masses. Starting from the values collected in Table V,

the ratio mcðmcÞ=mbðmbÞ ¼ 0.305� 0.006 can be trans-

formed into the ratio of the pole masses mc;pole=mb;pole ¼
0.402� 0.008. In Ref. [87], additional electroweak correc-

tions to the relation between the pole and the MS quark

masses were taken into account, with the resulting pole

masses mc;pole¼1.77�0.14GeV and mb;pole¼4.91�
0.12GeV, with the ratio mc;pole=mb;pole ¼ 0.36� 0.03.

This value is used by us as input for
ffiffiffi

z
p

in calculating the

c-quark loop-induced corrections.

The invariant-mass spectrum in the entire range of q2

(4m2
l
< q2 < 26.4 GeV2) is presented in Fig. 11. Once
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again, we emphasize that this represents only the short-

distance contribution. The dashed vertical lines specify the

light-meson resonant region, shown at q2 ≲ 1 GeV2, as well

as those of the J=ψ and ψð2SÞmesons. In the calculation of

this spectrum, Wilson coefficients are used in the NNLO

accuracy. In the perturbative improvement, the auxiliary

functionsF
ð7Þ
1;2ðq2Þ andF

ð9Þ
1;2ðq2Þ entering the next-to-leading

correction in Ceff
9 ðq2Þ are known analytically as power

expansions in s ¼ q2=m2
B and in 1 − s (as shown in

Fig. 2). As explained earlier, we have extrapolated these

functions into the intermediate q2 region. In doing this, we

have matched the known analytical functions in the form

of expansions at the “matching” point q2 ≃ 12.5 GeV2, at

which value the spectrum has theminimal discontinuity (see

Fig. 11). This yields an invariant-mass spectrum which is a

smooth function ofq2, within uncertainties. It is important to

note that the “matching” point q2 ≃ 12.5 GeV2 lies in the

ψð2SÞ-resonance region, which is dominated by the long-

distance effects. Away from the resonance regions, the short-

distance contribution to the differential branching fraction

dominates, and the discontinuity in the spectrum discussed

earlier is not a crucial issue.

Our predictions for the partial branching fractions

dBðB�
→ π�lþl−Þ=dq2 in 11 different q2 bins are pre-

sented in Table VI. The total branching fraction of the

semileptonic B�
→ π�μþμ− decay is as follows:

BðB�
→ π�μþμ−Þ

¼ ð1.88þ0.28
−0.15 jμb � 0.13jjVtdj � 0.08jFF � 0.01Þ × 10−8

¼ ð1.88þ0.32
−0.21Þ × 10−8; (88)

where the individual uncertainties are from the scale

dependence μb of the Wilson coefficients, the CKM matrix

element jVtdj, and the form factors (FF), as indicated. The

resulting average uncertainty is about 15%, which is

dominated by the scale dependence of the Wilson coef-

ficients and can be reduced after the scale dependence of

the tensor form factor fBπT ðq2Þ is worked out properly in the
entire q2 range.

The branching fraction for the semileptonic B�
→

π�eþe− decay is the same as Eq. (88), as the additional

contribution induced by the shift to the lower kinematic

values of q2 ¼ 4m2
e ≃ 1 MeV2 is negligible.

The use of the isospin symmetry allows us to make

predictions for the B0
→ π0lþl− decay also. Neglecting

the effects of the isospin symmetry breaking in the B→ π

transition form factors, which are expected to be a few

percent, the main modification is the isospin factor

Cπ0 ¼ 1=2 in the final state due to the π0-meson structure.

Taking this into account, our predictions for the partial

branching fractions are as follows:

BðB0
→ π0lþl−; 0.05 GeV2 ≤ q2 ≤ 8 GeV2Þ

¼ ð0.33þ0.05
−0.03Þ × 10−8; (89)

BðB0
→ π0lþl−; 1 GeV2 ≤ q2 ≤ 8 GeV2Þ

¼ ð0.29þ0.05
−0.03Þ × 10−8; (90)

where l ¼ e or μ, and for the total branching fraction we

estimate

BðB0
→ π0lþl−Þ ¼ ð0.94þ0.16

−0.11Þ × 10−8: (91)

The above decay rates BðB0
→ π0lþl−Þ will be measured

at the forthcoming Super-B factory at KEK.

VIII. SUMMARY AND OUTLOOK

We have presented a theoretically improved calculation

of the branching fraction for the B�
→ π�μþμ− decay,

FIG. 11 (color online). The dilepton invariant-mass distribu-

tion in the Bþ
→ πþlþl− decay for the entire kinematic

range 0≤q2≤26.4GeV2. Dashed vertical lines specify the

positions of vector resonances: ρ, ω, and ϕ mesons at

q2 ≲ 1 GeV2, and J=ψ and ψð2SÞ mesons near q2 ≃ 9.5 GeV2

and q2 ≃ 13.5 GeV2, respectively.

TABLE VI. Partial branching ratios dBðBþ
→ πþμþμ−Þ=dq2

integrated over the indicated ranges ½q2min; q
2
max�.

½q2min; q
2
max� 108 × Bðq2min ≤ q2 ≤ q2maxÞ

[0.05, 2.0] 0.15þ0.03
−0.02

[1, 2.0] 0.08þ0.01
−0.01

[2.0, 4.3] 0.19þ0.03
−0.02

[4.3, 8.68] 0.37þ0.06
−0.04

[10.09, 12.86] 0.25þ0.04
−0.03

[14.18, 16.0] 0.15þ0.03
−0.02

[16.0, 18.0] 0.15þ0.03
−0.02

[18.0, 22.0] 0.25þ0.04
−0.03

[22.0, 26.4] 0.13þ0.02
−0.02

[0.05, 8.0] 0.66þ0.10
−0.07

[1.0, 8.0] 0.58þ0.09
−0.06

½4m2
μ; ðmB −mπÞ2� (total) 1.88þ0.32

−0.21
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measured recently by the LHCb Collaboration [1]. In doing

this, we have used the effectiveWilson coefficientsCeff
7 ðq2Þ,

Ceff
9 ðq2Þ and Ceff

10 , obtained in the NNLO accuracy earlier

for the b→ ðs; dÞlþl− decays [37,39–42]. Some of the

auxiliary functions, called F
ð7Þ
1;2ðq2Þ, F

ð9Þ
1;2ðq2Þ, F

ð7Þ
1;ð2Þ;uðq2Þ,

and F
ð9Þ
1;ð2Þ;uðq2Þ, are known analytically in the limiting case

ofmc=mb ¼ 0 [88], whichwe have used. For realistic values

of this ratio, taken by us as
ffiffiffi

z
p ¼ mc=mb ¼ 0.36, the results

are known only in limited ranges of s ¼ q2=m2
B (s ≤ 0.35

and 0.55 < s < 1.0). All these functions are shown numeri-

cally in Fig. 2. We have interpolated in the gap, which

introduces some uncertainty, but being part of the NNLO

contribution, it is not expected to be the dominant error.

Theoretical uncertainties are dominated by the imprecise

knowledge of the form factors, fBπþ ðq2Þ and fBπT ðq2Þ. We

have extracted the shape of the former from data on the

charged-current process B → πlνl, measured at the B
factories. Among the four popular parametrizations, the

BGL (Boyd, Grinstein and Lebed) z expansion was chosen

as our working tool. For the tensor form factor fBπT ðq2Þ,
heavy-quark symmetry provides the information in the low-

q2 (large-recoil) region, inwhich this form factor is related to

the known factor fBπþ ðq2Þ, up to symmetry-breaking effects,

which we have estimated from the existing literature.

This provides us an estimate of the dilepton invariant-mass

spectrum for q2 ≤ 8 GeV2. For larger values of q2, we have
used the SUð3ÞF-symmetry-breaking ansatz and knowledge

of the form factor fBKT ðq2Þ from lattice QCD. Comparison

with the preliminary results by the HPQCD Collaboration

studies of the form factor fBπT ðq2Þ in the low-recoil (or large-
q2) region [28] shows a good consistency with our results.

This then provides us a trustworthy profile of the two form

factors needed in estimating the entire dilepton invariant-

mass spectrum and the partial branching ratio. The com-

bined accuracy on the branching ratio is estimated as�15%,

and the resulting branching fraction BðB�
→ π�μþμ−Þ ¼

ð1.88þ0.32
−0.21Þ × 10−8 is in agreement with the LHCb data [1].

We have provided partial branching fractions in different

ranges of q2, which can be compared directly with the data,

as and when they become available.
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Note added.—Recently, the analysis of the B → πll̄ and

B→ ρll̄ decays in the relativistic quark model has been

presented in Ref. [89]. The main difference in comparison

with our analysis is that the B → π transition form factors

were determined theoretically by utilizing the relativistic

quark model based on the quasipotential approach and

QCD. The total branching fraction BðB�
→ π�μþμ−Þ ¼

ð2.0� 0.2Þ × 10−8 is in good agreement with our result.
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