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Abstract

In this article, we demonstrate the application of digital image correlation (DIC) in evaluating the strains
and Poisson ratio of a range of soft materials in terms of their spatial and temporal resolutions. Four samples
of Polydimethylsiloxane (PDMS) were used as control substances and were measured to have Poisson ratios
of 0.498, 0.503, 0.500, and 0.499, in agreement with the reported incompressible value of 0.50 [1]. Two
carbon nanotube (CNT) elastomers of identical composition, but one of a homogeneous and the other of an
inhomogeneous CNT distribution, were used to determine the spatial resolution with good results (Fig. 2
and Fig. 4). The relaxation of a 3D polydomain liquid crystal elastomer (3D-LCE), a cholesteric liquid
crystal elastomer (CLCE), and a polyacrylamide gel (PAAm) in water, were used to determine the temporal
resolution. A 10min video short at 25fps was used to evaluate the time dependence of the 3D-LCE over
which time an increase in the Poisson ratio was observed. The 3D-LCE relaxes from its initial state at 0.42
to 0.50, converging towards incompressibility. The CLCE was found to have a similar initial value of 0.44
but converged to ∼ 0.60, a consequence of its anisotropic nature. PAAm gel relaxation in water was studied
over a time period of 7 hours with digital images taken periodically every minute. Its Poisson ratio was
found to decrease smoothly from 0.50 to 0.26, with an accompanying reduction in force. The equilibrium
result compares well to the 0.25 value predicted by theories of the strain induced swelling of dilute gels. In
summary, we find DIC to be a powerful and easy to implement method of accurately measuring local strains
in a range of soft materials.

1. Introduction

In linear viscoelasticity, the Poisson ratio is a particularly important yet difficult to measure quantity.
Defined as the ratio of transverse strain to parallel strain for a small uniaxial extension, it describes the
volume response to deformation. Although it is often reported as a constant, it is infact a time dependent
quantity and little work has been done in determining its viscoelastic nature [2, 3]. With the increase in
computational modelling of materials and composites, a precise knowledge of viscoelastic constants is needed
to ensure their accuracy. This is particularly important for more complex materials such as composites and
other systems with microstructure, notably biological materials, which may not deform homogeneously.

In soft materials, a non-contact measurement of strain is preferable to contact methods such as clip
on or contact extensiometers, as they can lead to unreliable results; the weight of the device, as well as
the point of contact at clamping, may strongly influence any measurements made [4]. In this paper, we
utilise the academic digital image correlation (DIC) software, MatchID, as a contactless method for full field
strain analysis (http://www.matchid.org). This offers a distinct advantage compared to video extensiometry,
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which measures the strain between two marked edges and therefore only measures the average strain. Digital
image correlation, on the other hand, divides a patterned material surface into identifiable subsections and
tracks their displacement from an initial image before deformation occurs to successively analysed images
post deformation. Local strains can then be calculated from displacements points to a high degree of
accuracy [5].

DIC was first developed by researchers at the University of South Carolina in the early 1980s [6], and
since then has seen many advances. For a thorough discussion of the history of digital image correlation,
as well as its techniques, see [7]. With advancements in computer and image technology, as well as reduced
hardware cost, DIC is becoming more accessible [8]. In recent years, this technique has been used to
characterise a range of materials including polymers [4, 9], foam [10], textiles [11], and biological materials,
such as the human ear drum [12] and mouse arteries [13].

In this work, we demonstrate the applications of DIC in characterising the Poisson ratio through uniaxial
relaxation tests on a range of polymeric and composite materials; namely, polydimethylsiloxane (PDMS),
two carbon nanotube (CNT) elastomers, 3D polydomain liquid crystal elastomer (3D-LCE), cholesteric
liquid crystal elastomer (CLCE), and a polyacrylamide (PAAm) gel immersed in water. We emphasise
two aspects of DIC: its ability to map local strains to a high degree of resolution, and the large range of
experimental timescales.

Spatial resolution is determined by comparing two carbon nanotube elastomers of 2% weight CNTs.
The distribution of CNTs in the polymer matrix is determined in preparation by the extent of mechanical
mixing. Short mixing times give an inhomogeneous composite with localised clusters of CNTs, whereas long
times give a homogeneous composite of evenly distributed CNTs [14].

The time response at the (sub second) scale was tested using two liquid crystal elastomers (LCEs). LCEs
are unique in that they combine rubber like elasticity with the symmetry breaking and optical properties
of liquid crystals. Their irregular behaviour arises from the presence of anisotropic rigid units, either in the
main polymer chain or as side chain units, known as mesogens [15]. The ordering of the mesogenic units
give rise to liquid crystalline like phases. 3D-LCEs consist of micrometre-sized nematically ordered domains
and are locally anisotropic [16]. However, on the macroscopic scale, the directors of all domains cancel and
the material possesses no macroscopic anisotropy. In CLCEs mesogens are aligned in offset nematic planes
forming a repeating helical structure. Under strain, the material behaves anisotropically as a result of the
preferential realignment of directors to stretch [17]. In general, the realignment of mesogens will give a
soft elastic response at long times (low frequencies), but at short times (high frequencies) an order of two
magnitude increase in the shear modulus has been reported [16]. The large changes in shear modulus over
measurable time scales, as well as their potential anisotropic behaviour, make them valuable subjects for
measuring the time dependent Poisson ratio, which to the author’s knowledge has not yet been reported for
LCEs.

Long time scales were examined with relaxation experiments on a polyacrylamide gel immersed in water.
It is known that free swollen gels will further take in solvent under extensive strain and expel solvent under
compressive strain [18]. The change in Poisson ratio is dominated by the diffusion rate of solvent into the gel
and for PAAm samples with thickness on the mm scale, equilibrium is reached over a period of hours [19].

In this article, we use the Henky strain tensor [20] to describe strain, defined as ln(λi) = ln(1 + εi),
where λi and εi are the stretch ratio and engineering strain in the ith direction, respectively. The Poisson
ratio calculated with the Hencky strain is a constant for incompressible materials, whereas for other strain
determinations it will vary with imposed strain [4]. For an isotropic incompressible material λ‖λ

2

⊥ = 1

and therefore ν = − ln(λ⊥)/ ln(λ‖) = − ln(λ−0.5
‖ )/ ln(λ‖) = 0.5., where λ‖ and ln(λ⊥ are the parallel and

transverse stretch ratios, respectively (see Fig. 1).
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Figure 1: (a) shows the sample before stretch of unit dimensions of 1, a speckle pattern is applied with paint.
(b) shows the sample after λ‖ stretch ratio applied, with λ⊥ strain ratio response in the free direction. The
speckle pattern deforms with the material surface.

2. Experimental Section

2.1. Materials

Polydimethylsiloxane (PDMS): A Dow Corning Sylgard 184 PDMS elastomer kit was used as received.
The curing agent and prepolymer were thoroughly mixed at a 1:10 weight ratio and degassed for an hour.
The mixture was then sealed in an acrylic mold and left in a heat oven for 6 hours at 60 degrees to set.
Upon setting, 5 samples of dimensions 22 mm × 12 mm ×1.5 mm were removed from the mould.

Carbon nanotube elastomers: With the use of specially designed surfactant molecules [21] in order to
ensure full solubility, we were able to homogeneously disperse multi-walled carbon nanotubes (CNTs) in
PDMS matrix, and then crosslink it to fix their configuration. Although a growing number of applications
use CNT/PDMS composites, the issues associated with CNT dispersion persist and in many cases the nan-
otubes remain in small bundles and clusters. The use of special surfactants requires a much smaller quantity
of solvent during the solution processing: for example, pure PDMS melt (Dow Corning Sylgard 184) could
be directly dissolved into the sonicated surfactant/CNT-PET solution at a 1:4 PDMS to PET to produce
a homogeneous composite with single-nanotube level of dispersion after 5 hours of shear mixing. For com-
parison, we also used a deliberately poorly dispersed CNT/PDMS composite, which was only mechanically
mixed for 10 minutes.

Polyacrylamide gel: PAAm gels were prepared by radical copolymerisation of a stock solution of 30%
wt Acrylamide (AA) and N, N’- methylenebis-acrylamide (BIS) at a ratio of 37.5:1.0 Ammonium persulfate
(APS) was used as the initiator and N, N, N’, N’ - tetramethylethylenediamine (TMED) as an accelerant.
Gelation was conducted at room temperature for 1 hour in a sealed, Teflon coated, acrylic mould giving 4
uniform gel strips of dimensions 22 mm × 12 mm ×1.5 mm. After gelation, the strips were gently removed
and then submerged in a reservoir of distilled, deionised water. The gels were left for 48 hours before testing,
and the water was changed regularly to remove any residual reactants.

Polydomain liquid crystal elastomer: Details of the synthesis of the siloxane-based nematic liquid crys-
talline elastomers can be found in [22]. Our aim was to obtain a true polydomain state of the nematic
phase, which can only be generated when the crosslinking is fully random with no internal stresses, and
entanglements are frozen into the resulting network. In order to achieve such a configuration, we used a
toluene solvent and completed the crosslinking reaction in the highly swollen isotropic phase of the polymer.
After the reaction, the samples were slowly deswollen so that the dry elastomer network would not end up
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overentangled. For our purposes, this forms a perfectly isotropic elastic material which (unusually) has an
extremely high mechanical loss factor [23] and an extremely long time stress relaxation [24].

Cholesteric liquid crystal elastomer: Synthesis was carried out following the general method introduced
by Kim and Finkelmann [25] by substituting 25% of the mesogenic side-groups with a chiral derivative of
cholesterol pentenoate. Siloxane backbone chains were reacted under centrifugation with the mesogenic side-
groups and the crosslinker for 45 minutes to form a partially cross-linked gel. The reactor was then opened
and the crosslinking reaction proceeded for the further 4 hours, during which time the solvent evaporated,
leading to an anisotropic deswelling of the gel. All of the volume change in this setup occurs by reducing
the thickness of the gel, while keeping the lateral dimensions fixed due to centrifugation. This introduces
a very strong effective biaxial extension in the plane. Upon crosslinking, the director is forced to remain
in the plane of stretching and results in the uniform cholesteric texture. For our purposes, this is a perfect
transversely-isotropic elastic material [17].

2.2. Setup and Analysis

Tensile tests were performed in a computer controlled uniaxial stretcher. The stretcher is modular and
has the option to attach an environmental chamber, in which samples can be strained whilst immersed in
a temperature controlled fluid. All strains were applied at a cross head speed of 7 mm/s to approximately
10% strain. The 2D DIC system consists of Canon 550D DSLR camera fitted with a Canon 100 mm macro
lens. All images were 8-bit. The camera was placed in a secure mount and carefully aligned to be in plane
with the sample.

For the PDMS, 3D-LCE and CLCE elastomers, video footage was taken during stretch at 25 fps at
1080p for 10 minutes. In the CNT experiments, digital images were taken every minute after stretch at a
resolution of 5184 × 3456 pixels (18MP).In the PAAm experiment, the gel was secured to the clamps with
acrylic resin after which one surface had moisture removed with tissue paper to allow a speckle pattern to
be applied. During this process, the gel was never exposed to air for more than 2 minutes. The gel was
then immersed in water at 25◦C and left to equilibrate for 6 hours before testing. Images were taken every
minute after strain was applied.

The speckle patterns were applied to the PDMS, 3D-LCE, CLCE and PAAm elastomers with matt spray
paint (Fig. 1). In the case of the CNT elastomers, an air brush was used with white matt paint to give
the finer speckle pattern that was needed to fully resolve the inhomogeneity. As the setup used 2D digital
image correlation, no camera calibration is required. This is especially useful for the PAAm experiment in
which the gel is viewed through an acrylic window. As the window is in plane to the sample and camera,
refraction has no effect on strain measurements.

Table. 1 shows the setup and DIC parameters for each experiment. The camera distance was chosen
to maximise the size of the sample in the field of view whilst accommodating the speckle size pattern.
The conversion of pixels to mm was done through measuring the number of pixels in a known length (the
clamps were machined to 15mm). The field of view indicates the full size of the image taken, this is a
conversion from 5184× 3456pixels2 for full photos, 1920× 1080pixels2 for images extracted from video, and
2592× 1718pixels2 for half images (as is the case for PAAm). The spatial resolution is determined from the
distance between two independent measurement points. For the displacement this is given by the subset size
and not the step size, as any subsets shifted by some step size will be calculating displacements from at least
two regions which have already been assessed and are thus not independent measurements. The resolution
is calculated from a DIC analysis of two images taken before deformation in which the displacements and
strains should be zero. It is quoted as the standard deviation of values and indicates the minimum which a
signal can be said to be detected over camera and environmental noise. The mean is also listed and this is
typically expected to be below the standard deviation. However, in some of the cases below it be seen the
displacement mean is slightly above the standard deviation. This can be attributed to the soft nature of the
samples allowing them small movement in response to vibrations and air flow. The sub-pixel resolutions are
typical of DIC and originate from the additional information of matching a known pattern to the image [26].

Strains are described by the Virtual strain gauge (VSG), which gives the average strain components over
a specific area, just as a physical strain gauge would. The size of this area is determined by the strain window
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of N×N displacement points. The spatial resolution of the VSG is the distance between each independent
measurement of strain and is determined by (SW −1)∗ST +SS, where SW is the strain window size, ST is
the step size, and SS is the subset size. Resolutions are calculated in the same manner as for displacement.

Units PDMS CNT-H CNT-IH 3DLCE CLCE PAAm
subset [pixels] 19 50 25 32 32 35
step [pixels] 3 5 5 5 5 5
field of view [mm×mm] 51×29 42×28 42×28 59×33 50×28 49×33
Measurement points [points] 25000 56000 138000 3100 6500 7200
Temporal resolution [fps] 25 1/60 1/60 25 25 1/60
Camera distance [cm] 45 40 40 50 45 45

Displacement

spatial resolution [µm], [pixels] 514, 19 390, 50 201, 25 999, 32 836, 32 590, 31
resolution [µm], [pixels] 0.75, 0.028 0.35, 0.045 0.24, 0.030 0.21, 0.007 0.98, 0.04 0.42, 0.02
mean [µm], [pixels] 0.02, 0.0008 0.2, 0.03 3.9, 0.48 0.10, 0.003 0.08, 0.003 0.29, 0.015

VSG

Spatial resolution [µm], [pixels] 2870, 106 1145, 145 960, 121 3155, 102 2666, 102 3438, 180
resolution [µstrain] 200 120 140 125 380 61
mean [µstrain] 10 22 30 4 50 33

Table 1: Measurement information for the DIC tests presented in this paper. The Camera used was an 8-bit
Canon 550 DSLR camera.

3. Results

3.1. Resolving local deformation

In this section, we examine the effectiveness of digital image correlation in resolving local inhomogeneities
by comparing two carbon nanotube elastomers of identical composition but with different CNT distributions.
The first elastomer was mechanically mixed for 10 minutes during preparation and has an inhomogeneous
distribution of CNTs. The second was mixed for 5 hours to give a homogeneous distribution.

In Fig. 2 we show maps of the transverse strain (Exx), parallel strain (Eyy), and Poisson ratio (ν) of
the inhomogeneous CNT elastomers 10 minutes after application of strain. Exx and Eyy are the Henky
strains given by ln(λx) and ln(λy). The DIC analysis parameters are shown in Table. 1. In Fig. 2(a) and
Fig. 2(b), which show the Exx and Eyy strain maps, regions of localised deformation are clearly visible.
A comparison of the maps reveals a good agreement: where there is small deformation in the transverse
direction (red regions), there is a corresponding small deformation in the parallel direction (blue regions).
The regions of small deformation are attributed to higher concentrations of CNTs as they increase the shear
modulus [14]. Conversely, regions of large deformation (blue in Fig. 2(a) and red in Fig. 2(b)) correspond
to low concentrations of carbon nanotubes, where deformation is large. As expected for an inhomogeneous
material, the spread of strains is large, with standard deviations of ±20 % and ±19 % for the Exx and Eyy

strains, respectively. A map of the Poisson ratio is shown in Fig 2(c), and although there are still large
variations (standard deviation of ±7 %), they are smaller than those seen in the strain maps. The narrower
spread confirms the agreement of the Exx and Eyy strain distributions and we find the average Poisson ratio
to be 0.48, close to a pure polymer value of 0.50.

Although CNTs themselves are compressible with a Poisson ratio reported to be 0.29 [27], their shear
modulus is order of magnitudes larger than the encapsulating polymer matrix [28]. At the low concentrations
of CNTs tested, the bulk of the transverse contraction will be determined by the polymer response rather
than that of the CNTs and a Poisson ratio of ∼ 0.50 is to be expected. It should be noted that although
the Poisson deviates from 0.50 locally, it does not mean there was compressible deformation, only that the
deformation was anisotropic and that out of plane strain is not equivalent to the Exx strain (an assumption
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in the Poisson ratio calculation). Interestingly, these deviations average out when the mean is taken over
the whole sample and incompressibility is almost entirely recovered.
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Figure 2: (a) Exx strain, (b) Eyy strain, and (c) Poisson ratio maps of an inhomogeneous 2% wt carbon
nanotube elastomer. The error bars embedded in each colour scale give the mean value as well as the
corresponding standard deviation. The scale bar is 5mm.

In Fig. 3 maps of the Exx strain, Eyy strain, and Poisson ratio of the homogeneous CNT elastomer
10 minutes after strain was applied are shown. The colour scales are identical to Fig. 2. In contrast to
the inhomogeneous CNT elastomer, the maps show little variation, and the standard deviations of the Exx

strain, Eyy strain, and Poisson ratio are ±2.0 %, ±2.1 %, and ±0.6 %, respectively. The mean value of
the Poisson ratio is 0.495, close to the incompressible value of pure polymer. With the DIC technique, the
differences in homogeneity between the short time and long time mixed CNT elastomers, as well as the
distribution of CNTs in the elastomer, are easily detectable. Although there are differences in the average
Poisson ratio, the values are in a good agreement considering the large spear of values observed in the
inhomogeneous CNT elastomer.
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Figure 3: (a) Exx strain (b) Eyy strain and (c) Poisson ratio maps of the homogeneous 2% wt carbon
nanotube elastomer. The scales are equivalent to those in Fig. 2, and the scale bar is 5mm. The error bars
embedded in each colour scale gives the mean value as well as its corresponding standard deviation.

The plots in Fig. 4 are the same as Fig. 3, but the scale limits are set between the minima and maxima of
each map. On this scale, both strains appear to vary from a region of high deformation (in the top left) to a
region of low deformation (in the bottom right). The smaller local fluctuations originate from camera noise
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as their variation is comparable to resolution listed in table. 1, this is not the case for the inhomogeneous
CNT where local variations are at orders of magnitude larger than the resolution.

The origin of the large scale strain distribution is likely the result of three competing effects. (1) A genuine
varying of the carbon nanotube distribution; however, this is unlikely to be so significant. (2) Misalignment
of the sample, resulting in an applied strain that is not truly uniaxial; this is almost certainly occurring to
some extent. (3) There is the possibility of offset or artificial strains as result of camera misalignment or
out of plane motion. Out of plane motion typically refers to errors arising from deformation perpendicular
to the image plane, resulting in an apparent change in size. These errors are minimised by an appropriate
choice of lens and by placing the camera as far away from the sample as possible [7], as artificial strain
errors go as ∆Z/Z, where Z is the camera distance and ∆Z is the change in distance upon stretch. In
this experimental setup and over the large strains applied, uniform out of plane motion will have a minimal
effect on strains. Nevertheless, soft materials present an additional problem in this respect as it is difficult
to ensure the material deforms uniformly in the free directions, e.g., straightening of the material during
stretch or curling at the edges, which may not be immediately obvious during experiment. Although the
sample was not observably curved, there will undoubtedly be some level of nonuniform out of plane motion,
which may affect results as sensitive as the Poisson ratio.

In this case, the strain distribution is unlikely to be result of out of plane motion or curvature, due to
the agreement of Exx and Eyy strains. If the out of plane motion does play a role, there would be a contrast
between strains, e.g., curvature at the free edge would result in little change to Exx but decrease Eyy [29].
As the strains are of physical origin, it is likely that the distribution is a result of sample misalignment
resulting in non-uniform strain. It is important to note that all deformations will appear inhomogeneous on
some scale, as errors will always manifest, it is only in comparison between samples that deformations can
be termed homogeneous or inhomogeneous.
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Figure 4: (a) Exx strain (b) Eyy strain and (c) Poisson ratio maps of homogeneous 2% wt carbon nanotube
elastomer. The error bars embedded in each colour scale give the mean value as well as the corresponding
standard deviation. The scale bar is 5mm.

In Fig.5 relaxation plots of the normalised force and Poisson ratio are shown. The normalised force is
taken as the current force value, F (t), divided by the maximum post stretch value, Fmax. Both elastomers
exhibit a long time viscoelastic force relaxation, due to a slow reconfiguration of the rigid CNT filler in the
elastic matrix, with an equilibrium not having been reached in the experimental time span. In contrast,
the Poisson ratio has no observable time dependence over the probed time scale. Here we plot the average
Poisson ratio over the whole field of view of the film away from the clamps (see Discussion for details). The
error bars indicate the Poisson ratio standard deviation over the analysed region and highlight the significant
differences in homogeneity.
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Figure 5: Normalised force and Poisson ratio relaxation of (a) a homogeneous and (b) an inhomogeneous
carbon nanotube elastomer. Error bars show the standard deviation over the analysed region.

3.2. Stress relaxation and (in)compressibility

In this section, we present results utilising DIC to probe the time dependence of strain and ultimately the
Poisson ratio. The Poisson ratio time dependence of an isotropic elastic material is an effect of its relation
to the shear and bulk modulus:

ν =
3K − 2G

2(3K +G)
, (1)

where K and G are the bulk modulus and shear modulus, respectively. In rubbers, the equilibrium bulk
modulus is typically of the order 1-10 GPa whereas the shear modulus is ∼ 0.1− 1 MPa [15]. At lower G/K
Eq. 1 can be expanded to give ν = 1/2+G/3K+O

¯
(G/K); consequently, the Poisson ratio in rubbers is very

close to 0.50. Near the glass transition temperature and/or at short time scales, the polymer can undergo
strain induced phase transition and enter the glassy regime; it should be noted that this transition is not
discontinuous [30]. In the glassy state, the shear modulus can increase by a factor of more than 1000 and
becomes comparable to the bulk modulus [31]. Accordingly, the initial Poisson ratio will be at some glassy
value of less than 0.50. Grassia et al. use a theoretical model to analyse results found in the literature,
showing initial values of 0.35, 0.40, and 0.43 for polystyrene, polycarbonate, and a polycyanate, respectively,
all of which relax to an equilibrium Poisson ratio of ∼ 0.50 as the polymers revert to the rubbery regime. [32]
The longest time scales of decay will be at the glass transition temperature, with decay times decreasing as
temperature increases.

If time dependence is to be observed in a uniaxial step strain experiment, it is important that the applied
strain occurs over a much shorter time scale than the shear modulus relaxation occurs. Furthermore, if the
testing temperature is far from glass transition temperature strain induced glass transition may not be
observable, the observable time scale being limited by the camera frame rate and the equipment strain rate.
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Figure 6: Normalised force and Poisson ratio relaxation after 10% step strain for (a) polydimethylsiloxane,
(b) polydomain liquid crystal elastomer, and (c) cholesteric liquid crystal elastomer

Figure.6 shows relaxation plots of normalised the force and Poisson ratio for three elastomers: PDMS, 3D-
LCE, and CLCE. PDMS was used as a control material as it is regularly used and its mechanical properties
are well documented [33]. The Poisson ratio is reported to be 0.50, [1] but there few, if any, reports of the
time dependent Poisson ratio. As seen in Fig.6(a), the PDMS sample exhibits a small force relaxation and
approaches an equilibrium value of roughly 90% the initial value. Over the probed time scales the Poisson
ratio does not vary, deforming almost incompressibly with a value of 0.498. Three repeats found values of
0.503, 0.500, and 0.499. With the current experimental setup it is unlikely any time dependence would be
observed as, at −125 ◦C, PDMS has one of lowest glass transition temperatures of all elastomers [34]. As
the Poisson ratio is a constant it can be inferred that the normalised force relaxation is identical to the
normalised stress relaxation. It follows that due to the incompressibility, the stress relaxation is solely the
result of the shear modulus’ time dependence. Force relaxation and thus the shear modulus relaxation is
roughly 10% and not of the order of magnitude difference needed to make it comparable to the bulk modulus.

Figure 6(b) shows the normalised force and Poisson ratio relaxation of a 3D-LCE. The force relaxation
is substantial, converging to 0.8% the initial force value (not shown). Subsequently, the Poisson ratio also
shows notable change, increasing from 0.42 and converging to 0.50, the expected equilibrium value [15].
The force relaxation in the CLCE (Fig.6(c), is similar but settles to a slightly higher final value of 12%
(not shown). Its Poisson ratio, starting at a value of 0.44, approaches a value of 0.60. This value suggests
contraction of the CLCE, but it is infact due to the innate anisotropy of the CLCE, which causes a greater
contraction ratio in Exx and a smaller contraction ratio out of plane. The convergent value is close to 0.62
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measured by Hirato (2008) [35] but less than the theoretically predicted value of 0.70. [15]. Cuciuta et al.
(2002) observed a value 0.72. However, in both experiments the Poisson ratio was not directly measured,
rather it was interpreted from changes in the peak transmission wavelength. This reasoning is supported
by Schmidtke et al., who demonstrated that under biaxial strain changes in peak transmission wavelength
are linearly proportional to changes in elastomer thickness. The change in thickness was calculated from
changes in light absorption of a dispersed dye [36]. In future work on CLCEs, it would be useful to couple
DIC measurements of in plane strains to out of plane measurements calculated from transmission wavelength
shifts.

In Fig.7 we plot the bulk and shear modulus of the 3D-LCE as a function of time, where the relations
G = E/2(1 + ν) and K = E/3(1 − 2ν) were used. E is the Young’s modulus and was calculated from
the stress and the engineering strain, ǫ = λ‖ − 1, at time t. The stress was found from the force, F (t),
extracted from a spline fit to the force data, the initial area and λ⊥(t), such that σ(t) = F (t)/(A0λ⊥(t)

2).
Figure. 7 reveals that the shear modulus relaxation, and consequently a glass-rubber phase transition, can
not possibly account for all the Poisson ratio relaxation. The shear modulus relaxes by a factor of just 20,
and by comparison to Fig.6(b), it is evident that the Poisson ratio is still increasing as the shear modulus
begins to stabilise. The only alternative is to assume that the volume of the elastomer genuinely changes
after an instant deformation, so that nano-voids open up in the network - and their gradual closure is what
we observe during the ν(t) relaxation. This results in an effective lowering of K(t). There is some transition
into the glass regime, which explains the bulk modulus (and shear modulus) relaxation at early times, but
after 100 seconds the effect of nano-voids closing begins to take precedent and we see a rapid increase in
K(t) moving toward the GPa values of a typical rubber. Unfortunately, due to the error dependence on
1/(1 − 2ν), as the 3D-LCE moves closer to 0.50, the errors increase substantially and it is impossible to
credibly determine the value of the Bulk modulus with high accuracy. The errors for the shear modulus are
too small to be seen in the scale used but decrease as 1/(1 + ν).
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Figure 7: Plots of the shear and bulk modulus relaxation for 3D-LCE.

In Fig.8(a) the force and Poisson ratio relaxation plots of a fully swollen polyacrylamide (PAAm) gel
uniaxially strained in water are shown. The origin of the Poisson ratio change in gels is not a glass phase
transition, rather it is a result of their semi-open nature allowing them to exchange solvent and change
their volume. This results in an effective lowering of K(t), similar to the case of the 3D-LCE were volume
change occurred due to the opening of nano-voids. It is known that free swollen gels will further take in
solvent under extensive strain and expel water under compressive strain [18]. The gel tested, of volume
fraction 0.08, shows a smooth relation between force and Poisson ratio, reaching an equilibrium after 6
hours. The relaxation of force is attributed to a change in effective strain brought about by gel swelling,
rather than viscoelastic effects. If the extensive force were removed from the gel, it would return to an
unstrained state of larger volume than the initial state (due to solvent absorbtion), implying an effective
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reduction in imposed strain. The movement of solvent into the gel is a diffusion dominated process and as
such depends on the dimensions of the gel [19]. Immediately after stretch, the Poisson ratio is 0.50 and
the gel has deformed incompressibly as there has been little time for solvent exchange. As the gel swells,
the Poisson ratio decreases, as does force, and after 6 hours equilibrates to a value of 0.26. This is in good
agreement with the 0.25 predicted by thermodynamic theories of strain induced swelling for dilute neutral
gels [18]. Figure 8(b) shows the shear and bulk modulus relaxation. Similar to the case of the 3D-LCE, the
Poisson ratio change is primarily in response to volume change resulting in an effective lowing of K(t). The
shear modulus shows little change with time and remains at approximately 16 KPa.
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Figure 8: (a) Normalised force and Poisson ratio relaxation of a polyacrylamide gel immersed in water in
response to a 10% step strain. (b) Corresponding shear and bulk moduli.

4. Discussion

Using DIC on soft materials is a powerful technique but as with any experimental technique certain
conditions must be met in order to achieve accurate results. With soft materials, there can be difficulty
ensuring they deform in plane and that they are flat before stretch. Problems can arise with the material
deforming under its own weight or defects in the manufacturing process can result in a preferentially curved
surface. This can be a major problem in 2D digital image correlation but can be resolved by using 3D digital
image correlation, which uses two cameras to allow computation of strains in the out of plane direction.
Of particular importance when conducting DIC is the choice of subset size and strain window size, which
determine the spatial resolution of displacement and strain fields, respectively. The subset size determines
the number of pixels in each localised region in the undeformed image to be mapped to the deformed image.
If this subset is too small, the correlation between images may not be good enough to give reliable results,
and if it is too big, it may mask inhomogeneous deformation as well as increasing computation time. For
homogeneous tests, it is better to consider a larger subset which will substantially increase the resolution
of displacement results (as is the case for strain fields). For heterogeneity, of course, and high spatial
frequencies, the smallest subset possible should be chosen in order to capture this. The subset and strain
windows actually act as low-pass filters in the displacement and strain field regimes, filtering out high spatial
frequencies which typically arise from noise. In conclusion, the choice of parameters depends on the aim of
the measurement.

Strains in DIC typically undergo some level of smoothing to increase their accuracy. In this analysis
smoothing is implemented through a spline fit over displacement points inside strain windows, strains are
subsequently calculated through the gradient. A large strain window can increase the accuracy of the
calculated strains but it may also mask inhomogeneities [5]. This is demonstrated in Fig. 9, with plot a, b,
and c showing Poisson ratio maps of PDMS calculated from strain windows of 15, 30, and 60 displacement
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points respectively. The DIC parameters are shown in table. 1, where the resolutions are listed from 30
displacement points. With increasing subset size the plots become smoother and appear more homogeneous,
this is particular noticeable around the clamp effects. This is due to the spatial resolution decreasing from 1.6
mm, to 2.9 mm to 5.3 mm and the SVG resolution increasing from 601µstrain to 200µstrain to 61µstrain.
The average Poisson ratio, calculated over the homogeneous region denoted by dashed box, is equal to 0.498
for all strain windows used. However, for larger strain windows, this begins to decrease as the windows
encroach on the clamped region. Strain window size is not important when calculated average values for a
system, which is the typically reported quantity for Poisson ration, but will affect the smoothness of strain
maps. For samples which are typically homogeneous it is advised that larger strain windows are used to
increase local accuracy. In the case of inhomogeneous samples, smaller strain windows are recommended so
as to not mask information. [5] For average values, the strain window size is not as important.
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Figure 9: Poisson ratio maps in PDMS calculated from a strain windows size of (a) 15, (b) 30, and (c) 60
displacement points. The dashed black rectangle indicates the region of interest in which an average is taken
to give the Poisson ratio of PDMS. The scale bar represents 5mm.

The average Poisson ratio for a material is taken over a user selected region of interest (ROI). For
homogeneous materials this region must be selected over the area that deformed homogeneously, e.g., away
from the clamps. Depending on where the ROI is placed, there can be small changes in the Poisson ratio, so
it is important to take the average over a uniformly deformed area as large as possible if the material response
is to be truly represented. For inhomogeneous materials, the ROI will have a more dramatic influence on
Poisson ratio, and it becomes essential to have as large a ROI as possible, preferably covering the whole
material surface.

Research cameras can be expensive and with their relative inexpensiveness and improved quality, DSLR
cameras are becoming a viable alternative. Most DSLRs have mechanical shutters and for long time exper-
iments this may be a problem as it can cause the camera to move slightly over time, creating artificial time
dependent strains. It is important to place the camera in a secure (preferable full body supporting) mount
and allowing the camera to fire a few hundred times to settle (which can be automated). Images taken on a
rigid body can then be used to test for movement. For video footage there is no mechanical action and there
is no issue. The use of DSLRs is not advised for small strains ( 10 µstrains) as their performance is not yet
on par with research cameras. However, as can be seen from the resolutions in table. 1, their performance
is adequate for the large strains typically applied to elastomeric materials.

In summary, we have demonstrated the application of DIC for soft materials in a large range of temporal
and spatial resolutions. This was demonstrated with uniaxial strain and relaxation experiments on PDMS,
homogeneous and inhomogeneous CNT, 3D-LCE, CLCE, and a PAAm gel immersed in a good solvent.
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PDMS was used as a control and the results were found to agree precisely with those found in the literature.
The differences between inhomogeneous and homogeneous CNT elastomers were easily observable, and
their average Poisson ratios were shown to be dominated by the polymer response, leading to an almost
incompressible deformation. Liquid crystal elastomers were demonstrated to have a time dependent Poisson
ratio, with the 3D-LCE converging to an incompressible value of 0.5 and the anisotropic CLCE converging
to 0.60. We find the Poisson relaxation in the 3D-LCE could only be explained with a genuine change
in volume brought about by the opening, and subsequent closing, of nano-voids, resulting in an effective
lowering in K(t). Finally, the DIC was shown to give good results for a PAAm gel immersed water, which
initially deformed incompressibly and relaxed to a Poisson ratio 0.26, in good agreement with theory. In
PAAm, the Poisson ratio relaxation is entirely attributed to volume change and an effective lowering of K.
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