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Abstract

Objectives To evaluate the performance of a novel three-dimensional (3D) joint convolutional and recurrent neural network

(CNN-RNN) for the detection of intracranial hemorrhage (ICH) and its five subtypes (cerebral parenchymal, intraventricular,

subdural, epidural, and subarachnoid) in non-contrast head CT.

Methods A total of 2836 subjects (ICH/normal, 1836/1000) from three institutions were included in this ethically approved

retrospective study, with a total of 76,621 slices from non-contrast head CT scans. ICH and its five subtypes were annotated by

three independent experienced radiologists, with majority voting as reference standard for both the subject level and the slice

level. Ninety percent of data was used for training and validation, and the rest 10% for final evaluation. A joint CNN-RNN

classification framework was proposed, with the flexibility to train when subject-level or slice-level labels are available. The

predictions were compared with the interpretations from three junior radiology trainees and an additional senior radiologist.

Results It tookour algorithm less than30 sonaverage toprocess a3DCTscan.For the two-typeclassification task (predictingbleeding

or not), our algorithmachieved excellent values (≥ 0.98) across all reportingmetrics on the subject level. For the five-type classification

task (predicting five subtypes), our algorithmachieved> 0.8AUCacross all subtypes.Theperformanceof our algorithmwasgenerally

superior to the average performance of the junior radiology trainees for both two-type and five-type classification tasks.

Conclusions The proposed method was able to accurately detect ICH and its subtypes with fast speed, suggesting its potential for

assisting radiologists and physicians in their clinical diagnosis workflow.

Key Points

• A 3D joint CNN-RNN deep learning framework was developed for ICH detection and subtype classification, which has the

flexibility to train with either subject-level labels or slice-level labels.

• This deep learning framework is fast and accurate at detecting ICH and its subtypes.
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• The performance of the automated algorithm was superior to the average performance of three junior radiology trainees in this

work, suggesting its potential to reduce initial misinterpretations.

Keywords Brain . Intracranial hemorrhage (ICH) .Multislice computed tomography . 3D imaging . Algorithms

Abbreviations

3D Three-dimensional

AI Artificial intelligence

AUC Area under the curve

CNN Convolutional neural network

CPH Cerebral parenchymal hemorrhage

CT Computed tomography

EDH Epidural hemorrhage

FC Fully connected

ICH Intracranial hemorrhage

IVH Intraventricular hemorrhage

RNN Recurrent neural network

ROC Receiver operating characteristic

SAH Subarachnoid hemorrhage

SDH Subdural hemorrhage

Introduction

Intracranial hemorrhage (ICH) is a critical disease that may

lead to severe disability or death. It could be caused by various

reasons ranging from trauma, vascular disease to congenital

development [1]. According to the bleeding location, ICH can

be further classified as epidural hemorrhage (EDH), subdural

hemorrhage (SDH), subarachnoid hemorrhage (SAH), cere-

bral parenchymal hemorrhage (CPH), and intraventricular

hemorrhage (IVH) [2, 3]. The degrees of severity and inter-

ventions vary with bleeding types [4].

Computed tomography (CT) is a well-known non-invasive

and effective imaging approach to detect ICH [1].

Hemorrhage can be recognized on non-contrast CT since

blood has slightly higher density (Hounsfield unit, HU) than

other brain tissues but lower than that of bones [5]. The accu-

rate diagnosis of bleeding becomes critical for clinicians to

take clinical interventions [6]. In addition, evaluation of head

CT is often needed for patients at emergency departments after

working hours. In most clinical centers, initial interpretations

of head CT is usually provided by junior radiologists, radiol-

ogy trainees, or emergency physicians in order to give neces-

sary care to clinically significant patients. The initial interpre-

tations will be reviewed later by senior or more-experienced

radiologists. Several studies have confirmed that discrepan-

cies exist between the initial and final interpretations and some

misinterpretations might even cause clinical consequences

[7–10]. Among these studies, Strub et al focused mainly on

the misinterpretation of ICH between overnight residents and

staff neuroradiologists [10]. It was reported that ICH

accounted for 13.6% (141/1037) of the discrepancies and the

most common subtypes of misidentified ICH were SDH and

SAH, occurring in 39% and 33% of the cases, respectively

[10]. Therefore, an automated triage system for accurate ICH

detection is desirable to reduce the rate of misdiagnosis.

Recently, artificial intelligence (AI) has shown great promise

in the medical imaging domain [11–16]. Among these, some

studies have made attempts to detect abnormalities in head CT

including ICH using deep learning/machine learning methods

[17–22].Prevedelloet al demonstrated theapplicationofa simple

deep learningalgorithm todetect critical test findings for headCT

usingasmalldatasetwith76acuteICHcases[23].Lietal reported

high diagnostic value (100% sensitivity and 92% specificity) for

SAH detection by applying a supervised machine learning algo-

rithm to 129 subjects with suspected SAH [18]. A more recent

study by Chang et al applied a hybrid convolutional neural net-

work (CNN) using slice slabs on a dataset containing 10,159

training CTscans and 862 testing CTscans from a single institu-

tionforICHdetectionandquantification[22].However, this large

dataset contains a low amount of ICH-positive cases (901 and 82

for training and testing, respectively) and not all ICH subtypes

were analyzed in this study. Another recent study by

Chilamkurthy et al used deep learning for automatic detection

of critical findings in head CT scans, including ICH with 4304

scans [20]. A two-stage approach was employed, in which a 2D

CNNwasused toobtainslice-level confidenceand randomforest

was then adopted to predict subject-level probability. It should be

noted that themethodsabovewerebasedon2Dor slice slabs, and

thesubject-levelpredictionwasthenobtainedbyiteratingthrough

all slices and combining slice-level results with post-processing.

Slice-level labels were required for training. Attempts have been

madebyArbabshirani et al to applya3DCNN-basedapproach to

detect ICH [24], in which a simple CNN network with five

convolutional layers and two fully connected layerswas adopted

and only subject-level labelswere used as ground truths for train-

ing. The performance of this plain 3D CNN seemed improvable

(AUC = 0.846, sensitivity = 0.73, and specificity = 0.80 at the

chosen operating point [24]). It remains unknown whether such

straightforwardapproaches (2D,hybrid, or simple3D)are able to

generate reliable predictions.

This study aimed at developing a novel framework for

automated and accurate ICH detection. The framework was

built based upon a relatively large size of datasets

collected from multiple centers with varieties of CT scanners.

It seamlessly integrated CNN and recurrent neural network

(RNN) in which CNNwas used to extract useful features from

image slices while RNN was employed to consider inter-slice
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dependency context. Our framework is an end-to-end train-

able network with the flexibility for training under two differ-

ent levels of annotation details: (1) only ground truths of sub-

jects (i.e., labels for the whole scans) are available and (2)

ground truths for each of the slices in the scans are available.

The first scenario requires fewer annotation efforts, which

may be preferred if the time for annotation is limited or

slice-level annotation is thought to be less reliable. The second

scenario demands more annotation efforts, yet provides de-

tailed hemorrhage localization information that may benefit

algorithm training. We evaluated and compared the perfor-

mance of our proposed algorithm under both settings. A visu-

alization mechanism was also proposed to provide visual ev-

idence of detection, which does not require any manual delin-

eation of bleeding areas for training. We further demonstrated

the potential usefulness of our framework by comparing the

performance of our algorithm with that of two groups of head

CT interpreters with different levels of experience.

Materials and methods

Study cohort

This retrospective study was approved by the ethics committees

of three participating hospitals (hospitalA, hospital B, and hospi-

talC).HeadCTscans from3129 subjectswere initially collected,

with 2102 from hospital A, 511 from hospital B, and 516 from

hospital C. All subjects were from the Asian population. The

detailed study cohort design is described in Supplementary

Material. After careful slice-wise review and annotation by three

independent experienced radiologists (with 10, 12, and 16 years’

experience in interpretingheadCTscans, respectively),293cases

were excluded from further analysis due to incomplete informa-

tion or serious imaging artifacts. The remaining 2836 cases were

finally used in our study, including 1836 subjects with ICH and

1000 normal subjects. We intentionally kept such a high ICH

prevalence (65%) in this dataset to ensure that there were suffi-

cient positive samples to benefit the learning process of the algo-

rithms as well as to effectively evaluate our algorithms with suf-

ficient positive and negative samples. Table 1 shows the demo-

graphiccharacteristicsof thesesubjects.Thedifferencesofpatient

age and sex distribution between the non-ICH group and ICH

group were tested using ANOVA and χ2 test, respectively, with

p values reported in Table 1. Statistical significance for both age

and sex distributions between these twogroups is consistentwith

previousfindings that the incidenceratioofICHtendstobehigher

in males and in more aged subjects [25–29]. Subjects in the ICH

groupwere further categorized into fivesubtypesaccording to the

locationof ICHonboth theslice-levelandthesubject-level:CPH,

IVH, SDH, EDH, and SAH. It is possible for some subjects with

ICH presence to have more than one subtypes (i.e., mixed sub-

types).Table2 shows the inter-rater annotationagreement among

the three radiologists. The majority vote of these three senior

radiologists’ annotations (slice-level and subject-level bleeding

as well as subtypes) was used as the gold standard. Examples of

scan slices used in this study are shown in Fig. 1.

Non-contrast CT imaging protocol

Head CT images used in this study were acquired by scanners

from different manufacturers. The scanning parameters were

different among these three institutions, with details listed in

Supplementary Table 1.

Data pre-processing

To feed the data for training, we first performed pre-

processing of the original CT images with the following steps.

All image slices were resampled to 512 × 512 pixels if neces-

sary and then downsampled to 256 × 256 pixels to reduce

GPU memory usage. The original slice number of each scan

was kept. To better account for the high dynamic intensity

range while preserving the details for different objects of in-

terest, we chose three different intensity windows to normalize

images, with details described in Supplementary Material.

Prediction models and workflow

To reduce redundancy, hereinafter, we refer to the scenario that

only subject-level ground truths were used in training as Sub-

Lab, and the scenario that subject-level labels together with slice-

level labels were used in training as Sli-Lab. Furthermore, we

refer to the task of predicting whether a subject and its slices

contain bleeding or not as a two-type classification, while the

task of predicting the bleeding subtype(s) of an ICH-positive

subject and the associated slices as a five-type classification.

Our framework can be used for both two-type and five-type

classification under both Sub-Lab and Sli-Lab settings.

Specifically, this algorithm is composed of a CNN component

Table 1 Demographic

information of subjects used in

this study

Non-ICH ICH p value

n 1000 1836 –

Age (years)* 41.58 ± 15.26 (2–82) 53.91 ± 16.51 (1–98) < 0.001

Sex (male:female) 448:552 1195:641 < 0.001

*Age reported as mean ± standard deviation (minimum–maximum)
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followed by a RNN component to mimic how radiologists inter-

pret scans. The CNN component focuses on extracting useful

features from image slices. The RNN component makes use of

these features and generates the probability of ICH or a subtype.

The RNN component is particularly useful for capturing sequen-

tial information of features from consecutive slices, adding inter-

slice dependency context to boost classification performance

(please refer to Supplementary Figure 1 for an illustration of

our algorithm; more detailed description can be found in

Supplementary Material).

In our prediction workflow, we first carried out two-type

classification to determine if ICH was present in a subject. If a

subject was predicted to be ICH-positive, five-type classifica-

tion was performed to decide if this subject belonged to any of

the five subtypes. This workflow is demonstrated in Fig. 1.

Training procedures

We split the entire subjects randomly into training (80%),

validation (10%), and testing set (10%). Data distribution for

two-type and five-type classification tasks is shown in

Supplementary Table 2. The training set was used to optimize

model parameters while the validation set was used to avoid

overfitting to the training set. The testing set was reserved for

final evaluation of our models. Training and testing schemata

are illustrated in Fig. 2. Training for ICH detection (two-type

task) and its subtypes (five-type task) was performed under

two settings: Sub-Lab and Sli-Lab (more details about the

training process are elaborated in Supplemental Material).

Model visualization

A disadvantage of deep learning models is their lack of trans-

parency and explanability [30, 31]. To improve the

explainability of our models, we generated a coarse localization

map that highlighted important regions in the image leading to

the decision of the algorithm using the Grad-CAMmethod [31].

The localization map on each slice was generated with our fully

trained algorithm, which neither affected the algorithm training

process nor required manual annotation of bleeding areas for

supervised training. This visualization technique might also be

adopted by radiologists as a guidance for interpretation (more

details are provided in Supplementary Material).

Fig. 1 Demonstration of ICH and its subtype prediction workflow. Given

processed CT images, two-type classification was first applied to predict

if a subject showed ICH. If a subject was predicted to be ICH-positive by

our algorithm, we further applied five-type classification to determine

which (one or more) of the five subtypes of ICH this subject had

Table 2 Subject-level and slice-level scoring variability assessment of

three radiologists on the diagnosis of ICH and five subtypes

R1 and R2 R2 and R3 R1 and R3 K

p (%) κ p (%) κ p (%) κ

ICH Subject 100 1.00 99 0.99 99 0.99 0.99

Slice 93 0.83 96 0.91 92 0.80 0.85

CPH Subject 91 0.77 95 0.87 91 0.77 0.80

Slice 95 0.85 97 0.92 95 0.84 0.87

SAH Subject 86 0.70 87 0.73 85 0.68 0.71

Slice 89 0.65 91 0.74 89 0.62 0.67

EDH Subject 98 0.85 98 0.83 97 0.80 0.82

Slice 99 0.79 99 0.82 99 0.73 0.78

SDH Subject 94 0.78 94 0.78 93 0.72 0.76

Slice 97 0.74 97 0.78 95 0.64 0.72

IVH Subject 87 0.72 94 0.87 88 0.74 0.78

Slice 93 0.71 97 0.88 94 0.73 0.78

R, radiologist; p, percentage agreement rate

κ, Cohen’s kappa coefficient, a statistic that measures inter-rater agree-

ment and is more robust than percent agreement rate. A number greater

than 0.6 indicates substantial agreement, while greater than 0.8 indicates

almost perfect agreement

Κ, Fleiss’ kappa coefficient, a statistic that measures the reliability of

agreement between multiple raters. A number greater than 0.6 indicates

substantial agreement, while greater than 0.8 indicates almost perfect

agreement
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Statistical analysis

All statistical analyses were performed using the python

package scikit-learn, while statistical plots were generated

with matplotlib. We evaluated the performance of algo-

rithms using statistical metrics including accuracy, sensi-

tivity, specificity, F1 score, and area under the curve

(AUC). We used 0.5 as the threshold to convert probabil-

ities into binarized class labels, i.e., a probability no small-

er than 0.5 was considered ICH-positive and a probability

smaller than 0.5 to be ICH-negative.

Diagnosis from additional radiologists and trainees

We additionally invited three junior radiology trainees and

an additional senior radiologist to provide subject-level

diagnosis on the 299 CT scans in the testing set for perfor-

mance comparison with the automated algorithm (more

details about these head CT interpreters can be found in

Supplementary Material).

Results

Two-type classification task

We evaluated the performance of our two-type classifica-

tion in the testing set, which contained 299 subjects with

8007 slices in total. Sixty-five percent of the subjects and

23% of the slices were ICH-positive, respectively. The

subject-level performance of our algorithm is reported in

Table 3 and Fig. 3. Algorithms trained under both

Sub-Lab and Sli-Lab settings achieved excellent values

(≥ 0.98), with minimal differences across all evaluation

metrics between these two settings. The results of addi-

tional experiments, including the performance comparison

of our models with baseline models, are provided in

Supplementary Material.

Five-type classification task

We evaluated the performance of our five-type classification of

194 subjects with ICH. CPH showed the highest proportion of

positive cases among the five subtypes, while EDH the lowest

(CPH > SAH > IVH > SDH > EDH; see Supplementary

Table 2 for detailed numbers). Our algorithm achieved > 0.8

AUC and > 0.8 specificity across all subtypes under both Sub-

Lab and Sli-Lab settings. Three important observations can be

made based on the sensitivity metric. Firstly, CPH was the

best-performed subtype, with sensitivity values higher than

0.9 for both Sub-Lab and Sli-Lab settings. Secondly, the sen-

sitivity of the model trained under Sub-Lab was consistently

lower than that trained under Sli-Lab for all five subtypes. This

may indicate that slice-level information can be more impor-

tant for subtype classification than for two-type classification

task. Thirdly, even for the model trained with slice-level labels,

the sensitivity for SAH and EDHwas only 0.69, notably lower

than that for the other three subtypes. The low sensitivity score

of SAHmay be due to the difficulty for detection as it has been

considered as the most challenging subtype to diagnose [10],

while the low sensitivity score for EDHmay be mainly caused

by the extremely low amount of positive cases: only 6.4% (94/

1461) of the subjects and 1.9% (758/39,278) of the slices are

EDH-positive. Additional experiments and results are de-

scribed in Supplementary Material.

Fig. 2 Illustration of training and testing schema of the two-type and five-type classification tasks. Collected data was first pre-processed and then

utilized as training, validation, and testing set for two-type and five-type classification tasks

Eur Radiol (2019) 29:6191–6201 6195



Visualization of results

In addition to statistical evaluations of our models, we

used the Grad-CAM method [31] on the model trained

under Sli-Lab to generate heatmaps to visually check if

our models made decisions based upon reasonable re-

gions. Six examples from the testing set are shown in

Fig. 4, where red regions indicated highly important areas

for decision making and gray indicated low importance.

These heatmaps elucidated that our algorithm paid most

attention to the bleeding areas and ignored regions with-

out hemorrhage as expected.

Performance comparison with radiologists
and trainees

We additionally compared the results of our models with the

interpretations from three junior radiology trainees and an

additional senior radiologist using the testing set. Table 3

shows the subject-level performance comparison. For simplic-

ity, in the following, we only focus on the algorithm trained

under Sli-Lab due to its better performance. In the two-type

classification task, the senior radiologist classified all subjects

correctly, while the junior radiology trainees misdiagnosed 12

(4%) cases (11 false negatives and 1 false positive) on

Table 3 Subject-level

performance of the automated

algorithm, three junior radiology

trainees, and a senior radiologist

on two-type and five-type

classification tasks

Accuracy Sensitivity Specificity F1 score AUC

ICH Model (Sub-Lab) 0.99 0.98 0.99 0.99 1.00

Model (Sli-Lab) 0.99 0.99 0.99 0.99 1.00

JRT 1 0.94 0.91 1.00 0.95 0.96

JRT 2 0.97 0.97 0.97 0.98 0.97

JRT 3 0.97 0.95 1.00 0.97 0.97

JRT (x̅ ± s) 0.96 ± 0.02 0.94 ± 0.03 0.99 ± 0.02 0.96 ± 0.02 0.97 ± 0.01

SR 1.00 1.00 1.00 1.00 1.00

CPH Model (Sub-Lab) 0.88 0.90 0.82 0.92 0.94

Model (Sli-Lab) 0.90 0.92 0.83 0.93 0.94

JRT 1 0.84 0.79 1.00 0.88 0.89

JRT 2 0.92 0.92 0.90 0.94 0.91

JRT 3 0.87 0.86 0.90 0.91 0.88

JRT (x̅ ± s) 0.88 ± 0.04 0.86 ± 0.07 0.93 ± 0.06 0.91 ± 0.03 0.89 ± 0.02

SR 0.95 0.98 0.86 0.97 0.92

SAH Model (Sub-Lab) 0.75 0.65 0.82 0.7 0.82

Model (Sli-Lab) 0.83 0.69 0.94 0.78 0.89

JRT 1 0.62 0.19 0.96 0.30 0.57

JRT 2 0.81 0.58 1.00 0.74 0.79

JRT 3 0.65 0.27 0.95 0.40 0.61

JRT (x̅ ± s) 0.69 ± 0.10 0.35 ± 0.21 0.97 ± 0.03 0.48 ± 0.23 0.66 ± 0.12

SR 0.96 0.95 0.96 0.95 0.96

EDH Model (Sub-Lab) 0.92 0.69 0.94 0.55 0.90

Model (Sli-Lab) 0.96 0.69 0.98 0.72 0.94

JRT 1 0.97 0.54 1.00 0.73 0.77

JRT 2 0.98 0.77 1.00 0.87 0.88

JRT 3 0.96 0.85 0.97 0.73 0.91

JRT (x̅ ± s) 0.97 ± 0.01 0.72 ± 0.16 0.99 ± 0.02 0.78 ± 0.08 0.85 ± 0.07

SR 0.99 0.92 1.00 0.96 0.96

SDH Model (Sub-Lab) 0.87 0.61 0.93 0.64 0.91

Model (Sli-Lab) 0.94 0.86 0.96 0.84 0.96

JRT 1 0.88 0.53 0.96 0.62 0.75

JRT 2 0.94 0.75 0.99 0.83 0.87

JRT 3 0.91 0.50 1.00 0.67 0.75

JRT (x̅ ± s) 0.91 ± 0.03 0.59 ± 0.14 0.98 ± 0.02 0.71 ± 0.11 0.79 ± 0.07

SR 0.98 0.94 0.99 0.96 0.97

IVH Model (Sub-Lab) 0.84 0.66 0.94 0.74 0.84

Model (Sli-Lab) 0.91 0.84 0.95 0.87 0.93

JRT 1 0.83 0.57 0.97 0.70 0.77

JRT 2 0.92 0.82 0.98 0.88 0.90

JRT 3 0.88 0.72 0.97 0.81 0.84

JRT(x̅ ± s) 0.88 ± 0.05 0.70 ± 0.13 0.97 ± 0.01 0.80 ± 0.09 0.84 ± 0.07

SR 0.96 1.00 0.94 0.94 0.97

Sub-Lab, only subject-level labels were available and used in the training process. Sli-Lab, slice-level labels were

available; thus, both slice-level and subject-level labels were used in the training process

JRT, junior radiology trainee; SR, senior radiologist

x̅ ± s, mean ± standard deviation
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average. In comparison, our algorithm under Sli-Lab only

incorrectly predicted 2 (< 1%) CT scans (1 false positive and

1 false negative) when training with slice-level labels. More

importantly, our algorithm correctly classified on average 10.7

(17, 10, and 5 for the three junior radiology trainees, respec-

tively) ICH-positive cases that the junior radiology trainees

misdiagnosed. For the five-type classification task, the senior

radiologist performed generally the best across all five sub-

types, especially for the sensitivity metric. The sensitivity of

our algorithm was higher than the average performance of the

junior radiology trainees for CPH, SAH, SDH, and IVH. Even

for EDH with an extremely low amount of positive cases

(6.4%), the sensitivity of our algorithm was merely 0.03 lower

than the average performance of the junior radiology trainees.

SAH has been considered as the most difficult subtype to

diagnose [10]. Indeed, it showed the most notable discrepancy

for the sensitivity metric: 0.95 for the senior radiologist, 0.69

for our algorithm, while only 0.35 for the average perfor-

mance of the junior radiology trainees. Further, our algorithm

correctly predicted 11 (13%) SAH cases that none of the three

junior radiology trainees were able to interpret correctly. All of

these SAH cases have mixed hemorrhage subtypes, making

the SAH subtype liable to being overlooked (please see Fig. 5

for three examples). By contrast, there was only one SAH-

positive case that all three junior radiology trainees captured

but our algorithm failed. We presented this case in

Supplementary Material.

Discussion

In this study, we proposed a joint CNN-RNN deep learning

algorithm and a prediction workflow for ICH and its subtypes.

The contribution can be summarized at least in the following

three aspects. Firstly, to the best of our knowledge, our pro-

posed algorithm was the first end-to-end trainable 3D ICH

detection deep learning network that seamlessly integrates

CNN and RNN and meanwhile provides the flexibility of

Fig. 3 Subject-level ROC curves and AUC results for two-type and five-

type classification tasks. a, b two-type and five-type results for algorithm

trained with only subject-level labels. c, d two-type and five-type results

for algorithm trained with both subject-level and slice-level labels. The

dashed black line shows the diagonal between coordinates (0, 0) and

(1, 1). AUC is shown in the legend of each plot
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training when only subject-level labels are available or slice-

level labels are available. Performance comparison with base-

line CNN models (Supplementary Material) confirmed that

combining the advantages of CNN and RNN indeed improved

ICH detection. Secondly, a comprehensive framework for

subject-level bleeding and its subtype prediction was pro-

posed using a relatively large size of datasets from multiple

centers. Thirdly, in order to provide visual evidence of the

detection in our deep learning model, a visualization mecha-

nism was proposed based on our framework and the Grad-

Cam approach [31]. It is capable of generating a coarse hem-

orrhage region in head CT slices using our classification mod-

el without manual delineation (segmentation) of bleeding

areas for supervised training. Despite that further quantitative

performance evaluation is needed, this feature has the poten-

tial to be employed by radiologists as a coarse bleeding local-

ization map. In summary, our proposed algorithm could assist

detection of ICH and subtypes with high accuracy and may

potentially serve as a useful tool to assist diagnosis of ICH.

To improve the reliability of reference standards, this

study applied majority voting on the subject-level and

slice-level diagnosis from three senior radiologists with

over 10 years’ experience in interpreting head CT scans.

Slice-level concordance among the three radiologists was

generally lower than that on the subject-level: only one

kappa value for the subject-level agreement was below

0.7 (0.68), while four on the slice level (0.65, 0.62, 0.67,

and 0.64; please refer to Table 2 for details). This observa-

tion reflects the difficulty and variation in interpreting

slices in head CT, especially for challenging subtypes such

as SAH. Less reliability of slice-level diagnosis may be

one reason for the preference of only using subject-level

labels in the training process without including slice-level

information. However, our results showed that adding (less

reliable) slice-level labels in the training process was still

able to improve the algorithm’s performance, especially by

quite a noticeable margin for five-type classification task,

indicating the importance of local information for subtype

detection.

To further elucidate the potential usefulness of our algo-

rithm, its performance was compared to that of three junior

radiology trainees and a senior radiologist. The results showed

that its performance was superior to the average performance

of the three junior radiology trainees for both the two-type and

five-type tasks. SAH has been reported as the most difficult

subtype to interpret [10]. In our study, the junior radiology

trainees were only able to identify 35% of the subjects with

SAH on average. This low sensitivity may be due to the high

proportion of SAH cases with blended ICH subtypes in the

testing set: 35% (30 out of 86) of the SAH cases had one other

subtype present at the same time, while 52% (45 out of 86)

had two or more additional subtypes. Mixed subtypes may

raise difficulties for diagnosis and may lead to search satisfac-

tion. By contrast, our algorithm not only detected on average

90% (14 out of 16, 21 out of 23, and 45 out of 50 for the three

trainees respectively) of the true positives identified by the

junior radiology trainees, but also captured another 11 (13%)

SAH-positive cases that none of the junior radiology trainees

diagnosed correctly, with minimal loss of specificity (0.94 vs

0.97). It is also worth pointing out that it took our algorithm

less than 30 s on average to fully process a 3D head CT scan

from end to end (namely from scan loading to prediction gen-

eration), which is substantially shorter than the reported head

CT interpretation time of radiologists (usually more than

5 min [32]).

Our study has several limitations. Firstly, in order to en-

hance pattern recognition in algorithm training and to carry

out performance evaluation with sufficient positive and nega-

tive samples, the prevalence of ICH used in our study (65%)

was designed to be much higher than that in a real clinical

setting (for example, CPH has been reported to have an inci-

dence rate of 25 per 100,000 persons per year [25]). Despite

Fig. 4 Examples of regions that our algorithm paid most attention to when making decisions using the Grad-CAM approach. a–f Results for slices with

different bleeding locations and different sizes of bleeding areas. Red means high importance while gray means low importance
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that four reported performance metrics (sensitivity, specificity,

F1 score, and AUC) would not be affected by the prevalence

in the testing dataset, the accuracy may change with different

prevalence levels, which needs further evaluation in a real

clinical population. Secondly, all subjects in our study were

from the Asian population, which could limit the generaliz-

ability of our algorithms. As a next step, it is desirable to

expand the current dataset to include populations other than

Asian. Thirdly, although the total number of subjects with

ICH presence in our dataset was relatively large, the number

of subjects with certain subtypes was quite limited, in partic-

ular EDHwith only 94 cases in the training set, compared with

1367 controls. Since deep learning requires a sufficient

amount of data for pattern recognition, lack of training data

might have adversely affected the algorithm performance.

Finally, the low SAH identification rate of junior radiology

trainees may need further investigation and may limit the gen-

eralizability of the performance comparison with the automat-

ed algorithm. Performance from junior radiology trainees with

different training levels may be needed to increase the reliabil-

ity of the results.

In conclusion, this is one of the early studies that utilized

end-to-end trainable 3D deep learning techniques for ICH and

subtype detection with a relatively large study cohort. The

proposed algorithm was fast and accurate, indicating its po-

tential for assisting less-experienced head CT interpreters such

as junior radiology trainees to reduce initial misinterpreta-

tions. It would be worthwhile to implement this automated

Fig. 5 Representative examples of SAH-positive cases that were

misdiagnosed by all three junior radiology trainees but correctly predicted

by our algorithm. a–c Three consecutive slices around the SAH

hemorrhage loci for each example. The white arrows point to the SAH

hemorrhage loci confirmed by the senior radiologist
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framework in a triage system in a real clinical setting to eval-

uate its capability of reducing radiologists’ workload and im-

proving efficiency.
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