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Abstract (150 words) 
Isotopic labeling with deuterium oxide (D2O) is a common technique for 
estimating in vivo protein turnover, but its use has been limited by two long-
standing problems: (1) identifying non-monoisotopic peptides; and (2) 
estimating protein turnover rates in the presence of dynamic amino acid 
enrichment.  In this paper, we present a novel experimental and analytical 
framework for solving these two problems.  Peptides with high probabilities 
of labeling in many amino acids present fragmentation spectra that frequently 
do not match the theoretical spectra used in standard identification 
algorithms.  We resolve this difficulty using a modified search algorithm we 
call Conditional Ion Distribution Search (CIDS).  Increased identifications 
from CIDS along with direct measurement of amino acid enrichment and 
statistical modeling that accounts for heterogeneous information across 
peptides, dramatically improves the accuracy and precision of half-life 
estimates.  We benchmark the approach in cells, where near-complete labeling 
is possible, and conduct an in vivo experiment revealing, for the first time, 
differences in protein turnover between mice and naked mole-rats 
commensurate with their disparate longevity. 
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Main (3000 words) 
Protein turnover rates describe cellular phenomena that play important roles 
in the prevention of protein aggregation, damage reduction and preservation 
of proteostasis1–3.  Mass spectrometry-based proteomics techniques have 
enabled the measurement of proteome-wide turnover rates in vivo4.  However, 
these approaches present challenges not encountered when using techniques 
for cell cultures, such as Stable Isotope Labeling by Amino acids in Cell 
culture (SILAC)5.  In a SILAC experiment, adding isotopic labels to the media 
quickly leads to the near complete replacement of free-floating amino acids 
with labeled counterparts.  Similar procedures in vivo result in only partial 
labeling6 and the time until enrichment saturation varies across environmental 
conditions. 

Data analysis typically assumes stable amino acid enrichment and is 
complicated by dynamic enrichment in both the beginning of an experiment 
as amino acids are being replaced and at the end of an experiment as 
degradation-driven recycling of amino acids alters enrichment levels7.  
Furthermore, enrichment saturation at relatively low levels has a negative 
impact on quantitative performance.  This motivates the administration of 
high doses of labeled amino acids, but even a flooding dose may achieve only 
~30% enrichment on a short time scale6 and the cost of isotopic labels for 
larger organisms can be substantial.     

Deuterium oxide (D2O) can be used as an inexpensive alternative labeling 
strategy that results in the partial labeling of many amino acids8.  However, in 
addition to the above challenges, identifying deuterated peptides presents 
unique challenges.  Deuterated peptides often have isotopic distributions 
spread across many masses and the location of the largest peak depends on 
the amount of protein turnover that has occurred.  Standard proteomics 
identification algorithms9 and modern machine learning models10,11 have been 
designed and optimized to identify monoisotopic peptides.  When a peptide 
is isolated with an unknown number of heavy amino acids, two problems 
occur.  First, the precursor mass may not match the masses created during in-
silico digestion.  Second, the resultant fragmentation spectra present non-
linear shifts in fragment ion masses.  Consequently, protein turnover 
experiments based on ubiquitous labeling strategies12–15 inevitably result in 
vanishing numbers of successful peptide identifications as the amount of 
protein turnover increases. 

In this paper, we describe an experimental and mathematical framework for 
estimating protein turnover based on measured dynamic amino acid 
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enrichment.  From this framework, we derive an algorithm for identifying 
peptides that contain an unknown number of heavy isotopes.  This approach 
effectively solves the problem of identifying highly deuterated peptides 
resulting in larger and more information rich datasets.  Our methodology is 
then validated in cell culture by comparing our turnover rate estimates with 
the gold standard in the field, SILAC.  Finally, we apply our approach to an in 
vivo study comparing mice and naked mole rats.  Loss of proteostasis is one 
of the hallmarks of aging3 and these two species have widely divergent 
longevity, so interspecific differences in turnover rates may illuminate 
important features of the aging process. 

Results 
A framework for dynamic amino acid enrichment 

Our objective is to estimate protein turnover rates from observed proportions 
of peptide isotopes.  As outlined in the principles of Mass Isotopomer 
Distribution Analysis,16,17 determining the amount of turnover that has 
occurred requires knowing an initial and a final isotopic distribution for each 
peptide.  The initial distribution can be derived from known natural isotopic 
proportions of each element.  However, the final distribution, which we 
expect to see once a protein has been completely replaced with copies 
generated after the introduction of isotopic labels, typically requires the 
assumption of stable enrichment levels for each amino acid.  When the 
enrichment levels are dynamic, this assumption is violated and the 
probability that the protein synthesis machinery will have selected a labeled 
amino acid becomes dependent on time.   

Using metabolomics to observe the uptake of deuterium into each free-
floating amino acid, we estimate the isotopic amino acid distributions for each 
time interval on which proteomics samples are analyzed (Figure 1a).  We then 
estimate the marginal distribution of amino acid enrichment at each time 
interval and use these to calculate the distributions for each peptide 
synthesized during the interval.  Thus, for each peptide at a given time we 
obtain initial and final state distributions determined from metabolomics and 
obtain one observed peptide distribution from proteomics.  This framework 
for monitoring amino acid enrichment, predicting peptide isotopic 
distributions, and estimating protein turnover is the foundation for all of the 
advances presented in this paper (Figure 1b).   

In theory, absent any error, the isotopic proportions observed in the 
proteomics experiment should be a convex combination of the old and new 
distributions.  Accordingly, we create a Bayesian Dynamic Enrichment Model 
(BDEM) by treating observations as random variables from a Dirichlet 
distribution centered around the convex combination of isotopic initial and 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.10.377440doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.377440
http://creativecommons.org/licenses/by/4.0/


final states.  Separate final states exist at each time point (the final state 
implies complete protein turnover, not the completion of sampling times) and 
are treated as constant in BDEM.  The change in the percentage of proteins 
that existed prior to labeling is assumed to follow an exponential decay. 

 

To inform both experimental design and data analysis, we consider two 
potential problems with our framework, both of which are intuitively obvious 
when the extreme cases are considered.  If the old and new distributions are 
identical (a labeled peptide prevalence of zero) then turnover cannot be 
estimated.  The consequences of low but non-zero labeling prevalence are less 
obvious.  A second failure mode occurs if the concordance between turnover 
rates and sampling times is poor.  At the extreme, if a protein has been 
completely turned over before the first sampling time or has not been turned 
over at all by the last time point, the ability to pinpoint the half-life with any 
level of precision is lost.  We achieve a more general understanding of how 
concordance and prevalence impact quantitative performance through 
simulation studies. 

 

Label Prevalence and Sampling Time Concordance 

We perform two simulations to evaluate the factors that impact estimation 
accuracy.  Both studies simulate observations from a Dirichlet distribution 
with precision parameters and amino acid distributions taken from our 
validation experiment (Figure 2a).   Labeled peptide prevalence manifests 
visually as a gap between the distributions of old and new peptides.  Consider 
two tryptic peptides from the human mTOR protein, 
FDAHLAQAENLQALFVALNDQVFEIR and FDQVCQWVLK (Figure 2b).  
The larger peptide has a labeling prevalence of 86% while the smaller peptide 
has a prevalence of just 17%.  Simulating random values centered at 70% 
between the boundaries, the difficulty in estimating turnover becomes 
visually apparent (Figure 2b).  To quantify the impact of labeled peptide 
prevalence, we create an artificial situation where all of our simulated 
observations come from only a single level of prevalence. 

 

In the first simulation we vary sample size while keeping the true half-life of 7 
days and the sampling time of 14 days fixed.  After simulating 10,000 artificial 
proteins, we used the same model to estimate half-lives and plot the root 
mean squared error (RMSE; Figure 2c).  Two observations from the peptide 
with prevalence of 86% provides the same level of accuracy as approximately 
68 observations from peptides with a prevalence of 17%, underscoring the 
importance of peptide labeling prevalence. 
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In the second simulation, we fix the sample size at 10 observations but vary 
the simulated sampling times as two-fold multiples of the true half-life.  
Plotting the RMSE from this simulation (Figure 2d) we see that error generally 
remains lowest within a two-fold differential of the true half-life, with errors 
converging to what we would obtain using only our prior half-life 
distribution as the concordance decreases.  This convergence occurs more 
quickly for low information peptides, resulting in an inverted curve for the 
peptide with a prevalence of 17%.  This suggests that our Bayesian framework 
recognizes the low information content of peptides sampled far away from 
their true half-lives.  In real experiments, samples will be collected at many 
time points, increasing the chances that at least one sampling time will be 
similar to the true half-life.  Consequently, a well dispersed time course 
should provide better quantitative performance, but it will also result in 
heteroskedastic observations through time.  

 

The peptides observed in a discovery proteomics experiment are not 
controlled.  Consequently, none of the factors in these simulation studies 
(sample size, labeling prevalence, sampling time concordance) will be fixed 
across observations.  The Bayesian BDEM automatically accounts for the 
heteroskedasticity (see Methods) but no statistical model will perform well if 
we fail to observe any high information peptides.  Unfortunately, these are 
precisely the peptides that cause standard identification algorithms to fail.   

 

Identification of Peptides with Heavy Isotopes of Unknown Location and 
Quantity  

Without a priori knowledge of the mass shift caused by the incorporation of 
isotopically labeled amino acids, standard identification algorithms fail for 
two reasons.  First, the anticipated monoisotopic precursor mass will not 
match the observed m/z.  Second, the process of mass isolating a population of 
ions that exclusively contain a fixed number of heavy isotopes, fundamentally 
alters the isotopic distribution of the fragment ions (Figure 3a).  This isolation 
results in a non-linear shift along the m/z axis of the observed fragment 
spectra.   

The first problem of a misaligned precursor mass can be trivially corrected by 
expanding the number of plausible masses that we search for.  The second 
problem of the non-linear shift is more complex, but the behavior can be 
described according to the theory of conditional probability distributions (See 
Methods).    For each potential peptide-spectrum match (PSM), we know the 
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number of heavy isotopes that the precursor must contain within the mass 
tolerance of the instrument.  Consequently, we can generate conditional 
probability distributions for each b- and y- ion given the candidate peptide 
and its number of heavy isotopes.  Note that while this paper presents an 
algorithm for identifying peptides with the b- and y- ions, the theory could be 
extended to other fragmentation schemes.  Substituting the isotopic 
distributions in place of the usual theoretical b- and y- ion peaks creates 
alternative theoretical spectra to use for peptide-spectrum matching (Figure 
3b).  We incorporated this approach into our installation of the open-source 
identification package Comet18.   

In 51 deuterated samples collected from three species (mice, naked-mole rats, 
and human HEK293 cells) we consistently see the same pattern of the number 
of PSMs decreasing with time (Figure 3c).  However, when using our 
Conditional Ion Distribution Search (CIDS), the number of PSM’s at the end of 
each experiment are similar to counts observed before much turnover 
occurred. 

The gain in PSMs is only a small part of the advantage provided by CIDS.  By 
counting only peptides with a labeling prevalence greater than 50% we can 
see that it is precisely the peptides that are most likely to be labeled that our 
algorithm recovers (Figure 3c).  The algorithm not only increases the number 
of observations, it also recovers a set of peptides that are fundamentally more 
valuable than the ones identified with a standard search algorithm.   

It should be mentioned that the theory underlying CIDS is not exclusive to 
isotope labeling protein turnover experiments.  When a monoisotopic peak is 
isolated, the algorithm will produce an MS2 identical to the standard 
approach.  This is why the PSM counts for the SILAC turnover data are only 
slightly increased from the standard Comet search (Figure 3c).  For the vast 
majority of scans, the MS2 spectrum remains unaltered.  

Methodological Comparison with SILAC 

In order to validate the theoretical advances described above, we analyzed 
protein turnover in HEK293 cells using both SILAC and D2O and applied our 
novel methodologies to these data.  When the media can be controlled, the 
SILAC approach will result in peptides that are consistently labeled at nearly 
100% prevalence on every peptide.  In this sense, the SILAC measurements 
are optimal and serve as a useful ground truth for evaluating the quantitative 
performance of our D2O methodology. 
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We compared turnover from cells in media containing 100% heavy lysine, to 
the same cell line with the media replaced by 8% D2O, a commonly targeted 
concentration in blood which is limited by toxicity concerns (Figure 4a).  
Three replicates were collected at 0.5, 1, 2, 4, 8, 24 and 48 hours.  The D2O data 
were searched with both Comet and CIDS and the resultant datasets were 
analyzed with BDEM and two previously described software packages used 
routinely to analyze D2O data, Deuterator19 and d2ome20.  Each of these 
approaches removes outliers caused by errant peaks.  Consequently, the 
number of uniquely quantified protein half-lives varies substantially across 
methodologies (Figure 4b).  Filtering algorithms from d2ome and Deuterator 
are far stricter than our own requirements.  Accordingly, the BDEM+CIDS 
approach results in 3,967 uniquely quantified proteins which represents a 99% 
increase over Deuterator+Comet (1,991 proteins) and a 209% increase over 
d2ome+Comet (1,285 proteins).  However, the BDEM+CIDS approach still 
quantifies fewer proteins than the SILAC methodology (3,967 to 4,507) which 
did not utilize any quality control filtering. 

Although CIDS alone provided only modest gains to the count of uniquely 
estimated protein half-lives, the effect on deviation from the SILAC results 
were profound.  The full set of overlapping proteins across methods shows a 
loss of both precision and accuracy when using the standard Comet search, 
with a median absolute error of 9.17 hours.  In contrast, the median absolute 
error using CIDS is only 1.18 hours (Figure 4c).  The gains in accuracy of 
BDEM+CIDS compared with d2ome (median absolute errors of 18.92 and 
25.33 hours for CIDS and Comet respectively) and Deuterator (median 
absolute errors of 35.39 and 35.48 hours for CIDS and Comet respectively) are 
greater still, and strongly suggest that the principles outlined in this 
manuscript are essential for accurate half-life estimation.  

Slower Protein Turnover in Naked Mole-Rats Compared to Mice 

 

We next applied our new methodologies to evaluate interspecific differences 
in protein turnover in the long-lived (~37y), cancer resistant naked mole-rat 
and the similar-sized, cancer prone, short-lived (~4y) C57BL/6 mouse21.  
Unlike laboratory mice raised on synthetic diets, captive naked mole-rats are 
fed a low protein, vegetable-based diet mimicking their natural diet.  
Moreover, as in the wild, captive naked mole-rats obtain water entirely from 
their food and are not provided drinking water, making standard D2O 
labeling strategies impossible.  To circumvent these challenges, we 
administered daily intraperitoneal (IP) injections of D2O for 16 days and 
periodically collected liver samples for metabolomic and proteomic 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.10.377440doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.377440
http://creativecommons.org/licenses/by/4.0/


assessments (Figure 5a).  C57BL/6 mice were subjected to the same protocol.  
The IP administration successfully labeled free floating amino acids in the 
liver, revealing both consistent patterns in protein turnover rates across 
species and exceptions that coincide well with the literature on naked mole rat 
biology. 

 

Histograms of protein half-lives in the two species show a systemic shift in the 
turnover rates, with a median half-life of 2.5 days in mice (3,547 proteins 
quantified) and 9.6 days in naked mole-rats (3,200 proteins quantified, Figure 
5b).  This relationship was only slightly changed by restricting our analysis to 
highly precise half-life measurements with coefficients of variation less than 
10%.  Slower turnover in naked mole-rats when compared to mice is 
consistent with published studies conducted in cultured cells from these 
species using a pulse-SILAC approach2.  Despite the substantial overall 
difference in turnover rates, we still see a significant correlation between half-
lives across species (Figure 5c).  Moreover, in spite of different analysis 
platforms, labeling strategies and even tissues being analyzed, we see a 
slightly higher correlation when comparing our mouse liver turnover rates to 
previously published findings on turnover in the heart22 (Figure 5d).  
Consistent interspecies patterns are also seen when grouping rates by 
subcellular localization, with slower rates in the mitochondria and faster 
turnover in the nucleus and endoplasmic reticulum (Figure 5e).  These 
patterns provide further validation of our methodology while also enabling 
the identification of proteins that defy these typical relationships.   

 

Many proteins with average turnover rates in mice are among the slowest to 
turn over in naked mole rats (Figure 5f).  All three cytosolic urea cycle 
enzymes (argininosuccinate lyase [ASL], argininosuccinate synthase [ASS1] 
and arginase [ARG1]) are more stable than we would expect based on the 
results in mice.  Living in sealed underground burrows with designated 
latrines, naked mole-rat colonies commonly encounter gaseous atmospheres 
low in oxygen and high in both carbon dioxide and ammonia23.  The animals 
are exceedingly tolerant of such hostile conditions and, strikingly, do not 
avoid ammonia-saturated atmospheres.  Since the urea cycle detoxifies 
ammonia, naked mole-rats likely rely heavily on this pathway. 
 
In addition to the urea cycle, the turnover of many proteins implicated in the 
breakdown of harmful reactive oxygen species, such as peroxiredoxins 
(PRDX), glutathione peroxidase (GPX1) and superoxide dismutases (SOD), 
are markedly slower than expected (Figure 5f).  Response to oxidative damage 
is an active area of naked mole-rat research with previous studies reporting 
enhanced cytoprotection in response to oxidative damage through 
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upregulation of the cytoprotective molecule Nuclear Factor Erythroid 2-
related Factor 2 (NRF2) and concomitant upregulation of antioxidants, 
detoxicants and molecular chaperones23.   
 
 
   

Discussion (No Subheadings) 
Our proposed methodology greatly increased the depth of discovery and the 
precision of turnover rate estimation.  These gains were validated in vitro and 
in vivo, highlighting the importance of five fundamental properties of protein 
turnover experiments.   

First, quantitative performance depends on labeled peptide prevalence, which 
can be altered either by increasing amino acid enrichment, or by selecting 
peptides with increased opportunities for enrichment.  The prevalence-
peptide selection dynamic should be considered when selecting labeling 
strategies and digestion agents.  Understanding the quantitative value of high 
label prevalence should prove especially useful when applying targeted 
proteomics techniques to prespecify peptides of interest24,25.  

Second, in the presence of dynamic amino acid enrichment, the probabilities 
relevant to protein turnover vary with time.  These probabilities can be 
estimated by monitoring the enrichment of free-floating amino acids in the 
tissue of interest.  Dynamic enrichment resulting from either inconsistent label 
administration or amino acid recycling has long been a concern even in the 
context of bulk synthesis measurements.  The dynamic enrichment model 
presented here addresses this challenge.  

Third, the concordance between sampling times and true half-lives alters 
estimation precision, resulting in nothing more than reliable lower or upper 
bounds when the deviation becomes extreme.  Yet these bounds remain 
highly informative, requiring careful assessment of uncertainty intervals 
whenever the concordance is low. 

Fourth, in a mass spectrometry experiment, the mass isolation of an unknown 
number of heavy isotopes alters the isotopic distribution of each fragment ion.  
Utilizing conditional probability distributions to describe this behavior 
enables the collection of the peptides that were most likely to have been 
labeled.  While D2O labeling motivated the creation of the CIDS algorithm, 
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any mass spectrometry experiment that isolates ions with an unknown 
number of heavy isotopes could benefit from the approach.   

Finally, heteroskedastic observations should be anticipated in protein 
turnover studies.  While some labeling approaches may keep labeled peptide 
prevalence constant, no methodology can keep sampling time concordance 
fixed through time.  Statistical modeling that accounts for these factors should 
be used to minimize estimation error.    

Despite the seemingly noisy observations, D2O can be used to reliably study 
protein turnover.  Advances in the quantitative performance of D2O turnover 
experiments are especially valuable considering the cost differential between 
various isotopic labels.  At the time of this writing we estimate the cost of 
labeling with a heavy isotope of leucine22 to be approximately 35 times more 
expensive than our D2O labeling strategy.  However, the above principles 
offer more than cost savings, as many concepts apply to protein turnover 
experiments regardless of the labeling strategy.  In particular, labeled peptide 
prevalence and sampling time concordance should always be taken into 
account when designing experiments and creating statistical models.     
 

Taken together, the present advances have dramatically enhanced our 
capabilities for studying proteome-wide turnover rates.  We have effectively 
eliminated the requirement for stable amino acid enrichment while 
simultaneously describing a strategy for extracting meaningful signals even 
when overall enrichment levels remain low.  This combination of 
developments opens numerous possibilities for exploring currently unseen 
aspects of in vivo biology.   
 
 

 
 
Methods 
Calculating Peptide Isotopic Distributions 

We now consider the problem of deriving isotopic distributions both from the 
perspective of a ribosome randomly retrieving individual amino acids from 
the free-floating pool of available amino acids.   

Let 𝐴"# be a random variable denoting the number of heavy isotopes 
contained in an amino acid selected by the ribosome during the interval (0, 𝑡), 
where, 𝑖 = 1,… , 20, indexes the standard DNA encoded amino acids.  𝐴"# is a 
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discrete random variable mapping to a subset of the non-negative integers.  
For the D2O labeling discussed in this paper the range is typically confined to 
the set [0, 1, 2, 3], but other labeling strategies could look substantially 
different.  Note, that in forcing the range to take non-negative integers we are 
ignoring small differences in isotopic masses.  For example, an amino acid 
containing a single heavy hydrogen and the same amino acid containing a 
C13 isotope have distinct masses but, in our framework, both amino acids 
take a value of 𝐴"# = 1.  The ability to distinguish these masses in a mass 
spectrometer is diminished for larger analytes, but in our framework, we 
ignore the discrepancy throughout the entire mass range.  

The probability that the 𝑖th amino acid, selected by the ribosome between (0, 𝑡), contains 𝑥 heavy isotopes can be written as 𝑝(𝐴"# = 𝑥) and we refer to 
the function defining these probabilities for all x as 𝑓123(𝑥).   If the set of amino 
acid distributions, 𝑓𝑨𝒕(𝑥), is known, either through metabolomics 
measurements or from a priori knowledge, and if the incorporation of heavy 
labeled amino acids is mutually independent for all amino acids in the 
sequence,  then the isotopic distribution of a peptide can be modeled as the 
distribution of a sum of discrete random variables.   

Let 𝐻7 be a random variable denoting the number of heavy isotopes contained 
in peptide 𝑛, 𝑛 = 1,… ,𝑁, where 𝑁 represents the total number of unique 
peptides observed in an experiment.  If peptide 𝑛 consists of M amino acids 
from the set [𝐴;#, … , 𝐴<=#] (drawn with replacement), then the isotopic 
distribution of the peptide is  

𝑓?@(𝑥) = 𝑝(𝐻7 = 𝑥) = 	𝑓1B ∗ 𝑓1D ∗ … ∗ 𝑓1E , where ∗ denotes the discrete 
convolution operation.  In this way, we can quickly derive the isotopic 
distribution of a randomly selected peptide once we know the isotopic 
distributions of the constituent amino acids.  This formula is not exactly 
correct, as the process of binding two amino acids involves the loss of 2 
hydrogens and 1 oxygen, each of which may have contained heavy isotopes.  
Accordingly, we should deconvolve the natural isotopic distribution of H2O, 
M-1 times from the peptide isotopic distribution.  

 

When using the natural isotopic proportions of each amino acid the 
convolution operation provides the isotopic distribution of a peptide prior to 
any experimental perturbation.  We will refer to this as the “old peptide 
distribution” and use the shorthand notation for peptide 𝑛,  

𝑃7 ∶= 𝑝(𝐻7 = 𝑥	|	𝑡ℎ𝑒	𝑠𝑎𝑚𝑝𝑙𝑒𝑑	𝑝𝑒𝑝𝑡𝑖𝑑𝑒	𝑤𝑎𝑠	𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑	𝑝𝑟𝑖𝑜𝑟	𝑡𝑜	𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔).  
For peptides that were synthesized after 𝑡 = 0, we rely upon direct 
observation of the amino acid enrichment through time to estimate each 
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probability.  In this scenario the amino acid probabilities may change through 
time, but we will still be able to estimate the probability that an amino acid, 
selected during a specific time interval by the ribosome, contains x heavy 
isotopes.  In this case we use the shorthand  

𝑄7# ∶= 𝑝(𝐻7 = 𝑥	|	𝑡ℎ𝑒	𝑠𝑎𝑚𝑝𝑙𝑒𝑑	𝑝𝑒𝑝𝑡𝑖𝑑𝑒	𝑤𝑎𝑠	𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	0	𝑎𝑛𝑑	𝑡).  
 

Neither 𝑃7 or 𝑄7# define the isotopic distribution of a peptide sampled at time 𝑡.  Rather, they represent complementary subpopulations.  To find the peptide 
population distribution at time 𝑡 we need to know the proportion of newly 
synthesized peptides.  Let the percentage of newly synthesized copies of 
peptide 𝑛 at time 𝑡 be denoted as  𝜃7# and for each sampled peptide let 𝐿7 = 𝑜 
if peptide was synthesized prior to labeling (“o” is for old) and 𝐿7 = 𝑒, (“e” is 
for new) if the peptide was synthesized between (0, 𝑡).  Then the isotopic 
distribution of peptide 𝑖 at time 𝑡 is given by 

𝑝(𝐻7 = 𝑥) = 𝑝(𝐻7 = 𝑥	|𝐿7 = 𝑜)𝑝(𝐿7 = 𝑜) + 	𝑝(𝐻7 = 𝑥	|𝐿7 = 𝑒)𝑝(𝐿7 = 𝑒) 
= 𝑃7(1 − 𝜃#) + 𝑄7#𝜃#. 

 

 

Deriving the Isotopic Distributions of the Fragment Ions Used for Peptide 
Identification 

 

Mass spectrometers collect ions and present a spectrum of mass-to-charge 
(m/z) ratios on one axis, and intensities (more precisely, ion counts, measured 
in arbitrary intensity units) on the other axis.  This readout of many masses is 
often referred to as an MS1 spectrum since it is the first in a sequence of scans.  
Because peptide identifications cannot be uniquely determined by a mass 
alone, mass spectrometers will select a peak from the MS1 scan, isolate ions 
close to the corresponding mass and fragment them.  The mass spectrum of 
fragment ions (MS2) will then be compared against theoretical fragmentation 
spectra from all of the peptides that are consistent with the mass of the 
isolated precursor9,26.  The most common approach for fragmenting peptides 
results in series of b- and y- ions26.  Our goal is to create conditional isotopic 
distributions for each b- and y- ion from a candidate peptide. For simplicity, 
we assume a mass isolation window sufficiently narrow to select only 
precursor ions from one isotopologue. (often only true for precursors with a 
charge state of 2 since a standard isolation window has a width of 1 Da).  If 
the monoisotopic peak was selected, then no amino acids in the isolated set of 
peptide ions contain any heavy isotopes.  Likewise, the b and y fragment ions 
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will not contain any heavy isotopes.  This is also true for labeled monoisotopic 
peaks.  For example, in a SILAC experiment we might isolate a peptide with 
isotopically labeled lysine and all fragment ions will contain exactly one mass 
for lysine at a predictable offset.  The fragment ion peak masses only become 
difficult to predict when we isolate a precursor containing a heavy isotope at 
an unknown position.  For example, if we isolate ions containing a single 13C 
isotope, that isotope could have been present in any of the amino acids within 
the peptide.  The whole peptide must contain exactly one heavy amino acid, 
but the location of the heavy amino acid will change throughout the 
population of ions.  Consequently, each b- and y- fragment ion will have a 
predictable distribution of isotopes that can be helpful in identifying the 
precursor.   

 

Let 𝐻 represent the number of heavy isotopes contained in an isolated 
precursor peptide. For each candidate peptide, we know ℎ, since only one 
possibility will be within the mass tolerance of the instrument.  We let 𝜃 
represent the percentage of peptides that, at the time of sampling, had been 
synthesized after label administration.  Marginal isotopic distributions of b- 
and y- ions (the proportions we would expect to see if all peptides were 
fragmented) can be generated using the concepts described for calculating 
peptide isotope distributions.  For a peptide of length 𝑀, let 𝐵" and 𝑌  
represent random variables for the number of heavy isotopes contained in 
randomly sampled bi and yj ions respectively (𝑖 = 1,… ,𝑀 and 𝑗 = 1,… ,𝑀).   

Further, let 𝑃b2 , 𝑃cd , 𝑄#b2 and 𝑄#cd represent a shorthand for the marginal 
isotopic probability distributions of each b and y ion where, as before, 𝑃 
denotes a distribution prior to labeling and 𝑄# represents the isotopic 
distribution of fragments synthesized between (0, 𝑡).  These are the 
distributions of the respective populations as they would be seen in a cell, 
without restricting the total number of heavy isotopes found in the precursor. 
We present the derivations for the b ions (they are analogous for the y ions). 
Mass isolation results in the following conditional probability distribution: 

𝑝(𝐵" = 𝑏	|	𝐻 = ℎ, 𝜃) = 𝑝(𝐻 = ℎ	|	𝐵" = 𝑏, 𝜃)𝑝(𝐵" = 𝑏	|	𝜃)𝑝(𝐻 = ℎ	|	𝜃)  

 

Both 𝑝(𝐵" = 𝑏	|	𝜃) and 𝑝(𝐻 = ℎ	|	𝜃) can be calculated using the standard 
convolutions previously described.  Calculating 𝑝(𝐻 = ℎ	|	𝐵" = 𝑏, 𝜃) requires 
once again separating out old and new peptides.  If 𝐿 defines the old versus 
new status of the peptide, as before, then we have  

𝑝(𝐵"|𝐻, 𝜃) = 	𝑝(𝐵"|𝐻, 𝜃, 𝐿 = 𝑜)𝑝(𝐿 = 𝑜) + 𝑝(𝐵"|𝐻, 𝜃, 𝐿 = 𝑒)𝑝(𝐿 = 𝑒) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.10.377440doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.377440
http://creativecommons.org/licenses/by/4.0/


= 	𝑝(𝐵"|𝐻, 𝜃, 𝐿 = 𝑜)(1 − 𝜃) + 	𝑝(𝐵"|𝐻, 𝜃, 𝐿 = 𝑒)𝜃 

= 𝑝(𝐻|𝐵" , 𝜃, 𝐿 = 𝑜)𝑝(𝐵"|𝜃, 𝐿 = 𝑜)𝑝(𝐻|𝐿 = 𝑜) (1 − 𝜃) +		𝑝(𝐻|𝐵" , 𝜃, 𝐿 = 𝑒)𝑝(𝐵"|𝜃, 𝐿 = 𝑒)𝑝(𝐻|𝐿 = 𝑒) 𝜃 

= 𝑝(𝐻|𝐵" , 𝐿 = 𝑜)𝑝(𝐵"|𝐿 = 𝑜)𝑝(𝐻|𝐿 = 𝑜) (1 − 𝜃) +		𝑝(𝐻|𝐵" , 𝐿 = 𝑒)𝑝(𝐵"|𝐿 = 𝑒)𝑝(𝐻|𝐿 = 𝑒) 𝜃 

Each of the probabilities in this equation can be found using convolutions of 
natural and observed amino acid sequences. 

𝑝(𝐻|𝐿 = 𝑜) = 𝑃 

𝑝(𝐻|𝐿 = 𝑒) = 𝑄# 𝑝(𝐵"|𝜃, 𝐿 = 𝑜) = 𝑃b2 
𝑝(𝐵"|𝜃, 𝐿 = 𝑒) = 𝑄#b2 𝑝(𝐻 = ℎ|𝐵" = 𝑏, 𝐿 = 𝑜) = 	𝑃c(Ee2)(ℎ − 𝑏) 

𝑝(𝐻 = ℎ|𝐵" = 𝑏, 𝐿 = 𝑒) = 	𝑄#c(Ee2)(ℎ − 𝑏) 
The last two expressions follow from the complementary nature of b and y 
ions and the observation that 

𝑝(𝐻 = ℎ|𝐵" = 𝑏) = 𝑝(𝐵" + 𝑌fg" = ℎ|𝐵" = 𝑏) = 𝑝(𝑌fg" = ℎ − 𝑏) 
 

A shorthand analytic expression for the conditional distribution of a b ion (as 
will be observed in an MS2 spectra) is given by 

𝑝(𝐵" = 𝑏|𝐻 = ℎ, 𝜃) = 𝑃c(Ee2)(ℎ − 𝑏)𝑃b2𝑃 (1 − 𝜃) +		𝑄#c(Ee2)(ℎ − 𝑏)𝑄#b2𝑄# 𝜃. 
This expression is still dependent on the unknown parameter 𝜃.  A simple 
solution to this problem is to treat 𝜃 as a uniform random variable and to 
integrate it out of our distribution. 

𝑝(𝐵" = 𝑏|𝐻 = ℎ) = h 𝑃c(Ee2)(ℎ − 𝑏)𝑃b2𝑃 (1 − 𝜃) +		𝑄#c(Ee2)(ℎ − 𝑏)𝑄#b2𝑄# 𝜃	𝑑𝜃;
=  

= 12i𝑃
c(Ee2)(ℎ − 𝑏)𝑃b2𝑃 + 𝑄#c(Ee2)(ℎ − 𝑏)𝑄#b2𝑄# j. 

 

From these equations we are able to generate alternative theoretical spectra 
for use in a proteomics search algorithm. Placing these distributions at their 
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corresponding masses results in a new theoretical MS2 spectrum (See Figure 
3b).   

We modified the open source identification package Comet18 to allow for 
conditional isotope distribution searches (CIDS).  An R script for generating 
the MS2 distributions has been included in the supplemental files.   

All searches performed in this manuscript follow a standard identification 
workflow using a reverse hit database27.  Linear discriminant analysis was 
used to reduce the protein level false discovery rate to 1%28.  

When searching the SILAC data, the above equations are greatly simplified 
since there is only one relevant set of amino acid isotopic distributions.  
However, the benefits are also minimal which is to be expected since the vast 
majority of MS2 scans will result from isolating a monoisotopic peak.  We 
have also observed that averaging the old and new fragment ion distributions 
only results in minor improvement beyond what we obtain when using only a 
single set of amino acid distributions.  This suggests that, conditional on the 
number of isotopes in the precursor, the amount of turnover has a relatively 
minor impact on the isotopic distributions.    

 

Statistical Modeling of Protein Turnover 

For a unique protein 𝑤, (𝑤 = 1,… ,𝑊), suppose that we observe 𝑁l#m peptides 
at time t, (𝑡 = 1,… , 𝑇) in replicate 𝑘, (𝑘 = 1,… , 𝐾).  Further assume that for 
each observation 𝒚𝒏	, (𝑛 = 1,… , 𝑁l#m), the underlying isotopic distributions, (𝑷7, 𝑸7;, … , 𝑸7#), are all known.  In the rest of this section bold font will be 
used for vectors.  Then if 𝜃l# denotes the percent of newly synthesized copies 
of protein 𝑤 at time 𝑡, in the absence of any sampling or experimental error 
we would expect the isotopic proportions observed in a mass spectrometer to 
be given by 𝑷𝒏(1 − 𝜃l#) + 𝑸𝒏𝒕𝜃l#.   
Unfortunately, there will be both sampling variability and experimental errors 
that contribute to deviations from these expectations.  For observations from a 
single protein, we define each measurement, 𝒚𝒏𝒕𝒌, as a random draw from a 
Dirichlet distribution centered around the convex combination of old and new 
distributions. 

𝒚𝒏𝒕𝒌~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡y𝜅(𝑷𝒏(1 − 𝜃#) + 𝑸𝒏𝒕𝜃#){ 
In this parameterization of a Dirichlet distribution, the precision parameter 𝜅 
is a scalar multiplier of the proportion vector defined by the convex 
combination.   

Further defining our data structure, we need to connect the percentage of 
newly synthesized proteins to an overall turnover rate.  To this end we use the 
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standard exponential decay model, using a half-life, 𝜂, to define the rate of 
protein turnover.  

 

𝜃l# = 1 − exp �− 𝑡 𝑙𝑜𝑔(2)𝜂l � 

From this basic structure there are many possible approaches to estimation 
and inference.  We chose to fit a Bayesian model which offers a convenient 
framework that synthesizes the complicated heteroskedastic data structure 
into a single posterior distribution describing our updated beliefs about a 
protein half-life.  The full specification for a set of 𝑀 proteins where peptide 𝑛 
is nested within each protein-time-sample combination (𝑚, 𝑡, 𝑘), is given by 

𝒚𝒘𝒏𝒕𝒌	~	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡y𝜅l(𝑷𝒏(1 − 𝜃l#) + 𝑸𝒏𝒕𝜃l#){ 
𝜃l# = 1 − exp �− 𝑡 𝑙𝑜𝑔(2)𝜂l � 

𝜅l	~	𝐺𝑎𝑚𝑚𝑎(2, 𝜏) 𝜏	~	𝐺𝑎𝑚𝑚𝑎(2, 250) 
𝜂l	~	𝐺𝑎𝑚𝑚𝑎 �2, 𝑣2�. 

 

𝜏 establishes an average precision throughout the dataset.  Defining 𝜅l as a 
random variable with mean 2𝜏 results in a model that will “borrow” 
information about the precision of measurements when sample sizes are low.  
Similar strategies have been used for dealing with imbalanced data from 
relative abundance proteomics experiments29. 

The three gamma distributions all use a shape and scale parameterization.  
The prior shape parameter of 2 was selected to avoid computational 
difficulties related to sampling near zero30. 

We fit the above model in the Rstan package for modeling with the Stan 
programming language31.  We report credible intervals taken as the 1st and 99th 
percentile of the posterior half-life distributions and we use the median of this 
distribution as a point estimate for each half-life.  A few comments about the 
modeling and interpretation are necessary.   

 

Recent applications of Bayesian modeling to mass spectrometry proteomics 
data make use of weakly informative and non-informative priors29,32.  These 
priors are selected to make it highly unlikely that changes in the prior will 
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have a noticeable effect on the final results, while simultaneously avoiding 
problems caused by sampling from unrealistic regions of the parameter 
space33.  The Gamma(2, 250) distribution was chosen with the weakly 
informative principle in mind.  Across many datasets, the average precision 
parameter always fell well within a Gamma(2, 250) distribution and given the 
large number of observations contributing to this parameter it is unlikely that 
reasonable changes to the prior would have a noticeable effect on the 
posterior.   

In our software, the hyper-parameter 𝑣, which represents the mean of the 
half-life distribution, can be entered by the user.  For each analysis in this 
paper, the parameter was set to 10, but this will not always be an appropriate 
choice.  Unlike the other parameters, 𝜂l, has an informative prior.  The mean 
should be selected to create a prior that genuinely reflects what the 
distribution of half-lives is believed to be.  This belief should change 
depending on the sampling times of the experiment, the model organism and 
the tissue being analyzed.   

The primary motivation for using an informative prior on the half-lives is the 
problem of sampling time concordance.  When a true half-life is far removed 
from the last sampling time, the observations will be consistent with a range 
of half-lives that are unbounded in one direction.  Suppose that we have an 
experiment with a final sampling time of 10 days, and we measure peptides 
from a protein with a true half-life of 100 days.  Intuitively, the measurements 
will show that almost no turnover occurred.  Such measurements are 
consistent with a half-life of 100 days, but they are also consistent with a half-
life of 1,000 years.  It is simply impossible to pin down the exact half-life with 
any level of precision.  Although a precise point estimate for the turnover rate 
cannot be obtained, the data still contain valuable information regarding the 
lower bound of the rate.  In our thought experiment, we can say with great 
confidence that the half-life is greater than 10 days.  A more exact estimate of 
the lower bound will depend on both the sampling times and the 
measurement variability.  The Bayesian model provides a relatively 
straightforward approach for establishing a lower bound, and an informative 
prior on the half-lives helps to avoid problems caused by sampling values 
from an unbounded domain.   

Extra care is required when interpreting half-lives for proteins with poor 
sample time concordance.  When a posterior half-life distribution is imprecise 
(we used a coefficient of variation (CV) > 10% as an arbitrary cutoff) and the 
median falls above our sampling range, we are only interested in the lower 
limit of the distribution.  On the other side of the sampling range, if the 
posterior has a CV > 10% and the median falls below our first sampling time, 
then we only pay attention to the upper limit.  In both cases, results must be 
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interpreted with care since the prior will become increasingly influential as 
sampling time concordance decreases.   

 

Metabolomics 

Cell culture samples were prepared for metabolomics by centrifugation at 
14,000g for 5 min, followed by aspiration of the supernatant, followed by 
evaporation of the supernatant under nitrogen gas.  Samples were 
resuspended in 200 µL of water by vortex mixing for analysis via the ion 
pairing method described below.  A 40 µL aliquot of the resuspension was 
then diluted with 160 µL of acetonitrile, combined by vortex mixing, and 
centrifugation at 14,000g for 5 min.   

 

Metabolites in the supernatant were analyzed in positive ionization mode 
using a Thermo Scientific QE-plus mass spectrometer coupled to a Thermo 
Scientific Vanquish UHPLC, Amino acids were separated using a SeQuant® 
ZIC®-pHILIC column, 5µm particle size, 200Å, 150 x 2.1 mm. Mobile phase A 
was 20 mM ammonium carbonate in water (pH 9.2); mobile phase B was 
acetonitrile. The flow rate was 150 µL/min and the gradient was t = -6, 80% B; 
t= 0, 80% B; t= 2.5, 73% B; t=5, 65% B, t= 7.5, 57% B; t= 10, 50% B; t= 15, 35% B; 
t= 20; 20% B; t= 22, 15% B; t= 22.5, 80% B; t= 24; 80% B.  The mass 
spectrometer was operated in positive ion mode using data-dependent 
acquisition (DDA) mode with the following parameters: resolution = 70,000, 
AGC Target = 3.00E+06, Maximum IT (ms) = 100, Scan Range = 70 to 1050. 
The MS2 parameters were as follows: resolution = 17,500, AGC Target = 
1.00E+05, Maximum IT (ms) = 50, Loop Count = 6, Isolation Window (m/z) = 
1, (N)CE = 20, 40, 80; Underfill Ratio = 1.00%, Apex Trigger(s) = 3 to 10, 
Dynamic Exclusion(s) = 25. 

 

Liver samples were homogenized whole in 1.5mL microcentrifuge tubes in 
750µL of  -80℃ 80% methanol, 20% water with one 7mm stainless steel bead 
using a 2010 Geno/Grinder (SPEX) with a run time of 45 seconds at 1,750 
strokes/minutes, followed by a 30 second rest, repeated twice. The 
homogenization protocol was repeated until samples were fully homogenized 
as determined by visual inspection, resting on dry ice between each cycle. 
Samples were then spun at 4℃, 8,000RCF to pellet proteins. Supernatant was 
processed for all amino acids except cysteine as follows: 300µL of supernatant 
was evaporated under nitrogen at  4℃ and resuspended in 600µL of 80% 
acetonitrile, 20% water for LC-MS/MS analysis. For determination of cysteine, 
cysteine was derivatized by combining 200µL of supernatant with 1.2mL of 
80% methanol, 20% water, and 1.5mL of derivatization buffer consisting of 
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80% methanol, 20% water, 10mM sodium bicarbonate, pH’ed to 7.4 using 
formic acid, containing 100mg/mL N-Ethylmaleimide (NEM). Samples were 
incubated for four hours, evaporated under nitrogen at 4℃ and resuspended 
in 600µL of water for LC-MS/MS analysis.  

 

All amino acids were analyzed on a Thermo Scientific QE-plus mass 
spectrometer coupled to a Thermo Scientific Vanquish UHPLC. All data were 
acquired in profile mode. Non-cysteine amino acids were separated on an 
Agilent Infinity Poroshell 120 HILIC-Z column (2.1mm x 100mm, 2.7 µm 
particle size) as previously described34 with the following modifications: 
Mobile Phase A was 20mM ammonium formate at pH 3. Mobile Phase B was 
90% acetonitrile, 10% water, with 20mM ammonium formate at pH 3. Total 
run time was 15.7 minutes at 0.4mL/min with the following gradient, 100% 
mobile phase B was ramped to 70% over 11.5 minutes, the column was 
washed at 50% B for 1 minute, and re-equilibrated at 100% B for 3 minutes. 
Mass spectrometry data were acquired in positive ion mode using data- 
dependant acquisition (DDA) mode with an inclusion list. Full MS was 
acquired at 70,000 resolution with an AGC target of 5e5 with 50 ms maximum 
injection time. Data-dependent MS2 was collected at 17,500 resolution with an 
AGC target of 1e5, max fill time of 50 ms, and stepped collision energy of 20, 
40, 80.  

 

Samples were analyzed for NEM-derivatized cysteine using a reverse phase 
ion-pairing chromatographic method with an Agilent Extend C18 RRHD 
column, 1.8µm particle size, 80Å, 2.1 x 150 mm. Mobile phase A was 10 mM 
tributylamine, 15 mM acetic acid in 97:3 water:methanol pH 4.95; Mobile 
phase B was Methanol. The flow rate was 200 µL/min and the gradient was 
t=-4, 0% B; t=0, 0% B; t=5; 20% B; t=7.5, 20% B; t=13, 55% B; t=15, 95% B; 
t=18.5, 95% B; t=19, 0% B; t=22, 0% B.  The mass spectrometer was operated in 
negative ion mode using data-dependent acquisition (DDA) mode with the 
following parameters: resolution = 70,000, AGC Target = 1.00E+06, Maximum 
IT (ms) = 100, Scan Range = 70 to 1050.The MS2 parameters were as follows: 
resolution = 17,500, AGC Target = 1.00E+05, Maximum IT (ms) = 50, Loop 
Count = 6, Isolation Window (m/z) = 1, (N)CE = 20, 50, 100; Underfill Ratio = 
1.00%, Apex Trigger(s) = 3 to 12, Dynamic Exclusion(s) = 20. 

 

Metabolites were identified by matching fragmentation spectra and retention 
times from chemical standards that were previously analyzed on the same 
instrumentation. Identity, isotopic peaks, and peak integration were manually 
verified and quantified using our modified version of MAVEN35. 
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Proteomics 

Water, HEPES, urea, organic solvents, Pierce Detergent Compatible Bradford 
Assay Kit and Pierce High pH Reversed-Phase Peptide Fractionation Kit were 
purchased from Thermo Fisher Scientific (Waltham, MA). Lys-C was 
purchased from WAKO Chemicals (Richmond, VA). Oasis HLB 96-well 
uElution Plate was purchased from Waters Corporation (Milford, MA). 
Unless otherwise stated, all other chemicals were purchased from Sigma. 

 

Samples (liver, muscle, cells) were added to 80% methanol, 20% water (1 mL) 
and centrifuged (15 mins, 25,830 x g) to pellet proteins. The supernatant was 
subsequently processed for metabolomics as described below.  The protein 
pellets were frozen at -80 °C until ready for processing.  The protein pellets 
were resuspended in 8 M urea/50 mM HEPES (pH 8.5).  Tissues were 
homogenized in a TissueLyser II for 4 cycles at 29 Hz (Qiagen Hilden, 
Germany). Cells were briefly sonicated to solubilize the proteins.  The lysate 
was centrifuged (16,000g,  15 min) to remove cellular debris. Proteins were 
reduced with dithiothreitol (5 mM, 56°C , 30min) and alkylated with 
iodoacetamide (15 mM RT, 30 min in the dark). Excess iodoacetamide was 
quenched with dithiothreitol (5 mM, room temperature, 30 min in the dark). 
The protein amount was quantified using Bradford (Pierce) and an aliquot of 
50μg protein was digested using Lys-C (25 °C, 15 h) in a buffer comprising 50 
mM HEPES (pH 8.5)/2 M urea. Following protein digestion, samples were 
acidified to a final concentration of 0.1% Trifluoroacetic acid and desalted 
using Oasis HLB 96-well uElution plate (Waters).  Peptides were eluted with 
50% acetonitrile/0.1% formic acid and dried overnight under vacuum at 30 °C 
(Labconco CentriVap Benchtop Vacuum Concentrator, Kansas City, Mo). 
Dried peptides were resuspended in 0.1% trifluoroacetic acid and fractionated 
using HPRP (High pH Reversed-Phase) according to the manufacturer’s 
instructions (Pierce). Four peptide fractions were collected per sample which 
were eluted with 7.5, 12.5, 17.5 and 50% acetonitrile/0.1% triethylamine. 
Samples were dried down under vacuum and reconstituted in 4% 
acetonitrile/5% formic acid for LC-MS/MS analysis. 

 

Peptides were analyzed on an Orbitrap Fusion Lumos mass spectrometer 
(Thermo Fisher Scientific) coupled to an Easy-nLC (Thermo Fisher Scientific). 
Peptides were separated on an Aurora UHPLC emitter column (75 μm 
internal diameter, 25 cm long, pre-packed with C18 resin, 1.6 μm; IonOptiks). 
The total LC-MS run length for each sample was 85 min comprising a 70 min 
gradient from 6 to 25% acetonitrile in 0.125% formic acid. The flow rate was 
300 nL/min and the column was heated to 60 °C.  
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Data-dependent acquisition (DDA) mode was used for mass spectrometry 
data collection. A high resolution MS1 scan in the Orbitrap (m/z range 375-
1,540, 120k resolution, AGC 4 x 10^5, max injection time 50 ms, RF for S-lens 
30) was collected. Dynamic exclusion was modified to a 60 second duration 
and excluded ion after 1 time. The MS2 scan was performed in the 
quadrupole ion trap (HCD, AGC 1 x 10^4, HCD collision energy 30%, max 
injection time 35 ms). For the LC-MS/MS runs on the cell lysates, the data 
were acquired in Profile mode. 

 

Quality Control for Peak Interference 

A downside to labeling many amino acids is that the signal intensity tends to 
be distributed across a larger number of isotopologues, which increases the 
opportunity for a single interfering ion peak to distort the entire set of 
proportions.  For this reason, quality control filters are commonly used in 
algorithms for analyzing D2O turnover data, even though they often result in 
a substantial loss of useable data.  Our data confirm the need for an algorithm 
to remove interference, but we have also seen the dangers associated with 
biased filtering approaches. 

Since our framework creates theoretical boundaries for each observation (the 
proportions must fall between the initial and final states) it is tempting to use 
these boundaries for quality control filtering.  However, we have found that 
this can result in a severe underestimation of the experimental variability.  As 
can be seen by a few simple simulations, valid observations frequently fall 
outside theoretical boundaries (Figure 2b).  Worse still, by forcing or filtering 
for only observations within theoretical boundaries, we would be biasing our 
results towards the center of the sampling time window.  Yet, without using 
the boundaries at all, the identification of outliers becomes very difficult.  
With these considerations in mind we deploy three filters. 

The first filter only considers the labeled peptide prevalence.  When the 
prevalence is less than a user-specified cutoff (10% by default) we remove the 
observations.  As emphasized throughout the manuscript and highlighted in 
Figures 2c and 2d, low prevalence peptides provide very little value and may 
complicate model fitting since the parameters are non-identifiable when 
prevalence equals zero. 

  

The second filter does not make use of any peptide sequence information.  
After dividing through by the sum of X isotopomer intensities, we then find 
the binomial distribution with size X that minimizes the Euclidean distance 
from our observation.  We expect that each observed distribution should be 
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similar to a binomial since the underlying problem of adding isotopes at the 
elemental level describes a binomial process, with zero or one denoting the 
presence of a heavy element.  If the absolute value of the difference between 
any of the observed isotopologue proportions and associated binomial 
probability exceed a user entered parameter, residCut, then the observation is 
discarded.  By default we set residCut to 0.2. 

The residual cutoff from the binomial fit should remove most of the errant 
peaks that distort the shape of the distribution.  However, it is still possible for 
the shape to be approximately correct while the observations remain 
impossibly far away from the theoretical boundaries.  To avoid this case we 
create a second cutoff for the minimum absolute difference between either 
boundary and each binomial probability.  If this difference exceeds the 
boundCut parameter (0.1 by default) then we remove the observation. 

Through trial and error and visual inspection, we believe that these 
parameters are largely successful at removing interference without artificially 
reducing our estimate of experimental error.  All analyses of real data 
described in this manuscript used the default filters just described. 

 

SILAC Validation (Experimental Methods) 

For the SILAC validation experiment, growth media were prepared from a 
powdered DMEM high glucose base lacking lysine (AthenaES). For SILAC 
conditions, 13C6 15N2 L-lysine-2HCl (Thermo Fisher) was supplemented to 
181 mg/L. For non-SILAC conditions, L-lysine-2HCl (Thermo Fisher) was 
supplemented to 175 mg/L. For D2O conditions, 99.9% D2O (Sigma) was used 
in the reconstitution of the powdered base, to a final D2O concentration of 8%. 
All media were supplemented with dialyzed FBS (Thermo Fisher) to 10% v/v. 

 

HEK293T cells were grown in unlabeled media in 10 cm plates for all 
conditions of the experiment. At t = 0, existing growth media were replaced 
with media containing either heavy lysine or 8% D2O. Media in plates were 
further refreshed at t = 1 and t = 4 hours. At t = 0, 0.5, 1, 2, 4, 8, 24 and 48 
hours, 3 replicate plates were harvested from each of the heavy lysine and 8% 
D2O conditions. To maintain sample integrity, all harvesting steps were 
performed on an aluminum block cooled to -20°C. Plates were washed with 
cold PBS. 3.5 mL of 80% methanol at -20°C was added to each plate and cells 
were scraped into a 5 mL Eppendorf Lo-Bind tube. Samples were stored at -
20°C in preparation for metabolomic and proteomic workflows. 

 

In vivo protein turnover in naked mole-rats and C57BL/6 mice 
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Animal use and experiments were approved by the Buck Institute 
institutional animal care and use committee (IACUC) protocol number 
A10208. In total, 18 young C57BL/6 mice (11-13 weeks old, virgin males) and 
18 young naked mole-rats (25-27 months old, non-breeding males) were used 
for this study. The selected age groups comprised young, healthy adults from 
both species that were physiologically age-matched (approximately 5-6% of 
observed maximum life span). Mice were purchased from the Jackson 
Laboratories (Bar Harbor, ME) and maintained in the vivarium for at least 
two weeks prior to use; naked mole-rats were from the captive colonies of 
Rochelle Buffenstein36.  
 
For protein turnover studies, animals were injected intraperitoneally with a 
bolus of 99.9% D2O (1 ml/100 g body weight; Sigma Aldrich #151882) twice 
on the day of initiation of the experiment (Day 0; injections at 0 h and again at 
8 h). Following this, the animals received a daily maintenance dose of D2O (0.5 
ml/100 g body weight) by intraperitoneal injection. No dietary changes were 
made i.e. mice were allowed ad libitum access to (unlabeled) drinking water 
and chow, and naked mole-rats had ab libitum access to food (which is also 
their source of water). On days 1, 2, 4, 8 and 16, three animals from each 
species were anesthetized with isofluorane and euthanized by cardiac 
puncture. Following this, liver tissue was promptly harvested, cut into small 
pieces on ice and snap-frozen in liquid nitrogen. The snap-frozen tissues were 
subsequently used for metabolomics and proteomics experiments as 
described above. Note that sacrificed animals did not receive the maintenance 
dose of D2O on the day of sacrifice. Euthanization and organ collection was 
performed between 8 am and 11 am.  
 

Comparison of CIDS/BDEMS to existing proteomics tools 

 

We sought to evaluate the performance of our BDEM-CIDS approach to 
estimate protein turnover.  We generated a dataset of HEK293 human HeLa 
cells, and subjected these cells to isotopically labeled water containing 8% 
D2O.  3 extractions were collected after each of 4, 8, 24, and 48 hours following 
introduction of D2O. To compare the efficacy of our approach, we conducted 
a benchmark SILAC experiment and calculated protein turnover from these 
SILAC results as described below.  We also evaluated two alternative existing 
tools for estimating protein turnover in D2O experiments, DeuteRater19 and 
d2ome20. 

 

We retrieved the DeuteRater source code from https://github.com/JC-
Price/DeuteRater.  To execute this software, we followed the instructions 
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provided in the user’s guide.  In doing so, we uncovered a number of 
incompatibilities in the code that prevented successful execution.  We 
corrected these issues and offer our modified source code in the forked 
repository https://github.com/PMSeitzer/DeuteRater.  DeuteRater requires 
as input a list of identified peptides and proteins.  We reformatted search 
results obtained by running both Comet and our CIDS approach into a 
DeuteRater-readable format (supplemental scripts X and Y).  DeuteRater 
returned protein turnover rate estimates for all identified peptides and 
proteins associated with both Comet and CIDS, which we collected and 
analyzed further in a custom analysis script (script Z).  Deuterator half-lives 
were taken from the output file named Final_Combined_Rates.csv. These 
results tables have been included in the supplementary files. 
 
We downloaded the d2ome executables from 
https://github.com/rgsadygov/d2ome.  d2ome is designed to intake raw, 
unsearched mzML files into a Mascot server, and calculate protein turnover 
rates based these search results.  In our case, we were interested in evaluating 
our search engine results instead of Mascot, and so we created custom scripts 
to reformat our search results into mzIdentML files resembling the output of 
Mascot searches (Scripts X1, Y1).  We produced two sets of results, one 
corresponding to Comet search results, the other to CIDS, and applied d2ome 
to both sets.  Rates were taken from the output file named 
“Analyzed_Proteins_and_Their_Rates.csv” and were converted to half-lives.   
 
In total, we generated protein turnover estimates for our data using eight 
different approaches: for each of SILAC, DeuteRater, d2ome, and BDEM, a 
regular Comet search and our CIDS search algorithm.  To compare these 
approaches, we first reduced the datasets to overlapping proteins quantified 
in all methods.  For each remaining protein we then subtracted the SILAC 
half-life estimate from each of the other results.  These differences are the 
errors plotted in Figure 4c.   
 

 

Data availability 
RAW files and other data tables will be made available at the time of 
publication. 
 
Code availability 
Code for generating CIDS spectra and modeling protein turnover can be 
found at https://github.com/calico/D2O  
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Figure 1:  Experimental Framework for 
Turnover Estimation with Dynamic 
Enrichment 
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a, Experimental design.  Isotopic envelopes are measured with both metabolomics (free-floating 

amino acids) and proteomics (peptides).  Observing the uptake of amino acid labeling through 

time allows us to calculate the probability that a randomly selected amino acid, over a specific 

time frame, would have contained a heavy isotope.  We use these probabilities to determine the 

theoretical isotopic distribution of a peptide synthesized during that interval.  In this way we 

avoid assumptions about stable amino acid labeling, degradation and extracellular transport.  b, 

A visual summary the problems solved with our strategy. 

 

 

 

 

 

Figure 2:  Peptide Labeling Prevalence and 
Sampling Time Concordance Largely 
Determine Quantitative Performance 
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a, The basic parameters of our simulation study including precision and amino acid enrichment 

were taken from the SILAC validation data.  b,  100 simulated observations from small and large 

mTOR tryptic peptides with equivalent experimental error.  Looking at the observations from the 

large peptide, six or seven isotopologues suggest that 70% of the protein had been turned over 

from visual inspection alone. For the small peptide, only the M0 peak provides much 

information.  c, Peptide isotopes were simulated from the BDEM model with varying numbers of 

observations from a single peptide sequence for each protein.  Half-life root mean squared error 

from 10,000 simulated estimates is plotted on the y-axis.  Following the dashed horizontal line 

shows that two peptides with a label prevalence of 86% provide as much accuracy as 

approximately 68 observations with a prevalence of 17%.  d,  The sampling time was varied as 

two-fold multiples of the true half-life.  As the sampling time deviates from the true half-life, in 

either direction, error converges to the error obtained when using the median of our prior as an 

estimate.   

 

 

 

 

 

 

Figure 3:  A New Algorithm for Identifying 
Labeled Peptides 
 

  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.10.377440doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.377440
http://creativecommons.org/licenses/by/4.0/


 
 

 

a, Mass isolation alters the isotopic distributions fragment ions.  b, Conditional probability 

distributions for each fragment ion are used to create a new theoretical MS2 spectrum (top) to 

replace the standard Comet spectrum (bottom).  c, Loess curves through the number of peptide-

spectrum matches at a protein FDR of 1%.     
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Figure 4: Evaluating Performance with a 
SILAC Ground Truth Experiment  
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a. Design of a ground truth experiment.  In a HEK293 cell culture we compare SILAC labeling 

(100% replacement of lysine with a heavy isotope) against D2O labeling (8% D2O in the media). 

b. Counts of uniquely quantified proteins across quantification and identification algorithms.  

Data are comprised of three replicates at each timepoint (4, 8, 24 and 48hrs).  All half-life 

estimation algorithms have filtering criteria that result in different total counts even on the same 

data.  c.  Boxplot of errors.  Using the SILAC turnover data as ground truth, we show the 

deviation across algorithms.  Error was calculated for each protein quantified by all of the 

algorithms (N=957). 
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Figure 5: Comparative Biology of Protein 
Turnover in Mice and Naked Mole Rats  
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a. Design of a comparative biology experiment.  b. Distribution of half-life estimates for each 

species.  All quantified proteins are included.  c. Scatterplot and correlation of precisely (CV < 

0.1) estimated half-lives between species.  d. Scatterplot between half-life estimates from our 

mouse liver data compared with previously published turnover data from young mouse hearts.  

Only proteins with a reported coefficient of variation less than 0.1 are shown.  e.  Subcellular 

localization of precise half-lives.  f.  99% posterior half-life distributions for select proteins. 
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