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Introduction

We present an alternative approach to the adaptive mesh refinement. It is based on the
knowledge of singularity near the corner. For steady Navier-Stokes equations we proved in
[1] that for nonconvex internal angles the velocities near the corners possess an expansion
u(p, ) = pYp(¥) + ... (+ smoother terms), where p, ¢ are local spherical coordinates.
The local behaviour of the solution near the singular point is used to design a mesh which
is adjusted to the shape of the solution. We show an example of 2D mesh with quadratic
polynomials for velocity. Then we use this adjusted mesh for the numerical solution of
flow in the channel with corners.

Model problem

We consider two-dimensional flow of viscous, incompressible fluid described by Navier-
Stokes equations in a domain with corner singularity, cf. Fig. 1.
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Fig. 1: Geometry of the channel

Due to symmetry, we solve the problem only on the upper half of the channel.

Let us denote this domain © C R2. The steady Navier-Stokes problem for the incom-
pressible fluid consists in finding the velocity v = (v, v2), and pressure p defined in {2
and satisfying

(v-V)v—vAv+Vp = f (1)
divv = 0 (2)

together with boundary conditions on disjoint parts of the boundary I';,, [y and Ty
(meaning, in turn, the inlet, the wall, and the outlet part)

v = gon Fm U Fwa” (3)

vop TP = Oon Ty,  (‘donothing’ boundary condition). (4)
n

We consider kinematic viscosity v = 0.000025 m? /s and vy, mer = 1 m/s, which give
maximum Reynolds number around 760. We don’t consider volumetric loads f = (fi, f2).



Algorithm derivation

In [1] we proved for Stokes flow that for internal angle o = %7‘(‘, the leading term of the
expansion of the solution for the velocity components is

wlp, 9) = PTG (9) 4L 1=1,2, (5)

where p is the distance from the corner, ¥ the angle.

Similar results have been proved for the Navier-Stokes equations.

Differentiating by p we get %ﬁ’ﬁ) — oo for p — 0.

A priori estimate of the finite element error is (cf. [3])
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where k = 2. Taking into account the expansion (5), we derived in [1] the estimate

T
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where hrp is the diameter of the triangle T of a triangulation 7, and r¢ is the distance of
the element 7' from the corner.

Putting (6) into the a priori error estimate, we derive that we should guarantee
e (9 I I (7)

where hrp is the diameter of the triangle T of a triangulation 7, and r¢ is the distance of
the element T from the corner, in order to get the error estimate of the order O(h¥) and
uniformly distributed on elements.

After simplifications we used aproximate expression

h2Tk T;(“/*k) ~ h2k. (8)

This lead us in [1] to an algorithm for generating the mesh near the corner in recurrent
form

hi=h-(r:)'"F, (9)
Tit1 = T — i, (10)
1=1,2,...,N,

where r; is the distance of the large element from the corner.

Using this algorithm we obtained satisfactory results. Some of them were presented in
[4].



At present time, we developed a programme i |ri(mm) | hi(mm)
for computing the element sizes directly from 1 10.25000 | 0.0600369
expression (7) using Newton’s method. 2 10.18996 | 0.0480779

3 10.14189 |0.0379492
4 10.10394 |0.0294666

This algorithm for mesh refinement is ap- 5 10.07447 10.0224535
plied to the corner where the channel or tube 6 [0.05202 |0.0167410
suddenly decreases the diameter (forward step 7 10.03527 |0.0121680
in Fig. 1). 8 10.02311 | 0.0085813

9 10.01453 |0.0058366
10 10.00869 |0.0037980

We start with r; = 0,25 mm, h = 0, 1732 mm, 11 10.00489 |0.0023392
k =2, v=0,5444837. This corresponds to the 12 10.00255 10.0013434
contribution cca 3 % of individual elements to 13 10.00121 [0.0007042
the global error. This way we get fourteen dia- 14 10.00050 10.0005042

meters of elements, cf. Tab. 1.
Tab. 1. Resulting refinement

Design of the mesh

In [4] we showed that the best way how to use
data given by the algorithm is design of the
mesh corresponding to polar coordinate system
due to its usage in estimates. We continue this

idea and design two dimensional mesh near the
corner with singularity as could be seen on Fi-
gure 2.

Fig. 2: Refined detail of mesh
This detail is connected to the whole computational mesh, cf. Figure 3 and 4.

Fig. 3: Computational mesh near the corner

Fig. 4: Whole computational mesh



Evaluation of the error

To evaluate the error on elements we use now the modified absolute error computed using
a posteriori error estimates, defined as

QEQ h ,h hQ
_ e oy, v, 0, ) (11)
|l (07, v3, p") |15

where E2(vl' vh, p" () is estimate of error on element [, || is the area of the whole
domain and [Q| is the mean area of elements obtained as [ = 2. Here n means the

n

number of all elements in the domain. More about the evaluation of error in [2].

A?n(v?7 Ugapha Ql)

Numerical results

On Figures 5-8 we present the graphical output of entities that chartacterize the flow in
the channel. On Figure 5 there are the streamlines in the channel. Figure 6 with contours
of velocity v, shows that the solution is satisfactory smooth on refined area. On Figs. 7-8

we observe how strong the singularity is, both for velocity and pressure (note that here
the flow is from the right to the left, to have better view).
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Fig. 6: Isolines of velocity v,
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Fig. 7: Velocity component v, Fig. 8: Pressure near the corner



On Figs. 9-11 we show the errors on elements.
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Fig. 10: Errors on elements - detail
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Fig. 11: Errors on elements - with smallest elements
Conclusions

Presented results give satisfactory confirmation of developed algorithm. Application of a
priori error estimates of finite element method for mesh refinement near singularity is very
efficient for our problem what can be seen especially from obtained errors on elements
which are very uniformly distributed.

Derived algorithm is universal for design of the mesh close to internal angle %7?. But it
affords a way how to generate mesh for different angles as well, in accordance to parameter
~ which is necesary to find for each angle. This approach is an alternative to ’classical’
one using adaptive mesh refinement, which is still much more robust.
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