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Introduction

We present an alternative approach to the adaptive mesh refinement. It is based on the
knowledge of singularity near the corner. For steady Navier-Stokes equations we proved in
[1] that for nonconvex internal angles the velocities near the corners possess an expansion
u(ρ, ϑ) = ργϕ(ϑ) + . . . (+ smoother terms), where ρ, ϑ are local spherical coordinates.
The local behaviour of the solution near the singular point is used to design a mesh which
is adjusted to the shape of the solution. We show an example of 2D mesh with quadratic
polynomials for velocity. Then we use this adjusted mesh for the numerical solution of
flow in the channel with corners.

Model problem

We consider two-dimensional flow of viscous, incompressible fluid described by Navier-
Stokes equations in a domain with corner singularity, cf. Fig. 1.

Fig. 1: Geometry of the channel

Due to symmetry, we solve the problem only on the upper half of the channel.
Let us denote this domain Ω ⊂ R

2. The steady Navier-Stokes problem for the incom-
pressible fluid consists in finding the velocity v = (v1, v2), and pressure p defined in Ω
and satisfying

(v · ∇)v − ν∆v + ∇p = f (1)

div v = 0 (2)

together with boundary conditions on disjoint parts of the boundary Γin, Γwall and Γout

(meaning, in turn, the inlet, the wall, and the outlet part)

v = g on Γin ∪ Γwall (3)

ν
∂v

∂n
− pn = 0 on Γout (′do nothing′ boundary condition). (4)

We consider kinematic viscosity ν = 0.000025 m2/s and vin max = 1 m/s, which give
maximum Reynolds number around 760. We don’t consider volumetric loads f = (f1, f2).



Algorithm derivation

In [1] we proved for Stokes flow that for internal angle α = 3
2
π, the leading term of the

expansion of the solution for the velocity components is

vl(ρ, ϑ) = ρ0.54448374ϕl(ϑ) + . . . , l = 1, 2, (5)

where ρ is the distance from the corner, ϑ the angle.
Similar results have been proved for the Navier-Stokes equations.
Differentiating by ρ we get ∂vi(ρ,ϑ)

∂ρ
→ ∞ for ρ → 0.

A priori estimate of the finite element error is (cf. [3])

‖∇(v − vh)‖0 + ‖p − ph‖0 ≤ C
[(

∑

T

h2k
T | v |2

Hk+1(T )

)1/2

+
(

∑

T

h2k
T | p |2Hk(T )

)1/2]

,

where k = 2. Taking into account the expansion (5), we derived in [1] the estimate

| v |2
Hk+1(T )

≈ C

rT
∫

rT −hT

ρ2(γ−k−1) ρ dρ ≈ C r
2(γ−k)
T , (6)

where hT is the diameter of the triangle T of a triangulation Th, and rT is the distance of
the element T from the corner.

Putting (6) into the a priori error estimate, we derive that we should guarantee

h2k
T

[

−r
2(γ−k)
T + (rT − hT )2(γ−k)

]

≈ h2k (7)

where hT is the diameter of the triangle T of a triangulation Th, and rT is the distance of
the element T from the corner, in order to get the error estimate of the order O(hk) and
uniformly distributed on elements.

After simplifications we used aproximate expression

h2k
T r

2(γ−k)
T ≈ h2k. (8)

This lead us in [1] to an algorithm for generating the mesh near the corner in recurrent
form

hi = h · (ri)
1− γ

k , (9)

ri+1 = ri − hi, (10)

i = 1, 2, . . . , N,

where r1 is the distance of the large element from the corner.
Using this algorithm we obtained satisfactory results. Some of them were presented in

[4].



At present time, we developed a programme
for computing the element sizes directly from
expression (7) using Newton’s method.

This algorithm for mesh refinement is ap-
plied to the corner where the channel or tube
suddenly decreases the diameter (forward step
in Fig. 1).

We start with r1 = 0, 25 mm, h = 0, 1732 mm,
k = 2, γ = 0, 5444837. This corresponds to the
contribution cca 3 % of individual elements to
the global error. This way we get fourteen dia-
meters of elements, cf. Tab. 1.

i ri(mm) hi(mm)
1 0.25000 0.0600369
2 0.18996 0.0480779
3 0.14189 0.0379492
4 0.10394 0.0294666
5 0.07447 0.0224535
6 0.05202 0.0167410
7 0.03527 0.0121680
8 0.02311 0.0085813
9 0.01453 0.0058366
10 0.00869 0.0037980
11 0.00489 0.0023392
12 0.00255 0.0013434
13 0.00121 0.0007042
14 0.00050 0.0005042

Tab. 1. Resulting refinement

Design of the mesh

In [4] we showed that the best way how to use
data given by the algorithm is design of the
mesh corresponding to polar coordinate system
due to its usage in estimates. We continue this
idea and design two dimensional mesh near the
corner with singularity as could be seen on Fi-
gure 2.

Fig. 2: Refined detail of mesh
This detail is connected to the whole computational mesh, cf. Figure 3 and 4.

Fig. 3: Computational mesh near the corner

Fig. 4: Whole computational mesh



Evaluation of the error

To evaluate the error on elements we use now the modified absolute error computed using
a posteriori error estimates, defined as

A2
m(vh

1 , vh
2 , ph, Ωl) =

|Ω|E2(vh
1 , vh

2 , ph, Ωl)

|Ωl|‖(vh
1 , vh

2 , ph)‖2
V,Ω

, (11)

where E2(vh
1 , vh

2 , ph, Ωl) is estimate of error on element l, |Ω| is the area of the whole

domain and |Ωl| is the mean area of elements obtained as |Ωl| = |Ω|
n

. Here n means the
number of all elements in the domain. More about the evaluation of error in [2].

Numerical results

On Figures 5-8 we present the graphical output of entities that chartacterize the flow in
the channel. On Figure 5 there are the streamlines in the channel. Figure 6 with contours
of velocity vy shows that the solution is satisfactory smooth on refined area. On Figs. 7-8
we observe how strong the singularity is, both for velocity and pressure (note that here
the flow is from the right to the left, to have better view).
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Fig. 6: Isolines of velocity vy

Fig. 7: Velocity component vy Fig. 8: Pressure near the corner



On Figs. 9-11 we show the errors on elements.
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Fig. 9: Errors on elements - whole refined area
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Fig. 10: Errors on elements - detail
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Fig. 11: Errors on elements - with smallest elements

Conclusions

Presented results give satisfactory confirmation of developed algorithm. Application of a
priori error estimates of finite element method for mesh refinement near singularity is very
efficient for our problem what can be seen especially from obtained errors on elements
which are very uniformly distributed.

Derived algorithm is universal for design of the mesh close to internal angle 3
2
π. But it

affords a way how to generate mesh for different angles as well, in accordance to parameter
γ which is necesary to find for each angle. This approach is an alternative to ’classical’
one using adaptive mesh refinement, which is still much more robust.
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