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Abstract

We present a precise approach to the generation of optimized collision-free and gouging-free tool paths for 5-axis
CNC machining of freeform NURBS surfaces using flat-end and rounded-end (bull nose) tools having cylindrical shank.
To achieve high approximation quality, we employ analysis of hyper-osculating circles (HOC) [26, 27], that have third
order contact with the target surface, and lead to a locally collision-free configuration between the tool and the target
surface. At locations where an HOC is not possible, we aim at a double tangential contact among the tool and the
target surface, and use it as a bridge between the feasible HOC tool paths. We formulate all such possible two-contact
configurations as systems of algebraic constraints and solve them. For all feasible HOCs and two-contact configurations,
we perform a global optimization to find the tool path that maximizes the approximation quality of the machining,
while being gouge-free and possibly satisfying constraints on the tool tilt and the tool acceleration. We demonstrate the
effectiveness of our approach via several experimental results.

Keywords: free-form surfaces, curvature matching, hyper-osculating circles, third order approximation, collision and
gouging detection

1. Introduction

Free-form NURBS surfaces are the de facto industry
standard representation for 3D modeling and have been
widely used in a variety of applications. Consequently,
CNC machining of NURBS surface has been studied ex-
tensively in the past few decades. 5-axis machining, which
provides two additional degrees of freedom, compared to
3-axis machining, attracted much attention due to the flex-
ibility of 5-axis tool path planning, in contrast with the
difficulties that 5-axis tool path generation entails.

There are two major technical challenges in 5-axis ma-
chining. One is how to optimally orient the tool so that
it can approximate the local target surface properly. The
other challenge is how to avoid collisions and gouging into
the target surface, S, and other check surfaces, or other
surfaces of the object. Collision and gouging1 avoidance
in 5-axis machining is more challenging compared to other
applications, because the tool tip is typically in a tangen-
tial contact with S at the milling contact point, denoted
PC .

Consider 5-axis machining planning using a flat end
cylindrical tool, T , having a bottom circle, CT , as a cut-
ting edge.2 For each contact point PC , two orientation

1We distinguish two types of interferences between the cutting
tool and the surface: the local one, denoted gouging, when the tool
tip penetrates the surface in the local neighborhood of the contact
point, and the global one, called collision, when the conflict occurs
elsewhere on the tool.

2Path planning for a bull-nose or rounded tool having a cylindrical
shank can be reduced to path planning for a flat end tool by offsetting
the (target) surfaces by the rounding radius of the tool.
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Figure 1: Osculating, hyper-osculating and two-contact circles: (a)
The osculating circle at PC having increasing curvature. (b) The
HOC, located at curvature extreme point PC of the curve, having a
locally collision-free configuration. (c) The two-contact circles having
two different tangential contacts.

degrees of freedom must be determined for T , while main-
taining tangential contact between CT and S at PC . One
natural approach to determine the orientation degrees of
freedom uses a 2nd order approximation, to examine the
osculating circle of a planar section of S using the plane
through CT . From Meusnier’s theorem [4], and using the
two orientation degrees of freedom, one can attempt to
match the curvature of CT and this planar section of S at
PC , which is also known as curvature matched machining
[3, 18, 17, 19, 32, 33]. Curvature matched machining pro-
vides a 2nd order approximation and is a simple way to
define the tool orientation, and it has been widely adapted
in tool path computation. However and as a side effect of
curvature matched machining, T is likely to locally gouge
into S, near PC , because the planar section curve of S
typically has an increasing or decreasing curvature at PC ,
while CT presents a constant curvature (see Figure 1(a)).

Hyper-osculating circles (HOCs) [26, 27] alleviate this
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difficulty and vastly reduce the possibility of CT gouging
into S. Based on a 3rd order differential analysis, HOCs
share the same position, tangent direction, curvature, and
curvature derivative (which is zero for a circle), with S’s
planar section at PC . In other words, an HOC is an oscu-
lating circle that is located at a curvature extreme point
of the planar section of S and thus it resolves the local po-
tential gouging of T into S (see Figures 1(b) and 5). How-
ever, this 3rd order approximation also has a limitation.
Since the HOCs should satisfy both curvature and curva-
ture derivative constraints, typically only a limited num-
ber of candidate configurations exist. As a consequence, a
hyper-osculating configuration is not always feasible, and
even less so when various constraints in practical situa-
tions are imposed, e.g., angular orientation limits on the
CNC machine, global collisions, etc.

To help overcome this limitation of the HOCs, we also
consider cases of two-tangential contacts between CT and
S (see Figure 1(c)). Henceforth and unless otherwise stated,
‘contact’ will denote a tangential contact. The key idea of
our approach is based on the fact that there always ex-
ist two-contact configurations in the local neighborhood
of hyper-osculating configurations3. From this observa-
tion, we can augment the HOCs and switch to nearby two-
contact configurations whenever necessary, while providing
good approximation quality in terms of the curvature dif-
ference between the bottom circle and the surface section
at PC and being gouging-free.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review previous related work. Section 3
introduces HOCs and establishes the algebraic conditions
for two-contact configurations between T and S. Then, we
propose a global optimization algorithm for the tool path
that maximizes the approximation quality of the HOCs
and the two-contact configurations. Experimental results
are reported in Section 4, and the paper is concluded in
Section 5.

2. Related Work

Related work on 5-axis milling mostly appeared in the
CAD and mechanical engineering literature (see reference
works [5, 23]). There are numerous papers contributing
geometric methods to freeform surface CNC machining,
including multi-axis (4- and 5-axis) machining. While this
work focuses on contact analysis at the tip of the tool, in
5-axis machining, side or flank milling is one method that
attracted much attention. See a recent survey in [14] on
flank milling.

Numerous efforts were made to optimize the position
of the tip of the tool, in 5-axis tool path planning (see, e.g.,
[6, 16, 20]). However, state-of the-art results have not yet
resolved the fundamental question satisfactorily; namely,
how to select the best tool size and design an optimal tool
motion so that a given freeform surface can be machined

3In fact, HOC is a singular case of a two-contact circle when the
two-contact locations coalesce, as will be discussed later.

with given accuracy, without gouging and in a minimal
amount of time. While the optimal tool orientation is
the question that this work aims to resolve, the state-of-
the-art of tool orientation is curvature matched machining
[3, 18, 17, 19, 32, 33], which we already showed to be prob-
lematic as it is likely to cause small gouging of T into S, in
the neighborhood of PC . Multi point machining (MPM)
[28, 30, 29] provides an alternative approach to compute
an optimized tool orientation by positioning the tool in a
manner that maximizes the number of contact points. The
MPM method produces a considerable reduction in scal-
lop heights and a wide machining strip width compared
to the other conventional approaches [29]. However, the
MPM tool path computation involves a non-linear opti-
mization and finding a gouging-free solution is not always
guaranteed.

Methods that aimed to select the best tool radius for
the task are known. In [11], the surface is divided into re-
gions that are accessible to different tool radii, by globally
examining the curvature properties of the surface. That
said, the tool radii being examined are predetermined. Re-
cently, a scheme that reduces the machining time by seg-
menting the input surface into smaller sub-patches, called
zones, was introduced [24]. Nevertheless, no explanation
was given for where to segment the surface and an optimal
size of the milling tool was not considered at all.

A general key question in planning of surface machin-
ing is the selection of a proper set of curves that form a
covering for S, the surface to be machined. That is, when
the tool traverses these covering curves, all locations of S
are guaranteed to be visited to within some epsilon, by
T . Tool path generation methods include contouring S
by parallel planes, use of parallel (in the domain of S) iso-
parametric curves which can be chosen adaptively [12] and
the use of space filling curves [1, 7]. See [10] for a survey on
tool path generation. This work is focused on the optimal
contact analysis between T and S along some given tool
path and hence any synthesis method for tool path curves
can be employed here.

Collision detection also plays a major role in 5-axis tool
path planning. See [25, 31] for recent surveys on collision
avoidance and simulations. While previous work includes
configuration (C-) space analysis methods, among others,
in this work, we perform the C-space analysis algebraically,
gaining high precision.

Another optimality question that has recently been
getting more attention is the aim for different tool shapes
(beyond ball-end, flat-end and bull-nose tools). The reader
is referred to [22] as an example for barrel-type tools. Ex-
amining the problem in reverse, an algorithm that looks
for semi-kinematic parts of freeform objects was recently
introduced in [2] in order to directly detect large segments
that can be efficiently manufactured by a single sweep of
a planar (tool) profile.

3. The Algorithm

Consider a C3 continuous target surface S(u, v) and
let Su(u, v), Sv(u, v) and N(u, v) be the partial derivatives
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Figure 3: Coordinate system of T and a section of S, CS , along the plane containing CT , ΓCT
: (a) The two degrees of freedom (θ, φ) for the

orientation of T . (b) The surface section CS on plane ΓCT
. (c) The view in plane ΓCT
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Figure 2: Two collision-free two-contact configurations.

and the normal field of S. Now consider one tool path in
S, τ(t) = S(u(t), v(t)), of a flat end tool T with a bottom
circular edge CT , and let PC = τ(t1) = S(u1, v1) be the
current contact point. Further let, rT be the radius of T ,
MT the center point of CT and ΓCT

the plane containing
CT . Finally, let CS = S(u, v) ∩ ΓCT

be the intersection
curve between plane ΓCT

and S(u, v); see Figure 3.
Recall that while we preserve the tangential contact

between CT and S at PC , we also have two degrees of free-
dom to best adapt T to S by rotating and tilting the tool’s
position. We denote these two angular degrees of freedom
by θ and φ, respectively. Consider an ortho-normal coor-
dinate system (X,Y, Z) (see Figure 3(a)-(b)), of T , where
X is the tangent direction of CT at PC , Y = MT−PC

||MT−PC || ,

and Z = X×Y , where × denotes the cross-product of two
vectors. Based on this coordinate system of T , θ is now
defined as the angle between X and the tangent direction
of the tool path, τ ′(t1), and similarly, the tilting angle φ is
defined as the angle between Y and the unit normal vector
N of S at PC (see Figure 3). We limit the range of these
angles to be θ ∈ [0, π] and φ ∈ [0, π

2 ].
The contact configurations between T and S form a

C-space obstacle boundary. Because the gouging of T into
S always starts at a second event of contact, say at point
P2 = S(u2, v2), this second contact point together with
PC = S(u1, v1) defines a two-contact configuration. There
can be several two-contact configurations (θi, φi), typically
one of which is gouging-free. However, in exceptional cases
one can have multiple collision-free two-contact configura-
tions as is shown, for example, in Figure 2. In this work,
we seek a collision-free two-contact configuration in the C-
space of T , and hence stop after one is found. Figure 4(a)
shows one example of a C-space obstacle boundary con-
sisting of two-contact configurations (black curve), which
divide the (θ, φ) domain into two regions, a collision-free
and a gouging region.

This C-space obstacle boundary of T plays an impor-
tant role in our algorithm. Consider a tilting degree of
freedom φ of T for a fixed rotation angle θ∗. Following
Meusnier’s theorem [4] which states that the locus of oscu-
lating circles of a surface, passing through a given point PC

and sharing the same tangent line at PC , form a sphere,
the radius of curvature of CS (Figure 3(b)-(c)) at PC is
given by:

rp(φ) =
1

kn
cosφ. (1)

Here kn is the normal curvature of the surface for a fixed
rotation angle θ∗ and it must hold that 1

kn
> rT , since oth-

erwise there is no gouging-free configuration of T , for any
φ ∈ [0, π

2 ]. Let φ
∗ be a tilting angle for which rp(φ

∗) = rT .
In general, curvature matched configurations (φ = φ∗) lead
to some penetrations of T into S and thus while tilting T
from φ = 0 to π

2 , there exists a two-contact configuration
on the C-space obstacle boundary at φ = φt < φ∗, be-
fore it reaches the curvature matched configuration (see
the red and yellow dots in Figure 4(a) and the circles in
Figure 4(b) for fixed θ = θ∗, which shows a curvature
matched CT and a two-contact CT , respectively). Since
rp(φ) is a monotonically decreasing function for φ ∈ [0, π

2 ],
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Figure 4: Two-contact configurations and HOCs: (a) Two-contact configurations (the black and gray curves) in the (θ, φ) domain and curvature
matched configurations (orange curve). (b) The yellow circle shows a collision-free two-contact configuration (small yellow spheres) while the
red circle presents a curvature matched configuration of CT that gouges into S. (c) The blue circle shows a gouging-free hyper-osculating
configuration of CT . (d) The green circle shows a different two-contact configuration of CT having inter-penetration into S elsewhere. Colors
in (b),(c) and (d) correspond to the colors of the dots in (a). Dashed lines in (a) and transparent circles in (b),(c) both correspond to the
tilting motions of T for fixed rotation angles θh, θ∗.

the difference in the radius of curvature, ||rp(φ) − rT ||, is
minimized while being gouging-free, when φ = φt. Conse-
quently, the best collision free approximation in terms of
curvature difference is realized at a two-contact configura-
tion. On the other hand, when an HOC is feasible for a
fixed rotation angle θh, the best collision free approxima-
tion, that is, a two-contact configuration on the C-space
obstacle boundary, and the curvature matched configura-
tion for this rotation angle θh coalesce, which leads us to
the following lemma:

Lemma 1. If a hyper-osculating circle (HOC) at (θh, φh)
is a collision-free configuration, (θh, φh) is on the C-space
obstacle boundary of T .

Proof: From the definition of HOC, rp(φ
h) = rT and

(θh, φh) is locally collision-free. Hence, for arbitrary small
positive real value ǫ, rp(φ

h + ǫ) < rT , by Meusnier’s theo-
rem. If rp(φ

h + ǫ) < rT , T penetrates into S. Therefore,
and due to the monotonicity of rp(φ), (θ

h, φh) is on the
C-space obstacle boundary of T .

As is shown in Figure 4(a), the hyper-osculating config-
uration (blue dot) is realized on the tangential intersection
between the two-contact configuration curve (black curve)
and the curvature matched configuration curve (orange
curve). This shows the known geometric fact that a hyper-
osculating configuration is a special type of a two-contact
configuration that has two coalescing contact points. There-
fore, we can treat the HOCs as a special type of two-
contact configurations and can perform a global optimiza-
tion for the tool path on the combined set of configurations
(done in Section 3.4).

Our algorithm consists of these two key contact anal-
ysis components, HOCs and two-contact configurations.
In the rest of this section, we present details of our ap-
proach to compute these two-contact components, HOCs

in Sections 3.1 to 3.2 and two-contact configurations in
Section 3.3.

3.1. Hyper-osculating circles (HOCs)

Recall that the HOC possesses 3rd order contact with
S, i.e., the contact point PC is a root of multiplicity four,
considering the intersection of CT and S as two algebraic
manifolds. Whereas Meusnier’s theorem gives rise to a
one-parameter family of osculating circles of given radius
at a general point, the hyper-osculating configuration ad-
ditionally requires extremal curvature and cannot be ex-
pected to be achievable everywhere on the surface. The
natural relaxation is to split this one quadruple contact
point into a pair of double (tangential contact) points.
The expansion of the space of admissible circles, as will
be seen in Section 4, gives us sufficient freedom to cover
S.

In this section, we perform 3rd order contact analysis
to initialize the HOCs and again emphasize their benefit
of not only having higher order contact but also of being
locally “one sided” and hence locally gouging-free approx-
imations (see Figure 5). This makes them perfect candi-
dates for CNC machining purposes.

3.1.1. Higher order differential analysis of a surface

Given a non-umbilical point PC and a tangent vector
X of a surface S(u, v), let D1 and D2 be the principal
directions of S at PC and α be the angle spanned byX and
D1 as is shown in Figure 6. There exists a unique section
plane Γ such that the osculating circle of the intersection
curve, CS = S ∩ Γ, has a 3rd order contact with S; see
Figure 5 and [21], pp. 118-124, or alternatively [26].

Our computation follows [13], where the 3rd order in-
variants of a surface are classified and, using them, the
intrinsic quantities, e.g., the derivative of the curvature,
are computed. In particular, we exploit Lemma 11 in [13],
where the derivative of the curvature with respect to the
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Figure 5: Hyper-Osculating vs. osculating circles: (a) Local fit of the surface S(u, v) at point PC by the osculating circle (red) of the
intersection curve between S and plane ΓCT

, {PC , X} ⊂ ΓCT
. (b) View in plane ΓCT

; the osculating circle CT locally penetrates CS (and
hence T penetrates S) near the contact point PC . (c) The proper inclination of ΓCT

, however, gives rise to the hyper-osculating configuration.
Keeping the tangent direction X at PC fixed, the position of the HOC (red) lying in ΓCT

is uniquely determined by the tilting angle φ. (d)
Once the hyper-osculating angle φ is computed from Equation (3), the center MT of the hyper-osculating circle is found using Meusnier’s
theorem, in the Meusnier’s sphere (in black).

arc-length of the intersection curve CS is computed using
the 3rd order invariants. We define

I1 = lu + 〈2Suu, Nu〉 ,
I2 = lv + 〈2Suv, Nu〉 ,
I3 = nu + 〈2SuvNv〉 ,
I4 = nv + 〈2SvvNv〉 ,

(2)

where 〈·, ·〉 denotes the inner product, l = 〈Suu, N〉, n =
〈Svv, N〉 and N is the unit surface normal and subscripts
represent the derivatives with respect to the corresponding
parameter. Then, the curvature derivative with respect to
arc-length s is

dk
ds = 1

cosα (I1 cos
3 α+ 3I2 cos

2 α sinα+

+3I3 cosα sin2 α+ I4 sin
3 α+

+3 tanφ(k1 cos
2 α+ k2 sin

2 α)(k2 − k1) cosα sinα),

(3)
where k1 and k2 are the principal curvatures at non-umbilical
point PC , (k1 6= k2), and φ is the tilting (or Meusnier’s)
angle between the surface normal N and its orthogonal
projection on plane Γ (see Figure 5).

The phenomenon of uniqueness of the plane Γ con-
taining the HOC can also be observed from Equation (3),
originally Equation (36) in [13], where for a fixed tan-
gent direction X, the constraint on the extremal curva-
ture (dk/ds = 0) is linear in tanφ and gives a one-to-one
mapping between the oriented Meusnier’s angle φ and the
value of dk/ds. We are interested in the planes (angles φ)
where dk/ds = 0, i.e., CS has the extremal curvature and
the osculating circle becomes hyper-osculating.

3.2. The hyper-osculating radial function

At a given point PC , using Equation (3), a univariate
discrete radial function rPC

(φ) is constructed, which as-
signs the value of the radius of the hyper-osculating circle

PC

X
D1

N

α

rPC
(α)

2π0(a) (b)

Figure 6: (a) The black circle corresponds to the set of unit tangent
vectors of a surface S(u, v) at an elliptical (convex) point PC . The
position of a tangent vector X is determined by α, the Euler angle
between X and the principal direction D1. (b) The radial function
rPC

(α), (see Equation (5)) assigns the value of the radius of the
HOC to the tangent direction X, determined by the Euler angle α.
The zeros of rPC

(φ) correspond to the principal directions.

(“hyper-osculating radius”) to the tangent direction X,
determined by the Euler angle α (see Figure 6). From
Meusnier’s theorem, the radial function rPC

(α) is

rPC
(α) =

1

kn
cosφ =

1

(k1 cos2 α+ k2 sin
2 α)

√

1 + tan2 φ
.

(4)
Here, tanφ is a function of α, computed from Equation (3)
by requiring dk/ds = 0. In this way, we obtain the final
formula for rPC

(α),

rPC
(α) =

1

(k1 cos2 α+ k2 sin
2 α)

√
1 + F 2

, (5)

where

F =
I1 cos

3 α+ 3I2 cos
2 α sinα+ 3I3 cosα sin2 α+ I4 sin

3 α

3(k1 cos2 α+ k2 sin
2 α)(k2 − k1) cosα sinα

.

(6)
Assuming the tool radius rT is given, we would like

to identify HOCs for this radius, i.e., we have to solve
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Figure 7: The reconstruction of the HOC from the radial function:
(a) Given the radius rT , the feasible HOCs at PC are obtained from
the radial function and Meusnier’s theorem. (b) The signed radial
function rPC

(α) at a hyperbolic point PC . For a given radius rT , the
hyper-osculating Euler angle α, associated with the hyper-osculating
tangent direction X, is obtained by solving rPC

(α) = ±rT . Two so-
lutions from above and two from below the surface are found for this
PC . Note rPC

(α) is a π-periodic function, hence eight intersection
points exist in [0, 2π].

rPC
(α) = ±rT for α, and obtain the (possibly multi-

ple) “hyper-osculating tangent directions” at point PC (see
Figure 7).

Let us first see how many solutions we have to expect:
Rationalization of Equation (5) by substituting sinα =
2t/(1 + t2), cosα = (1 − t2)/(1 + t2) yields that r2PC

(t) is
a rational function of degree 16 over R, which implies the
upper bound 8 on the number of hyper-osculating tan-
gent directions. Note that two different real numbers t
correspond to the same angle α. Since the degree of the
problem is greater than 4, we numerically solve constraint
rPC

(α) = ±rT .

3.3. Two-contact tool path

Two-contact configurations can be formulated as a sys-
tem of algebraic constraints and be solved. The solu-
tions of these algebraic equations may contain invalid so-
lutions that cause gouging elsewhere into S (recall Fig-
ure 4(d)). Here, we present the algebraic constraints of
the two-contact configurations and introduce an efficient
and accurate collision detection algorithm that facilitates
the robust elimination of these invalid solutions.

3.3.1. Algebraic constraints

For a given target surface S(u, v) and a fixed con-
tact point PC , we need to find a second contact point
P2 = S(u2, v2) and a tool orientation which is determined
by rotating and tilting angles θ and φ. Recall the ortho-
normal coordinate system of T , (X,Y, Z) that is shown
in Figure 3 (a). The X,Y, Z axes can be parameterized
using θ and φ, as X(θ, φ), Y (θ, φ), Z(θ, φ). We also pa-
rameterize the center of T as MT (θ, φ) = rTY (θ, φ) + PC .
Depending on the location of P2 in the different regions of
T (the bottom disk of T , the shank of T , or the C1 discon-
tinuity between them – along CT ), we have three different
algebraic conditions to handle:

1. A first condition, which is the most typical case, is
realized when P2 is also located on CT (Figure 8(a)).

We can formulate this condition using the following
algebraic constraints:

||S(u2, v2)−MT (θ, φ)||2 − r2T = 0,
(7)

〈(S(u2, v2)− PC), Z(θ, φ)〉 = 0,
(8)

〈(S(u2, v2)−MT (θ, φ))× Z(θ, φ)), N(u2, v2)〉 = 0,
(9)

with u2, v2, θ, φ as unknowns.

Equations (7) and (8) prescribe the condition for P2 =
S(u2, v2) to be on CT . Then, (S(u, v) −MT (θ, φ)) ×
Z(θ, φ) in Equation (9) denotes the tangent direction
of the circle at S(u2, v2) and Equation (9) makes sure
that the tool tip is in contact with S at S(u2, v2) as
well.

2. A second condition is realized when the second con-
tact point P2 is located on the bottom disk of T , as
is shown in Figure 8(b). The algebraic constraints for
this condition are as follows:

〈(Su(u2, v2), Z(θ, φ)〉 = 0, (10)

〈(Sv(u2, v2), Z(θ, φ)〉 = 0, (11)

〈(S(u2, v2)− PC), Z(θ, φ)〉 = 0, (12)

with u2, v2, θ, φ as unknowns.

Equations (10) and (11) force the bottom disk of T
to be tangential to S. Then, Equation (12) locates
P2 = S(u2, v2) on the plane containing the bottom
disk of T .

3. P2 = S(u2, v2) can also be located on the shank of
T (Figure 8(c)), which leads us to the last condition
for the two-contact configuration. This last condition
can be formulated as follows:

〈N(u2, v2), Z(θ, φ)〉 = 0,
(13)

〈(S(u2, v2)−MT (θ, φ))×N(u2, v2), Z(θ, φ)〉 = 0,
(14)

||S(u2, v2)−MT (θ, φ)||2−
|| 〈S(u2, v2)−MT (θ, φ), Z(θ, φ)〉 ||2 − r2T = 0, (15)

with u2, v2, θ, φ as unknowns.

Equations (13) and (14) force a bi-normal condition,
where the two normals of the two surfaces in hand,
T and S, are collinear. Equation (15) constrains the
distance between S and the axis of T to be rT so that
P2 is on the shank of T .

3.3.2. Collision detection

Not all the two-contact configurations computed in Sec-
tion 3.3.1 are valid. There are invalid solutions that cause
gouging of T into S elsewhere. Recall Figure 4(d) that
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Sc(u, v)

T c

Sc(u, v)

T c

Sc(u, v)

T c

(a) (b) (c)
Figure 9: Three algebraic constraints for maximum penetration depth configurations: Maximum penetration is realized at (a) a bi-normal
location with the bottom disk of T c, (b) a bi-normal with the shank of T c, or (c) an intersection with the self-bisector of T c with Sc.

showed an example of such invalid two-contact configu-
rations. To eliminate these invalid solutions, we perform
some collision detection tests between T and S, a non-
trivial task because CT ⊂ T is already in contact with
S. Furthermore, these contact configurations might cause
small gouging(s) of T into S, for which a simple point
sampling approach to collision detection cannot guaran-
tee a gouging-free answer. To address this issue, we pre-
cisely compute the maximum penetration depth of T into
S. The conditions for the maximum penetration can also
be formulated as a set of algebraic equations, which are
presented in this section. By solving these algebraic con-
straints we can compute the precise penetration depth,
enabling a robust and accurate detection of both global
collision and local gouging.

Similar to the two-contact configurations analysis, there
are three cases for the maximum penetration depth to be
considered. We perform the collision detection test for a
fixed configuration of T , in the coordinate system of T
(Figure 3), where X(θ, φ), Y (θ, φ), Z(θ, φ) becomes our x,
y, z coordinate system and the origin is at PC(θ, φ). The
geometry in this (transformed) canonical space will be de-
noted by superscript c. For example, (Sc

x(u, v), S
c
y(u, v), S

c
z(u, v))

and (N c
x(u, v), N

c
y(u, v), N

c
z (u, v)) denote the coefficients of

S and N in the canonical space, respectively.
For two smooth surface regions, the maximum pene-

tration depth is realized at the bi-normal events. Herein,

the two surfaces are T and S (see Figure 9) and hence
these bi-normal locations can be located as follows:

1. If Sc has a bi-normal location with the bottom disk
of T c, this event can be formulated as follows:

N c
x(u, v) = 0, (16)

N c
y(u, v) = 0, (17)

seeking vertical normals.

2. If the bi-normal event occurs on the shank of T c, this
event can be formulated as follows:

N c
z (u, v) = 0, (18)

N c
y(u, v)S

c
x(u, v)−N c

x(u, v)S
c
y(u, v) = 0. (19)

3. Finally, the extrema can also occur at C1 discontinu-
ities or herein along the intersection curve between
Sc and the self-bisector of T c that emanates from
Cc

T . While the self-bisector of a general freeform sur-
face can be quite difficult to compute, herein T c is a
flat end tool and has a simple self-bisector emanating
from Cc

T in the shape of a cone (see Figure 9(c)). The
constraints identifying this last case are as follows:

Sc
x(u, v)

2 + Sc
y(u, v)

2 − (rcT − Sc
z(u, v))

2 = 0, (20)

N c
y(u, v)S

c
x(u, v)−N c

x(u, v)S
c
y(u, v) = 0. (21)
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Equation (20) prescribes the intersection condition
between the target surface and the self-bisector of
the tool, which can be represented by the implicit
equation x2+y2−(rT−z)2 = 0. Then, Equation (21)
forces the tangent direction of this intersection curve
to be orthogonal to the (canonical) z-axis so that the
solution maximizes the penetration depth into Sc.

3.4. Global Optimization

For a given tool path τ(t) = S(u(t), v(t)), 0 ≤ t ≤ 1,
we discretely compute the optimized orientations O(t) =
(θ(t), φ(t)) for τ(t). As a pre-processing step of this dis-
crete optimization, we compute collision-free two-contact
configurations and HOCs using the algebraic constraints
and the collision detection algorithms that were presented
in the previous sections. We sample at t = ti, i = 1, 2, ..., n
along the tool path and similarly sample along rotation an-
gle θ = θj , j = 1, 2, ...,m. For each such (ti, θj) pair, we
compute φ = φk that are collision-free two-contact config-
urations. For each ti we also find a finite number of HOCs
at (θhi , φ

h
i ). These collision-free two-contact and HOC con-

figurations create (samples of) two/one-dimensional man-
ifolds in the three dimensional space of (θ, φ, t). We accel-
erate this pre-computation, which is the main bottleneck
of our algorithm, by taking advantage of the coherence
of the solution set. Before solving the two-contact and
HOC configurations, we numerically improve the previ-
ously computed adjacent solution, and then check if the
numerically improved solution is collision free. If the solu-
tion is collision free we can use it as a solution, because we
assume that there exist only one collision-free two-contact
or HOC.

When there is neither a two-contact configuration nor
an HOC for (ti, θj), domain (ti, θj , φ), 0 ≤ φ ≤ π is either
entirely collision-free or completely gouging. We distin-
guish between the two cases simply by conducting a single
collision detection test at one point in the domain, say at
(ti, θj ,

π
2 ). If we detect a collision we void this configura-

tion completely and if no collision is found, we set φ so
that T and S have the best geometric matching. If PC is
an elliptic (convex) point, we set φ = π

2 , aligning T along
S’s normal N , which is the best curvature matching we
can hope for, for a convex location.

We treat these two-contact configurations and HOCs
as vertices in a directional graph in (θ, φ, t) space. The
directional edges for the graph are defined by only con-
necting from (θj1 , φk1

, ti) to (θj2 , φk2
, ti+1) if the angular

distance is within some given tolerance. The weight of
each edge reflects on the curvature matching quality, mea-
suring the difference ||rCS

(θ, φ, t) − rT ||, where rCS
is a

radius of curvature of CS at PC .
Given this graph structure, we perform a Dijkstra [9]

search to find the shortest path between some start (t = t1)
and terminal (t = tn) vertices. By weighing the edges in
the graph following ||rCS

(θ, φ, t) − rT ||, the shortest path
globally minimizes the total curvature difference in the tool
path. One can also easily embed various additional con-
straints into the optimization, by simply removing the ver-
tices or edges from the graph that violate the constraint.

4. Experimental Result

In this section, we present results of using the tool
contact planning algorithms on several free-form surfaces.
Figure 10 illustrates the limitations when only HOCs are
considered. In order to fairly evaluate the potential of
HOCs, we computed optimized contact paths with a level
set approach (see figure caption). Even then, the coverage
of the surface by HOC strips is too low.

In the coming examples, the optimization algorithm
computes 200 samples along the tool path and 200 sam-
ples along θ, finding the best tilting angle, φk, for each
such (ti, θj) pair and HOCs, (θhi , φ

h
i ), for each ti. All so-

lutions for the HOCs and the two-contact configurations
are computed with high numerical accuracy (10−8 in a
unit-size parameter space), preventing possible tool axis
oscillations due to numerical errors. Figure 13 (a) shows
one example of this (ti, θj) graph with φk as the eleva-
tions. The admissible HOCs are also shown Figure 13 (a)
in blue. In Figure 13 (b), the optimal path, computed us-
ing the Dijkstra search over this graph and taking into ac-
count collision detection and constraints etc., is presented
in green.

The graph search example shown in Figure 13 is for
the cyan tool path shown in Figures 11 (a) and (b). Fig-
ure 11 (a) shows the tool path used for this biquintic sur-
face, where 99 isoparametric curves are used as the tool
path. Figure 11 (b) shows several tool positions along the
cyan curve in (a) where a blue PC denotes an HOC con-
tact and a green PC depicts a two-contact case with P2

as the second contact location in magenta. Figures 11 (c)
presents the resulting machined surface, simulated using
Moduleworks’ (www.moduleworks.com) 5-axis machining
simulator.

To gain some insight into the difference between the
3rd order tool contact orientation approach proposed here
in comparison to curvature-matched machining, we pro-
vide Figure 15. The color coding in this figure hints on
gouging (in red) and on under cuts (in blue), while green
hints on the precise surface location. As can be seen in
Figure 15, curvature matched machining gouges into the
surface, whereas the C3 approach presented in this work
stays in the ’green’. The flat-end tool used here is 5% of
the maximum edge-length of the bounding box.

Figure 16 presents two additional surfaces that were
tested using the presented algorithms under similar con-
ditions (number of tool path curves and samples in the
curves). Then, Table 1 shows statistics for all three sur-
faces, results that are fairly consistent among all three sur-
faces.

A careful inspection of Figure 11 (c) and Figure 15 (a)
reveals a small zone where the machining quality is not in
the green level. We now discuss the reason for this and
a possible remedy. Figure 12 (a) shows a zoom-in on the
problem. In Figure 12 (b), the reason is depicted. Since we
allow θ to vary from zero to π, it can clearly happen that
at two adjacent tool contact locations, on two adjacent
tool paths, one PC will present θ = 0 and the other PC

will have θ = π. As a direct result, the region between the
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Φ = const

rT = 0.4 rT = 0.3 rT = 0.5

(a) (b) (c) (d)

Figure 10: Limitations of machining with only hyper-osculating tool contact. (a) Aiming at tool contact paths with hyperosculating
tool bottom, we developed an algorithm where these paths are represented as level sets of a function Φ defined on the (u, v) parameter
domain of S. Initialized by a linear function Φ (red curves), we optimize Φ so that the HOC’s contact direction is as perpendicular
as possible to the path tangent direction. This leads to the blue curves. In green we show those contact path segments whose tool
position is both gouging free and collision free. (b-d) The coverage of the reference surface by strips consisting of only hyper-osculating
arcs (cyan) for various radii is incomplete.

(a) (b) (c)

Figure 11: Simulation results for the optimized tool paths. (a) S, a biquintic B-spline surface with (6× 6) control points and its tool paths,
τ(t), in red. (b) A few tool positions and orientations along the cyan tool path in (a). HOC contacts are in blue, and two-contacts are in
green (PC) and magenta (P2). (c) Result of the entire machining simulation.

two adjacent tool paths is not machined! To remedy this,
one can limit θ to a smaller domain, avoiding the problem
as is shown in Figures 12 (c) and (d).

Because the HOCs computation, in Section 3.1.1, re-
quires a third order analysis, we assume that the input
surface has at least C3 continuity. Working with NURBS
surfaces, when the input surface is not C3, the algorithm
is applied independently to each polynomial patch only to
connect the paths via the optimization algorithm intro-
duced in 3.4. Figure 14(a) shows the discontinuous HOC
paths for a bicubic B-spline surface and Figure 14(b) shows
the result of the optimization algorithm which combines
separated HOC paths and two-contact configurations.

5. Conclusion and Future Work

The proposed optimization algorithm naturally com-
bines HOCs and two-contact configurations by treating
the hyper-osculating case as a special type of the two-
contact configuration, and by simply minimizing the cur-
vature difference between T and S. The tool path orienta-
tions generated by the global optimization procedure tend
to maintain the hyper-osculating configurations when it
is accessible, and smoothly switch to nearby two-contact
configurations if there is no hyper-osculating position or it
is not accessible due to some constraints. All this is done
while precisely analyzing and avoiding any gouging.

The assumption was, while computing HOCs, that PC

is not an umbilical point. While umbilical points are typi-
cally isolated, even if S contains umbilical points, the two-
contact solution can always be used in the neighborhood
of the umbilical location(s) and hence, no real difficulty is
posed by umbilical locations.

While this work assumed a cylindrical shank for T ,
the extension of this work to handle conical tools is quite
simple. For the most part, it amounts to handling two-
contacts over conical shanks. One has to add support for
possible two-contact with the conical shanks, extending
Equations (13) to (15), and add support for collision detec-
tion for conical shanks, extending Equations (18) and (19).

The computation cost of the presented tool paths is
high and can be in hours for a whole surface S. Improve-
ments of the performance of the presented algorithms must
be explored as it will clearly ease their acceptance and use.

Even though we sample the tool path, we can easily in-
terpolate the two adjacent solutions by representing them
as unit quaternions [8]. However, the advantage of using
quaternions in this context is yet to be explored.

While we ensure gouging-free arrangements at the sam-
pled points, we can guarantee very little in between sam-
ples. The continuous collision detection processing of tool
path τ(t), and the continuous collision detection/tests re-
main a challenging task, even though some work on this
continuous processing has already been done, for example
in [15].
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(a) (b) (c) (d)

Figure 12: The surface from Figure 11 has a small problem that is shown in (a). The reason for this problem can be found in adjacent tool
paths that present completely opposite θ orientations (b), resulting in a zone between the two adjacent positioned that is not machined. By
limiting the range of θ, this problem can be avoided, as shown in (c) and (d).

Example HOC (Secs) Collision (Secs) Solver (Secs) Total (Secs) Optimization (Secs) Memory (MB) Max. Gouging (Rel.)

Fig. 11 1.88 71.38 321.52 562.52 15.97 68.184 2.03× 10−11

Fig. 16 (a) 2.07 80.81 27 4.25 494.84 20.89 67.193 2.16× 10−11

Fig. 16 (b) 2.67 73.84 463.94 591.14 20.56 54.784 4.39× 10−11

Table 1: Timing (in seconds), memory consumption (in Megabytes) and maximum gouging with respect to the maximum edge-length of the
bounding box for the examples in Figures 11 and 16, for one tool path curve with 200 sampled points.

In the present work, we considered the tool paths as
input. Computing these paths as part of an optimization
algorithm is left as a topic for future research. Finally,
being aware of the fast progress of engineering abilities,
considering a machining tool that can adaptively modify
its milling radius and shape introduces an interesting area
for research.

6. Acknowledgements

This work was supported in part by the People Pro-
gramme (Marie Curie Actions) of the European Union’s
Seventh Framework Programme FP7/2007-2013/ under REA
grant agreement PIAP-GA-2011-286426, and was supported
in part by the ISRAEL SCIENCE FOUNDATION (grant
No.278/13).

[1] W. Anotaipaiboona and S. S. Makhanovb. Curvilinear space-
filling curves for five-axis machining. Computer Aided Design,
40:350–367, 2008.

[2] M. Bartoň, H. Pottmann, and J. Wallner. Detection and re-
construction of freeform sweeps. Computer Graphics Forum,
33(2):23–32, 2014.

[3] S. Bedi, S. Grevelle, and Y. H. Chen. Principal curvature align-
ment technique for machining complex surfaces. Journal of
Manufacturing Science and Engineering, 119(4):756–765, 1997.

[4] M.P. Do Carmo. Differntial geometry of curves and surfaces.
Prentice-Hall, 1976.

[5] B. K. Choi and R. B. Jerard. Sculptured Surface Machining:
Theory and Applications. Kluwer, 1998.

[6] B. K. Choi, J. W. Park, and C. S. Jun. Cutter-location data op-
timization in 5-axis surface machining. Computer Aided Design,
25(6):377–386, 1993.

[7] J. J. Cox, Y. Takezaki, H. R. P. Ferguson, K. E. Kohkonen, and
E. L. Mulkay. Space-filling curves in tool-path applications.
Computer Aided Design, 26(4):215–224, 1994.

[8] Erik B. Dam, Martin Koch, and Martin Lillholm. Quaternions,
interpolation and animation. Technical report, 1998.

[9] E. W. Dijkstra. A note on two problems in connection with
graphs. Numerische Math, 1:269–271, 1959.

[10] D. Dragomatz and S. Mann. A classified bibliography of lit-
erature on NC tool path generatio. Computer Aided Design,
29(4):239–247, 1997.

[11] G. Elber and E. Cohen. Second order surface analysis using hy-
brid symbolic and numeric operators. ACM Trans. on Graphics,
12(2):160–178, 1993.

[12] G. Elber and E. Cohen. Tool path generation for freeform sur-
face models. Computer Aided Design, 26(7):490–496, 1994.

[13] J. Gravesen and M. Ungstrup. Constructing invariant fairness
measures for surfaces. Advances in Computational Mathemat-
ics, 17:67–88, 2002.

[14] R. F. Harik, H. Gong, and A. Bernard. 5-axis flank milling:
A state-of-the-art review. Computer Aided Design,, 45(3):796–
808, 2013.

[15] O. Ilushin, G. Elber, D. Halperin, and R. Wein. Precise global
collision detection in multi-axis NC-machining. Computer Aided
Design, 37(9):233–242, 2005.

[16] S. A. Ivanenko, S. S. Makhanov, and M. A. Munlin. New nu-
merical algorithms to optimize cutting operations of a five-axis
milling machine. Appl. Numer. Math., 49(3–4):395–413, 2004.

[17] C. G. Jensen. Analysis and synthesis of multi-axis sculptured
surface machining. Dissertation, Purdue University, 1993.

[18] C. G. Jensen and D. C. Anderson. Accurate tool placement and
orientation for finish surface machining. In Proc. Symposium on
Concurrent Engineering, pages 127–145, 1993.

[19] C. G. Jensen, W. E. Red, and C. Ernst. Machining free-form
surface cavities using a combination of traditional and non-
traditional multi-axis machining methods. Computer Aided De-
sign and Applications, 5:241–253, 2008.

[20] C. S. Jun, K. Cha, and Y. S. Lee. Optimizing tool orientations
for 5-axis machining by configuration-space search method.
Computer Aided Design, 35(6):549–566, 2003.

[21] E. Kruppa. Analytische und konstruktive Differentialgeometrie.
Springer, Wien, 1957.

[22] C. Zhitong M. Fanjun, X. Rufeng, and L. Xun. Optimal barrel
cutter selection for the CNC machining of blisk. Comput. Aided
Design. To appear., 2014.

[23] G. J. Olling, B. K. Choi, and R. B. Jerard. Machining Impos-
sible Shapes. Kluwer, Boston, 1999.

[24] J. Senatore, S. Segonds, W. Rubio, and G. Dessein. Correla-
tion between machining direction, cutter geometry and step-
over distance in 3-axis milling: Application to milling by zones.
Computer Aided Design, 44:1151–1160, 2012.

[25] T. D. Tang. Algorithms for collision detection and avoidance for
five-axis NC machining: A state of the art review. Computer
Aided Design, 51(1):1–17, 2014.

[26] X. C. Wang, S. K. Ghosh, Y .B. Li, and X. T. Wu. Curvature
catering – a new approach in manufacture of sculptured surfaces
(part 1. theorem). Journal of Materials Processing Technology,
38(1–2):159–175, 1993.

10



(a) (b)θ θ

t t

Figure 13: Dijkstra optimization over samples in (ti, θj) space. In
(a), the samples are shown in yellow along with the HOCs in blue.
In (b), the optimal result, following Dijkstra, is presented in green.
The bivariate scalar function (yellow) over the (t, θ) domain displays
the computed values of the tilting angle φ.

(a) (b)
θ θ

t t

Figure 14: Dijkstra optimization result for a C2 NURBS surface. (a)
Shows discontinuous HOC paths for a bicubic B-spline surface and
(b) presents the optimal result that combines separated HOC paths
and two-contact configurations.

[27] X. C. Wang, S. K. Ghosh, Y .B. Li, and X. T. Wu. Curvature
catering – a new approach in manufacture of sculptured sur-
faces (part 2. methodology). Journal of Materials Processing
Technology, 38(1–2):177–193, 1993.

[28] A. Warkentin, F. Ismail, and S. Bedi. Intersection approach to
multi-point machining of sculptured surfaces. Computer Aided
Geometric Design, 15(6):567–584, 1998.

[29] A. Warkentin, F. Ismail, and S. Bedi. Comparison between
multi-point and other 5-axis tool positioning strategies. Int.
Jounal of Machine Tools & Manufacture, 40:185–208, 2000.

[30] A. Warkentin, F. Ismail, and S. Bedi. Multi-point tool po-
sitioning strategy for 5-axis mashining of sculptured surfaces.
Computer Aided Geometric Design, 17(1):83–100, 2000.

[31] X. Xu Y. Zhang and Y. Liu. Numerical control machining sim-
ulation: a comprehensive survey. Int. J. Computer Integrated
Manufacturing, 24(7):593–609, 2011.

[32] J. H. Yoon. Tool tip gouging avoidance and optimal tool po-
sitioning for 5-axis sculptured surface machining. Intl. J. Pro-
duction Research, 41:2125–2142, 2003.

[33] J. H. Yoon, H. Pottmann, and Y. S. Lee. Locally optimal cutting
positions for five-axis sculptured surface machining. Computer
Aided Design, 35:69–81, 2003.

(a) (b)

Figure 15: Quality comparison of the tool path, using the 5-axis
simulator of Moduleworks (www.moduleworks.com). The colors of
red, denote gouging (inside S), to green, that depict being on the
surface, to blue, that hint on under-cuts. (a) Presents the result of
using HOCs/two-contacts, (b) curvature matched machining. Full
red color represents an over-cut (gouging) by 1% of the maximum
edge-length of the bounding box. The flat-end tool used here is 5%
of the maximum edge-length of the bounding box.

(a) (b)

Figure 16: Two additional surfaces that where tested using the pre-
sented 5-axis contact algorithms: A bicubic B-spline surface with (a)
(5× 5) control points and (b) (4× 8) control points.
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