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Abstract

Assume that there are k types of insurance contracts in an insurance company. The ith
related claims are denoted by {Xij , j ≥ 1}, i = 1, . . . , k. In this paper we investigate
large deviations for both partial sums S(k; n1, . . . , nk) = ∑k

i=1
∑ni

j=1 Xij and random
sums S(k; t) = ∑k

i=1
∑Ni(t)

j=1 Xij , where Ni(t), i = 1, . . . , k, are counting processes for
the claim number. The obtained results extend some related classical results.
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1. Introduction

In a classical insurance risk model the surplus is described as the initial surplus plus the
premium income with the claims taken off. Large deviations for the loss process of a classical
insurance risk model have been widely investigated. Let {Xj , j ≥ 1} be a sequence of
independent and identically distributed (i.i.d.) nonnegative random variables with common
distribution function F(x) = P(X ≤ x) which denote the claims (or the loss amounts), and let
N(t) denote a nonnegative integer-valued counting process for the claim number. Here, N(t)

can be a Poisson process, Cox process, or a marked point process. We assume that N(t) is
independent of {Xj , j ≥ 1}, 0 < E X1 =: µ < ∞ (i.e. it denotes the expected claim amounts,
assumed to equal the premium), and that E N(t) =: λ(t) → ∞ as t → ∞. If the premium
µ is ‘fair’ and the interest rate is 0 then the loss process of the insurance company within the
period [0, t] is described as

W(t) =
N(t)∑
j=1

(Xj − µ).

If the company has the initial reserve x, the surplus process can be written as U(t) = x −
W(t). Thus, the large deviation probabilities of the loss process can be used to characterize
the ruin probability asymptotically, which is a very important objective in risk management.
By convention, we write S(t) = ∑N(t)

j=1 Xj . Mainstream research on precise large deviation
probabilities has concentrated on the study of the asymptotic

P(S(t) − µλ(t) > x) ∼ λ(t)F̄ (x), (1.1)
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which holds uniformly for some x-region D(t). Here and throughout the paper, we let F̄ (x) :=
1 − F(x), and the uniformity is understood in the following sense:

lim
t→∞ sup

x∈D(t)

∣∣∣∣P(S(t) − µλ(t) > x)

λ(t)F̄ (x)
− 1

∣∣∣∣ = 0.

Some earlier work on large deviations can be found, for example, in Nagaev (1969) and
Heyde (1967). Nagaev (1973), (1979) studied the large deviation probabilities (1.1) for the
claims with regularly varying tails. Cline and Hsing (1991) and Klüppelberg and Mikosch
(1997) extended the results to the so-called ERV (extended regularly varying) class. Recently
Ng et al. (2004) studied the precise large deviation for sums of claims with consistently varying
tails, which extended the asymptotic result to a larger subclass of heavy-tailed distributions.

However, in the literature to date all large deviation results for loss processes have been
studied for only one kind of claim. That is to say they always assume that the company
provides only one kind of insurance contract. In reality this assumption is not correct, so the
large deviation problem of multi-risk models is more valuable. In this paper we assume that
the company has k types of insurance contracts. The ith related loss amounts are denoted
by {Xij , j ≥ 1}, which are i.i.d. nonnegative random variables with common distribution
function Fi(x) that has positive finite expectation µi, i = 1, . . . , k. Let {Ni(t), i = 1, . . . , k}
denote a nonnegative integer-valued counting processes for the claim number. We assume
that {Xij , j ≥ 1}ki=1 and {Ni(t), i = 1, . . . , k} are mutually independent, and that E Ni(t) =
λi(t) → ∞ as t → ∞, i = 1, . . . , k. Assume that F̄i(x) > 0 for all x ∈ (−∞, ∞) and
i = 1, . . . , k. Let

S(k; t) =
k∑

i=1

Ni(t)∑
j=1

Xij , t ≥ 0.

We can easily see that if all Fi(x), i = 1, . . . , k, are the same distribution function then S(k; t)

is the one-risk model with N1(t) replacing
∑k

i=1 Ni(t). In this sense S(k; t) is a natural
generalization of S(t). The aim of this paper is to investigate the precise large deviations for
S(k; t). Up to now, to the best of our knowledge, little is known about the large deviations for
such random sums with different kinds of distributions because the known methods to study
large deviations for one-risk models do not work for S(k; t), k ≥ 2, any longer. Our results
extend those of Ng et al. (2004) to multi-risk models.

The rest of this paper is organized as follows. In Section 2 we present some notation and
preliminaries. In Section 3 we prove large deviations for nonrandom sums of random variables
with consistently varying tails in multi-risk models. In Section 4 we investigate large deviations
for random sums of random variables with consistently varying tails in multi-risk models. An
application of our main results is stated in Section 5.

2. Notation and preliminaries

In insurance and finance models the sums of heavy-tailed random variables are very impor-
tant. In this section we assume that all distribution functions have finite mean. We say that a
nonnegative random variable X (or its distribution function F ) is heavy tailed if it has no finite
exponential moments. The most important heavy-tailed subclass is the subexponential class
(denoted by S). By definition, a distribution function F supported on [0, ∞) is in S if and only
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if

lim
x→∞

Fn∗(x)

F̄ (x)
= n for all n ≥ 2

(or equivalently for some n ≥ 2), where Fn∗ denotes the n-fold convolution of F . Another
well-known heavy-tailed subclass is called the dominated variation class (denoted by D). A
distribution function F supported on (−∞, ∞) is in D if and only if

lim sup
x→∞

F̄ (θx)

F̄ (x)
< ∞ for any 0 < θ < 1

(or equivalently for some 0 < θ < 1). A useful sharp inequality about tail probabilities of
sums of random variables with dominated varying tails can be found in Tang and Yan (2002).
A random variable is said to have a regularly varying tail if its distribution F satisfies

lim
x→∞

F̄ (xy)

F̄ (x)
= y−α

for any y > 0 and some α > 1. We use R−α to denote this class of random variables.
A distribution F with support on [0, ∞) is said to be in ERV(−α, −β) for some α, β, with
0 < α ≤ β < ∞, if

y−β ≤ lim inf
x→∞

F̄ (xy)

F̄ (x)
≤ lim sup

x→∞
F̄ (xy)

F̄ (x)
≤ y−α for any y > 1.

For more details on regularly varying tails and extended regularly varying tails, see Klüppelberg
and Mikosch (1997) or Tang et al. (2001). Recently, Ng et al. (2004) considered a subclass of
heavy-tailed distributions slightly larger than the ERV class, called class C. We restate their
definition as follows.

Definition 2.1. A distribution function F supported on [0, ∞) belongs to C if

lim
y↓1

lim inf
x→∞

F̄ (xy)

F̄ (x)
= 1 or equivalently lim

y↑1
lim sup
x→∞

F̄ (xy)

F̄ (x)
= 1. (2.1)

Such a distribution function F is usually said to have a consistently varying tail. The class C
was also thoroughly studied by Berman (1982), who called it ‘regular oscillation’ and by Cline
(1994), who called it ‘intermediate regular variation’.

Obviously, if F ∈ D then, for any y > 0, F̄ (xy) and F̄ (x) are of the same order as x tends
to ∞ in the sense that

0 < lim inf
x→∞

F̄ (xy)

F̄ (x)
≤ lim sup

x→∞
F̄ (xy)

F̄ (x)
< ∞. (2.2)

Set

γF := inf

{
− log γ (y)

log y
, y > 1

}
, (2.3)

where γ (y) = lim infx→∞(F̄ (xy)/F̄ (x)). In the terminology of Bingham et al. (1987), γF is
called the upper Matuszewska index of the distribution function F . If F ∈ ERV(−α, −β) then
α < γF < β. It is easy to check that, whenever 0 < α ≤ γ ≤ β < ∞, we have the following
inclusion relationship:

R−γ ⊂ ERV(−α, −β) ⊂ C ⊂ D ∩ S. (2.4)
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3. Large deviations for nonrandom sums

In this section we shall provide large deviations for nonrandom sums. Let k be a positive
integer, and let {ni, i = 1, . . . , k} be k positive integer sequences. For simplicity, we use the
notation

Sni
=

ni∑
j=1

Xij , i = 1, . . . , k, S(k; n1, . . . , nk) =
k∑

i=1

ni∑
j=1

Xij ;

therefore, S(k; n1, . . . , nk) = ∑k
i=1 Sni

. We can easily see that

E S(k; n1, . . . , nk) =
k∑

i=1

niµi.

Theorem 3.1. For i = 1, . . . , k, let {Xij , j ≥ 1} be i.i.d. nonnegative random variables with
common distribution function Fi(x) and finite expectation µi > 0, and let {ni} be a positive
integer sequence. We assume that {Xij , j ≥ 1}ki=1 are mutually independent. If Fi ∈ C for all
i = 1, . . . , k then, for any fixed γ > 0, we find that (as ni → ∞ for all i = 1, . . . , k)

P

(
S(k; n1, . . . , nk) −

k∑
i=1

niµi > x

)
∼

k∑
i=1

niF̄i(x) (3.1)

holds uniformly for all x ≥ max{γ ni, i = 1, . . . , k} := �(k), that is

lim
n1,...,nk→∞ sup

x≥�(k)

∣∣∣∣P(S(k; n1, . . . , nk) − ∑k
i=1 niµi > x)∑k

i=1 niF̄i(x)
− 1

∣∣∣∣ = 0.

Remark 3.1. If all Fi(x), i = 1, . . . , k, are the same distribution function then (3.1) implies
Theorem 3.1 of Ng et al. (2004).

Remark 3.2. By Theorem 2.2 of Cai and Tang (2004), if Fi ∈ C then F
ni∗
i ∈ C. Thus, (3.1)

holds in the nonuniform sense (with n1, . . . , nk fixed and x → ∞). However, (3.1) in the
uniform sense (see Theorem 3.1) cannot be derived directly.

Proposition 3.1, below, is Theorem 3.1 of Ng et al. (2004), which will be used to prove
Theorem 3.1.

Proposition 3.1. (Ng et al. (2004, Theorem 3.1).) Let {Xj , j ≥ 1} be a sequence of i.i.d.
nonnegative random variables with common distribution function F(x), which has finite ex-
pectation µ > 0. If F ∈ C then, for any fixed γ > 0, as n → ∞,

P(Sn − nµ > x) ∼ nF̄ (x) uniformly for x ∈ [γ n, ∞). (3.2)

Proof of Theorem 3.1. We use induction to prove (3.1). For the case in which k = 2, we
first show that

lim inf
n1,n2→∞ inf

x≥�(2)

P(S(2; n1, n2) − ∑2
i=1 niµi > x)

n1F̄1(x) + n2F̄2(x)
≥ 1. (3.3)
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Note that, for any 0 < ε < 1 and any x > 0,

P(S(2; n1, n2) − n1µ1 − n2µ2 > x)

= P(Sn1 + Sn2 > x + n1µ1 + n2µ2)

≥ P({Sn1 > x + n1µ1 + εn2µ2, Sn2 > (1 − ε)n2µ2}
∪ {Sn2 > x + n2µ2 + εn1µ1, Sn1 > (1 − ε)n1µ1})

≥ P(Sn1 > x + n1µ1 + εn2µ2) P(Sn2 > (1 − ε)n2µ2)

+ P(Sn2 > x + n2µ2 + εn1µ1) P(Sn1 > (1 − ε)n1µ1)

− P(Sn1 > x + n1µ1 + εn2µ2) P(Sn2 > x + n2µ2 + εn1µ1). (3.4)

By Proposition 3.1, for any 0 < δ < 1, there exists a positive constant m0 = m0(δ) such that,
for any n1 ≥ m0,

sup
x≥γ n1

∣∣∣∣P(Sn1 − n1µ1 > x + εn2µ2)

n1F̄1(x + εn2µ2)
− 1

∣∣∣∣ < δ. (3.5)

Conversely, the classical law of large numbers implies that, for any 0 < ε < 1,

P(Sn1 > (1 − ε)n1µ1) → 1.

Thus, for any 0 < δ < 1, there exists a positive constant m1 = m1(δ) such that, for any
n1 ≥ m1,

P(Sn1 > (1 − ε)n1µ1) > 1 − δ. (3.6)

Similarly, it is easy to see that analogous results to (3.5) and (3.6) hold for Sn2 . Combining
these arguments, we find that, for any 0 < δ < 1, there exist large enough positive constants
m∗ such that, for any n1 ≥ m∗, any n2 ≥ m∗, and any x ≥ �(2),

P(S(2; n1, n2) − n1µ1 − n2µ2 > x)

≥ (1 − δ)2n1F̄1(x + εn2µ2) + (1 − δ)2n2F̄2(x + εn1µ1)

− (1 + δ)2n1F̄1(x + εn2µ2)n2F̄2(x + εn1µ1)

≥ (1 − δ)2n1F̄1(x + εn2µ2) + (1 − δ)2n2F̄2(x + εn1µ1) − o(n1F̄1(x) + n2F̄2(x))

(3.7)

uniformly for x ≥ �(2), where to obtain the last inequality we used the following facts (by
Proposition 3.1): n1F̄1(x) = o(1) and n2F̄2(x) = o(1) uniformly for x ≥ �(2), as n1 and n2
tend to ∞.

Now we show that

lim
ε↓0

lim
n2→∞ sup

x≥γ n2

∣∣∣∣ F̄1(x + εn2µ2)

F̄1(x)
− 1

∣∣∣∣ = 0. (3.8)

Clearly, since F1 is nonincreasing, we have, for all x ≥ γ n2,

F̄1

((
1 + εµ2

γ

)
x

)
≤ F̄1(x + εn2µ2) ≤ F̄1(x).

We can easily see that

lim
ε↓0

lim sup
n2→∞

sup
x≥γ n2

F̄1(x + εn2µ2)

F̄1(x)
≤ 1. (3.9)
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Note that

inf
x≥γ n2

F̄1(x + εn2µ2)

F̄1(x)
≥ inf

x≥γ n2

F̄1((1 + εµ2/γ )x)

F̄ (x)
.

The definition of C, (2.1), yields

lim
ε↓0

lim inf
n2→∞ inf

x≥γ n2

F̄1(x + εn2µ2)

F̄1(x)
≥ lim

ε↓0
lim inf
n2→∞ inf

x≥γ n2

F̄1((1 + εµ2/γ )x)

F̄1(x)
≥ 1. (3.10)

By (3.9) and (3.10), we obtain (3.8).
By (3.8) we find that, for any 0 < δ < 1 such that for all sufficiently small ε, all sufficiently

large n2, and all x ≥ γ n2,

F̄1(x + εn2µ2) ≥ (1 − δ)F̄1(x). (3.11)

Similarly, we find that, for any 0 < δ < 1 such that for all sufficiently small ε, all sufficiently
large n1, and all x ≥ γ n1,

F̄2(x + εn1µ1) ≥ (1 − δ)F̄2(x). (3.12)

By (3.7), (3.11), and (3.12), we arrive at

P(S(2; n1, n2) − n1µ1 − n2µ2 > x)

≥ (1 − δ)3(n1F̄1(x) + n2F̄2(x)) − o(n1F̄1(x) + n2F̄2(x)).

Therefore, letting δ ↓ 0, we obtain (3.3).
Next we show that

lim sup
n1,n2→∞

sup
x≥�(2)

P(S(2; n1, n2) − n1µ1 − n2µ2 > x)

n1F̄1(x) + n2F̄2(x)
≤ 1. (3.13)

Note that, for any 0 < ε < 1
2 and any x > 0, by Proposition 3.1, we have

P(S(2; n1, n2) − n1µ1 − n2µ2 > x)

= P(Sn1 + Sn2 > x + n1µ1 + n2µ2)

≤ P({Sn1 > (1 − ε)x + n1µ1} ∪ {Sn2 > (1 − ε)x + n2µ2}
∪ {Sn1 > εx + n1µ1, Sn2 > εx + n2µ2})

≤ P(Sn1 > (1 − ε)x + n1µ1) + P(Sn2 > (1 − ε)x + n2µ2)

+ P(Sn1 > εx + n1µ1) P(Sn2 > εx + n2µ2)

≤ (1 + δ)n1F̄1((1 − ε)x) + (1 + δ)n2F̄2((1 − ε)x)

+ (1 + δ)2n1F̄1(εx)n2F̄2(εx). (3.14)

In a similar way to the argument we used to obtain (3.8), we have

lim
ε↓0

lim
n2→∞ sup

x≥γ n2

∣∣∣∣ F̄1((1 − ε)x)

F̄1(x)
− 1

∣∣∣∣ = 0 (3.15)

and

lim
ε↓0

lim
n1→∞ sup

x≥γ n1

∣∣∣∣ F̄2((1 − ε)x)

F̄2(x)
− 1

∣∣∣∣ = 0. (3.16)
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Conversely, note that

n1F̄1(εx)n2F̄2(εx)

n1F̄1(x) + n2F̄2(x)
= 1

/(
F̄1(x)

F̄1(εx)

1

n2F̄2(εx)
+ F̄2(x)

F̄2(εx)

1

n1F̄1(εx)

)
.

By (3.2), it is easy to check that

lim
n1→∞ sup

x≥γ n1

n1F̄1(εx) = 0 and lim
n2→∞ sup

x≥γ n2

n2F̄2(εx) = 0.

Moreover, since, by (2.4), F1, F2 ∈ C ⊂ D , we have, by (2.2), for any 0 < ε < 1,

lim inf
n1→∞ inf

x≥γ n1

F̄1(x)

F̄1(εx)
> 0 and lim inf

n2→∞ inf
x≥γ n2

F̄2(x)

F̄2(εx)
> 0.

Therefore, we have, as n1, n2 → ∞,

n1F̄1(εx)n2F̄2(εx) = o(n1F̄1(x) + n2F̄2(x)) uniformly for x ≥ �(2). (3.17)

Using a similar argument to that used to prove (3.3), by (3.14)–(3.17) we arrive at

P(S(2; n1, n2) − n1µ1 − n2µ2)

≤ (1 + δ)2(n1F̄1(x) + n2F̄2(x)) + o(n1F̄1(x) + n2F̄2(x)).

Therefore, letting δ ↓ 0, we obtain (3.13). Thus, (3.1) holds for k = 2. Now suppose that (3.1)
holds for k − 1 and, as for k, using a similar argument to that in (3.4), Proposition 3.1, and the
induction hypothesis, we find that, as ni → ∞ for all i = 1, . . . , k,

P

(
S(k; n1, . . . , nk) −

k∑
i=1

niµi > x

)

= P

(
Sn1 + · · · + Snk

> x +
k∑

i=1

niµi

)

≥ P

(
Sn1 + · · · + Snk−1 > x +

k−1∑
i=1

niµi + εnkµk

)
P(Snk

> (1 − ε)nkµk)

+ P

(
Snk

> x + nkµk + ε

k−1∑
i=1

niµi

)
P

(
Sn1 + · · · + Snk−1 > (1 − ε)

k−1∑
i=1

niµi

)

− P

(
Sn1 + · · · + Snk−1 > x +

k−1∑
i=1

niµi + εnkµk

)

× P

(
Snk

> x + nkµk + ε

k−1∑
i=1

niµi

)

∼
k−1∑
i=1

niF̄i(x + εnkµk) + nkF̄k

(
x + ε

k−1∑
i=1

niµi

)
+

k−1∑
i=1

niF̄i(x)nkF̄k(x)

∼
k∑

i=1

niF̄i(x) + o

( k∑
i=1

niF̄i(x)

)
(3.18)
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uniformly for x ≥ �(k). In the last step we used the same argument as in (3.8). In (3.18) it is
necessary to mention that

P

(
Sn1 + · · · + Snk−1 > (1 − ε)

k−1∑
i=1

niµi

)
→ 1. (3.19)

In fact, note that P(Sni
> (1 − ε)niµi) → 1, i = 1, . . . , k − 1, by the law of large numbers;

thus, (3.19) holds. Now, (3.18) implies that

lim inf
n1,...,nk→∞ inf

x≥�(k)

P(S(k; n1, . . . , nk) − ∑k
i=1 niµi > x)∑k

i=1 niF̄i(x)
≥ 1. (3.20)

For the reverse inequality, using a similar argument to that used in (3.14), (3.15), Proposition 3.1,
and the induction hypothesis, we easily obtain

lim sup
n1,...,nk→∞

sup
x≥�(k)

P(S(k; n1, . . . , nk) − ∑k
i=1 niµi > x)∑k

i=1 niF̄i(x)
≤ 1. (3.21)

Combining (3.20) and (3.21), we obtain the desired result, and the proof of Theorem 3.1 is now
complete.

4. Large deviations for random sums

In this section we study large deviations for random sums. We will use the notation of
Section 1. Moreover, throughout this section, we let

SNi(t) =
Ni(t)∑
j=1

Xij , i = 1, . . . , k,

and S(k; t) = ∑k
i=1 SNi(t). To state our results, we will need the following assumption, which

was used by Ng et al. (2004), and is satisfied for many common counting processes, for example,
the renewal counting process and the Cox process.

Assumption 4.1. For all i = 1, . . . k,

E N
θi

i (t) 1(Ni(t)>(1+δ)λi (t)) = O(λi(t))

holds for any δ > 0 and some θi > γFi
, where γFi

is defined as in (2.3).

Remark 4.1. By Lemma 2.4 of Ng et al. (2004) we can easily see that Assumption 4.1 implies
that Ni(t)/λi(t)

p−→ 1, i = 1, . . . , k, where ‘
p−→’ denotes convergence in probability. See also

Lemma 3.1 of Ng et al. (2003).

Theorem 4.1. For i = 1, . . . , k, let {Xij , j ≥ 1} be i.i.d. nonnegative random variables with
common distribution function Fi(x) that has finite expectation µi > 0, and let {Ni(t)} be a
nonnegative integer-valued process. Assume that {Xij , j ≥ 1}ki=1 and {Ni(t), i = 1, . . . , k}
are mutually independent, Fi ∈ C, and that {Ni(t), i = 1, . . . , k} satisfies Assumption 4.1.
Then, for any fixed γ > 0, as t → ∞,

P

(
S(k; t) −

k∑
i=1

µiλi(t) > x

)
∼

k∑
i=1

λi(t)F̄i(x) (4.1)
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uniformly for x ≥ max{γ λi(t), i = 1, . . . , k} := 	(k), that is

lim
t→∞ sup

x≥	(k)

∣∣∣∣P(S(k; t) − ∑k
i=1 µiλi(t) > x)∑k

i=1 λi(t)F̄i(x)
− 1

∣∣∣∣ = 0.

Remark 4.2. If F1(x) = · · · = Fk(x), our Theorem 4.1 implies Theorem 4.1 of Ng et al.
(2004).

Proof of Theorem 4.1. Again by induction, as in the proof of Theorem 3.1, it is sufficient to
show that (4.1) holds for k = 2. We first show that

lim inf
t→∞ inf

x≥	(2)

P(S(2; t) − λ1(t)µ1 − λ2(t)µ2 > x)

λ1(t)F̄1(x) + λ2(t)F̄2(x)
≥ 1.

Note that, for any 0 < δ < min{γ /µ1, γ /µ2, 1} and any x > 0,

P(S(2; t) − λ1(t)µ1 − λ2(t)µ2 > x)

= P(SN1(t) + SN2(t) > x + λ1(t)µ1 + λ2(t)µ2)

≥ P({SN1(t) > x + λ1(t)µ1 + δλ2(t)µ2, SN2(t) > (1 − δ)λ2(t)µ2}
∪ {SN2(t) > x + λ2(t)µ2 + δλ1(t)µ1, SN1(t) > (1 − δ)λ1(t)µ1})

≥ P(SN1(t) > x + λ1(t)µ1 + δλ2(t)µ2) P(SN2(t) > (1 − δ)λ2(t)µ2)

+ P(SN2(t) > x + λ2(t)µ2 + δλ1(t)µ1) P(SN1(t) > (1 − δ)λ1(t)µ1)

− P(SN1(t) > x + λ1(t)µ1 + δλ2(t)µ2, SN2(t) > x + λ2(t)µ2 + δλ1(t)µ1).

Applying the same approach used in the proof of Theorem 4.1 of Ng et al. (2004) with F̄ (x)

replaced by F̄1(x + δλ2(t)µ2), we easily conclude that

lim
δ↓0

lim
t→∞ sup

x≥γ λ1(t)

∣∣∣∣P(SN1(t) − λ1(t)µ1 > x + δλ2(t)µ2)

λ1(t)F̄1(x)
− 1

∣∣∣∣ = 0. (4.2)

By the stochastic law of large numbers and Remark 4.1, we easily obtain

1

λ1(t)

N1(t)∑
j=1

X1j = N1(t)

λ1(t)

1

N1(t)

N1(t)∑
j=1

X1j
p−→ 1.

Thus,
P(SN1(t) > (1 − δ)λ1µ1) → 1. (4.3)

We can estimate SN2(t) similarly. Therefore, by (4.2) and (4.3), we easily find that, for any
ε > 0, any sufficiently large t , any sufficiently small δ, and x ≥ 	(2),

P(S(2; t) − λ1(t)µ1 − λ2(t)µ2 > x)

≥ (1 − ε)2λ1(t)F̄1(x) + (1 − ε)2λ2(t)F̄2(x) − (1 + ε)2λ1(t)F̄1(x)λ2(t)F̄2(x)

= (1 − ε)2(λ1(t)F̄1(x) + λ2(t)F̄2(x)) − o(λ1(t)F̄1(x) + λ2(t)F̄2(x)).

Letting ε ↓ 0, we have

lim inf
t→∞ inf

x≥	(2)

P(S(2; t) − λ1(t)µ1 − λ2(t)µ2 > x)

λ1(t)F̄1(x) + λ2(t)F̄2(x)
≥ 1. (4.4)
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We now show that

lim sup
t→∞

sup
x≥	(2)

P(S(2; t) − λ1(t)µ1 − λ2(t)µ2 > x)

λ1(t)F̄1(x) + λ2(t)F̄2(x)
≤ 1. (4.5)

Note that, for any 0 < ε < 1
2 and any x > 0, by the same argument as in (3.15) and (3.16), we

have
P(S(2; t) − λ1(t)µ1 − λ2(t)µ2 > x)

= P(SN1(t) + SN2(t) > x + λ1(t)µ1 + λ2(t)µ2)

≤ P({SN1(t) > (1 − ε)x + λ1(t)µ1} ∪ {SN2(t) > (1 − ε)x + λ2(t)µ2}
∪ {SN1(t) > εx + λ1(t)µ1, SN2(t) > εx + λ2(t)µ2})

≤ P(SN1(t) > (1 − ε)x + λ1(t)µ1) + P(SN2(t) > (1 − ε)x + λ2(t)µ2)

+ P(SN1(t) > εx + λ1(t)µ1) P(SN2(t) > εx + λ2(t)µ2)

∼ λ1(t)F̄1((1 − ε)x) + λ2(t)F̄2((1 − ε)x) + λ1(t)F̄1(εx)λ2(t)F̄2(εx)

∼ λ1(t)F̄1(x) + λ2(t)F̄2(x) + o(λ1(t)F̄1(x) + λ2(t)F̄2(x)).

Thus, we obtain (4.5).
Combining (4.4) and (4.5), (4.1) holds for k = 2. The proof of Theorem 4.1 is complete.

5. Applications

In this section we give an example of an application of our main result. Assume that there
are two types of insurance contracts in an insurance company. The first kind of related loss
amounts, X = {Xj , j ≥ 1}, are i.i.d. nonnegative random variables with common distribution
F ∈ C and finite expectation µ. Their occurrence times {σj , j ≥ 1} constitute an ordinary
renewal counting process

N1(t) = sup{n ≥ 1, σn ≤ t}, t ≥ 0,

with λ1(t) = E N1(t) < ∞ for any t ≥ 0. Also, {Ij , j ≥ 1} is a sequence of Bernoulli
random variables, and Ij has a common expectation q, where 0 < q ≤ 1, and q is the claim-
occurrence probability of the j th policy, j ≥ 1. Assume that the second kind of loss amounts,
{Yj , j ≥ 1}, are also i.i.d. nonnegative random variables with distribution G(= F) ∈ C and
finite expectation ν. Let N2(t) = N(�(t)) be a Cox process, where N(t) is an ordinary renewal
process which is generated by i.i.d. nonnegative random variables {Zj , j ≥ 1} with E Z1 = 1,
and let �(t), t ≥ 0, be another right-continuous nondecreasing process with �(0) = 0,
independent of N2(t), and P(�(t) < ∞) = 1 for any t ≥ 0. Suppose that the sequences
{Xj , j ≥ 1}, {Ij , j ≥ 1}, {Yj , j ≥ 1}, and {N1(t), t ≥ 0}, {N2(t), t ≥ 0} are mutually
independent and that the sequence {Ij , j ≥ 1} is negatively associated. Then the total claim
amount up to time t is

S(t) =
N1(t)∑
j=1

XjIj +
N2(t)∑
j=1

Yj , t ≥ 0. (5.1)

In this section we assume that the insurance company has two different kinds of risk at one
time. Therefore, (5.1) is an extension of the one-risk model which has been investigated in
the literature; see, for example, Denuit et al. (2002) or Ng et al. (2004). We also assume that
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the stochastic process �(t) satisfies λ∗(t) := E �(t) < ∞ for any t ≥ 0 and λ∗(t) → ∞ as
t → ∞, and that, for some p > γG and any θ > 0,

E �p(t) 1(�(t))>(1+θ)λ∗(t) = O(λ∗(t)). (5.2)

Let N∗
1 (t) = sup{σn ≥ t, In = 1}, t ≥ 0, denote the number of claims of the first kind that

really occur in the interval [0, t]. Clearly,

N∗
1 (t) =

N1(t)∑
j=1

Ij and E N∗
1 (t) = qλ(t), t ≥ 0.

Now, (5.1) can be rewritten as

S(t) =
N∗

1 (t)∑
j=1

Xj +
N2(t)∑
j=1

Yj .

Ng et al. (2004) proved that if the i.i.d. interarrival times have finite expectation then Assump-
tion 4.1 holds for the counting process {N∗

1 (t), t ≥ 0}, and if the stochastic process {�(t)}
satisfies (5.2) then Assumption 4.1 holds for the counting process {N2(t), t ≥ 0} defined as
above. Thus, by Theorem 4.1, we obtain the following precise large deviations result. For any
γ > 0, as t → ∞,

P(S(t) − qλ1(t)µ − νλ∗(t) > x) ∼ qλ1(t)F̄ (x) + λ∗(t)Ḡ(x)

uniformly for x ≥ max{γ λ1(t), γ λ∗(t)}.
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