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Abstract—This paper presents a Monte Carlo localization algo-
rithm for an autonomous car based on an integration of multiple
sensors data. The sensor system is composed of onboard motion
sensors, a low-cost GPS receiver, a precise digital map, and multi-
ple cameras. Data from the onboard motion sensors, such as yaw
rate and wheel speeds, are used to predict the vehicle motion, and
the GPS receiver is applied to establish the validation boundary
of the ego–vehicle position. The digital map contains location
information at the centimeter level about road surface markers
(RSMs), such as lane markers, stop lines, and traffic sign markers.
The multiple images from the front and rear mono-cameras and
the around-view monitoring system are used to detect the RSM
features. The localization algorithm updates the measurements
by matching the RSM features from the cameras to the digital
map based on a particle filter. Because the particle filter updates
the measurements based on a probabilistic sensor model, the
exact probabilistic modeling of sensor noise is a key factor to
enhance the localization performance. To design the probabilistic
noise model of the RSM features more explicitly, we analyze the
results of the RSM feature detection for various real driving
conditions. The proposed localization algorithm is verified and
evaluated through experiments under various test scenarios and
configurations. From the experimental results, we conclude that
the presented localization algorithm based on the probabilistic
noise model of RSM features provides sufficient accuracy and
reliability for autonomous driving system applications.

Index Terms—Precise localization, multiple cameras, road sur-
face marker, probabilistic noise modeling, probabilistic noise
model of road surface marker (RSM) features, particle filtering,
autonomous car, autonomous driving.

I. INTRODUCTION

V EHICLE localization is an important component of an

autonomous driving system. Many autonomous driving

algorithms (such as behavior decision, motion planning, and
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vehicle motion control) operate based on ego–vehicle position

information estimated by a localization system. In early ver-

sions of autonomous cars, high-cost GPS and dead reckoning

(DR) fusion solutions were usually applied for the localization

systems [1]–[4]. The high-cost GPS/DR system provides very

accurate position information; however, it is difficult to use

in long GPS outage conditions, which occur frequently in

urban canyon environments due to the DR sensor noise and

the integration error of the DR. To overcome the GPS/DR

quality degradation problem, a precise localization algorithm

based on precise map and perception data should be used in the

autonomous driving system.

This paper presents a precise localization algorithm based on

an information fusion of automotive on-board motion sensors,

a low-cost GPS, cameras, and a precise digital map. The

automotive on-board sensors (yaw rate sensors and wheel speed

sensors) are used to measure the vehicle dynamic motion.

A low-cost GPS receiver that is widely used for commercial

navigation systems is employed to set up the initial position of

the vehicle and the position validation boundary. Three types of

cameras are installed to detect the road surface marker (RSM)

features. The digital map database contains roadway geometry

and RSM features information.

This precise localization algorithm integrates the information

from the multiple sensors using a particle filter. Because the

particle filter integrates the sensor measurements in a proba-

bilistic manner, the probabilistic noise modeling of the sensor

measurement is key to improving filtering performance. In

this paper, we use the RSM features detected by the multiple

cameras for measurement updates. The RSM features contain

several noise sources, such as projection error, due to unex-

pected vehicle motion, RSMs occupied by unexpected objects,

and false positive RSM features detection. To consider the noise

effects more explicitly, we analyze the noise characteristics of

the RSM features using a camera geometry model. Based on the

results of the analysis, we design a probabilistic noise model of

RSM features and apply it into the localization algorithm.

In addition to the probabilistic noise model of the RSM fea-

tures, we integrate an around-view monitoring (AVM) system

into the localization algorithm. An AVM is a parking-assist

system that provides information about the nearby surroundings

of the ego–vehicle from a virtual bird’s-eye view image. To

generate the bird’s-eye view image, four wide-angle cameras

and a separate computing module are installed on the vehicle

platform. By integrating the nearby bird’s-eye view image into
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the localization system, we obtain many benefits to improve the

localization performance.

The benefits of the AVM and the validity of the probabilistic

noise model of the RSM features are evaluated through ex-

perimental studies performed under various driving conditions,

such as urban and motorways. The experimental results show

that the accuracy and reliability of the proposed localization

system are appropriate for application to an autonomous driving

system under real driving conditions.

The rest of this paper is organized as follows. Section II sum-

marizes the related research for vehicle localization. Section III

presents a system overview of the test vehicle platform and

mapping system. Section IV describes the fundamental flow

of the particle-filter-based localization algorithm. Section V

presents the measurement update process of the particle filter

based on the probabilistic noise model of the RSM features.

Section VI presents the probabilistic noise modeling of the

RSM features using multiple cameras. Section VII describes the

experimental results for the proposed algorithm, and the final

section provides conclusions.

II. RELATED WORKS

Localization systems based on integration of GPS and vehi-

cle motion information (DR) are widely applied for ego–vehicle

positioning due to the complementary features of the various

sensor [5]–[10]. Low update frequency and short time outage

of the GPS can be aided by DR updates, while the long-

term integration error of the DR can be corrected by GPS.

However, during long time GPS outage, such as in an urban

canyon environment, the GPS/DR integration cannot overcome

the integration error of the DR. Furthermore, the systematic

noise property of the GPS that changes slowly with time is hard

to correct by only using DR assistance [11]–[13].

To overcome the limitation of the GPS/DR system, localiza-

tion systems based on matching of a digital map with perception

data have been widely researched. As in [12], [13], the map-

perception-aided localization system can be classified into three

groups: 1) Kalman-filter-based localization at the feature level,

2) signal-level Monte-Carlo localization, and 3) feature-level

Monte Carlo localization, as shown in Fig. 1.

A. Kalman-Filter-Based Localization at the Feature Level

Kalman filtering (extended Kalman filtering for nonlinear

systems) is a typical solution for a map-perception-aided lo-

calization algorithm. The process of Kalman-filter-based local-

ization at the feature-level is shown in Fig. 1(a). The features

extracted from sensor measurements (such as cameras, radars,

and LIDARs) are associated with landmarks saved in the digital

map. Based on the association results, the Kalman filter up-

dates the state mean and covariance to estimate the position

and its uncertainty. Because Kalman-filter-based localization

has the advantages of a simple calculation framework and a

low computational burden, many previous studies have applied

this method.

Object features from LIDARs with highly accurate landmark

maps were used for vehicle localization based on extended

Fig. 1. The three groups for map-perception-aided localization: feature level
Kalman filter, signal level particle filter, and feature level particle filter.
(a) Kalman filter based localization on feature level. (b) Signal level Monte
Carlo localization. (c) Feature level Monte Carlo localization.

Kalman filtering [14]. In [15], grid map features of LIDARs

with a lane-level map were used for localization. The canny

edge features of road markings with satellite images maps

were applied for localization based on two data association

methods: iterative closest point algorithm (ICP) and iterative

recursive least squares (IRLS) [16]. Several types of road

surface markers (lanes, stop lines, and traffic signs) and features

(lines, corners, intensities, and edges) are based on the Kalman-

filter-based localization algorithm [17]–[22]. Road structural

features (RSFs) detected from line segments and points of

images were used for ego–vehicle position estimation in [23].

The Mercedes Benz S500 INTELLIGENT DRIVE achieved

fully autonomous driving on the Bertha-Benz-Memorial-Route

based on a Kalman-filter-based localization system using lane

and point features from multiple camera images [24]–[27].

Although the Kalman-filter-based localization at the feature-

level for the advantage of a simple calculation process, there

are limitations when it is applied in cluttered environments and

nonlinear system models. In cluttered environments, data asso-

ciation is not easy because the associations of sensor measure-

ments with landmarks are confused by the clutter. Because the

standard Kalman filter only provides an estimation framework

for linear system models, it cannot be applied to nonlinear sys-

tem models. Extended Kalman filters and Unscented Kalman

filters can approximate the probability distributions of nonlinear

systems; however, these filters cannot cover the multi-modal

probability distribution of the systems.

B. Signal-Level Monte-Carlo Localization

To deal with system nonlinearity and reduce the data asso-

ciation effort, a particle filter based on Monte-Carlo sampling

is used in the localization system. There are two types of

Monte-Carlo localization methods: signal-level and feature-

level localization.

Signal-level Monte-Carlo localization directly updates the

raw sensor data without feature extractions, as shown in

Fig. 1(b). Because the raw sensor measurements are directly

updated for position estimation, there is no loss of sensor

information from data abstraction of the features. In [28],

the reflectivity data from LIDARs are directly applied to the

measurement updates of the localization system. Because

all the reflectivity data for roads should be stored in the

map database, the localization system requires huge memory
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storage. In [12], [13], the camera image was directly updated

for the localization algorithm using a coherency value derived

from the structure tensor. This algorithm does not require a

feature extraction process for image data; however, it requires

huge computational power to update all the raw image data.

Therefore, this method may be useful when the computational

resources are adequate and parallel computing is available.

C. Feature-Level Monte-Carlo Localization

A second type of Monte-Carlo localization is feature-

level localization. Unlike signal-level Monte-Carlo localization,

feature-level Monte-Carlo localization performs the feature

extraction process before the filter update. Because the filter

is updated after abstracting the measurements into features,

the computational burden may be smaller than for signal-level

Monte-Carlo localization. The performance of the localization

is determined by which features are used and how the noise

characteristics are modeled.

Curb features extracted from dense point clouds of a 3D

LIDAR were used for filter updates [29]. Because the raw point

cloud data is abstracted into curb features, it can reduce the

required computational resources; however, the algorithm may

be useless in a curb-less region. The most widely used features

for localization are road surface markers (RSMs) such as lanes,

traffic signs, stop lines, and crosswalks. A maximally stable

extremal region (MSER) that represents bright areas from a

camera and LIDAR grid map was used for localization updates

[30], [31]. A combination of cameras and range sensors (radar

and LIDAR) was used to detect the RSMs and landmarks for

localization [32], [33]. A vision-only localization system used

RSM features (lanes, crosswalks, traffic signs, and stop lines)

to update the localization filter.

There are many studies for RSM based localization; however,

many of these studies did not explicitly analyze the noise

characteristics of the RSM features for measurement updates.

A measurement model that applies exact sensor noise charac-

teristics can highly improve the accuracy and reliability of lo-

calization [34]. Therefore, in this paper, we present an analysis

of noise characteristics of RSM features detected from cameras,

and design a probabilistic noise model of RSM features. The

designed probabilistic noise model of multiple cameras is the

basis of the proposed feature-level Monte-Carlo localization

algorithm.

III. SYSTEM OVERVIEW

A. Test Car Configuration

A test vehicle (Fig. 2) equipped with electronic stability

control (ESC) was used to evaluate the localization algorithm.

The ESC system contains several types of vehicle motion

sensors (a steering angle sensor, wheel speed sensors, and

a yaw rate sensor) to detect the vehicle’s dynamic motion.

This ESC sensor information is shared through the in-vehicle

network (controller area network, CAN); therefore, we can

access the motion sensor information of the ESC by connecting

to the CAN. Two types of vehicle motion sensors (wheel speed

sensors and a yaw rate sensor) were used for the localization

Fig. 2. Sensors of test vehicle used to evaluate the localization system are
composed of multiple cameras (AVM, front and rear camera), low-cost GPS
receiver, vehicle motion sensors (yaw rate and wheel pulse sensors), and laser
scanners.

TABLE I
SPECIFICATIONS OF ON-VEHICLE SENSORS TO MEASURE

THE VEHICLE MOTION

TABLE II
SPECIFICATIONS OF LOW-COST GPS RECEIVER

Fig. 3. Field of view (FOV) for multiple cameras (AVM, front and rear
camera) used for the proposed localization algorithm.

algorithm, and the specifications of the motion sensors are listed

in Table I.

Positioning information obtained from a low-cost GPS was

used for initialization and the GPS measurement updates. We

installed Ublox EVK-6T and used a shark antenna, which was

basic equipment on the vehicle. The specifications of the GPS

receiver are given in Table II.

The test vehicle was equipped with three types of cameras: a

front camera, a rear camera, and an AVM system. As shown in

Fig. 3, the front and rear camera respectively provide images

of a wide field of view (FOV) in the front and rear of the

vehicle, whereas the AVM system provides an accurate image

of a narrow FOV near the vehicle. These images are used to
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TABLE III
SPECIFICATIONS OF MULTIPLE CAMERAS (AVM, FRONT AND REAR CAMERA)

Fig. 4. Mapping system equipped with centimeter-level accuracy RTK-GPS
and two down-looking camera is used to capture the road surface image.

detect the RSM features on the roadways. The specifications of

the cameras are listed in Table III.

Laser scanners used to detect surrounding objects were

applied to remove undesired RSM features from the camera

images. Four multi-layer laser scanners were installed on the

test vehicle: three were installed inside the front bumper, and

the other inside the rear bumper, as shown in Fig. 2.

On the test vehicle was mounted an industrial embedded

computer that could endure harsh environments, with shock

protection (50 G, IEC 60068-2-27) and vibration protection

(5 Grms, IEC 60068-2-64). The computer included an Intel

core i7 processor and 16 gigabyte RAM to run the localization

algorithm.

B. Map Database

The precise digital map contained the RSM landmark fea-

tures, such as solid lines, dashed lines, stop lines, and traffic

signs. A probe vehicle equipped with a GPS, vehicle motion

sensors, and two down-looking cameras was used to generate

the RSM feature map, as shown in Fig. 4. A real-time kinematic

(RTK) GPS that provided centimeter-level accuracy was used to

measure the global position of the vehicle, and vehicle motion

sensors (gyro sensors and wheel speed encoder) were applied

to correct the position in case of GPS outage. The two down-

looking cameras mounted on the rear of the vehicle were used

to capture the road surface images.

Images obtained from the two down-looking cameras are

converted to bird’s-eye view images, and they are stitched into a

single global image based on the corresponding vehicle position

from the RTK-GPS-based positioning system. RSM features

are extracted from the single global image using a matched

filter based on the top-hat kernel [35]. Then, the extracted RSM

features are abstracted as polylines by using sequential process-

ing of thinning, clustering, and line fitting algorithms. Fault

features and undetected RSM features are precisely corrected

manually. The abstracted RSM polylines are converted into the

Open Street Map file format, which is a widely used standard

Fig. 5. Open street map database for perception-map-aided localization con-
sists of nodes, ways, and relation in order to represents the RSMs.

structure for storing map information [36]. Fig. 5 shows an

example map based on the Open Street Map file format. A set

of nodes constructs a way that represents RSMs on the map,

and a set of ways are clustered as a relation.

IV. LOCALIZATION BASED ON PARTICLE FILTER

Fig. 6 represents the overall architecture of the localization

algorithm. The process of the localization system is composed

of the time update and measurement update. At the time

update step, the probabilistic distribution of the vehicle state

is predicted based on the vehicle motion model, as shown

in Fig. 6(a). The shape of the probabilistic distribution of

the vehicle motion is described as crescent similar nonlinear

distribution. At the measurement update step, the GPS and

map-perception measurements are used to update the vehicle

position distribution. The probabilistic density function of the

GPS can be described as the uniform distribution, as shown

in Fig. 6(b). The probabilistic distribution of the RSM feature

measurement can be formed as a multimodal because an RSM

feature can be matched with multiple landmarks on the map,

as shown in Fig. 6(c). Because many of the probabilistic dis-

tributions of the measurements are non-Gaussian distributions

(nonlinear transformations of Gaussian distributions, uniform

distributions, and multimodal distributions), the particle filter is

used to integrate the various types of probabilistic distributions.

The principle of the particle filter is to approximate the

complete non-Gaussian probability density of the state vector

conditioned on measurements using Monte-Carlo sampling.

The particle filter process consists of the following steps.

A. Initialization

It is assumed that the probability density function of the

initial state p(x̂0|0) is known. The initial N particles described

in [xi
0|0]

N

i=1
are randomly generated based on p(x̂0|0). The

parameter N is a design factor that is a trade-off between the

computational load and the accuracy of estimation.
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Fig. 6. Overall architecture of the localization algorithm can be described
using probability density distribution of time and measurement updates.

In this paper, p(x̂0|0) is derived using the vehicle position and

velocity, and the receiver’s health status data obtained from the

GPS receiver. If the health status of the GPS signal satisfies the

pre-defined initialization conditions (number of satellites in use

is over than five and horizontal dilution of precision (HDOP)

is below two), the state of the particles are initialized by the

position and velocity data from the GPS.

B. Time Update

The next step’s estimates are created based on the system

model. A vehicle kinematic model with on-board sensor inputs

is used for the system model of time updates, as shown in (1) at

the bottom of the page. The vehicle model contains three states:

a vehicle heading ψ and a position in two global coordinates

(X,Y ).

x̂i
k|k−1

=

⎡

⎢

⎣

ψi
k|k−1

X i
k|k−1

Y i
k|k−1

⎤

⎥

⎦

=

⎡

⎢

⎢

⎣

ψi
k−1|k−1

+∆T ·ŵi
XYk

X i
k−1|k−1

+∆T ·V̂ i
XYk

cos
(

ψi
k−1|k−1

+∆T ·ŵi
XYk

)

Y i
k−1|k−1

+∆T ·V̂ i
XYk

sin
(

ψi
k−1|k−1

+∆T ·ŵi
XYk

)

⎤

⎥

⎥

⎦

.

(1)

Fig. 7. Validation boundary can be described as uniform probability distribu-
tion using GPS measurements in a two-dimensional plane.

The control input of the vehicle model can be obtained from

the vehicle motion sensors: a yaw rate sensor wgyro and wheel

speed sensors Vwhl. Because the localization algorithm is based

on the particle filter, we can predict the next step’s position

candidates using the random samples (2), where εb is a zero-

mean error variable with standard deviation b

ŵi
XYk

=wgyrok + εiσgyro

V i
XYk

=Vwhlk + εiσwhl
. (2)

The probabilistic distribution of a time update based on the

vehicle motion model is shown in Fig. 6(a). The shape of the

probabilistic distribution can be changed via the configuration

of sensor noise εσgyro
, εσwhl

.

C. Measurement Update

The weight of each particle qi is updated by evaluating the

likelihood of sensing measurements p(z|x,m) conditioned on

the predefined state and the map. The relationship between

weight and likelihood can be expressed as follows:

qik ∝ qik−1
p
(

zk|x
i
k|k−1

,m
)

. (3)

There are two types of measurement for the localization:

a GPS position measurement and a map-perception matching

measurement.

1) GPS Update: The first measurement is obtaining po-

sition data from the GPS receiver. Because a low-cost GPS

receiver has systematic noise properties due to atmospheric

disturbances, it is unsuitable to model the GPS noise as a

Gaussian distribution. The systematic noise properties can be

regarded as unknown bias from the true position [11]. If we

know the boundary of the unknown bias, we can set the noise

model as a uniform probability distribution, as shown in Fig. 7.

The radius of the validation circle δGPS can be determined

based on the GPS health status, such as number of satellites in

use, horizontal dilution of precision (HDOP), and type of dif-

ferential correction. If a particle is located inside the validation
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circle, the value of the weight is set to one in order to maintain

the previous value; however, if the particle is located outside it,

the weight is set to zero. When all particles have been set to

zero, the localization system is reinitialized

qiGPSk
=

⎧

⎨

⎩

1 for
(

X̂ i
k−XGPS

)2

+
(

Ŷ i
k−YGPS

)2

<δGPS
2

0 otherwise.

(4)

2) Map-Perception Update: The second measurement is to

obtain RSM features from the multiple cameras. A likelihood of

the measurement can be obtained from a probabilistic function

conditioned on the particle state and the map database. The

weight of the RSM feature is updated based on the likelihood

value, as shown in

qiRSMk
= p

(

zk|x
i
k|k−1

,m
)

. (5)

The likelihood function for the RSM feature measurement

is the most important contribution of this paper. Therefore,

we will present more detailed algorithms for the measurement

update and likelihood function derivation in Sections V and VI.

3) Integration and Normalization: Because the measure-

ments from the GPS and the cameras are independent of each

other, the integrated weight of a particle can be represented by

multiplying (4) with (5) based on the relationship represented

in (3), as shown in

qik = qik−1
× qiGPSk

× qiRSMk
. (6)

After calculating the weights of all the particles based on the

likelihoods of the GPS position and the RSM features, we can

obtain the normalized weights using a normalization process,

as shown in (7). The obtained weights are called importance

weights, and they describe the probability of the particle’s being

sampled from the correct probability density function

qik =
qik

N
∑

j=1

qjk

. (7)

D. Density Approximation

To apply the position estimate to other autonomous driving

algorithms, we should find one representative value from the

particle’s state and weight. If the posterior of the system has a

unimodal property, it is suitable to apply the minimum mean

square error (MMSE) estimate, which can be approximated

by the weighted mean of the particle density distribution, as

shown in

x̂k|k =

N
∑

i=1

qikx̂
i
k|k−1

. (8)

However, the likelihood distribution of the RSM feature mea-

surement can be formed as a multimodal distribution because

an RSM feature can be matched with multiple landmarks on

the map, as shown in Fig. 6(c). In a multimodal distribution, the

mean value cannot represent the overall probability distribution.

In this case, it is better to use a maximum a-posteriori estimate

for the representation, as shown in (9). To approximate the max-

imum a-posteriori estimate, we apply a mean-shift algorithm,

which iteratively approximates the maximum a-posteriori [37]

x̂k|k = arg max
x̂k|k−1

p
(

x̂i
k|k−1

|z1:k,m
)

. (9)

E. Resampling

Resampling regenerates the new set of randomly generated

particles on the basis of their relative likelihoods. Resampling

prevents the concentration of the probability mass on only a

few particles [38]. The resampling will be executed only if the

following condition is met

N̂eff =
1

N
∑

i=1

(

qik
)2

<
2

3
N. (10)

Neff represents the effective number of samples that in-

dicates the degree of depletion. When all the particles have

uniform weight values, the Neff has its maximum value (N).
In contrast, when all the weights are devoted to a single particle,

the Neff has its minimum value (one). We choose the upper

threshold of Neff as 2/3N ; however, the value can be modified

according to the probabilistic characteristics of the filter.

A low-variance sampling method is used for resampling.

This method is based on a systematic sampling technique that

selects particles that have lower computational complexity and

better spatial coverage of the sample space [34].

V. MEASUREMENT UPDATE USING RSM FEATURES

This section presents the measurement update process of

RSM features, which was explained in the map-perception

likelihood update in the previous section. The update process of

the RSM features is composed of a likelihood field generation

and a measurement update. In the likelihood field generation

step, the likelihood field conditioned on the predicted state and

the map is generated by reflecting the noise characteristics of

the RSM feature detection. Based on the generated likelihood

field, the weight of each particle is updated by applying the

likelihood field to the detected RSM features.

A. Likelihood Field Generation

The likelihood field describes the distribution of likelihood

for the measurement data in the measurement space. The

likelihood distribution in the likelihood field can be obtained

from the likelihood function (5). The likelihood function can be

obtained by reflecting the measurement noise characteristics to

the measurement prediction model h(x,m). The measurement

prediction model h(x,m) can predict the sensor measurement

by applying the geometric relationships between the sensors’

installed locations, the predicted vehicle state, and the map.

We present an example to illustrate the measurement update

process in Fig. 8. The polylines that are blue lines with yellow

rectangle nodes represent the map of the RSM features. Points

in the green series indicate the positions of the predicted states

of particles, and the attached line indicates the heading of the
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Fig. 8. Example for measurement update using the RSM features of the AVM.
The blue lines mean the RSM features on the map, red circle means the true
vehicle state, and the greenish circles represents the predicted vehicle state
using particle filter.

Fig. 9. Prediction model of the RSM feature measurements. The model can be
represented in image coordinates with pixel units.

predicted state. The red point and line represent the true vehicle

state. An AVM is installed to provide a bird’s-eye view image

near the ego–vehicle with limited FOV, as shown in Fig. 3.

The dark green point indicates the representative particle

to explain the measurement prediction. Using the geometric

relationships among the AVM FOV, the predicted particle state,

and the RSM features map, the measurement prediction model

can be generated, as shown in Fig. 9(a). Because the AVM

provide a bird’s-eye view image in image coordinates, the

measurement model is also represented in image coordinates

with pixel units (Fig. 9(b)).

The probabilistic distribution of measurements (likelihood

field) is generated by the likelihood function while applying

the RSM detection noise characteristic to the measurement

prediction (Fig. 9(b)). Fig. 10 shows the two-dimensional (2D)

Fig. 10. Likelihood field of RSM features. The likelihood field can be repre-
sented using the 2D Gaussian mixture functions.

likelihood field for RSM feature detection, which is a 2D

Gaussian mixture function. Appropriate noise modeling for

the likelihood function can greatly affect the quality of the

measurement update and the entire performance of the local-

ization system [34]. In this paper, we design a probabilistic

noise model of RSM features based on RSM detection results

under real driving conditions. The detailed process of the prob-

abilistic noise modeling of RSM features is described in the

next section.

B. RSM Feature Detection

The AVM system provides a bird’s-eye view image of the

true vehicle position and heading, as shown in Fig. 11(a)

and (b). From the bird’s-eye view image, the RSM features can

be extracted by applying a matched filter with a top-hat kernel

[35]. The filtering algorithm is only intended to detect RSM

features; however, there are also undesired features detected

from other vehicles, pedestrians, and many objects that belong

in a roadway. Laser scanners are used to detect the undesired

objects, and the RSM features within the object regions are

rejected from the images. Although the matched filter can detect

the line-like RSM robustly, and laser scanners reject undesired

features effectively, there are still problems such as false-

positive RSM detection and undetected RSMs, as shown in

Fig. 11(c). To consider the detection noise of the RSM features,

we will include the RSM detection noise in the probabilistic

noise model for the likelihood update function, which will be

introduced in the next section.

C. Measurement Update

The likelihood of the representative particle in the example

is updated by intersecting the likelihood field (Fig. 10) with the

RSM feature detection results (Fig. 11), as shown in Fig. 12(a).

Because there is a difference between predicted state of the

particle and true vehicle state, the overlapping area is small,

as shown in Fig. 12(b). If the particle locate on the true

vehicle state (Fig. 12(c)), the particle will have the most wide

overlapping area that means the highest likelihoods.

Multiple cameras (an AVM, a front camera, and a rear cam-

era) are used for the measurement of the localization system

(Fig. 3). Because the each camera image is independent to each

other, the likelihood of RSM measurement can be obtained as
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Fig. 11. RSM feature extraction process using a matched filter. (a) Red region
describes the FOV of the AVM. (b) Image from the AVM system. (c) Results
of the RSM feature extraction.

the production of the individual measurement likelihoods of

each camera, as shown in

p
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where CAM describes the types of camera.

VI. PROBABILISTIC NOISE MODELING OF RSM FEATURES

Proper noise modeling of the measurement for the likelihood

function largely influence to accuracy and reliability of the

Fig. 12. Measurement update process of the RSM features. (a) Measurement
update by matching the likelihood field with RSM features. (b) Example of the
poor matching. (c) Example of the correct matching.

Monte-Carlo localization [34]. The probabilistic noise model

of RSM features can be classified into two factors: unexpected

ego–vehicle motions and fault detected RSM features.

A. Noise From Unexpected Vehicle Motion pmotion(z
n
k |xk,m)

The location of the RSM features in the ego–vehicle body

coordinates can be calculated from RSM feature measurements

from the image by applying the geometric relationship between

the camera pose and the road surface. The geometric relation-

ship can be obtained from the camera’s intrinsic and extrinsic

calibration parameters. In the AVM example, if the point RSM

features are located near the ego–vehicle at regular intervals

(Fig. 13(a)), we can predict the AVM image using the geometric

relationships (Fig. 13(b)). However, when vehicle motion (pitch

and roll) occurs, the geometry relationships will be affected

by the motion, which will cause measurement error of RSM

feature positions. If we know the amount of vehicle motion, the

measurement error of the RSM features also can be predicted

using the geometric relationships, as shown in Fig. 14.

Vehicles are affected by unexpected vehicle motion in real-

driving conditions; therefore, the RSM feature noise from the

vehicle motion should be considered for the measurement

model of localization. Feature noise due to unexpected motion

can be modeled using real vehicle motion data from real

driving conditions. We obtain real vehicle motion data using



JO et al.: PRECISE LOCALIZATION OF AN AUTONOMOUS CAR BASED ON PROBABILISTIC NOISE MODELS 3385

Fig. 13. AVM image measurement prediction of RSM features using the
camera geometry relation.

Fig. 14. Image measurement error of RSM features due to the ego–vehicle
motions (roll and pitch). When the vehicle motion contains ±2◦ pitch angles,
the upper and lower sides of the AVM image are enlarged or diminished in
(a) and (b). When the vehicle motion contains ±2◦ roll angles, the right and
left sides of the AVM image are enlarged or diminished in (c) and (d).

the precision measurement equipment of the vehicle’s dynamic

states under various driving conditions, such as highway, urban,

and rural road conditions, as shown in Fig. 15.

By applying real vehicle motion data to geometric rela-

tionships between the camera and the road surface, the noise

distribution of the AVM for the RSM feature points can

be obtained as shown in Fig. 16. The distribution of each

pixel in the AVM image can be modeled as a Gaussian

distribution.

The noise modeling process can apply to all the pixels of the

AVM image. The variance of the Gaussian noise distribution

for all pixels of the AVM image can be represented as shown in

Fig. 17. In the measurement noise model of the AVM features,

the variances tend to increase with greater distance from the

ego–vehicle.

The probabilistic noise model of the RSM features also

can apply to the front and rear cameras. The variances of the

Fig. 15. Vehicle roll and pitch motion data from precision measurement
equipment of the vehicle’s dynamic state.

Gaussian noise distributions for the front and rear cameras

in image coordinates are shown in Fig. 18(a) and (b). The

variances of the measurement noise models for the front and

rear camera features tend to decrease longitudinally away from

the ego–vehicle.

The predicted measurement using the predicted state and

the map are composed of several pixels of RSM features,

as shown in the AVM example (Fig. 9(b)). By applying the

probabilistic noise model of the RSM features to all the pixels

in the predicted measurement, the likelihood of unexpected

motion noise can be obtained using a Gaussian mixture, as

described in

pCAM
motion

(

zCAM
k |xk,m

)

=
M
∑

j=1

1

M
pCAM
motion

(

(zj)
CAM

k |xk,m
)

(12)

M represents the number of predicted feature pixels in the

prediction measurement, and CAM describes the types of

cameras (AVM, front camera, and rear camera).

B. Noise From Fault Detection RSM Features

pfault(z
n
k |xk,m)

A top-hat-kernel-based matched filter is used for the RSM

features detection. However, the matched filter not only detects

the RSM features, it also detects the undesired noise features,

such as a bush, an unexpected object that is not contained

in the map. Therefore, this unexpected feature noise can be

regarded as random noise and can be represented using a

uniform distribution, as in

pCAM
fault

(

zCAM
k |xk,m

)

=
1

Number of pixels on the image
.

(13)
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Fig. 16. (a) Noise distribution of the AVM for the RSM features. (b) Mod-
eling of noise distribution from unexpected vehicle motion using a Gaussian
distribution.

Fig. 17. Variance of the Gaussian noise distribution for the AVM system due
to the unexpected vehicle motion.

Fig. 18. Variances of Gaussian noise distributions for front camera and rear
camera due to the unexpected vehicle motion.

C. Integrated Probabilistic Noise Model of RSM Features

The integrated probabilistic feature model of the RSM fea-

tures can be described by mixing the two distributions with

weighted averages, as represented in

pCAM (zk|xk,m) = αCAM · pCAM
motion(zk|xk,m)

+ βCAM · pCAM
fault (zk|xk,m). (14)

The weight factors (α and β) for each probabilistic model can

be determined by using the ratio of true-positive detection rate

to false-positive detection rate of RSM features, as in

True-positive rate

False-positive rate
=

α

β
. (15)

Each rate can be obtained from the manual labeling of RSM

detection results under real driving conditions. Because the

weight factors are determined by the detection rate of the RSM

feature detector, the integrated probabilistic noise model of the

RSM can be changed according to the types and performance

of the RSM feature detector.

The AVM example for the integrated probabilistic noise

model of RSM features is shown in Fig. 19.

VII. EXPERIMENTAL RESULTS

A. Experimental Environments

1) Test Site and Driving Input: The proposed localization

system was evaluated at the ITS proving ground of the Korea

Automobile Testing and Research Institute (KATRI) located in

Hwaseong-si, Gyeonggi-do, Korea. The ITS proving ground

is a performance assessment facility for ITS applications in-

cluding autonomous driving. To evaluate the ITS applications

in various real driving scenarios, the proving ground provides

many types of test sites that represent real driving conditions,

such as a ramp, rural roads, a highway, a roundabout, intersec-

tions, and a parking lot, as shown in Fig. 20. The experiments

for the localization evaluation were performed by following the

red curved path, and the vehicle speed and yaw rate of the

experiments are shown in Fig. 21.

2) Algorithm Implementation: The proposed Monte Carlo

localization used 120 particles for the random sampling.

Four computing threads (AVM image processing thread, front
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Fig. 19. Integration of two types of measurement noise models (unexpected
motion and fault detection) generates the overall RSM feature noise model.

Fig. 20. Test site for evaluation of the localization algorithm (KATRI). The
test site imitates the real driving conditions (such ramp, highway, intersection,
roundabout, and parking lot).

camera processing thread, rear camera processing thread, and

localization thread) are assigned to execute the localization

algorithm. The average execution time is about 30 millisecond

based on Intel i7-4700EQ CPU 2.4G computing unit. The

localization algorithm needs less than ten-megabyte memory

for the algorithm execution.

3) Monte-Carlo Experiment: Because the proposed local-

ization algorithm is based on an Monte-Carlo localization that

uses random sampling, experimental results under the same test

conditions can be different from each other despite having the

same control inputs. Therefore, it is not reliable to evaluate

the performance of localization by using the results of only

one of the experiments. To reliably evaluate the algorithm

based on random sampling, the evaluation uses the Monte-

Fig. 21. Input of the vehicle speed and yaw rate to evaluate the proposed
localization system.

Fig. 22. Hardware-in-the-loop (HILS) environment for Monte-Carlo evalua-
tion. The real-time replay system replay the logging measurements and transfer
the logged data to localization computing system to evaluate the localization
algorithm.

Carlo method, which repeats the experiment several times with

different random samples and the same control inputs.

For the Monte-Carlo experiments, a hardware-in-the-loop

simulation (HILS) was set up, as shown in Fig. 22. The HILS

consists of a real-time replay system to log measurements

(from the GPS, cameras, map, and vehicle motion sensors)

and a computing system to execute the algorithm. The same

performance computer was installed in the test vehicle as was

used for the HILS. The replay system provides the logging

measurements to the computing system in real time, and the

computer executes the localization algorithm based on the real-

time replay measurements. By using the HILS, we can perform

a Monte-Carlo evaluation by repeating the experiments several

times in the same measurement environment.

B. Localization Accuracy Analysis

A real-time kinematic GPS (RTK-GPS) with centimeter-

level accuracy was used to analyze the accuracy of the proposed

localization system. The accuracy was evaluated based on the

error between the estimated state of the localization system and

the true state of the RTK-GPS. Heading error, Euclidian dis-

tance error, lateral position error, and longitudinal position error

were used for the evaluation, and these errors were obtained by

averaging the results of 100 trials of Monte-Carlo experiments.

Fig. 23 shows an error comparison result of the Kalman-filter-

based GPS/DR system (green) and the proposed localization

system based on the integration of a GPS, DR, map, and RSM

feature detection (blue). From the RMS error from all of the

state error, we conclude that the proposed localization system

has superior accuracy to that of the GPS/DR system.
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Fig. 23. Error plot of the localization based on information fusion of the GPS/DR and the GPS/DR/map/perception (distance error, lateral position error, and
longitudinal position error).

Because there are many RSM features that can be used

to correct the lateral position error, such as several types of

lanes (dashed lanes, solid lanes, and double lanes), the lateral

error (RMS 0.076417 meters) is smaller than the longitudinal

error (RMS 0.52718 meters). The longitudinal error can be

reduced under conditions where there are many RSM features

to correct the longitudinal error, such as stop lines, crosswalks,

and parking lot lines.

There were no fails or divergence of the localization using

the proposed algorithm for the 100 trials of Monte-Carlo ex-

periments. Furthermore, we verified the reliability and accu-

racy of the proposed localization algorithm by implementing

it into a real autonomous driving system that participated in

an autonomous vehicle competition organized by the Hyundai

Motor Group [39].

C. Effect of the Probabilistic Modeling of the RSM Features

To analyze the effect of the probabilistic image model of the

RSM features on the localization performance, we conducted

experiments with various probabilistic image models of the

RSM features. The test group of the probabilistic image model

consisted of uniform probabilistic distribution and various

times of variances for the original probabilistic noise model

(1/2, 1, 2, and 3 times). The uniform probabilistic distribution

model represents the image model which does not consider the

noise effect of the RSM feature detection.

Fig. 24 shows an example of uniform distribution and various

times of the original probabilistic probability image model

Fig. 24. Example of variance models: uniform probabilistic distribution
model and various times of variances for the original probabilistic noise model
(1/2, 1, 2, and 3 times).

shown in Fig. 10. The larger variance model has a smoother

and broader distribution.
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Fig. 25. Error plot for the difference variance probabilistic measurement model of RSM features. The RMS error of the each results represents the performance
of the each noise model based localization algorithm.

TABLE IV
FAILURE RATE FOR THE VARIOUS MEASUREMENT MODELS

A variance test using the original probabilistic noise model

resulted in the minimum error among the test scenarios, as

shown in Fig. 25 and Table IV. This indicates that the proba-

bilistic noise model generated by the vehicle motions obtained

from the real driving conditions is the most reasonable for

precise localization.

Large variance probabilistic noise models resulted in large

localization error. That is because an RSM feature model with

large variance generates a wide distribution of the likelihood

field. The wide likelihood field influences the scoring weights

of each particle even though they are not correctly matched.

Small variance probabilistic noise model tests (include the

uniform distribution test) also resulted in large localization

error, and occasionally, the localization failed. That is because

an RSM feature model with small variance generates a narrowly

distributed likelihood field. Only if the RSM features are cor-

rectly matched in the RSM features model, then the particle is

highly weighted; however, the other particles are not weighted

even though they are close to the correct matching.

From these results, we conclude that the correct probabilistic

measurement model is highly influential on the accuracy and

reliability of the localization performance.

D. Advantage of the AVM System for Localization

Most of the cameras for the intelligent vehicle are installed

inside the windshield to protect them from rain, snow, and var-

ious temperature conditions. The proposed localization system

also utilizes front and rear cameras installed inside the front and

rear windshields. Because the cameras are mounted at relatively

high positions in the vehicle, they provide the advantage of

broad FOVs. However, the image plane is almost perpendicular

to the ground surface, so the RSM detection is highly vulnerable

to the vehicle motion (pitch and roll).

As shown by the above model results, because the AVM

system consists of down-looking cameras, it is highly robust

to the noise of vehicle motion and can detect the RSM more

accurately than the front and rear camera. Furthermore, the

down-looking camera makes the AVM system robust to the illu-

mination changes due to the direct sunlight. However, the AVM

system only provides a narrow FOV near the ego–vehicle, so it

could fail to localize where there are not many RSMs.

The experiments to evaluate the usefulness of the AVM

system for localization were conducted under four different
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Fig. 26. Error plot of the localizations based on AVM-only, front camera-only, rear camera-only, and integrated cameras. The RMS error of the each results
represents the performance of the each sensor components based localization algorithm.

scenarios: AVM-only, front camera-only, rear camera-only, and

all three cameras integrated, as shown in Fig. 26.

The AVM-only test results showed that the localization was

successfully performed in the test scenarios that contain enough

RSMs on the road. However, AVM-only localization has the

possibility to fail in a real driving situation in which there

may not be sufficient RSMs in the AVM image because of

occlusion from nearby vehicles. To overcome this sparse RSMs

problem, the localization system must use the front and rear

camera.

The localization test using only the front camera resulted in

large localization errors. That is because the front camera image

is highly influenced by the effects of the vehicle, as shown

in Fig. 18(a). When the vehicle accelerates or decelerates,

especially in the highway section, the vehicle pitch motion is

enlarged. The front camera image is considerably affected by

the pitch motion, and then it creates a discordance between the

RSM features in the image and the RSM feature model. As

shown in Fig. 26, the longitudinal error in the highway section

exceeds five meters.

Even though the rear camera configuration is similar to that

of the front camera, the localization error of the rear camera-

only test was smaller than in the front camera-only test. That

is because the rear camera observes a road surface far from

the ego–vehicle due to the current camera setting. As shown

in Fig. 18(a) and (b), the variance of the noise model for the

rear camera is smaller than the error model of the front camera.

TABLE V
FAILURE RATE FOR THE VARIOUS CAMERA CONFIGURATIONS

Despite the high accuracy of the rear camera-only localization,

it has the risk to fail about 16 times over 100 trials as shown in

Table V.

The test integrating multiple cameras (AVM, front cam-

era, and rear camera) resulted in the minimum RMS error

in longitudinal and lateral directions. The wide FOV images

obtained from the front and the rear camera provides enough

RSMs such that the localization system roughly estimates the

ego–vehicle position, and the AVM image provides accurate

RSMs to confirm the precise ego–vehicle position.

VIII. CONCLUSION

This paper proposed a precise localization algorithm for

an autonomous driving system based on an information fu-

sion of automotive on-board motion sensors, a low-cost GPS,

multiple cameras, and a precise digital map. The localization

algorithm integrates the data from the multiple sensors using a

Monte-Carlo localization based on a particle filter method. The
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main advantages of the proposed localization algorithm can be

summarized as follows.

1) The proposed localization algorithm operates based on

low-cost automotive specification sensors, such as ESC

motion sensors, along with a low-cost GPS and an

AVM camera. Therefore, the localization system is cost

effective and reliable under tough driving conditions.

Furthermore, even though the localization system uses

only low-cost automotive sensors, we conclude that the

proposed localization algorithm is appropriate to apply to

an autonomous car based on our analysis of the accuracy

and reliability of the localization system when applied to

real autonomous driving.

2) The probabilistic noise modeling of the RSM features is

performed using data from real driving conditions and

applied to the measurement update of the Monte-Carlo

localization. When the RSM features are detected from

cameras, there are several noise sources, such as unex-

pected vehicle motion, false-positive RSM features detec-

tion, and RSMs occupied by unexpected objects. Because

the RSM features occupied by objects can be extracted by

using the range sensors (radars and LIDARs), we focus

on a noise model of unexpected vehicle motions and

false RSM detections. To construct the probabilistic noise

model of the RSM feature detection more explicitly, we

analyzed the unexpected motion noise and false-positive

noise by using motion and RSM detection results from

various real driving conditions. Based on the results of the

analysis, we could design a probabilistic noise model of

RSM features and apply it to the localization algorithm.

From the experimental study using the various variance

noise models, we conclude that the exact probabilistic

noise model of the sensor measurement greatly affects the

localization performance.

3) We applied an around-view monitoring (AVM) system to

the localization algorithm. The original purpose of the

AVM was parking assistance by providing drivers with

a virtual bird’s-eye view image of nearby surroundings.

By applying the AVM image into the localization algo-

rithm, we enhanced the accuracy and reliability of the

localization. Because the down-looking cameras in the

AVM system provide accurate and stable road surface

images that are robust to vehicle motion and illumina-

tion changes, the RSM features in the AVM image are

reliable to use for localization. The advantage of using

the AVM system for precise localization was evaluated

by experimental studies. The results show that, as long as

a sufficient number of RSMs are detected in the AVM

image, the localization algorithm successfully operates

using only the AVM system.

The paper basically assumes that the RSM is well detected

by using the simple matched filter. However, it is impossible

to detect the RSM perfectly in the degraded surface condition.

In order to compensate the problem, the authors plan to extend

the localization algorithm by integrating other types of sensors

such as radars, LIDARs, and stereo visions. The performance

of the proposed algorithm is expected to be improved when it

integrates additional sensor information into the measurement

update. Probabilistic noise modeling of the additional sensors

will be required when we apply the new types of sensors for the

measurement updates of the localization system.
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