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Precise measurements of chromatin diffusion
dynamics by modeling using Gaussian processes
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The spatiotemporal organization of chromatin influences many nuclear processes: from chro-
mosome segregation to transcriptional regulation. To get a deeper understanding of these
processes, it is essential to go beyond static viewpoints of chromosome structures, to accurately
characterize chromatin’s diffusion properties. We present GP-FBM: a computational framework
based on Gaussian processes and fractional Brownian motion to extract diffusion properties
from stochastic trajectories of labeled chromatin loci. GP-FBM uses higher-order temporal
correlations present in the data, therefore, outperforming existing methods. Furthermore, GP-
FBM allows to interpolate incomplete trajectories and account for substrate movement when
two or more particles are present. Using our method, we show that average chromatin diffusion
properties are surprisingly similar in interphase and mitosis in mouse embryonic stem cells. We
observe surprising heterogeneity in local chromatin dynamics, correlating with potential reg-
ulatory activity. We also present GP-Tool, a user-friendly graphical interface to facilitate usage of
GP-FBM by the research community.

TInstitute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, llkirch, France. 2 Molecular
Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI) UPS, CNRS, Toulouse, France. ®email: monteirg@igbmc.fr;
sexton@igbmc.fr; molinan@igbmc.fr

NATURE COMMUNICATIONS | (2021)12:6184 | https://doi.org/10.1038/s41467-021-26466-7 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26466-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26466-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26466-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26466-7&domain=pdf
http://orcid.org/0000-0002-1945-0517
http://orcid.org/0000-0002-1945-0517
http://orcid.org/0000-0002-1945-0517
http://orcid.org/0000-0002-1945-0517
http://orcid.org/0000-0002-1945-0517
http://orcid.org/0000-0001-6717-3721
http://orcid.org/0000-0001-6717-3721
http://orcid.org/0000-0001-6717-3721
http://orcid.org/0000-0001-6717-3721
http://orcid.org/0000-0001-6717-3721
http://orcid.org/0000-0002-7824-1846
http://orcid.org/0000-0002-7824-1846
http://orcid.org/0000-0002-7824-1846
http://orcid.org/0000-0002-7824-1846
http://orcid.org/0000-0002-7824-1846
http://orcid.org/0000-0003-0233-3055
http://orcid.org/0000-0003-0233-3055
http://orcid.org/0000-0003-0233-3055
http://orcid.org/0000-0003-0233-3055
http://orcid.org/0000-0003-0233-3055
mailto:monteirg@igbmc.fr
mailto:sexton@igbmc.fr
mailto:molinan@igbmc.fr
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

he spatiotemporal organization of chromatin plays a cru-
cial role in several nuclear processes: from cell division,
where chromatin is compacted to facilitate chromosome
segregation during mitosis, to gene regulation, where precise
control of transcription correlates with specific long-range chro-
matin contacts!. Chromosome conformation capture techniques
and imaging approaches have revealed fundamental structural
features of chromatin at different resolutions. Of special interest
are topological associated domains (TADs) which are character-
ized by an increased frequency of interactions between genomic
loci within the same domain with reduced interactions across
domains®3. Remarkably, it has been shown that TAD organiza-
tion can influence regulation of transcription* and that TADs are
dismantled during mitosis where chromatin density dramatically
increases>®. However, much less is known about the diffusion
properties of chromatin and how they depend on the genomic
context. For instance, it is not clear whether or how transcrip-
tional activation affects chromatin mobility, with previous studies
giving seemingly conflicting results”-8. Insights into the dynamic
properties of chromatin motion are required to understand how
gene regulatory elements communicate within the nuclear space®.
The simplest model to describe the diffusion of microscopic
systems is Brownian motion, whereby movements are caused by
random collisions of small particles within the system!0:11,
However, as a bulky polymer interacting with itself and the
nuclear environment!2-14, chromatin displays sub-diffusive
behavior, more constrained than classical Brownian motion for
short periods of time!>-17. Therefore, the mean squared dis-
placement (MSD) of chromatin is expected to follow this rela-
tionship with time: MSD « D,t*. Two parameters thus describe
the diffusion properties of chromatin: the apparent diffusion
coefficient D, indicating the “speed” of motion, and the anom-
alous coefficient &, which for sub-diffusive behavior is <1 indi-
cating greater constraint of movement. The traditional method
used to estimate the diffusion parameters is based on calculating
the MSD over time from measured trajectories and fitting the
above theoretical expression to the data. More sophisticated
methods based on particle displacement use higher-order
moments!8 or probability density functions!®-2! (henceforth
referred to as displacement distribution-based methods or DDB)
to obtain more accurate estimations of the diffusion parameters.
However, these methods do not use all the information contained
in the trajectories as higher-order temporal correlations are dis-
carded. Furthermore, errors due to measurement noise cannot
easily be included into the analysis, and it is not possible to
recover missing data points due to misdetection or occlusions.
We propose GP-FBM, a computational method based on
Gaussian Processes (GP)2223 and fractional Brownian motion
(FBM)24-26, which improves and extends the concepts presented
in27:28, Importantly, GP provides a consistent probabilistic fra-
mework that considers entire trajectories and thus utilizes all the
available information. Trials on simulated data demonstrate a
greater precision of GP-FBM in measuring diffusion parameters
over MSD and DDB. Furthermore, as it is applied directly on
trajectories, GP-FBM naturally takes into account localization
errors and occlusions without the need to establish a fitted MSD
curve or displacement distributions. We further extend this
model to account for external sources of movement (e.g. dis-
placement of whole nuclei or chromosomes) using underlying
correlations between multiple trajectories, without the need to
further develop substrate motion models and experiments for
calibration?®. Finally, we applied GP-FBM to two experimental
systems to study chromatin diffusion properties in different
contexts. First, we characterized chromatin dynamics in inter-
phase and mitosis using tagged arrays inserted at random geno-
mic locations in mouse embryonic stem (ES) cells. Although

chromatin density increases by a factor of three during mitosis®’,
our results surprisingly indicate that there are no significant
differences on average in the apparent diffusion or anomalous
coefficients. Second, to compare the diffusion properties of dif-
ferent specific genomic regions, we performed double-labeling
and live tracking experiments around the HoxA locus in mouse
ES cells before and after induction of the genes with retinoic acid.
We discover that, instead of having homogeneous diffusion
properties across euchromatin, genomic loci significantly differ in
both their apparent diffusion and anomalous coefficients. In some
cases, altered chromatin diffusion properties correlate with
underlying functions such as gene regulation or CTCF binding.
The methods we have developed are integrated into a user-
friendly package, GP-Tool, for use in the scientific community.
Chromatin mobility has been overlooked in previous studies of
genome functions, and we anticipate that GP-FBM will facilitate
research in that area.

Results

Modeling diffusion dynamics with GP-FBM. Traditional
methods to analyze particle diffusion dynamics rely on particle
displacements calculated between two frames at different time
intervals, hence information on how precisely the particle moves
between the two points is not considered. This has important
drawbacks: higher-order temporal correlations within the trajec-
tories are discarded; errors due to frame-dependent measurement
noise cannot be easily included into the analysis; and missing data
points due to misdetection or occlusions are ignored and cannot
be recovered by inference. To address these problems we built a
consistent probabilistic framework based on Gaussian Processes
(GP)?223, Briefly, a GP is defined as a collection of random
variables such that every finite subset of them follows a multi-
variate normal distribution which is fully determined by its mean
and kernel functions p(f) and Z(t, t'). We assume that a stochastic
diffusion trajectory x(f) of a given chromatin locus can be
modeled as a Gaussian process with the following fractional
Brownian kernel24-26;

Zp ot t) = D(It1* + |1 — [t = ]%), 1)

where D, is the apparent diffusion coefficient and « is the
anomalous coefficient defined in the range 0 <« < 2. This kernel
produces a generalized Brownian motion with a mean squared
displacement (r2) = 2nD,t% where n corresponds to the number
of degrees of freedom. Notice that the traditional Brownian
dynamics is recovered with a=1. Then the probability of
observing a discrete trajectory r = {r;} measured at a set of times
t={t}} is given by the multivariate Gaussian distribution,

NID, o) ocexp|—3 (=" =), @)

where the covariance matrix is defined as X; = £, ,(#;,1;) and we

take a constant g without loss of generality. Furthermore, we can
easily incorporate localization errors by adding the diagonal term
012617 to the covariance matrix ¥, which assumes that errors are

decorrelated and normally distributed with standard deviations
o ={0;} (see Methods). Ultimately, providing a trajectory r and the
localization errors o, the likelihood (2) can be used to calculate
estimates of the diffusion parameters D, and « either via optimi-
zation or sampling using the Metropolis-Hastings algorithm?3-31.
We first test the performance of the GP-FBM method on
synthetic trajectories simulated from a FBM model with a given
time step (df). To mimic the measurement noise observed in real
trajectories, we introduce the localization error ¢ and the
occlusion rate o. An example of simulated trajectory and the
effect of the measurement noise is shown in Fig. 1la. We then
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Fig. 1 GP-FBM outperforms existing methods on simulated data. (a) 2D trajectory sampled from a GP with the FBM kernel displayed in black. To match
observed experimental trajectories in the following sections, Gaussian noise of 1/10 of a pixel is added to the positions and 10% of the points are removed
according to a uniform random distribution. The noisy trajectory is displayed in red. The blue line shows the most probable trajectory with the blue shaded
band representing the 95% credible interval as inferred by GP-FBM. (b) Posterior probability distributions for D, and a inferred from trajectory in (a).

Triangles denote the values set in the simulation. (¢) Comparing inference relative errors as obtained by GP-FBM (blue), MSD (green) and DDB (orange)
for 50000 simulated trajectories with uniform random parameters chosen in the range 0.01<D, <15, 0.01<a <19, 0.1<dt<1.0, 0.001<6<0.25 and

0<0<0.8.

obtain a posterior distribution over the parameters D, and «
given the trajectory and the localization errors by combining the
likelihood (2) with flat priors over all parameters, which can be
sampled using Markov Chain Monte Carlo (MCMC) (see Fig. 1b
and Methods). Interestingly, once the diffusion parameters are
estimated, the power of the GP framework can be used to infer
the most probable trajectory of the particle by removing
measurement noise and predicting the particle position where
occlusions or misdetections occurred (Fig. 1a). To systematically
evaluate the performance of our method to infer diffusion
parameters, we generated 50000 synthetic trajectories using
uniformly distributed random values of D, and « in the range
0<D,<15 and 0<a<2. For generality, we also sample the
simulation time step (dt), localization error (¢) and occlusion
ratio (o) from a uniform random distribution in the respective
ranges: 0.1 <dt<1.0, 0.001 <0<0.25 and 0<0<0.8. We com-
pared the results obtained using our approach on the simulated
data with the traditional MSD and DDB methods. GP-FBM
clearly outperforms both methods, producing smaller relative
errors of parameter estimation over all (Fig. 1c) and across
different parameter ranges (Supplementary Figs. 1 and 2). Unlike
GP-FBM, both MSD and DDB methods require trajectories to be
split into individual displacements, thus neglecting higher-order
temporal correlations that the trajectories may contain. Therefore
GP-FBM method can optimally infer diffusion parameters from
single trajectories, using all the information contained in the data
and thus achieving greater precision.

Accounting for substrate movement with GP-FBM. Often a
particle may be subject to secondary movement that is entangled
with its diffusion dynamics. In chromatin dynamics, this move-
ment is frequently associated with the substrate in which the
particle is diffusing, such as cell displacement, membrane fluc-
tuations or chromatin reallocation, as well as technical con-
siderations such as thermal drift and undesired media flow. If
overlooked, this may result in over-estimation of the diffusive
properties. However, when two or more particles are measured in
the same context, this substrate movement can be accounted for

by analyzing the cross-correlation introduced between the particle
trajectories. To that end, we developed a covariance model that
takes advantage of the GP-FBM framework to quantify substrate
movement and handle the cross-correlation that it may introduce
into the movement of all particles (see Methods). In the case of
two particles, we obtain the probability distribution,

T -1
L(r I +2 b ,
p(r;,r,la, D,) o exp —5< 1) ( 1T &R R ) < 1) 7
Lp) z“R 22+ZR r,
3)

where X, X, and Xy are FBM covariance matrices for the two
particles and substrate respectively with diffusion parameters
D,=1{Dy1, D45, Dyr} and a«={ay, ay, ag}. This method can
easily be extended for higher number of particles, limited only by
required computational power in practice, even though most of
the correction is already achieved with two particles (Supple-
mentary Fig. 3). In this study, we restrict our analysis to five
particles per cell.

To demonstrate the utility of this approach, we generated
2000 synthetic trajectories as before, but now including substrate
movement, generating vectors r; as a combination of substrate
displacement R and the actual particle displacement a; (Fig. 2a).
Simulations are generated with 10% occlusion rate and localiza-
tion error, which are values commonly found in our experiments.
As expected, D, and « tend to be overestimated if substrate
movement is unconsidered; however, the parameters are more
precisely determined when the substrate correction is incorpo-
rated into the model (Fig. 2b,c). The method is also able to
estimate the dynamic properties of the substrate and, albeit with
less precision, the substrate movement itself (see Fig. 2d, Fig. S4
and Methods). Furthermore, we tested the performance of the
method depending on the number of tracked particles subjected
to the same substrate movement. Precision is increased with use
of more particles, but the bulk of the error is already removed
with only two particles (see Supplementary Fig. 3). Finally, we
showed that GP-FBM outperforms the DDB method even when
the substrate movement is taken into account (see Methods and
Supplementary Fig. 5). In conclusion, GP-FBM has the ability to
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Fig. 2 GP-FBM can correct for substrate movement to improve estimation of diffusion parameters. (a) Scheme showing the measured trajectories of
particles ¥y and r; as the combination of substrate motion R and particles' diffusion with respect to the substrate, a; and a,. (b, ¢) Distributions of relative
errors for the estimation of diffusion parameters on 2000 pairs of simulated trajectories with uniform random parameters (0.1<D; <11, 0.3<a<],

0.1<Dgr<11and 0.7 <ar<17;dt=0.5 6= 0.1and o = 0.1) when substrate movement is accounted for (orange) or not (blue). (d) Distributions of relative

errors for the estimation of diffusion parameters for the substrate.

remove the substrate movement from the analysis which is
demonstrably important for precise measurement of diffusion
parameters. Other approaches can be applied to estimate cell
movements and correct trajectories’>33, but GP-FBM has the
advantage of being able to derive this information directly from
the trajectories themselves, provided that two or more particles
are tracked per cell. Consequently, we are able to automatically
characterize the substrate movement and remove it from the
analysis without the need of extra image processing steps thanks
to the cross-correlation that this external movement imprints in
the particle diffusion dynamics.

Analyzing chromatin dynamics in interphase and mitosis. Due
to chromosome compaction and condensation, chromatin density
increases by a factor of three during mitosis®’. Although the
structure of mitotic chromatin has been intensively studied343°,
it is unknown if or how the higher density and rearrangement of
chromatin fibers affects chromatin diffusion properties. To
measure chromatin dynamics in interphase and mitosis, we used
a mouse ES cell line carrying approximately 20 TetO arrays of
7 kb length inserted at random genomic locations3¢. GFP:TetR is
stably expressed in these cells, where it binds to the TetO arrays
for the simultaneous visualization of several chromatin loci in
each cell. We performed confocal live-imaging and distinguished
interphase and mitotic cells by DNA staining using Hoechst
33342, recording images at 4 frames per second for 75 s. To
increase the number of mitotic cells, we also performed live-
imaging experiments on cells arrested in prometaphase with
nocodazole (see Fig. 3a and Methods). We tracked spots using
ICY37 and enhanced particle localization precision by fitting a 2D
Gaussian function to the signal of the tracked spots (see Methods
and Supplementary Fig. 6). Before applying the GP-FBM prob-
abilistic framework, we first determined whether the measured
stochastic trajectories present, to a certain approximation, self-
similar Gaussian distributed displacements and a FBM velocity
autocorrelation function (see Methods). Interestingly, that seems
to be the case for chromatin movements at the time scale of
this study, hence GP-FBM is an appropriate approach for the
analysis (Supplementary Figs. 7 and 8).

Comparing the performance of GP-FBM with and without
substrate movement correction, it was apparent that actively
dividing mitotic cells had greater substrate movement (presum-
ably due to coordinated alignment and movement of chromo-
somes by the mitotic spindle), but that appreciable correction was
required for precise chromatin dynamics measurements in all
conditions (Fig. 3b). Surprisingly, we observed no significant
differences in the mean apparent diffusion or the mean
anomalous coefficients between interphase and mitotic chromo-
somes (p >= 0.05), suggesting that condensation may not

4

necessarily affect the average local diffusion dynamics of
chromatin (Fig. 3¢ and d). We observed a small but significant
increase in the anomalous coefficient of mitotic-arrested cells
compared to interphase, which might be related to the effect that
nocodazole has on microtubule formation and thus mitotic
chromosome stability38.

Interestingly, we obtained a wide range of estimated D, and «
coefficients indicating a remarkable spot-to-spot variability in
their diffusion dynamics, even when correcting for substrate
movement. This variability could partially be caused by
differences in the state of the analyzed cells (inter-cell variability)
leading to different overall chromatin dynamics. Alternatively,
differences in the chromatin context of the genomic loci could
lead to specific diffusion dynamics (intra-cell variability).
Applying the law of total variance (see Methods), we quantified
the contribution of inter-cell vs intra-cell variability (Fig. 3e
and f). Strikingly, as much as 75% of the variability in D, and 65%
in «a could be explained by differences within the same cells. This
estimate is even higher when substrate movement is taken into
account, especially in the case of mitotic cells, when mouse ES
cells tend to detach from their colonies, becoming more prone to
movement. In contrast, the nocodazole arrested cells are allowed
to sediment onto the glass surface, thus are less mobile during
imaging. Together, this suggests that different genomic loci may
have characteristic local diffusion properties due to their specific
chromatin or nuclear context.

Distinguishing locus- and cell-specific diffusion properties.
Except for a tendency for chromatin mobility to be reduced at
centromeric or telomeric locations in yeast®, little is known
about how different genomic contexts may affect dynamics of the
underlying chromatin. Further, previous studies give conflicting
views on whether transcriptional activation can increase local
confinement of a gene (as observed in the same cell before and
after estrogen stimulation’) and/or increase gene mobility (as
observed comparing cells before and after differentiation®). To
compare the diffusion properties of different specific genomic
regions, we performed double-labeling and live tracking experi-
ments with the ANCHOR system*? around the HoxA locus in
mouse ES cells before and after induction of Hox genes with
retinoic acid. We engineered the ANCHI1 and ANCH37 labels
into different locations within the same allele to generate two ES
lines with equidistant probes assessing inter-TAD (T1-T2) or
intra-TAD (T2-T3) associations (Fig. 4a, b) and imaged at 2
frames per second for 2 min. As may be expected, the average
inter-probe distance was higher for the inter-TAD than intra-
TAD combination, but with large heterogeneity in the distance
distributions (Fig. 4c;*!). Interestingly, Hox gene induction had
no effect on intra-TAD distances within the neighboring domain,
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Fig. 3 Average chromatin dynamics is similar in interphase and mitosis, but are highly variable across loci. a Maximum projection images of ES cells
containing spots of TetR::GFP (green) bound to TetO arrays, with DNA (blue) stained with Hoechst (scale bar is 10 pm). Inset shows magnification of the
selected area (scale bar 1um). b Histograms showing the displacement distributions of loci in interphase (blue), mitosis (red), or mitotic arrest (green),
plotted for different time points. Theoretical distributions with and without substrate correction are shown with solid to the right and dashed black lines to
the left, respectively. Inset shows a rotated displacement distribution for clarification purpose. The observed mean displacement with standard deviation is
shown in yellow and theoretical curves with and without substrate correction are shown in gray continuous and dashed lines, respectively. The model with
substrate movement fits better the data, suggesting a great substrate effect, especially for active mitotic cells at greater time intervals. ¢, d Distribution of
estimated D, and a in the three conditions, correcting for substrate movement. Boxes represent the interquartile range and whiskers 95% of the data.
Medians are shown as solid lines inside the boxes. e, f Estimations of the inter-(gray) and intra-cell (color) proportions of total variance for D, and a in
interphase (blue), mitosis (red), and mitotic arrest (green). The number of spots analyzed in interphase, mitosis, and nocodazole tratement were n =249,
n =23, and n= 36, respectively, over a total of 3 independent experiments. Source data are provided as a Source Data file.

but increased inter-TAD distances, supporting the idea of general
TAD reinforcement as cell differentiation is induced*?. As tests of
Gaussianity and velocity autocorrelation again verified approx-
imation of chromatin dynamics to FBM (see Methods and Sup-
plementary Figs. 7 and 8), we performed GP-FBM for the three
loci and found that, in undifferentiated ES cells, although they
have equivalent apparent diffusion rates, region T1 is significantly
more constrained than T2 or T3 (Fig. 4d, e). Closer inspection of
the ES (and differentiated neuronal precursor cell) epigenomic
profiles around these regions showed that T1 is close (<15 kb) to a
putative active enhancer of Halrl (Supplementary Fig. 9). This
gene encodes the long non-coding RNA Haunt, whose specific
expression in ES cells is linked to suppression of the HoxA
genes*3. Active histone modifications around T1, compared to the
silent T2 and T3 regions, correlates with a greater constraint of
the chromatin, in line with a previous study of an estrogen-
induced gene’ and predictive polymer models!4. Hox gene
induction by retinoic acid had no significant effect on the diffu-
sive rate of T1 but did reduce locus constraint (Fig. 4d, e). In
contrast, the region T2, which lacks any known epigenomic or
regulatory features, had increases in D, and «, perhaps indicative
of general chromatin remodeling caused on onset of differentia-
tion. Curiously, T3 became more constrained on retinoic acid
treatment, with a concomitant increase in mobility. This region
contains sites bound by the architectural protein CTCF, whose
binding is either lost or reduced on differentiation to neuronal
precursors (Supplementary Fig. 9). CTCF is proposed to form a
roadblock for cohesin-mediated loop extrusion processes*44°,
and this may be expected to play out in alterations to local
chromatin dynamics, although this has been largely unexplored.

Overall, these results show previously unappreciated locus-
specific variation in chromatin diffusive properties, which in
some cases correlate with underlying histone modifications or
CTCEF binding.

GP-Tool allows user-friendly application of GP-FBM. To
facilitate use of GP-FBM by the community, we developed a freely
available graphical user interface called GP-Tool (Fig. 5;
github.com/guilmont). GP-Tool contains 4 plugins: movie,
alignment, trajectories and g-process. The movie plugin allows
the user to open TIFF files, display basic Image] and OME
metadata, define colormaps for each channel and manually cor-
rect for contrast. The alignment plugin runs the algorithm
described in Methods to digitally correct chromatin aberration
and possible camera alignment issues. Alternatively, the user can
manually modify each of the parameters. Finally, the g-process
plugin allows to infer optimal values for the apparent diffusion
and anomalous coefficients for several cells in the same movie
whilst correcting for substrate movement if two or more particles
are selected. It is also possible to use a Metropolis-Hastings
sampler to obtain the posterior probability distribution associated
with each of these parameters. Once the analysis is complete, the
tool provides the possibility to save the results into JSON files. It
also provides export functions to save tables in CSV format. All
these formats are easily parsed in all major computing languages,
such as C/C++, Python and R. Finally, GP-Tool provides shared
libraries and C/C++ examples for batching multiple movies. A
complete documentation of the software can be found in the
aforementioned Github account and in Supplementary Materials.
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Fig. 4 Chromatin dynamics of three chromatin loci within the HoxA genomic region. a Example of microscopy image obtained for ANCHOR cell lines
(scale 5 um) with tracked trajectories shown in amplified subpanel (scale 0.44 um). b ES Hi-C map around the HoxA cluster, illustrating the locus TAD
structure. The positions of ANCHOR probes (T1, T2, and T3), the Haunt gene, and the HoxA cluster are shown underneath the map. ¢ Inter-probe distances
measured for ES cells before (blue) and after (red) treatment with retinoic acid. d, @ Comparisons of apparent diffusion and anomalous coefficients
between the three labeled loci, before (blue) and after (red) treatment with retinoic acid. Boxes represent the interquartile range and whiskers 95% of the
data. Medians are shown as solid lines inside the boxes. A total of n =56 and n = 67 spots were analyzed from the inter-TAD (T1-T2) cell line before and
after treatment, respectively, from 3 independent experiments; n =51 and n =13 points were used for intra-TAD (T2-T3) cell line before and after
differentiation, respectively, from 2 independent experiments. Source data are provided as a Source Data file.

Fig. 5 GP-Tool: A graphical user interphase to apply GP-FBM on microscopy movies. Viewport displays movie under analysis. The distributions are
estimations of the posterior distribution for D, and a via Metropolis-Hasting sampling. Trajectory tab displays detections with enhanced localization and
other important parameters such as estimated localization error, particle size and signal. The average trajectory tab displays interpolated curves with the
most probable path taken by the particle with a 95% credible interval.
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Discussion

We developed GP-FBM, a Bayesian framework that combines the
inference power of Gaussian processes with fractional Brownian
motion, a flexible model to describe Gaussian-like diffusion
dynamics. Importantly, chromatin loci show Gaussian and self-
similar displacement distributions, indicating that FBM is an
adequate approximation to assessing chromatin movement, at
least for the time scales over which experiments are commonly
performed (from a few up to hundreds of seconds). Notice that
for longer time scales a crossover has been observed between
different diffusion regimes and our model would have to be
modified to incorporate this behavior!®. Note also that a myriad
of other biological systems have non-Gaussian dynamics, so
would not be suitably analyzed by GP-FBM?20:21,46,47,

GP-FBM treats stochastic trajectories as a whole without pre-
processing or extracting limited statistics from them. Therefore,
this approach utilizes optimally all the information contained in
the data by incorporating higher-order temporal correlations into
the analysis. In addition, the Gaussian process framework allows
easy integration of spot-dependent localization errors which
translate into a consistent weighting of time points, depending on
the precision at which the spot position is determined. Further-
more, missing data due to spot misdetection or occlusion does
not hinder the analysis and, on the contrary, GP-FBM can be
used to probabilistically assign spot positions for any given time
point. Finally, when two or more particles are tracked in similar
context, GP-FBM uses possible cross-correlations between tra-
jectories to characterize substrate movement and, therefore,
remove it from the analysis. A number of other methods have
been developed over recent years to better characterize diffusion
of particles, employing variations of MSD!848, probability density
functions for particle displacements!®-21, Bayesian inference?7-23
or even machine learning approaches*>0. However, to our
knowledge, these methods are either not readily applicable to
experimental data, require extra experiments to precisely measure
complementary parameters to determine background movement,
require large amounts of varying training sets to account for
different shapes/types of input data, and/or are not robust to
mislocalization and occlusion events that are commonplace in
imaging experiments. Benchmarking against MSD and DDB, GP-
FBM show improved results over all combinations and ranges of
tested parameters. GP-FBM is thus a precise and robust tool.
Providing that the model assumptions are fulfilled, this increase
in accuracy can be crucial to study changes in diffusion dynamic
properties in different conditions.

We applied GP-FBM to two ES cell systems and observed a
large variability in chromatin dynamics when comparing indivi-
dual cells and comparing different loci. A fraction of this varia-
bility can be explained by differences across cells, especially in
interphase cells, indicating that cell state (cell cycle or metabo-
lism) may globally influence chromatin dynamics. However, the
majority of the observed variability is related to differences across
loci. Unexpectedly, chromatin exhibits similar average diffusion
dynamics in interphase and mitosis despite a large difference in
chromatin density. This result may be related with recent findings
showing that mitotic chromatin is not as inaccessible and inert as
previously thought. Indeed, several studies have shown that
mitotic chromatin is bound by transcription factors®1>2 and some
genes are even transcribed during mitosis>3. In contrast, different
genomic loci can have striking differences from average chro-
matin dynamic properties, which in some cases correlate with
underlying functional chromatin marks. It has been previously
proposed that chromatin mobility is affected directly by tran-
scription, although results were seemingly conflicting’-8. More
widespread application of GP-FBM to labeled transcribed loci
and other specific regulatory elements, such as enhancers or TAD

borders, will likely uncover more interesting functional links
between genome function and the dynamics of its component
chromatin.

Finally, we present GP-Tool a graphical user interface that
helps to perform GP-FBM analysis on microscopy movies with
only a few mouse clicks. Importantly, this tool and the GP-FBM
framework can be applied to study not only chromatin dynamics
but potentially any labeled particle that can be tracked over time
providing that Gaussianity and other assumptions of FBM
are met. Alternatively, the FBM kernel used in this study can
potentially be replaced by alternative kernels that may better
describe dynamics of other systems. We thus anticipate that GP-
FBM and GP-Tool will greatly facilitate the analysis of diffusion
dynamics in biology.

Methods

Cell lines, culture, and treatments

Transgenic TetO ES line. The mouse ES cell line was kindly provided by Dr. Luca
Giorgetti. It is derived from an X0 clone of the PGKT2 subclone of the feeder-
independent PGK12.1 mouse ESC line which was engineered by co-transfection
with pPBROAD3-TetR-ICP22NLS-eGFP and pcDNA3.1Hygro to stably express the
TetR-eGFP recombinant protein after random integration and hygromycin selec-
tion (250 pg/ml) as described in ref. 354, The piggyBac transposon system was
then used to generate cells with 20-25 stable random integrations of a 150 TetO
binding site array as described in3¢. Cells were cultured on 0.1% gelatin-coated
culture plates in DMEM (4.5 g/l glucose) supplemented with GLUTAMAX-I, 15%
fetal calf serum (ES cell culture tested), 0.1 mM beta-mercaptoethanol, 1,500 U/ml
leukemia inhibitory factor (LIF; produced in house), and 0.1 mM non-essential
amino acids in 5% CO, at 37 °C. Mitotic arrest was performed by treating the cells
for 5 h with 100 ng/ml Nocodazole (Sigma, M1404-2MG). This cell line is available
upon reasonable request.

Transgenic ANCHOR ES lines. ]1 mouse ES cells were grown on gamma-irradiated
mouse embryonic fibroblast cells under standard conditions (4.5 g/L glucose-
DMEN, 15% FCS, 0.1 mM non-essential amino acids, 0.1 mM beta-mercap-
toethanol, 1 mM glutamine, 500 U/mL LIF, gentamicin), then passaged onto
feeder-free 0.2% gelatin-coated plates for at least two passages to remove feeder
cells before subsequent transfections. The two ("inter-TAD” and “intra-TAD”)
ANCHOR transgenic lines were generated by sequential CRISPR/Cas9-mediated
knock-in experiments in the following manner. First, flanking homology arms
(mm9 chré6: 52,320,061-52,321,144, and chr6: 52,321,145-52,322,244) were intro-
duced by PCR amplification and Gibson assembly into a vector containing
ANCHI1 sequence?. This vector (1 pg) was co-transfected with 3 pg of a vector
containing Cas9-GFP, a puromycin resistance marker, and the scaffold to tran-
scribe the sgRNA specific to the T2 insertion site (CGGCGCGCACTTAA-
CACCAA; vector generated by the IGBMC Molecular Biology platform) in 1
million cells with Lipofectamine-2000. Two days after transfection, the cells were
cultured for 24 h with 3 ug/ml puromycin, then 48 h with 1 ug/ml puromycin to
enrich for transfected cells, before sorting individual GFP-positive cells on to
feeders to amplify individual clones. Clones with the correct sequence were
screened by PCR and sequencing, then the CRISPR knock-in process was repeated
to insert the ANCH3 sequence’ into either the T1 site ("inter-TAD” line; homology
arms at chr6: 52,013,471-52,014,370 and chré: 52,014,371-52,015,270; gRNA
sequence AATCGAGCTCACGCCATTAG) or the T3 site ("intra-TAD” line;
homology arms at chré: 52,622,955-52,623,855 and chré6: 52,623,856-52,624,755;
gRNA sequence TATGCTGAGGCGTGTCGCAA). Final clones were verified for
maintained pluripotency by qRT-PCR to assess Oct4, Nanog (e.g. Supplementary
Fig. 9), and Sox2 expression. Subsequent microscopy experiments (see below)
confirmed heterozygous incorporation of the ANCH sequences (detection of one
specific spot per ANCH sequence per cell) within the same allele (two spots were
always in close proximity). This cell line is available upon reasonable request.

OR transfection. 150,000 cells are plated two days prior to imaging off feeder cells
onto laminin-511-coated 35 mm glass bottom petri dishes, and transfected with
3 ug OR1-EGFP and 3 ug OR3-IRFP plasmids (vectors available from NeoVirTech
(contact@neovirtech.com); were modified from original source by changing the
C-terminal fluorescent protein sequence, introducing Kozak sequence before the
translation start site and replacing the CMV promoter with EF-1«) using
Lipofectamine-2000. After two days, the medium is changed to remove dead cells,
before passing directly to microscopy.

Hox induction. ES cells were passaged without feeders and cultured on laminin-511
for two days without LIF, then for a subsequent three days without LIF and with
the addition of 5 uM retinoic acid. One day after the addition of retinoic acid, the
cells are transfected with the OR proteins as previously.
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Microscopy

Live cell imaging of TetO ES cells. 35 mm glass-bottom dishes (Ibidi 81158) were
coated with 10 pg/ml fibronectin human plasma (Sigma, F2006-1MG) in PBS for
45 min at room temperature. A total of 3-5 x 10° cells were seeded one day before
imaging, then the medium was replaced by phenol-red-free medium containing
500 ng/ml Hoechst 33342 (Invitrogen, H3570). Cells arrested in mitosis were
collected on the day of imaging by “shake-off”, incubated with 0.25% Trypsin-1
mM EDTA (Invitrogen, 25200-072) for 1 min at 37 °C and washed, and placed on
fibronectin-coated glass-bottom dishes in phenol-red-free medium containing
100 ng/ml Nocodazole and 500 ng/ml Hoechst 33342. Confocal live-cell imaging
was performed on a Nikon Eclipse Ti-E inverted widefield microscope (Perfect
Focus System) equipped with a CSU-X1 confocal scanner unit and an Evolve back-
illuminated EMCCD camera (Photometrics). Images were recorded using 100 x
HC Plan APO oil immersion objective (Leica, NA 1.4). Intensities were set to
10% for the 405 nm and 30% or 50% for the 491 nm lasers, with exposure times of
100 ms and 50 ms or 25 ms, respectively. 5 z-stacks with 0.5 um distances were
recorded for each channel. 301 time-lapse images were recorded only in the 491
channel.

Live cell imaging of ANCHOR ES cells. Imaging experiments were performed on an
inverted Nikon Eclipse Ti microscope equipped with a PFS (perfect focus system),
a Yokogawa CSU-XI1 confocal spinning disk unit, two sCMOS Photometrics Prime
95B cameras for simultaneous dual acquisition to provide 95% quantum efficiency
at 11 um x 11 um pixels and a Leica 100x oil objective (HC PL APO 1,4 oil
immersion). We excited EGFP and IRFP with a 491 nm (100 mw) and a 635-nm
laser (> 28 mW), respectively. We detected green and far red fluorescence with an
emission filter using a 525/50 nm and a 708/75 nm detection window, respectively.
A thermostated heater (Tokai Hit Stage Top Incubator) allowed for heating at
37 °C, humidity, and CO, control (5%). Time-lapse analysis of GFP and IRFP foci
was performed in 2D acquiring 241 time points at a 0.5 s time interval. The system
was controlled using Metamorph 7.10 software. Time-lapse was concatenated into
single TIFF file.

RT-qPCR. RNA was extracted from cells using the Nucleospin RNA extraction kit
(Machery-Nagel), then cDNA was prepared with SuperScript IV (Invitrogen),
following the manufacturer’s instructions and using random hexanucleotides as
primers. The cDNA was quantified by qPCR on a LC480 LightCycler (Roche),
using QuantitTect SYBR Green PCR kit (Qiagen). Amplification was normalized to
GAPDH. Primer sequences are given in Supplementary Table 1.

Image pre-processing

Spot detection and tracking. Spot detection and tracking for all movies was per-
formed with ICY, an image analysis software3”. Localization precision was then
enhanced by assuming that the spots have the shape of a 2D Gaussian function as
follows,

x—u \'T 12 orL] ' /x—
Sep=Lyepd =3 M) B T )b @
2\y—u, GLKL}, Ly y—u,
with p; representing the center of mass of the spot, L; its size in directions x and
y, —1<8<1 a possible rotation, while B; and I, are background and spot signal,
respectively. We optimize its localization using the NM-Simplex method®® and
estimate localization error using the Metropolis-Hastings algorithm?331. This

method is implemented and automatically runs when trajectories are loaded in GP-
Tool. For more information see Supplementary Figs. 6 and 10.

Multi-channel alignment correction. For the ANCHOR ES cell line experiments, we
used a spinning disk microscope setup with 2 cameras, i.e., one per channel. Even
though these cameras were aligned manually using fluorescent beads, we could still
observe non-negligible differences between images captured in both cameras.
Furthermore, even in rare situations when both cameras were properly aligned, we
could observe effects of chromatic aberrations towards the edges of the image due
the different wavelengths used. To correct for such problems, we performed digital
post-alignment using a generic set of affine transformations including translation,
rotation and scaling as defined in

s 0 (1—s)W)/2 1 0 d,+ec, cos() sin(6) 0 1 0 —c¢
Q=10 s, (1—s)H/2 0 1 d+¢, —sin(f) cos(d) 0 01 —¢ |,
0 0 1 00 1 0 0 1 00 1
(5)

where, s; accounts for scaling in directions x and y, d; accounts for translation in
both directions and 0 is the angle of rotation between both channels in relation to
point c;.

To infer optimal parameters for correction, we used 5 frames from all the
movies recorded in the session and maximize the following likelihood using the
Nelder-Mead simplex method®?

log P —@log{% [1,(k, 10) — I (k, l|1)}2}, (©)

where W and H correspond to width and height of images and I,(k, [|A) is the value
of pixel (k) in channel r given transformation A. Here, 1 represents the identity
matrix. Supplementary Fig. 11 shows examples of misaligned images and how the
alignment improves greatly after applying our algorithm.

Derivation of GP-FBM models

Fractional Brownian motion. The covariance function of FBM can easily be derived
from the assumption of two basic properties®®: stationary increments B(t) —

B(s) x B(t — s) and a power-law variance, (B(t)*) o |¢|*. Then, the off-diagonal
terms of the covariance function can be determined as follows:

(B(B)B,(s)) o

P

[Bo(s) = By(s) + By (DB, (s) + By(D)[B, (1) — By(t) + By(s)])

By(s)® + By(t — 9)B,(s) — B,(1)B,(t — 5) + B, (1))
By(t)® 4 By(5)” + B,(t — s)(B,(s) — B, (1))

(By(5)® + By(s)> — By(t — 5)°)

= N = N N =
T~ o~

= S+ Il = It = s[").
%)

Finally, the apparent diffusion coefficient D, is introduced as a proportionality
factor to re-scale mobility, leading to the final kernel as presented in the main text:

Zp, alt,$) = 2Do(By(1)B,(s)).- ®)

We can also calculate the velocity autocorrelation function for the FBM
model?®, which can be easily calculated from experimental trajectories using

CO(0) =  ((x(r +6) = X)) — 50)), ©)

where velocity is defined as (1) = ¢~![x(r + €) — x(7)]. Using that, the theoretical
curve for velocity autocorrelation function for FBM is calculated to be

C9(r) _te -2ttt —¢”
o) 2¢t '
To show that FBM is a viable approximation for the dynamics displayed by
chromatin in the time range of our experimental measurements, we verified that
displacements are self-similar Gaussian distributed with aforementioned
covariance matrix and that its velocity autocorrelation agrees with theoretical
predictions (Supplementary Figs. 7 and 8).

(10)

Bayesian inference of diffusion parameters. The GP provides the probability of
observing a trajectory r given D, and a. Then, we applied Bayes theorem?3 to
obtain the posterior distribution over the diffusion parameters given the measured
trajectory:

P(r|Dy, @, ) P(Dy; &, )
JP(tID,. o, ) P(D,, @, ) dD, dacdu”

P(D,, o, lr) = an
where P(D,, a, p) represents the prior distribution of the model parameters.
Assuming a flat prior on g, D, and «, the log-posterior can be expressed as

1 s 1 N
log (P(Dy, @, pr) o == (r = @) Zp! o (r — ) = Slog[Zp o —log 2m), (12)

where N represents the number of points measured and | - | is the determinant
function. To obtain maximum posterior estimates, we optimized (12) using the
Nelder-Mead Simplex method®”. In addition, we used the Metropolis-Hastings
method?33! to sample the posterior probability distribution in order to calculate
confidence intervals for our estimations. Note that, thanks to this Bayesian
approach, available prior knowledge of the diffusion parameters can easily be
incorporated into the analysis. For more information regarding MH sampler, view
Supplementary Fig. 12.

Incorporating of substrate movement in the GP-FBM framework. In the main text,
we introduced an extended GP-FBM model to deal with external sources of
movement. Here, we present the derivation for two particles subject to a common
substrate movement, however, it can be extended for an arbitrary number of
particles using the marginalization rule of multi-variate Gaussian distributions?3.
The key idea is to assume that the movement of the particles with respect to the
substrate as well as the movement of the substrate itself can be described by
independent fractional Brownian motions. Therefore, the probability of observing
the particle trajectories a; and a, with respect to a given frame of reference R that
moves with the substrate is:
L org L orga e

p(a;,a,,Rla,D,) x eXP(‘E“: Xa; — Eazzz a, — ER pom R) (13)
where %, ¥, and X are FBM covariance matrices that are fully characterized given
the diffusion parameters Dy = {D,1, Dy, Do i} and & = {a, a0y, ag}.
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Next, to obtain the probability distribution over the trajectories r; and r, we
applied the change of coordinates r; = a; + R (see scheme in Fig. 2a) leading to the
matrix expression,

T

r ! 0 -z r

1
plrys 7y Rl D) ocexp | == | 1 U ¥ -3 '2
R B PR PR ML M R

(14)

Then, to marginalize the unobserved trajectory of the moving frame R;, we need to
calculate the inverse of the block matrix in equation (14). To do so, we use results
from®” on inverting a 2x2 block matrix such as

()

Al (AT AT~ CA™'B)'CA™! —A"'B(D—CA™'B)”"' 16)
B —(D—CcA™'B)'ca™! (D—CA™'B)”! ’
Taking A = [(£{', 0); (0, £;1)], B=—[2;"; 5], C=BTand D= 3"+
2,1+ g, it is easily shown that the top-left corner of A~! is given by
[(Zl + 2 2R); (B, Z, + ZR)]. Using this result, we can marginalize R in
equation (14) giving the expression,

! ( 1(r1)"‘(21+zR T )“(r,)>

exp| —= .

2\r, Zp Z, + 2 2
(17)
This result clearly shows that the substrate movement induces a correlation

between the particle trajectories as the off-diagonal elements of the block matrix in
equation (17) are non zero. In addition, the covariance matrix of the substrate
movement appears also in the diagonal terms, increasing the overall variance of the
particles and their total movement. Consequently, if this correction is ignored the
diffusion parameters are over-estimated.

(15)

according to the following result

Z1 + 2R 2‘R

(r,r|a,D)0(‘
pry, 1y o P 3, + 3,

Inference of substrate movement. Similarly as before, the diffusion parameters of the
particles as well as the substrate can be estimated using equation (17) and Bayesian
inference. We can also estimate how the substrate moves. For that, we can calculate
the conditional distribution of R given the particle trajectories as
. rp—
R =—(2 42" +20) 7 (57 %) (r‘ Z‘) (18)
27

with co-variance matrix given by £ = (£7' + 23" + Zgl)il.

Unfortunately, we could not find an analytical solution for this problem.
Nonetheless, we can solve it numerically. In Supplementary Fig. 4.a we show an
example of the estimated movement for the substrate with one standard deviation
compared to the real simulated trajectory for a system with two particles. In
Supplementary Fig. 4.b-c we display the overall accuracy when working with two or
more particles.

Benchmarking GP-FBM

Simulated trajectories. We simulated single trajectories with 250 time points using
the aforementioned Gaussian process with FBM kernel. To keep the benchmark as
general and unbiased as possible, we uniformly sampled values for our parameters
in the ranges 0.01 <D, < 1.5, 0.01 <a<1.9, 0.1 <dt< 1.0 and 0.001 <6< 0.25. To
benchmark a system of N particles affected by substrate movement, we generated N
+1 trajectories and add the latter to all the others. Finally, a uniform distribution is
used to remove 0% to 80% of points from each trajectory to simulate experimental
occlusions.

Mean squared displacement (MSD) implementation. To calculate D, and « for
single trajectories, we estimate a MSD using a sliding window method. This
method is mathematically defined as follows

()=

for a trajectory with N points and step interval n. Due to implicit correlations
present in single trajectories, we use only initial 10% step intervals. To improve
accuracy, we also estimate an average localization error . Finally, this experimental
curve is approximated by the theoretical mean squared displacement equation

1 N—n
> (ri+n - ri)27

— N i=1

(19)

(r*) = 4D, t* + 207, (20)
from which diffusion parameters are inferred using linear regression. For more
information®.

Displacement  distribution based (DDB) implementation. The theoretical
expressions for the displacement distribution is obtained as a solution of the
Fokker-Planck equation with localization error o. In polar coordinates it takes the

form

p(r, 01D, a, t,0) drdf = & BT drd.

r
21(2D, t* + 0?) @

In order to calculate experimental distributions for single cells, we resort to a
sliding window method similar to the one present for MSD. Differently, we
calculate normalized histograms with all the absolute displacement values. As
before, we calculate an average localization error ¢ to improve localization and use
only histograms calculated for initial 10 step intervals. With these measurements,
we optimize the equation above for D, and « using Bayes approach with non-
informative priors for both parameters.

Law of total variance. The law of total variance is used to determine how much of
the measured variance comes from within or across samples. Starting off from the
law of total expectation:

0= [ dy(s)p) = (), (2
we can calculate .
() = <var (x1y) + (xly)?). (23)
Subtracting ((x[y))” from both sides
() = (07 = (var (xly)) + (o)) = (i)’ 249
Upon algebraic manipulation, we obtain the final result
var () = (var (xly)) + var ((xy)), 25)

which states that the total measured variance in x is composed by the var (x) given
sample y and (x) calculated for each y.

Statistical analysis and reproducibility. Data for interphase and mitotic cells are
from two independent experiments, while Nocodazole-treated cells are from one
experiment. Anchor data is accumulated from 11 independent experiments.

To compare diffusive properties or inter-probe distances across different loci or
conditions (Fig. 3¢, d, and 4b-d), we performed Wilcoxon rank sum tests. For
inter-probe distances, the distributions of the median distances for each movie
were used. For Fig. 4c, d, where fifteen pairwise comparisons are possible,
the p-values were corrected for multiple testing with the Benjamini-Hochberg
method and differences are considered statistically significant for p-values
inferior to 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data that support this study are available from the corresponding authors upon
reasonable request. Microscopy data with analysis files that support the findings of this
study have been deposited in Zenodo and can be accessed with https://doi.org/10.5281/
zeno0do.5359893, https://doi.org/10.5281/zen0do.5360028% and https://doi.org/
10.5281/zenodo.5361054%!. The source data are provided with this paper.

ES Hi-C sequence data from*2 were taken from Gene Expression Omnibus (GSE96107
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96107]), and mapped to mm9
and normalized with FAN-C62, The normalized submatrix (chr6:51500000-53000000)
was then extracted for visualization. ES and neuronal precursor cell H3K27ac and CTCF
ChIP-seq data were taken as bigWig files from Gene Expression Omnibus; GSE96107
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96107] for all except ES
H3K27ac, taken from GSE49847 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE49847]) and visualized in R using the package rtracklayer. Source data are
provided with this paper.

Code availability
C++ libraries, batch templates and graphical user interface are available at https://
github.com/guilmont®3.
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