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Abstract

Recent years have seen a resurgence of interest in redundancy of lossless coding. The
redundancy (regret) of universal fixed–to–variable length coding for a class of sources
determines by how much the actual code length exceeds the optimal (ideal over the
class) code length. In a minimax scenario one finds the best code for the worst source
either in the worst case (called also maximal minimax) or on average. We first study the
worst case minimax redundancy over a class of stationary ergodic sources and replace
Shtarkov’s bound by an exact formula. Among others, we prove that a generalized Shan-
non code minimizes the worst case redundancy, derive asymptotically its redundancy,
and establish some general properties. This allows us to obtain precise redundancy
rates for memoryless, Markov and renewal sources. For example, we derive the exact
constant of the redundancy rate for memoryless and Markov sources by showing that
an integer nature of coding contributes log(logm/(m− 1))/ logm+ o(1) where m is the
size of the alphabet. Then we deal with the average minimax redundancy and regret.
Our approach here is orthogonal to most recent research in this area since we aspire to
show that asymptotically the average minimax redundancy is equivalent to the worst
case minimax redundancy. After formulating some general bounds relating these two
redundancies, we prove our assertion for memoryless and Markov sources. Nevertheless,
we provide evidence that maximal redundancy of renewal processes does not have the
same leading term as the average minimax redundancy (however, our general results
show that maximal and average regrets are asymptotically equivalent).

Index Terms: Universal noiseless coding, universal modeling, minimax redundancy, mini-
max and maxmin regrets, generalized Shannon code, sequences mod 1, maximum likelihood
distribution, analytic information theory.
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1 Introduction

Universal coding and universal modeling are two driving forces of information theory, model
selection, and statistical inference. In universal coding one is to construct a code for data
sequences generated by an unknown source such that, as the length of the sequence increases,
the average code length approaches the entropy of whatever processes in the family has
generated the data. In seminal works of Davisson [7, 8], Rissanen [20], Krichevsky and
Trofimov [17], and Shtarkov [24] it was shown how to construct such codes for finite alphabet
sources. Universal codes are often characterized by the average minimax redundancy which
is the excess over the entropy of the best code from a class of decodable codes for the worst
process in the family.

As pointed out by Rissanen [21], over years universal coding evolved into universal
modeling where the purpose is no longer restricted to just coding but rather to finding
optimal models [2, 21]. The central question of interest in universal modeling seems to
be the code length achievable for individual sequences. The burning question is how to
measure it. The worst case minimax redundancy and regret became handy since they
measure the worst case excess of the best code maximized over the processes in the family.
In [21] Rissanen also admits that, unfortunately, the redundancy restricted to the first term
cannot distinguish between codes that differ by a constant, however large. Then Rissanen
points out that the constant can be large if the Fisher information of the data generating
source is nearly singular. The goal of this paper is to derive precise results for redundancy
and regrets, however small the additional terms are.

Let us establish some notation. A code Cn : An → {0, 1}∗ is defined as an injective
mapping from the set An of all sequences of length n over the finite alphabet A of size
m = |A| to the set {0, 1}∗ of all binary sequences. We consider here only fixed-to-variable
uniquely decodable coding satisfying Kraft’s inequality. A source sequence of arbitrary
length n is denoted by xn1 ∈ An. We write Xn

1 to denote a random variable representing a
message of length n and by P (xn1 ) the probability of the message xn1 . For a given a code Cn,
we let L(Cn, xn1 ) be the code length for xn1 . Information-theoretic quantities are expressed
in binary logarithms written lg := log2. We also write log := ln.

Since Shannon we know that the entropy Hn(P ) = −
∑
xn1
P (xn1 ) lgP (xn1 ) is the absolute

lower bound on the expected code length. The pointwise redundancy Rn(Cn, P ;xn1 ) and the
average redundancy Rn(Cn, P ) for a given source P are therefore defined as

Rn(Cn, P ;xn1 ) = L(Cn, xn1 ) + lgP (xn1 ),

Rn(Cn, P ) = EP [Rn(Cn, P ;Xn
1 )] = E[L(Cn, Xn

1 )]−Hn(P ),

where E denotes the expectation. As pointed out above, the excess of code length for
individual sequences is a central issue for universal modeling, therefore we define the maximal
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or worst case redundancy as

R∗n(Cn, P ) = max
xn1

[L(Cn, xn1 ) + lgP (xn1 )].

Observe that while the pointwise redundancy can be negative, maximal and average redun-
dancies cannot, by Kraft’s inequality and Shannon’s source coding theorem, respectively.

In practice, one can only hope to have some knowledge about a family of sources S that
generates real data. For example, we may often be able to justify restricting our attention to
memoryless sources S =M0 or Markov sources of rth order S =Mr. Sometimes, however,
we must consider a larger class of non-finitely parameterized sources such as renewal sources
S = R0. Following Davisson [7] we define the average minimax redundancy Rn(S) and the
worst case (maximal) minimax redundancy R∗n(S) for family S as follows

Rn(S) = min
Cn∈C

sup
P∈S

∑
xn1

P (xn1 ) [L(Cn, xn1 ) + lgP (xn1 )]

 , (1)

R∗n(S) = min
Cn∈C

sup
P∈S

max
xn1

[L(Cn, xn1 ) + lgP (xn1 )] , (2)

where C denotes the set of all fixed-to-variable codes satisfying the Kraft inequality. In
words, we search for the best code for the worst source on average and for individual
sequences.

We should also point out that there are other measures of optimality for coding, gambling
and prediction that are used in universal modeling and coding. We refer here to minimax
regret functions defined as follows (cf. [2, 21, 29, 30]):

rn(S) = min
Cn∈C

sup
P∈S

∑
xn1

P (xn1 )[L(Cn, xn1 ) + lg sup
P∈S

P (xn1 )], (3)

r∗n(S) = min
Cn∈C

max
xn1

[L(Cn, xn1 ) + lg sup
P∈S

P (xn1 )], (4)

and to the maxmin regret

rn(S) = sup
P∈S

min
Cn∈C

∑
xn1

P (xn1 )[L(Cn, xn1 ) + lg sup
P∈S

P (xn1 )]. (5)

We call rn(S) the average minimax regret, r∗n(S) the worst case (maximal) minimax regret
and rn(S) the maxmin regret. Clearly, Rn(S) ≤ rn(S), and, as easy to establish,

r∗n(S) = R∗n(S).

Thus, we will not consider r∗n(S) in the sequel.
Finally, we may link universal modeling with game theory and statistics by ignoring an

integer nature for the coding interpretations: Suppose nature picks up a distribution P from
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S and we try to find a distribution Q as the best guess for P . We may then reformulate the
above redundancy (average and maximal) as well as regrets so that L(Cn, xn1 ) is replaced by
its continuous approximation, namely, lg 1/Q(xn1 ). We denote these corresponding contin-
uous redundancy and regret by placing a tilde over R or r. For example, R̃n(S) and R̃∗n(S)
denote continuous approximations of the average and the worst case minimax redundancies.
They can be explicitly defined as

R̃n(S) = inf
Q

sup
P∈S

∑
xn1

P (xn1 ) lg
P (xn1 )
Q(xn1 )

 = inf
Q

sup
P∈S

Dn(P ||Q), (6)

R̃∗n(S) = inf
Q

sup
P∈S

max
xn1

[lg (P (xn1 )/Q(xn1 ))] , (7)

where Dn(P ||Q) is the Kullback divergence between Q and P . The average minimax regret
is defined in a similar manner, namely,

r̃n(S) = inf
Q

sup
P∈S

∑
xn1

P (xn1 ) lg
supP∈S P (xn1 )

Q(xn1 )

 .
Clearly, the continuous approximation of the redundancy and regrets are within one bit
from the corresponding redundancy and regrets, that is,

Rn(S) ≤ R̃n(S) ≤ Rn(S) + 1, (8)

rn(S) ≤ r̃n(S) ≤ rn(S) + 1. (9)

Indeed, it suffices to consider Shannon code for the optimal distribution.
We now summarize our main findings in the context of recent research in the area of

universal coding and modeling. We should mention that to the best of our knowledge all
known results concern continuous approximation of minimax redundancy and regrets while
we consider the “true” worst case minimax redundancy R∗n(S) and show that the integer
nature of coding contributes

log 1
m−1 logm
logm

+ o(1),

where m is the size of the alphabet. More precisely, we first observe that the worst case
minimax redundancy can be decomposed as follows (cf. Theorem 1; this is also implicitly
used by Shtarkov [24])

R∗n(S) =
∑
xn1

sup
P∈S

P (xn1 ) +R∗n(Q∗), (10)

where the maximum likelihood distribution Q∗ is defined as

Q∗(xn1 ) :=
supP∈S P (xn1 )∑
xn1

supP∈S P (xn1 )
.
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It turns out that R∗n(Q∗) is the worst case redundancy of a generalized Shannon code
(designed for the maximum likelihood distribution Q∗). A generalized Shannon code CGSn
is such that

L(xn1 , C
GS
n ) =

{
blg 1/P (xn1 )c if xn1 ∈ L
dlg 1/P (xn1 )e if xn1 ∈ U

where L ∪ U = An is a partition of the set of all source sequences of length n such that
Kraft’s inequality is satisfied. Observe that the first term of (10) depends only on the class
of processes (“richness” of the family of distributions) while the second term is responsible
for coding. We may conclude that the optimal code for the maximal minimax redundancy
is the generalized Shannon code for the distribution Q∗.

In order to justify the last assertion we consider the following coding problem. For a
given distribution P , we look for a prefix code Cn such that

R∗n(P ) = min
Cn

max
xn1

[L(Cn, xn1 ) + lgP (xn1 )].

Observe that when the “max” operator above is replaced by the average operator E, then
the optimal code is known to be the Huffman code [5]. But what is the optimal code
in the worst case? First, notice that a code that minimizes the longest code length (i.e.,
the one that solves minCn maxxn1 [L(Cn, xn1 )]) is such that builds a balanced coding tree
and, therefore, its optimal length is dlogm(number of codewords)e. The situation is much
more interesting when the worst case redundancy is to be optimized. We shall prove in
Theorem 1 that a generalized Shannon code satisfying Kraft’s inequality is the optimal one.
Then using analytic tools of analysis of algorithms (in particular, sequences distributed
mod 1) we show (cf. Theorem 2) that for a known binary memoryless source the optimal
worst case redundancy converges to a constant equal to log log(2)/ log(2) + o(1) ≈ 0.5287
when log(1 − p)/p is irrational and diverges (fluctuates) otherwise, where p is the known
probability of generating a “0”. Interestingly enough, the fluctuating part disappears for
a family of memoryless sources (cf. Theorem 3). Similar results are proved for Markovian
sources (cf. Theorem 4 and Theorem 5).

Let us now review what is known about the continuous approximation

R̃∗n(S) := lg dn(S) := lg

∑
xn1

sup
P∈S

P (xn1 )

 (11)

of the worst case minimax redundancy. Shtarkov [24] introduced the worst case minimax
redundancy problem and gave the first asymptotics of the form d/2 logn+O(1) for memo-
ryless sources and Markov sources where d is the number of parameters (e.g., d = m− 1 for
m-ary alphabet memoryless source and d = mr(m− 1) for Markov sources of order r). The
constant of R̃∗n(M0) was identified in [25, 30] for memoryless sources, and in Rissanen [21]
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and Jacquet and Szpankowski [13] for Markov sources. Szpankowski [26], using analytic
tools of analysis of algorithms such as generating functions and singularity analysis [28],
derived a full asymptotic expansion for memoryless sources; the first few terms are given
below

R̃∗n(M0) =
m− 1

2
lg
(
n

2

)
+ lg

( √
π

Γ(m2 )

)
+

Γ(m2 )m
3Γ(m2 −

1
2)
·
√

2√
n

(12)

+

(
3 +m(m− 2)(2m+ 1)

36
−

Γ2(m2 )m2

9Γ2(m2 −
1
2)

)
· 1
n

+O

(
1

n3/2

)
,

where Γ is the Euler gamma function. In this paper, we find the correction contributed by
the integer nature of coding. In particular, we show that for memoryless sources

R∗n(M0) =
m− 1

2
lg
(
n

2

)
−

log 1
m−1 logm
logm

+ log

( √
π

Γ(m2 )

)
+O

(
log n
n1/9

)
.

Similar results are obtained for Markov sources. Finally, regarding non-Markovian sources,
Csiszár and Shields [6] proved that the worst case redundancy of renewal processes is Θ(

√
n),

while recently Flajolet and Szpankowski [11] improved it to

R∗n(R0) =
2

log 2

√(
π2

6
− 1

)
n+O(log n).

Interestingly enough, in a very recent development Orlitsky and his students [14] studied
memoryless sources over unbounded alphabet and showed that the worst case redundancy
behaves like R∗n(S) = 1

2
3
√
n+O(log n).

Let us now review known results for the average minimax Rn(S). This case seems to be
harder to analyze since supremum operator and the average operator E do not commute
as in the worst case minimax redundancy. Not surprisingly, only R̃n(S) was analyzed
thus far with the exception of Szpankowski [27] (cf. also [10]) who obtained the leading
term in the asymptotic expansion of the Huffman code for known memoryless distribution.
Nevertheless, an impressive body of research was built over years regarding R̃n(S) that we
review next and put our results in this context.

The average minimax redundancy is almost entirely considered within the framework of
Bayes rule and parameterized family of distributions. Let now S = {P θ}θ∈Θ. The average
minimax problem is then reformulated as

R̃n(Θ) = inf
Q

sup
θ∈Θ

Dn(P θ||Q).

In the Bayesian framework, one assumes that the parameter θ is generated by the density
w(θ) and the mixture density Mw

n (xn1 ) is defined as

Mw
n (xn1 ) =

∫
P θ(xn1 )w(dθ).
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Observe now

inf Ew[Dn(P θ||Q)] = inf
Q

∫
D(P θ||Q)dw(θ)

= inf
Q

∑
xn1

Mw
n (xn1 ) log

1
Q(xn1 )

−
∫ ∑

xn1

P θ logP θdw(θ)


(A)
=

∑
xn1

Mw
n (xn1 ) log

1
M(xn1 )

+
∫ ∑

xn1

P θ logP θdw(θ)

=
∫
Dn(P θ||Mw)dw(θ)

= I(Θ;Xn
1 ),

where line (A) follows from the fact (cf. [5])

min
Q

∑
i

Pi log
1
Qi

=
∑
i

Pi log
1
Pi
,

and I(Θ, Xn
1 ) is the mutual information between the parameter space and the source output.

As pointed out by Gallager, and Davisson and Leon-Garcia[8] the minimax theorem of game
theory entitles us to conclude that

R̃n(Θ) = inf
Q

sup
θ∈Θ

Dn(P θ||Q) = sup
w

∫
D(P θ||Mw

n )dw(θ) := C(Θ, Xn
1 ),

that is, the continuous approximation of the average minimax redundancy is equal to the
channel capacity C(Θ, X) between the parameter space and source output. For a general-
ization of this result see [19].

In view of the above, the average minimax redundancy problem is reduced to finding
the optimal prior distribution w∗(θ) for the Bayes rule. This was accomplished by Bernardo
[3] who proved that asymptotically

w∗(θ) =
√

det I(θ)∫ √
det I(x)dx

,

where I(θ) is the Fisher information matrix

I(θ) =

{
−E

[
∂2w(θ)
∂θiθj

]}
θi,θj∈Θ

.

For example, for a binary memoryless source with one parameter θ

I(θ) =
1

θ(1− θ)
, w∗(θ) =

1
π
√
θ(1− θ)

,

while for a memoryless source overm-ary alphabet the optimal prior is Dirichlet(1/2, . . . , 1/2)
density (cf. [4, 29]). Finally, we observe that the optimal coding distribution Q∗ = Mn(w∗),
that is, it is a mixture with w∗ prior.
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There is a long list of contributing authors to our current understanding of the average
minimax redundancy (formally, its continuous approximation). Krichevsky and Trofimov
[17] show that Rn(M0) = (m − 1)/2 · log n + O(1) for memoryless sources while Rissanen
proves in [20] that for any code and almost all θ the average maxmin redundancy is bounded
from below by d/2 log n − o(log n) where d is the dimension of Θ. Clark and Barron [4],
and Xie and Barron [29] find explicit constant in R̃n(M0) = d/2 log n+ cθ + o(1) for codes
based on mixtures. Atteson [1] extended the result of Clark and Barron to Markov sources.
We should point out that the computation involved in these analyses are appreciately more
complicated (mostly based on a subtle application of the multidimensional saddle point
method). Finally, Csiszár and Shields [6] proved that the average minimax for renewal
processes is Θ(

√
n), while Shields [23] shown that there are no universal redundancy rates

for general general stationary ergodic processes.
In view of these difficulties and our better understanding of the worst case minimax

redundancy, we propose in this paper an orthogonal approach to the average minimax
redundancy and regrets. Based on previous results (cf. [2, 4, 29, 30]) we put forward the
following conjecture: for a large class of sources S the maximal and the average redundancy
are asymptotically equivalent for large n, that is

Rn(S) ∼ R∗n(S), (13)

where an ∼ bn means limn→∞ an/bn = 1.
We now summarize our main findings in this area, In Theorem 6 we basically show that

if the maximum likelihood distribution Q∗ belongs to the convex hull of S, then

R̃n(S)− R̃∗n(S) = O(cn(S))

where

cn(S) = sup
P∈S

∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )
.

In particular, if we can show that cn(S) = o(lg dn) (cf. (11) above for the definition of dn),
then our conjecture (13) is true. We shall prove it for memoryless sources M0 (cf. 9) and
Markov sourcesMr (cf. Theorem 5). But, to our surprise we indicate in Lemma 3 that the
conjecture seems to fail for renewal processes (i.e., we show that cn(R0) = Θ(

√
n)).

Finally, we wrestle with the worst case redundancy R∗n(S) and the average regret rn(S).
Interestingly enough, we prove in Theorem 7 that R̃∗n(S) = r̃n(S) provided Q∗ belongs to
the convex hull of S. More precisely, we show that

R∗n(S) = rn(S) +O(1).

We finally approaching the end of this long introduction. We now only mention that
the paper is organized in the following manner. In the next section we summarize formally
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our main results. In Section 3 we derive most of our results concerning the worst case
redundancy for memoryless and Markov sources, while in Section 4 we prove our main
findings about the relation between the average and the worst case redundancy and regrets
together with specific results concerning memoryless, Markov, and renewal processes.

2 Summary of Main Results

In this section we formulate our main results concerning the worst case (maximal) minimax
redundancy (cf. Section 2.1) and the average minimax redundancy and regrets (cf. Sec-
tion 2.2). In the latter section we relate the average minimax redundancy to the maximal
redundancy. Most of the proofs will be delayed till Sections 3 and 4.

2.1 The Worst Case Minimax Redundancy

In 1987 Shtarkov [24] proved that

lg

∑
xn1

sup
P∈S

P (xn1 )

 ≤ R∗n(S) ≤ lg

∑
xn1

sup
P∈S

P (xn1 )

+ 1. (14)

We need a more precise result for the maximal minimax redundancy R∗n(S) that will replace
the inequalities above by an equality. For convenience we set

dn = dn(S) :=
∑
xn1

sup
P∈S

P (xn1 )

and

Q∗(xn1 ) :=
sup
P∈S

P (xn1 )

dn
. (15)

The distribution Q∗ is called the maximum likelihood distribution. We also write, as already
mentioned in the introduction, R̃∗n(S) := lg dn(S) for the continuous approximation of
R∗n(S).

We start with a simple result that decomposes the maximal minimax redundancy into
two terms: the first one depends only on the underlying class of processes while the second
one involves coding (which is implicitly also used in [24]).

Lemma 1 Let S be a system of probability distributions P on An and let Q∗ be the maxi-
mum likelihood distribution defined by (15). Then

R∗n(S) = R∗n(Q∗) + R̃∗n(S) = R∗n(Q∗) + lg dn(S) (16)

where
R∗n(Q∗) = min

Cn∈C
max
xn1

(L(Cn, xn1 ) + lgQ∗(xn1 ))

is the worst case redundancy of a single source S = {Q∗}.
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Proof. By definition and noting that max and sup commute, we have

R∗n(S) = min
Cn∈C

sup
P∈S

max
xn1

(L(Cn, xn1 ) + lgP (xn1 ))

= min
Cn∈C

max
xn1

(
L(Cn, xn1 ) + sup

P∈S
lgP (xn1 )

)
= min

Cn∈C
max
xn1

(L(Cn, xn1 ) + lgQ∗(xn1 ) + lg dn)

= R∗n(Q∗) + lg dn.

which proves the lemma.

In passing we observe an interesting property of the continuous part R̃∗n(S) of the max-
imal minimax redundancy, namely that it is a non-decreasing function of n. Indeed, we
have

R̃∗n(S) = lg

∑
xn1

sup
P∈Sn

P (xn1 )


= lg

∑
xn1

sup
P∈Sn

∑
z∈A

P̃ (xn1z)


≤ lg

∑
xn+1

1

sup
P̃∈Sn+1

P̃ (xn+1
1 )

 = R̃∗n+1(S),

that is, R̃∗n(S) ≤ R̃∗n+1(S). The second part R∗n(Q∗) of R∗n(S) is the maximal redundancy of
an optimal code for the distribution Q∗ and its behavior might be quite erratic, as discussed
below. We next compute a closed form formula for this maximal redundancy and find the
optimal code.

Let us introduce a natural generalization of the Shannon code that we call a generalized
Shannon code denoted as CGSn . For a given distribution P ∈ S we define its code length as

L(xn1 , C
GS
n ) =

{
blg 1/P (xn1 )c if xn1 ∈ L
dlg 1/P (xn1 )e if xn1 ∈ U ,

where L ∪ U = An is a partition of the set of all source sequences of length n. In addition,
we shall postulate Kraft’s inequality is to hold, that is, for a binary alphabet†

∑
xn1∈L

P (xn1 )2〈− lgP (xn1 )〉 +
1
2

∑
xn1∈U

P (xn1 )2〈− lgP (xn1 )〉 ≤ 1,

where 〈x〉 = x− bxc is the fractional part of x.
†From now on we mostly work with a binary alphabet A = {0, 1}.
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Our first main result proves that there exists a generalized Shannon code which is
optimal with respect to the maximal redundancy. Let us define the following partitions of
An

Lt := {xn1 ∈ An : 〈− lgP (xn1 )〉 < t}, (17)

Ut := {xn1 ∈ An : 〈− lgP (xn1 )〉 ≥ t} (18)

where 0 < t < 1. It is should be clear that that for such a code

R∗n(CGSn , P ) = 1− t

for a given distribution P .
As already mentioned above, all our results are formulated for a binary alphabet to

simplify exposition. Also, throughout we write Z for the set of integers, Q for rational
numbers, R for the set of reals, and 〈x〉 = x − bxc for the fractional part of x ∈ R. In
Section 3 we prove the following result.

Theorem 1 Suppose that S is a set of probability distributions P on An and let Q∗ be the
maximum likelihood distribution defined by (15). If the probability distribution Q∗ is dyadic,
i.e. lgQ∗(xn1 ) ∈ Z for all xn1 ∈ An, then

R∗n(S) = lg dn(S). (19)

Otherwise, set T = T (Q∗) := {〈− lgQ∗(xn1 )〉 : xn1 ∈ An} and let t0 ∈ T be the largest t such
that ∑

xn1∈Lt
Q∗(xn1 )2〈− lgQ∗(xn1 )〉 +

1
2

∑
xn1∈Ut

Q∗(xn1 )2〈− lgQ∗(xn1 )〉 ≤ 1, (20)

where Lt and Ut are defined in (17) and (18), respectively. Then

R∗n(S) = lg dn(S) + 1− t0 (21)

and the optimum is obtained for a generalized Shannon code with L = Lt0 and U = Ut0,
that is, R∗n(Q∗) = 1− t0.

Observe that for S = {P} (a single known source) lg dn(P ) = 0 and R∗n(S) = R∗n(P ) =
1 − t0 where t0 is the largest t for which the Kraft inequality (20) holds. In summary, we
just found that a prefix code solving the following optimization problem

R∗n(P ) = min
Cn∈C

max
xn1

[L(Cn, xn1 ) + lgP (xn1 )] (22)

is the generalized Shannon code with parameter t0. (This should be compared to the
Huffman code that is optimal for the average redundancy.) We will prove it more formally
in Lemma 4 of Section 3 that will automatically imply Theorem 1.

11



But how to compute t0 = 1 − R∗n(P ) and more generally R∗n(Q∗) for a set of sources?
We next find precise formulas for the maximal redundancy for a given source R∗n(P ) and
the maximal minimax redundancy for memoryless sourcesM0 and Markovian sourcesMr.

We start with a binary memoryless source over a binary alphabet. We consider
the distribution Pp(xn1 ) = pk(1 − p)n−k where k is the number of “0” in xn1 and p is the
probability of generating a “0”. We first assume that p is known, thus S = {Pp} is a single
distribution. We prove in Section 3 the following surprising result.

Theorem 2 Suppose that lg 1−p
p /∈ Q is irrational. Then as n→∞

R∗n(Pp) = − log log 2
log 2

+ o(1) = 0.5287 . . .+ o(1),

where the term o(1) depends on p and cannot be generally improved. If lg 1−p
p = N

M ∈ Q
(for some coprime integers M,N ∈ Z) is rational and non-zero, then as n→∞

R∗n(Pp) = −bM lg(M(21/M − 1))− 〈Mn lg 1/(1− p)〉c+ 〈Mn lg 1/(1− p)〉
M

+ o(1).

Finally, if lg 1−p
p = 0 then p = 1

2 and R∗n(P1/2) = 0.

Next we consider a class of (unknown) memoryless sources Pp such that p ∈ [a, b] for
some 0 ≤ a < b ≤ 1. Interesting enough, in this case the rational case of R∗n(Q∗) disappears
and we obtain a precise result for the maximal minimax redundancy of memoryless sources.

Theorem 3 Let 0 ≤ a < b ≤ 1 be given and let Ma,b
0 = {Pp : a ≤ p ≤ b}. Then as n→∞

R∗n(Ma,b
0 ) =

1
2

lg n+ lg Ca,b −
log log 2

log 2
+Oa,b

(
n−1/9 log n

)
,

where

Ca,b =
1√
2π

∫ b

a

dx√
x(1− x)

=
√

2
π

(arcsin
√
b− arcsin

√
a).

Remark. If a = 0 and b = 1, then we find C0,1 =
√
π/2 which agrees with known results

(cf. [25, 26, 30]), however, the term log log 2/ log 2 was not derived before. If a > 0 and b < 1
the error term can be improved to Oa,b(n−1/3 log n). As pointed out in the introduction,
for m-ary alphabet the second constant term becomes log logm

1
m−1 / logm. Also, in (12)

we quoted a result from [26] that provides a full asymptotic expansion of the term R̃∗n(M0)
for an m-ary alphabet.

Similar results can be proved for a class of Markov sourcesMr of order r. To simplify
our exposition, we only present results for binary Markov sources of order one, that is, we
set now S =M1.

12



From now on we assume that the transition matrix of the Markov source is

P =

(
p00 p01

p10 p11

)
,

where pij = Pr{Xk+1 = j |Xk = i}. The stationary distribution is then

p0 =
p10

p10 + p01
and p1 =

p01

p10 + p01
.

The probability of a message xn1 becomes

P (xn1 ) = p̂ pk00
00 p

k01
01 p

k10
10 p

k11
11 ,

where p̂ = p0 if x0 = 0 and p̂ = p1 if x0 = 1 and kij is the number of k ∈ {1, 2, . . . , n − 1}
such that (xk, xk+1) = (i, j). Note that k00 + k01 + k10 + k11 = n− 1 and that k01 = k10 if
x1 = xn and k01 = k10 ± 1 if x1 6= xn (cf. [13, 31]).

The following result is an analogue of Theorem 2 that we also prove in Section 3.

Theorem 4 Consider a stationary binary Markov source S = {P} with known transition
matrix P. If

lg
p00√
p10p01

or lg
p11√
p10p01

is irrational, then as n→∞,

R∗n(P ) = − log log 2
log 2

+ o(1) = 0.5287 . . .+ o(1)

where the term o(1) in general cannot be improved

A generalization of Theorem 3 to Markov sources M1 (for which the transition matrix
P is unknown) is presented below.

Theorem 5 Let M1 be the set of Markov sources over a binary alphabet. Then

R∗n(M1) = lg n+ lg

 8
π

∑
j≥0

(−1)j

(2j + 1)2

− log log 2
log 2

+ o(1) (23)

as n→∞.

Remark. It was known since Rissanen [20] that for Markov sourcesMr of order r over an
m-ary alphabet

R̃∗n(Mr) ∼
mr(m− 1)

2
lg n

as n→∞. However, the computation of the next term is only completed now in the above
theorem. Rissanen [21], and Jacquet and Szpankowski [13] computed the constant term of
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R̃∗n(Mr) using probabilistic and analytic tolls, respectively. For example, we know from
[13] that for an m-ary alphabet

R̃∗n(M1) =
m(m− 1)

2
lg
(
n

2π

)
+ lgAm +O

(
1
n

)
where the constant Am has the following integral representation

Am =
∫
K(1)

mFm(yij)
∏
i

√∑
j yij∏

j
√
yij

∏
ij

dyij .

In the above, K(1) = {yij : yij ≥ 0,
∑
ij yij = 1, ∀i :

∑
j yij =

∑
j yji} and Fm(·) is a

polynomial expression of degree m− 1. (More precisely, Fm(y) =
∑
k detkk(1−y∗), and y∗

is the matrix whose ij-th coefficient is yij/
∑
j′ yij′ , while detkk(I − y) is the determinant

of the kk-th cofactor of the matrix I − y.) In particular, for m = 2 the authors of [13]
computed A2 = 16 ·G where G =

∑
i

(−1)i

(2i+1)2 ≈ 0.915965594 is the Catalan constant.

2.2 The Average Minimax Redundancy and Regrets

In the introduction we concluded that the evaluation of the average minimax redundancy
(and regrets) is more challenging due to the difficulties encountered in solving the Bayes
problem. Since R(S) ≤ R∗n(S) it is natural to ask whether R(S) is asymptotically well
approximated by the maximal minimax redundancy R∗n(S) that we can evaluate quite pre-
cisely, as demonstrated in the previous section.

We start with a word of caution. We cannot expect that Rn(S) ∼ R∗n(S) for all classes
of sources S since even for the simplest class S = {P} consisting of one distribution we
know that this asymptotic equivalence is violated. Indeed, the result from Theorem 2
should be compared with the average redundancy of the Huffman code. In particular, in
[27] it is proved that for a binary memoryless source with known probability p the average
redundancy RHn of the Huffman code is asymptotically equal to

R
H
n =


3
2 −

1
ln 2 + o(1) ≈ 0.057304 if lg 1−p

p irrational

3
2 −

1
M

(
〈βMn〉 − 1

2

)
− 1

M(1−2−1/M )
2−〈nβM〉/M +O(ρn) if lg 1−p

p = N
M

where ρ < 1, β = − lg(1− p) and N,M are integers such that gcd(N,M) = 1.
Nevertheless, we put forward the following conjecture that we shall verify and slightly

modify at the end of this section. Since, as observed above, the average and the maximal
redundancies differ at least on order O(1), we shall work from now on with the continuous
average minimax redundancy R̃n(S) knowing that Rn(S) ≤ R̃n(S) ≤ Rn(S) + 1.

14



Conjecture For a class of sources S with at least one unknown parameter the average
minimax redundancy Rn(S) and the average minimax rn(S) are asymptotically equivalent
to the maximal minimax redundancy R∗n(S), that is,

R∗n(S) ∼ Rn(S) ∼ rn(S) (24)

for large n.

When trying to establish this conjecture, we realize that it is prudent to restrict the class
of sources to those for which the maximum likelihood distribution Q∗ belongs to a convex
hull of S, where the convex hull of S is just the set of all finite convex combinations of
elements of S. (We assume no topology on the set of probability measures.) We formulate
it as the following postulate.

(H) The maximum likelihood distribution Q∗ can be represented as a linear combination
of distributions from S, that is, for P1, P2, . . . , PN ∈ S

Q∗ =
N∑
i=1

αiPi (25)

where αi ≥ 0 and
∑N
i=1 αi = 1.

Under this assumption we prove in Section 4 the following crucial lemma that will
allow us to establish some relationships between the maximal redundancy and the average
redundancy and regrets.

Lemma 2 Let S be a subset of probability distributions P on An. Then for all probability
distributions Q̃ contained in the convex hull of S we have

inf
Q

sup
P∈S

(∑
x∈X

P (x) lg
Q̃(x)
Q(x)

)
= 0.

Now we are equipped with all the necessary tools to state and prove our first main result
of this section. We recall that dn(S) =

∑
xn1

supP∈S P (xn1 ) and R̃∗n(S) = lg dn(S).

Theorem 6 (i) [Upper Bound] For any set of probability distributions S on An, we have

R̃n(S) ≤ lg dn(S)− inf
P∈S

∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )

 . (26)

(ii) [Lower Bound] If the hypothesis (H) holds, that is, if Q∗ is contained in the convex
hull of S, then

R̃n(S) ≥ lg dn(S)− sup
P∈S

∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )

 . (27)
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Remark If one does not know that Q∗ is contained in the convex hull of S but it is known
that there exists a probability distribution Q̃ in the convex hull of S such that

max
xn1

∣∣∣∣∣lg Q∗(xn1 )
Q̃(xn1 )

∣∣∣∣∣ ≤ C
then one gets the weaker lower bound

R̃n(S) ≥ lg dn(S)− C − sup
P∈S

∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )

 .
Proof. For part (i) we just observed trivially

R̃n(S) = inf
Q

sup
P∈S

D(P ||Q) ≤ sup
P∈S

D(P ||Q∗)

= lg dn(S)− inf
P∈S

∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )

 .
For the lower bound (ii) we need to use Lemma 2, hence we need to assume (H). Then

we have

R̃n(S) = inf
Q

sup
P∈S

D(P ||Q)

= lg dn(S) + inf
Q

sup
P∈S

(∑
xn1

P (xn1 ) lg
Q∗(xn1 )
Q(xn1 )

−
∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )

)

Lemma 2
≥ lg dn(S)− sup

P∈S

∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )

 ,
as needed.

In view of the above our conjecture holds if

cn(S) := sup
P∈S

∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )

 = o(lg dn(S)). (28)

We will verify this condition below for memoryless and Markovian sources, but indicate
that it may not be satisfied for renewal sources.

Interestingly we have a stronger result for the minimax regret r(S) that basically shows
that the conjecture is true under postulate (H).

Theorem 7 Let hypothesis (H) hold. Then

r̃n(S) = lg dn(S) = R̃∗n(S). (29)
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Proof. We start with an upper bound that actually holds without assumption (H). We
have for any S

r̃n(S) = lg dn(S) + inf
Q

sup
P∈S

∑
xn1

P (xn1 ) lg
Q∗(xn1 )
Q(xn1 )


≤ lg dn(S) + sup

P∈S

∑
xn1

P (xn1 ) lg
Q∗(xn1 )
Q∗(xn1 )


= lg dn(S).

For the lower bound we need to use Lemma 2 that requires (H). We proceed as follows

r̃n(S) = lg dn(S) + inf
Q

sup
P∈S

∑
xn1

P (xn1 ) lg
Q∗(xn1 )
Q(xn1 )


= lg dn(S)

which proves the theorem.

Finally, for the maxmin regret rn(S) we also can establish a precise result.

Theorem 8 Let Q∗ be defined as (15) and let RHn (P ) be the average minimax redundancy
for the Huffman code for the distribution P . Then

rn(S) = lg dn(S) + sup
P∈S

(RHn (P )−D(P ||Q∗))

= lg dn(S)− inf
P∈S

D(P ||Q∗) +O(1)

= sup
P∈S

∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )

+O(1).

If Q∗ ∈ S, then rn(S) = lg dn(S) +O(1) = R∗n(S) +O(1).

Proof. The calculations are straightforward:

rn(S) = sup
P∈S

min
Cn∈C

∑
xn1

P (xn1 )[L(Cn, xn1 ) + lg sup
P∈S

P (xn1 )]

= lg dn(S) + sup
P∈S

min
Cn

∑
xn1

P (xn1 )[L(Cn, xn1 ) + lgQ∗(xn1 )]

= lg dn(S) + sup
P∈S

min
Cn

∑
xn1

P (xn1 )[L(Cn, xn1 ) + lgQ∗(xn1 ) + lgP (xn1 )− lgP (xn1 )]

= lg

 ∑
xn1∈An

sup
P∈S

P (xn1 )

+ sup
P∈S

min
Cn

∑
xn1

P (xn1 )[L(Cn, xn1 ) + lgP (xn1 )]−
∑
xn1

P (xn1 ) lg
(
P (xn1 )
Q∗(xn1 )

)
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= lg dn(S) + sup
P∈S

(RHn (P )−D(P ||Q∗))

= lg dn(S)− inf
P∈S

D(P ||Q∗) +O(1)

= sup
P∈S

∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )

+O(1).

which proves the desired result.

In view of the above results, the conjecture is true for the minimax regret provided the
postulate (H) holds. In fact, we just proved that under (H)

rn(S) = R∗n(S) +O(1).

Furthermore, we have

rn(S) = cn(S) ≥ R∗n(S)−Rn(S) +O(1).

But, if Q∗ ∈ S, then rn(S) = R∗n(S) +O(1).
On the other hand, in order to verify the conjecture for the average minimax redundancy

we need to evaluate cn(S) defined in (28). In Section 4 we do it for memoryless sources
M0 and Markov sourcesMr. In particular, for binary alphabet we prove the following two
results.

Theorem 9 For a class of binary memoryless sources M0 the following holds

Rn(M0) = R∗n(M0) +O(1) =
1
2

lg n+O(1). (30)

as n→∞.

Theorem 10 Let M1 denote the set of all Markov sources over a binary alphabet. Then

Rn(M1) = R∗n(M1) +O(1) = lg n+O(1). (31)

as n→∞.

As already discussed above, generalizations of the above to m-ary alphabet and r-th
order Markov is quite straightforward although may be technically involved.

Finally, we deal with the renewal process R0 introduced by Csiszár and Shields [6]: Let
T1, T2 . . . be a sequence of i.i.d. positive–valued random variables with common distribution
R(j) = Pr{T1 = j}. Throughout we assume that E[T1] <∞. With such a renewal process
there is associated a binary renewal sequence that is a 0, 1-sequence in which the 1’s occur
exactly at the renewal epochs T1, T1 +T2, etc. Accordingly , we start the renewal sequence
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with a 1 put at the zeroth position followed by a run of zeros. In passing we observe
that since P (xn1 ) and R(j) determine one another, we identify the underlying probability
measure P defined on {0, 1}∞ with the distribution R that it induces. For such a renewal
source R0, Csiszár and Shields [6] proved that the average minimax redundancy Rn(R0) is
of order

√
n. More precisely, there exist two constants C1, C2 > 0 such that

C1

√
n ≤ Rn(R0) ≤ C2

√
n.

Flajolet and Szpankowski [11] recently showed that the worst case minimax redundancy
R∗n(R0) of this process is

R∗n(R0) =

 2
log 2

√
π2

6
− 1

 · √n+O(log n) ≈ 2.317 ·
√
n+O(log n),

thus C2 ≤ 2.317 . . . . The question is whether C1 = C2, and hence Rn(R0) ∼ R∗n(R0).
Unfortunately, this seems to be not true as we prove in Section 4 the following lemma.

Lemma 3 For all probability distributions P ∈ R0 we have

cn(R0) = sup
P∈R0

∑
xn1

P (xn1 ) lg
sup
P∈R0

P (xn1 )

P (xn1 )

 ≤ 1 + 2
e

log 2
√√

2
3 + 2

e

·
√
n+O(1) ≈ 2.278 ·

√
n.

Theorem 6 and Lemma 3 suggest (if we verify hypothesis (H)) that

0.039 . . . ·
√
n ≤ Rn(R0) ≤ 2.317 . . . ·

√
n.

A direct implication of this result is that our conjecture seems to be not true for Rn(S) for
general class of processes S. Therefore, we modify it slightly, and expect that for general
class of sources S the following holds

R∗n(S) � Rn(S),

where an � bn if there are constants c1, c2 > 0 such that c1an ≤ bn ≤ c2an for large n.

3 Analysis of the Worst Case Minimax Redundancy

In this section we prove Theorems 1 – 5. In most of the proofs we apply analytic techniques
of analysis of algorithms that can be reviewed from [28].
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3.1 Proof of Theorem 1

We recall that we are to prove the following decomposition of the worst case minimax
redundancy R∗n(S):

R∗n(S) = lg dn(S) + 1− t0

where t0 is the largest t ∈ T for which the Kraft inequality (20) holds.
It turns out that Theorem 1 follows directly from Lemma 1 and the next result in which

we consider the following optimization problem: For a given source P find a prefix code
that minimizes the maximal redundancy R∗n(P ), that is,

R∗n(P ) = min
Cn∈C

max
xn1

[L(Cn, xn1 ) + lgP (xn1 )]. (32)

The next lemma proves that a generalized Shannon codes solves the above optimization
problem.

Lemma 4 If the probability distribution P is dyadic, i.e. lgP (xn1 ) ∈ Z for all xn1 ∈ An,
then R∗n(P ) = 0. Otherwise, let T = T (P ) := {〈− lgP (xn1 )〉 : xn1 ∈ An} and t0 ∈ T be the
largest t such that ∑

xn1∈Lt
P (xn1 )2〈− lgP (xn1 )〉 +

1
2

∑
xn1∈Ut

P (xn1 )2〈− lgP (xn1 )〉 ≤ 1, (33)

where
Lt := {xn1 ∈ An : 〈− lgP (xn1 )〉 < t}

and
Ut := {xn1 ∈ An : 〈− lgP (xn1 )〉 ≥ t}.

Then
R∗n(P ) = 1− t0 (34)

and the optimum is obtained for a generalized Shannon code with L = Lt0 and U = Ut0.

Proof. If P is dyadic then the numbers l(xn1 ) := − lgP (xn1 ) are positive integers satisfying∑
xn1

2−l(x
n
1 ) = 1.

Kraft’s inequality holds and consequently there exists a (prefix) code Cn with L(Cn, xn1 ) =
l(xn1 ) = − lgP (xn1 ), and this implies Cn with L(Cn, xn1 ) = l(xn1 ) = − lgP (xn1 ) and R∗n(P ) =
0.

Now assume that P is not dyadic and let C∗n denote the set of optimal codes, i.e.

C∗n = {Cn ∈ C : R∗n(Cn, P ) = R∗n(P )}.

The idea of the proof is to establish several properties of an optimal code. In particular,
we will show that there exists an optimal code C∗n ∈ C∗n with the following two properties:
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(i)
b− lgP (xn1 )c ≤ L(C∗n, x

n
1 ) ≤ d− lgP (xn1 )e (35)

(ii) There exists s0 ∈ [0, 1] such that

L(C∗n, x
n
1 ) = blg 1/P (xn1 )c if 〈lg 1/P (xn1 )〉 < s0 (36)

and
L(C∗n, x

n
1 ) = dlg 1/P (xn1 )e if 〈lg 1/P (xn1 )〉 ≥ s0. (37)

Observe that w.l.o.g. we may assume that s0 = 1 − R∗n(P ). Thus, in order to compute
R∗n(P ) we just have to consider codes satisfying (36) and (37). As already mentioned, (33)
is just Kraft’s inequality for codes of that kind. The optimal choice is t = t0 which also
equals s0. Consequently R∗n(P ) = 1− t0.

In view of the above, it suffices to prove properties (i) and (ii). Assume that C∗n is an
optimal code. First of all, the upper bound in (35) is obviously satisfied for C∗n. Otherwise
we would have

max
xn1

[L(C∗n, x
n
1 ) + lgP (xn1 )] > 1

which contradicts Shtarkov’s bound (14). Second, if there exists xn1 such that L(C∗n, x
n
1 ) <

blg 1/P (xn1 )c, then (in view of Kraft’s inequality) we can modify this code to a code C̃∗n
with

L(C̃∗n, x
n
1 ) = dlg 1/P (xn1 )e if L(C∗n, x

n
1 ) = dlg 1/P (xn1 )e,

L(C̃∗n, x
n
1 ) = blg 1/P (xn1 )c if L(C∗n, x

n
1 ) ≤ blg 1/P (xn1 )c.

By construction R∗n(C̃∗n, P ) = R∗n(C∗n, P ). Thus, C̃∗n i s optimal, too. This proves (i).
Now consider an optimal code C∗n satisfying (35) and let x̃n1 be a word with R∗n(P ) = 1−

〈− lgP (x̃n1 )〉. Thus, L(C∗n, x
n
1 ) = blg 1/P (xn1 )c for all xn1 with 〈− lgP (xn1 )〉 < 〈− lgP (x̃n1 )〉.

This proves (36) with s0 = 〈− lgP (x̃n1 )〉. Finally, if (37) is not satisfied, then (in view of
Kraft’s inequality) we can modify this code to a code C̃∗n with

L(C̃∗n, x
n
1 ) = dlg 1/P (xn1 )e if 〈lg 1/P (xn1 )〉 ≥ s0,

L(C̃∗n, x
n
1 ) = blg 1/P (xn1 )c if 〈lg 1/P (xn1 )〉 < s0.

By construction R∗n(C̃∗n, P ) = R∗n(C∗n, P ). Thus, C̃∗n is optimal, too. This proves (ii) and
the lemma.
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3.2 Proof of Theorem 2

We now consider a binary memoryless source Pp(xn1 ) = pk(1 − p)n−k where p is a given
probability of generating a “0”. Our goal is to estimate precisely the maximal redundancy
of the optimal generalized code just constructed in Lemma 4 of the previous section.

The proof of Theorem 2, as well as some others in this section, rely heavily on properties
of sequences modulo 1 that we review first (the reader is referred to [9, 27] for more detailed
exposition). We start with a definition of P -uniformly distributed sequences modulo 1.

Definition 1 (P-u.d. mod 1) A sequence xn ∈ R is said to be P -uniformly distributed
modulo 1 (P -u.d. mod 1) with respect to the set of probability distributions P = {(pn,k)k≥0 :
n ≥ 0} if

lim
n→∞

∑
k≥0

pn,kIA(〈xk〉) = λ(A) (38)

holds uniformly for every interval A ⊂ [0, 1], where IA(xn) is the characteristic function of
A (i.e., it equals 1 if xn ∈ A and 0 otherwise) and λ(A) is the Lebesgue measure of A.

In particular, we will use the probability distributions pn,k =
(n
k

)
pk(1− p)n−k and call a

sequence xn Bernoulli distributed mod 1 if xn is P -u.d. mod 1 for this particular P .
The following result summarizes the main property of P -u.d. modulo 1 sequences. It

provides the leading term of asymptotics for sums like
∑
k pn,kf(〈xk+y〉), where xk is P-u.d.

mod 1 and y is a shift and f is a Riemann integrable function.

Theorem 11 Suppose that the sequence xn is P -uniformly distributed modulo 1. Then for
every Riemann integrable function f : [0, 1]→ R

lim
n→∞

∑
k≥0

pn,kf(〈xk + y〉) =
∫ 1

0
f(t) dt, (39)

where the convergence is uniform for all shifts y ∈ R.

To apply Theorem 11, one needs easy criteria to verify whether a sequence xk is P-u.d.
mod 1. Fortunately, such a result exists and is due to H. Weyl.

Theorem 12 (Weyl, 1916) A sequence xn is P-u.d. mod 1 if and only if

lim
n→∞

∑
k≥0

pn,ke
2πimxk = 0 (40)

holds for all m ∈ Z \ {0}.
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Now we are in position to prove the first part of Theorem 2, that is, if lg 1−p
p is irrational,

then as n→∞
R∗n(Pp) = − log log 2

log 2
+ o(1) = 0.5287 . . .+ o(1). (41)

Set
αp = lg

1− p
p

, βp = lg
1

1− p
.

Then
− lg(pk(1− p)n−k) = αpk + βpn.

Since αp is irrational we know from [9, 27] that 〈αpn〉 is a Bernoulli-u.d modulo 1 sequence
(it also easy to prove directly by noting that Weyl’s criterion holds), and therefore by
Theorem 11 we have

lim
n→∞

n∑
k=0

(
n

k

)
pk(1− p)n−kf(〈αpk + βpn〉) =

∫ 1

0
f(x) dx. (42)

Now set fs0(x) = 2x for 0 ≤ x < s0 and fs0(x) = 2x−1 for s0 ≤ x ≤ 1. We find

lim
n→∞

n∑
k=0

(
n

k

)
pk(1− p)n−kfs0(〈αk + βn〉) =

2s0−1

log 2
.

In particular, for

s0 = 1 +
log log 2

log 2
= 0.4712 . . .

we obtain
∫ 1

0 f(x) dx = 1. This implies that

lim
n→∞

R∗n(Pp) = 1− s0 = 0.5287 . . .

which proves (41) and the first part of Theorem 2.
Now we establish the second part of Theorem 2, that is, if lg 1−p

p = N
M is rational and

non-zero (with coprime integers N,M) then, as n→∞

R∗n(Pp) = −bM lg(M(21/M − 1))− 〈Mn lg 1/(1− p)〉c+ 〈Mn lg 1/(1− p)〉
M

+ o(1). (43)

As in [27] we first observe that

n∑
k=0

(
n

k

)
pk(1− p)n−kf(〈αpk + βpn〉) =

1
M

M−1∑
m=0

f

(〈
mN

M
+ βpn

〉)
+ o(1)

=
1
M

M−1∑
m=0

f

(
m+ 〈Mβpn〉

M

)
+ o(1).

As before, we use fs0(x), where s0 is of the form

s0 =
m0 + 〈Mβpn〉

M
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and choose m0 maximal such that

1
M

M−1∑
m=0

fs0

(
m+ 〈Mβpn〉

M

)
=

2〈Mβpn〉/M

M

(
m0−1∑
m=0

2m/M +
M−1∑
m=m0

2m/M−1

)

=
2(〈Mβpn〉+m0)/M−1

M(21/M − 1)
≤ 1.

Thus
m0 = M + bM lg(M(21/M − 1))− 〈Mn lg 1/(1− p)〉c,

and consequently

R∗n(Pp) = 1− s0 + o(1)

= 1− m0 + 〈Mβpn〉
M

+ o(1)

= −bM lg(M(21/M − 1))− 〈Mn lg 1/(1− p)〉c+ 〈Mnβp〉
M

+ o(1).

This completes the proof of Theorem 2.

3.3 Proof of Theorem 3

Now we consider a class of binary memoryless sources Pp(xn1 ) = pk(1 − p)n−k such that
p ∈ [a, b] for some 0 ≤ a < b ≤ 1 and prove Theorem 3 which states that for Ma,b

0 = {Pp :
a ≤ p ≤ b}

R∗n(Ma,b
0 ) =

1
2

lg n+ lg Ca,b −
log log 2

log 2
+O

(
log n
n1/9

)
, (44)

where Ca,b =
√

2
π (arcsin

√
b− arcsin

√
a).

After observing that

Q∗(xn1 ) = sup
p∈[a,b]

pk(1− p)n−k =


ak(1− a)n−k for 0 ≤ k < na,(
k
n

)k (
1− k

n

)n−k
for na ≤ k ≤ nb,

bk(1− b)n−k for nb < k ≤ n.

we express dn(Ma,b
0 ) =

∑
xn1

supP P (xn1 ) as follows

dn := dn(Ma,b
0 ) =

∑
k<na

(
n

k

)
ak(1− a)n−k +

∑
na≤k≤nb

(
n

k

)(
k

n

)k (
1− k

n

)n−k

+
∑
k>nb

(
n

k

)
bk(1− b)n−k.
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It is easy to show that

∑
k<na

(
n

k

)
ak(1− a)n−k =

1
2

+O(n−1/2),

and ∑
k>nb

(
n

k

)
bk(1− b)n−k =

1
2

+O(n−1/2).

Furthermore, we have (uniformly for an ≤ k ≤ bn) by Stirling’s formula(
n

k

)(
k

n

)k (
1− k

n

)n−k
=

1√
2π

√
n

k(n− k)
+O(n−3/2).

Consequently

∑
na≤k≤nb

(
n

k

)(
k

n

)k (
1− k

n

)n−k
=

√
n

2π

∫ b

a

dx√
x(1− x)

+O(n−1/2)

= 2
√
n

2π
(arcsin

√
b− arcsin

√
a) +O(n−1/2),

which gives
dn = Ca,b

√
n+ 1 +O(n−1/2)

and
R̃∗n(Ma,b

0 ) = lg dn =
1
2

lg n+ lgCa,b +O(n−1/2).

Next, we need to compute R∗n(Q∗), as we did in the previous section for a given distri-
bution. We recall that by Theorem 1 evaluation of the redundancy R∗n(Q∗) reduces to a
verification of the Kraft’s inequality, which in our case becomes∑

xn1

Q∗(xn1 )fs0(〈− lgQ∗(xn1 )〉)

where fs0(x) = 2−〈s0−x〉+s0 for some 0 ≤ s0 < 1. Thus, the problem is to evaluate the
following sum

n∑
k=0

(
n

k

) sup
p∈[a,b]

pk(1− p)n−k

dn
fs0

(
− lg

(
sup
p∈[a,b]

pk(1− p)n−k
)

+ lg dn

)

=
1
dn

∑
k<an

(
n

k

)
ak(1− a)n−kfs0(− lg(ak(1− a)n−k) + lg dn)

+
1
dn

∑
an≤k≤bn

(
n

k

)(
k

n

)k (
1− k

n

)n−k
fs0

(
− lg

((
k

n

)k (
1− k

n

)n−k)
+ lg dn

)

+
1
dn

∑
k>bn

(
n

k

)
bk(1− b)n−kfs0(− lg(bk(1− b)n−k) + lg dn)

= S1 + S2 + S3.
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Obviously, the first and third sum can be estimated by

S1 = O(n−1/2) and S3 = O(n−1/2).

Thus, it remains to study S2.
We prove the following lemma.

Lemma 5 For every (Riemann integrable) function f : [0, 1] → R of bounded variation
V 1

0 (f) and for every sequence xn,k, an ≤ k ≤ bn, such that

xn,k = k lg k + (n− k) lg(n− k) + cn,

where cn is an arbitrary sequence, we have

1
dn

∑
an≤k≤bn

(
n

k

)(
k

n

)k (
1− k

n

)n−k
f(〈xn,k〉) =

∫ 1

0
f(x) dx+O

(
V 1

0 (f)
log n
n1/9

)
(45)

Remark If a > 0 and b < 1 then we even have a better error term of the form
O
(
V 1

0 (f)(log n)n−1/3
)
.

Proof. We first show that xn,k is Q∗-u.d. sequence modulo 1. If view of Theorem 11 this
proves (45) except the the error term that we analyze precisely below.

First, we consider the the following exponential sum

S :=
∑

an≤k≤cn
e(h(k lg k + (n− k) lg(n− k)),

where e(x) = e2πix, c ∈ [a, b], and h is an arbitrary non-zero integer. By Van-der-Corput’s
method (see [16, p. 31]) we know that

|S| � |F
′(cn)− F ′(an)|+ 1√

λ
,

where λ = min
an≤y≤cn

|F ′′(y)| > 0 and

F (y) = h(y lg y + (n− y) lg(n− y)).

Since |F ′(y)| � h log n, and |F ′′(y)| � h/n (uniformly for an ≤ y ≤ cn) we immediately
find

|S| � log n
√
hn

and consequently ∣∣∣∣∣∣
∑

an≤k≤cn
e(hxnk)

∣∣∣∣∣∣� log n
√
hn.
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Note that all these estimates are uniform for c ∈ [a, b]. Next we consider the following
exponential sum which is in fact the one appearing in the Weyl criterion

S̃ :=
∑

an≤k≤bn
an,ke(hxnk),

where

an,k =

(
n

k

)(
k

n

)k (
1− k

n

)n−k
.

By elementary calculations we obtain (uniformly for an ≤ k ≤ bn) an,k � min(k, n−k)−1/2

and
|an,k+1 − an,k| � min(k, n− k)−3/2.

Thus, if a > 0 and b < 1 we have an,k � n−1/2 and |an,k+1 − an,k| � n−3/2. Consequently
by partial summation

|S̃| ≤ an,bn

∣∣∣∣∣∣
∑

an≤k≤bn
e(hxn,k)

∣∣∣∣∣∣
+

∑
an≤k<bn

|an,k+1 − an,k|

∣∣∣∣∣∣
∑

an≤`≤k
e(hxn,`)

∣∣∣∣∣∣
� n−1/2 log n

√
hn+ nn−3/2 log n

√
hn

�
√
h log n.

This means that for every non-zero integer h we have

lim
n→∞

1
dn

∑
an≤k≤bn

an,ke(hxn,k) = O

(√
h

log n√
n

)
→ 0. (46)

Therefore, Weyl’s criterion holds in that case. (Note that the shifting sequence cn does not
chance the absolute value of the exponential sums S̃.)

Now suppose that a = 0 and b < 1. Set ε = (h/n)1/4. Then

|S̃| ≤
∑
k≤εn

an,k +

∣∣∣∣∣∣
∑

εn≤k≤bn
an,ke(hxnk)

∣∣∣∣∣∣
�
√
εn+ n−1/2 log n

√
hn+ n(εn)−3/2 log n

√
hn

� (log n)h1/8n3/8

which proves

lim
n→∞

1
dn

∑
an≤k≤bn

an,ke(hxn,k) = O

(
h1/8 log n

n1/8

)
→ 0 (47)

in this case. The final case a = 1, b = 1 is completely similar.
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Now, with help of Erdős-Turán’s inequality and Koksma-Hlawka’s inequality (see [9])
one gets ∣∣∣∣∣∣ 1

dn

∑
an≤k≤bn

(
n

k

)(
k

n

)k (
1− k

n

)n−k
f(〈xn,k〉)−

∫ 1

0
f(x) dx

∣∣∣∣∣∣
� V 1

0 (f) ·

 1
H

+
H∑
h=1

1
h

∣∣∣∣∣∣ 1
dn

∑
an≤k≤bn

an,ke(hxn,k)

∣∣∣∣∣∣
 .

Thus, if 0 < a < b < 1 we set H = n1/3 and get from (46)

1
H

+
H∑
h=1

1
h

√
h

log n√
n
� log n

n1/3
.

If a = 1 or b = 1 we choose H = n1/9 and one obtains

1
H

+
H∑
h=1

1
h
h1/8 log n

n1/8
� log n

n1/9
.

This proves the lemma.
To complete the proof of Theorem 3 we note that we are now in a similar situation as

in the proof of Theorem 2. We apply (45) with fs0(x) for s0 = − log log 2/ log 2, and (44)
follows. (Note that fs(x) has variation V 1

0 (fs) = 2 <∞.)

3.4 Proof of Theorem 4

Our goal in this section is to extend Theorem 2 to (binary) Markov sources. We first assume
that the Markov transition matrix P = {pij}1i,j=0 is given. We recall that the stationary
distribution is given by

p0 =
p10

p10 + p01
and p1 =

p01

p10 + p01

and
P (xn1 ) = p̂ pk00

00 p
k01
01 p

k10
10 p

k11
11 , (48)

where p̂ = p0 if x0 = 0 and p̂ = p1 if x0 = 1 and kij is the number of k ∈ {1, 2, . . . , n − 1}
such that (xk, xk+1) = (i, j). Note that k00 + k01 + k10 + k11 = n − 1 and that k01 = k10

if x1 = xn and k01 = k10 ± 1 if x1 6= xn (cf. [13, 31]). The latter condition is called
the conservation flow property and is crucial to determine Markov redundancy and Markov
types as discussed in [13].

Here we aim at proving that if

lg
p00√
p10p01

or lg
p11√
p10p01

(49)
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is irrational, then

R∗n(P ) = − log log 2
log 2

+ o(1) = 0.5287 . . .+ o(1) (50)

for a given source P .
Before we proceed with a rigorous proof, let us first propose an intuitive explanation of

the above result. Observe that k00 + k11 + 2k01 = n− 1, hence

lgP (xn1 ) = k00 lg
p00√
p10p01

+ k11 lg
p11√
p10p01

+
n− 1

2
lg(p01p10) +O(1).

Therefore, as already seen in the proof of Theorem 2, one expects that the sequence lgP (xn1 )
is P-u.d. if conditions (49) hold. We prove it below by showing that the Weyl criterion is
satisfied.

For k = (k00, k01, k10, k11) let Nk be the number of binary sequences xn1 of length n =
k00 + k01 + k10 + k11 + 1 with kij pairs (xk, xk+1) = (i, j). In fact, Nk is the type of the
underlying Markov source, and it was studied extensively before (cf. [13, 31]). In particular,
using results from [13, 31] one can compute

G(z) =
∑
n≥1

∑
xn1

P̃ (xn1 ) zn =
∑
n≥1

∑
k

Nkp̂ p
k00
00 p

k01
01 p

k10
10 p

k11
11

=
A(z)

det(I− zP)
(51)

= z
p0(1− p11z + p01z) + p1(1− p00z + p10z)

1− z(p00 + p11) + z2(p00p11 − p01p10)
,

where P̃ (xn1 ) is the same as (48) except that pij are considered to be complex variables.
Observe that if p00 + p01 = p10 + p11 = 1, then the right hand side of the above is equal to
z/(1− z) as it should.

Let us now evaluate the Weyl sum (40) for our case. Therefore, we replace pkl in (51)
by pkle(h lg pkl) = pkle

2πih lg pkl for any integer h 6= 0, and must prove that such a sum
converges to zero for any h 6= 0. We obtain∑

n≥1

∑
xn1

P (xn1 )e(h lgP (xn1 )) zn = (52)

=
zp0e(h lg p0)(1− p11e(h lg p11)z + p01e(h lg p01)z)

1− z(p00e(h lg p00) + p11e(h lg p11)) + z2(p00p11e(h lg(p00p11)− p01p10e(h lg(p01p10)))

+
zp1e(h lg p1)(1− p00e(h lg p00)z + p10e(h lg p10)z)

1− z(p00e(h lg p00) + p11e(h lg p11)) + z2(p00p11e(h lg(p00p11)− p01p10e(h lg(p01p10)))
.

After tedious algebra, one can show that both zeros of the denominator are of absolute
value greater than 1 if lg(p00/

√
p10p01) or lg(p11/

√
p10p01) is irrational. Therefore, for all

integers h 6= 0
lim
n→∞

∑
xn1

P (xn1 )e(h lgP (xn1 )) = 0.
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Consequently, the Weyl condition holds and by Theorem 11 we conclude that

lim
n→∞

∑
xn1

P (xn1 )f(〈− lgP (xn1 )〉) =
∫ 1

0
f(x) dx

for all Riemann integrable functions f : [0, 1] → R. Applying this relation to functions
fs0(x) defined by fs0(x) = 2x for 0 ≤ x < s0 and fs0(x) = 2x−1 for s0 ≤ x ≤ 1 we
immediately derive (50), as in the proof of Theorem 2.

3.5 Proof of Theorem 5

Finally, we consider a class of binary Markov sources with unknown transition matrix P
and prove Theorem 5, that is, we derive

R∗n(M1) = lg n+ lg

 8
π

∑
j≥0

(−1)j

(2j + 1)2

− log log 2
log 2

+ o(1).

As we already observed in Section 2, the leading terms lgn + lg
(

8
π

∑
j≥0

(−1)j

(2j+1)2

)
+

o(1) that correspond to lg dn(M1) have been recently determined in [13]. Thus we must
concentrate on the redundancy Rn(Q∗) of the maximal likelihood distribution Q∗. However,
we cannot work directly with Q∗. We have to approximate it appropriately.

Lemma 6 Suppose that xn1 is a binary word of length n. Let kij denote the number of
k ∈ {1, 2, . . . , n−1} such that (xk, xk+1) = (i, j) and ki the number of k ∈ {1, 2, . . . , n} such
that xk = i Then there exist two constants C1, C2 > 0 such that the ratio of

S∗∗(xn1 ) :=
k̂

k̃
k01

k00+k01
+ k10

k10+k11

(
k00

k00 + k01

)k00
(

k01

k00 + k01

)k01
(

k10

k10 + k11

)k10
(

k11

k10 + k11

)k11

(where k̂ = k10 and k̃ = k10 + k11 if p̂ = p0 and k̂ = k01 and k̃ = k00 + k01if p̂ = p1) and

S∗(xn1 ) = sup
pij

(
p̂ pk00

00 p
k01
01 p

k10
10 p

k11
11

)
is always contained in the interval [C1, C2]. Furthermore, there are constant C3 > 0, C4 > 0
such that for every ε > 0 there exists n0 such that

1− C3ε ≤
S∗(xn1 )
S∗∗(xn1 )

≤ 1 + C3ε (53)

for all words xn1 of length n ≥ n0 and kij with εn ≤ kij ≤ (1− ε)n and that∑
εn≤kij≤(1−ε)n

S∗(xn1 ) ≥ (1− C4

√
ε)
∑
xn1

S∗(xn1 ). (54)
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Proof (Sketch). Suppose that x1 = xn = 0. Then p̂ = p0 = p10/(p01 + p10), k0 =
k00 + k01 + 1 and k1 = k10 + k11. The supremum

sup
0≤p01,p10≤1

(
p10

p01 + p10
(1− p01)k00pk01

01 p
k10
10 (1− p10)k11

)
is obtained for those p01, p10 which satisfy the system of equations

− 1
p01 + p10

− k00

1− p01
+
k01

p01
= 0

1
p10
− 1
p01 + p10

+
k10

p10
− k11

1− p10
= 0.

Assume for a moment that kij ≥ 2. By using the “Ansatz”

p01 =
k01 − r
k00 + k10

, p10 =
k10 − s
k10 + k11

one easily sees that there exists a solution with 0 ≤ r ≤ 1 and 0 ≤ s ≤ 1. Thus, the ratio
S∗(xn1 )/S∗∗(xn1 ) is bounded from below and above. (The cases kij = 0 and kij = 1 can
treated similarly.)

The proof of (53) and (54) is also not very difficult. From kij ≥ εn one gets r = O(1/n)
and s = O(1/n) where the O-constants depend on ε. Consequently

p01 =
k01

k00 + k10

(
1 +O

(
1
n

))
, p10 =

k10

k10 + k11

(
1 +O

(
1
n

))
and (53) and (54) follow immediately.

We will further need the following asymptotic expansions which can be found in [13,
Theorem 5] and Whittle [31].

Lemma 7 For k = (k00, k01, k10, k11) and a, b ∈ {0, 1}, let Na,b
k denote the number of 0-

1-sequences of length n = k00 + k01 + k10 + k11 + 1, where x0 = a, xn = b, and kij is the
number of k ∈ {1, 2, . . . , n− 1} such that (xk, xk+1) = (i, j). Then

N0,0
k ∼ k10

k10 + k11

(
k00 + k01

k00

)(
k10 + k11

k10

)
,

N0,1
k ∼ k01

k00 + k01

(
k00 + k01

k00

)(
k10 + k11

k10

)
,

N1,0
k ∼ k10

k10 + k11

(
k00 + k01

k00

)(
k10 + k11

k10

)
,

N0,0
k ∼ k01

k00 + k01

(
k00 + k01

k00

)(
k10 + k11

k10

)

for those k which are admissible (i.e. if a = b then k01 = k10 and if a 6= b then k01 = k10±1).
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We will use these expansions in the range εn ≤ kij ≤ (1− ε)n for which it is easy to prove
that they are uniform (compare with [13]). In what follows we will also use the notation
Nk = N0,0

k +N0,1
k +N1,0

k +N1,1
k .

Now we are in position to sketch the last part of the proof of Theorem 5, that is, to
find R∗n(Q∗). For this we only need to verify the Weyl criterion which will imply that for
every Riemann integrable function f : [0, 1]→ R

lim
n→∞

∑
xn1

Q∗(xn1 )f(〈lgQ∗n(xn1 )〉) =
∫ 1

0
f(x) dx. (55)

Then, as in the previous section, we directly prove that R∗n(Q∗n) = −(log log 2)/(log 2)+o(1).
In view of Lemma 6 and Weyl’s criterion, it suffices to show that

lim
n→∞

1
Tn

∑
εn≤kij≤(1−ε)n

NkS
∗∗(k)e (h lgS∗∗(k)) = 0 (56)

for all integers h 6= 0, where
Tn =

∑
k

NkS
∗∗(k).

We shall follow the footsteps of the the proof of Theorem 3, that is, we first consider
the exponential sums

S =
∑
k

e (h lgS∗∗(k)) .

By assuming that k0 = kn = 0 (the other cases are similar) and by using the relations
k01 = k10 = (n− 1− k00 − k11)/2 we find

S =
∑

k00,k11

e (h · F (k00, k11)) ,

where

F (k00, k11) = lg
(
k00 − k11 + n+ 1

2

)
− log n

+ k00 lg k00 + k11 lg k11

+ (n− 1− k00 − k11) lg
n− 1− k00 − k11

2

− k00 − k11 + n+ 1
2

lg
(
k00 − k11 + n+ 1

2

)
− k11 − k00 + n− 1

2
lg
(
k11 − k00 + n− 1

2

)
.

As in the proof of Theorem 3, we can estimate S by Van-der-Corput’s method. In the final
step, we use partial summation to obtain estimates for

S̃ =
∑

k00,k11

k10

k10 + k11

(
k00 + k01

k00

)(
k10 + k11

k10

)
e (h · F (k00, k11))

and Lemma 7 to derive (56). This proves Theorem 5.
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4 Analysis of the Average Minimax Redundancy

In this section we first establish Lemma 2 that directly implies Theorems 6, 7 and 8, as
already proved in Section 2. Then we deal with a class of memoryless sources, Markov
sources, and finally renewal sources.

4.1 Proof of Lemma 2

We start with establishing the crucial Lemma 2 that we repeat below for the reader’s
convenience.

Lemma 2 Suppose that S is a subset of probability distributions P on a finite set X.
Then for all probability distributions Q̃ contained in the convex hull of S we have

inf
Q

sup
P∈S

(∑
x∈X

P (x) lg
Q̃(x)
Q(x)

)
= 0. (57)

Proof. Suppose that P1, . . . , PN are probability distributions on a finite set X and Q̃ is a
convex convex combination of P1, . . . , PN , i.e.

Q̃ =
N∑
i=1

αiPi

with αi ≥ 0 and
∑N
i=1 αi = 1. We first show that for every Q 6= Q̃

N∑
i=1

αiD(Pi||Q̃) ≤
N∑
i=1

αiD(Pi||Q). (58)

By using the definition of D(P ||Q) it immediately follows that

N∑
i=1

D(Pi||Q) =
N∑
i=1

D(Pi||Q̃) +N D(Q̃||Q) >
N∑
i=1

D(Pi||Q̃).

Hence, (58) holds for αi of the form αi = 1/N .
It is clear that the case of rational numbers αi = Mi/M (with a common denominator

M) can be reduced to this case. We just have to set βj = 1/M for 1 ≤M and Qj = Pi for
M1 + · · ·+Mi−1 + 1 ≤ j ≤M1 + · · ·+Mi. Then

N∑
i=1

αiD(Pi||Q) =
M∑
j=1

βjD(Qj ||Q),

and the lemma is proved since αi real can be viewed as a limit of the rational case.

We now prove (57). Obviously we have

inf
Q

sup
P∈S

(∑
x∈X

P (x) lg
Q̃(x)
Q(x)

)
≤ 0.
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(We only have to choose Q = Q̃.)
The converse inequality can be proved indirectly. Let Q̃ be contained in the convex hull

of S, i.e. there are finitely many P1, . . . , PN ∈ S such that Q̃ is convex combination of the
form

Q̃ =
N∑
i=1

αiPi

Suppose that there exists Q such that for all P

∑
x∈X

P (x) lg
Q̃(x)
Q(x)

= D(P ||Q)−D(P ||Q̃) < 0.

Then we also have
N∑
i=1

αiD(Pi||Q) <
N∑
i=1

αiD(Pi||Q̃)

which is of course a contradiction to (58). Thus

inf
Q

sup
P∈S

(∑
x∈X

P (x) lg
Q̃(x)
Q(x)

)
≥ 0,

and this proves the lemma.

As said above, Lemma 2 directly implies Theorem 6, however, verification that Q∗

belongs a convex hall of S might be quite troublesome. Therefore, we relax this condition
such that Theorem 6 still holds.

Corollary 1 Suppose that there exists a probability distribution Q̃ in the convex hull of S
such that

max
xn1

∣∣∣∣∣lg Q∗(xn1 )
Q̃(xn1 )

∣∣∣∣∣ ≤ C, (59)

then still

Rn(S) ≥ lg dn − C − sup
P∈S

∑
xn1

P (xn1 ) lg
sup
P∈S

P (xn1 )

P (xn1 )

+O(1). (60)

Proof. The proof of (60) is a trivial extension of that of (27). In fact, the maximal deviation
can be bounded by

sup
P∈S

∣∣∣∣∣∣
∑
xn1

P (xn1 ) lg
Q∗(xn1 )
Q̃(xn1 )

∣∣∣∣∣∣ ≤ C
for some constant C.
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4.2 Proof of Theorem 9

We now study a class of binary memoryless sources M0 and show that

Rn(M0) = R∗n(M0) +O(1) =
1
2

lg n+O(1). (61)

By Theorem 6 we have to prove that cn(M0) defined in (28) is O(1) and that Q∗ is contained
in the convex hull of M0. Observe that cn(M0)

cn(M0) =
n∑
k=0

(
n

k

)
pk(1− p)n−k lg

(
k
n

)k (
1− k

n

)n−k
pk(1− p)k

.

Lemma 8 For every p ∈ [0, 1] we have

n∑
k=0

(
n

k

)
pk(1− p)n−k lg

(
k
n

)k (
1− k

n

)n−k
pk(1− p)k

≤ 1
log 2

.

Proof. By using the inequality log x ≤ x− 1 we get

log

(
k
n

)k (
1− k

n

)n−k
pk(1− p)n−k

= k log
k/n

p
+ (n− k) log

1− k/n
1− p

≤ k

(
k/n

p
− 1

)
+ (n− k)

(
1− k/n

1− p
− 1)

)
= n

(
(k/n)2

p
+

(1− k/n)2

1− p
− 1

)
.

Since

n
n∑
k=0

(
n

k

)
pk(1− p)n−k (k/n)2

p
= np+ (1− p),

we find

n
n∑
k=0

(
n

k

)
pk(1− p)n−k

(
(k/n)2

p
+

(1− k/n)2

1− p
− 1

)
= np+ 1− p+ n(1− p) + p− n = 1,

which completes the proof of the lemma.

In view of this we conclude that that for memoryless sources

cn(M0) = sup
P∈S

∑
xn1

P (xn1 ) lg
sup

P∈CM0

P (xn1 )

P (xn1 )

 = O(1).
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On passing we observe that we can be much more precise if we consider just p with
a ≤ p ≤ b, where 0 < a < b < 1. Here we have uniformly for a ≤ p ≤ b as n→∞ (cf. [4])

n∑
k=0

(
n

k

)
pk(1− p)n−k lg

(
k
n

)k (
1− k

n

)n−k
pk(1− p)k

=
1
2

+O
(
n−1/2

)
.

Note that this relation is not true if a = 0 or b = 1 (cf. [30]).
In order to complete the proof of Theorem 9 we must establish that Q∗ belongs to the

convex hull of M0. By Corollary 1 it suffices to prove the following lemma.

Lemma 9 Suppose that 0 ≤ a < b ≤ 1 are given and set Ma,b
0 = {Pp : a ≤ p ≤ b}.

Furthermore, let Q∗ be the maximum likelihood distribution corresponding to Ma,b
0 .

There exists a convex combination Q̃ of the probability distributions Pk/n (an ≤ k ≤ bn)
such that

max
xn1

∣∣∣∣∣lg Q∗(xn1 )
Q̃(xn1 )

∣∣∣∣∣ = O(1).

as n→∞.

Proof. We start by considering the case a = 0 and b = 1. Recall that

sup
0≤p≤1

pk(1− p)n−k =
(
k

n

)k (
1− k

n

)n−k
.

Our goal is to show that there exist positive numbers βl such that the sums

sk :=
n∑
l=0

βll
k(n− l)n−k

satisfy

max
0≤k≤n

∣∣∣∣lg sk
kk(n− k)n−k

∣∣∣∣ = O(1). (62)

Then we just have to define Q̃ by normalizing sk.
We now show that we can use

βk :=

(
n∑
l=0

(
l

k

)k ( n− l
n− k

)n−k)−1

.

It is an easy exercise to show that βk can be written as

βk =
√

n

2πk(n− k)

(
1 +O

(
n

k(n− k)

))
.
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Hence, after some algebra we arrive at

sk
kk(n− k)n−k

=
n∑
l=0

βl

(
l

k

)k ( n− l
n− k

)n−k

= 1 +
n∑
l=0

(βl − βk)
(
l

k

)k ( n− l
n− k

)n−k

= 1 +O

(√
n

k(n− k)

)
and this proves (62).

Now suppose that 0 < a < b < 1. We have

sup
p∈[a,b]

pk(1− p)n−k =


ak(1− a)n−k for 0 ≤ k < na,(
k
n

)k (
1− k

n

)n−k
for na ≤ k ≤ nb,

bk(1− b)n−k for nb < k ≤ n.

Now our goal is to show that there exist positive numbers βl (an ≤ l ≤ bn) such that the
sum

sk :=
∑

an≤l≤bn
βll

k(n− l)n−k

satisfies
max

an≤k≤bn

∣∣∣∣lg sk
kk(n− k)n−k

∣∣∣∣ = O(1), (63)

max
0≤k<an

∣∣∣∣lg sk
(an)k(n− an)n−k

∣∣∣∣ = O(1), (64)

and
max

bn<k≤n

∣∣∣∣lg sk
(bn)k(n− bn)n−k

∣∣∣∣ = O(1). (65)

We define βk by

βk :=

{
1/
√
n for dane < k < bbnc,

1 for k = dane and k = bbnc.
First, (64) follows from

(an)k(n− an)n−k ≤ (an)k(n− an)n−k +
1√
n

∑
l>an

lk(n− l)n−k

= O((an)k(n− an)n−k)

if k ≤ an. Observe that (65) is just the symmetric case. Thus it remains to show (63).
It is clear that the mapping l 7→ lk(n − l)n−k attains its maximum for l = k. A local

expansion (around this optimal value) shows that for every fixed 0 < a < b < 1 there exist
two positive constants c1, c2 such that

c1

√
nkk(n− k)n−k ≤

∑
an≤k≤bn

lk(n− l)n−k ≤ c2

√
nkk(n− k)n−k
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for all k with an ≤ k ≤ bn. Thus, (63) follows.
Finally, if a = 0 and b < 1 or a > 1 and b = 1, then we have to combine the two

preceding cases. This completes the proof.

4.3 Proof of Theorem 10

Let us now consider a class of binary Markov sources M1 and establish Theorem 10, that
is,

Rn(M0) = R∗n(M0) +O(1) = lg n+O(1). (66)

As in the case of memoryless sources we refer to Theorem 6 and Corollary 1. We start with
the following lemma.

Lemma 10 There exists a constant C > 0 such that for any transition matrix P

∑
xn1

P (xn1 ) lg
S∗(xn1 )
P (xn1 )

≤ C

where
S∗(xn1 ) = sup

pij

(
p̂ pk00

00 p
k01
01 p

k10
10 p

k11
11

)
.

Proof. By Lemma 6 it suffices to prove that

E
[
lg
S∗∗(xn1 )
P (xn1 )

]
=
∑
xn1

P (xn1 ) lg
S∗∗(xn1 )
P (xn1 )

≤ C ′, (67)

where

S∗∗(xn1 ) :=
k̂

k̃
k01

k00+k01
+ k10

k10+k11

(
k00

k00 + k01

)k00
(

k01

k00 + k01

)k01
(

k10

k10 + k11

)k10
(

k11

k10 + k11

)k11

.

We split the sum (67) into five natural terms S1, . . . , S5 with the first term being

S1 =
∑
xn1

P (xn1 ) lg
k̂

k̃

p̂
(

k01
k00+k01

+ k10
k10+k11

) ≤ 1
log 2

∑
xn1

P (xn1 )
1
p̂
.

From the generating function G(z) computed in (51) we conclude that

∑
n≥1

∑
xn1

P (xn1 )
1
p̂
zn = z

1− p11z + p10z + 1− p00z + p01z

1− (p00 + p11)z + (p00p11 − p01p10)z2

=
2z

1− z

and hence S1 ≤ 2/ log 2.
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To analyze the other terms of lgS∗∗(xn1 )/P (xn1 ), we introduce the following notations:

En[f(k)] :=
∑
xn1

P (xn1 )f(k) =
∑
k

Nk p̂
∏

1≤i,j≤1

p
kij
ij · f(k),

and (for a, b ∈ {0, 1})

Ea,b
n [f(k)] :=

∑
xn1 ,x1=a,xn=b

P (xn1 )f(k) =
∑
k

Na,b
k p̂

∏
1≤i,j≤1

p
kij
ij · f(k),

where k is an abbreviation for k = (k00, k01, k10, k11). (In the sequel we will also make use
of the short hand notations E·,0n = E0,0

n + E1,0
n and E·,1n = E0,1

n + E1,1
n .) From

k00

k00 + k01
N0,0

k = N0,0
k′ ,

k00

k00 + k01
N1,0

k = N1,0
k′

and
k00

k00 + k01 − 1
N0,1

k = N0,1
k′ ,

k00

k00 + k01 − 1
N1,1

k = N1,1
k′ ,

where k′ = (k00 − 1, k01, k10, k11) (and where we assume that k00 > 0), we derive

E0,0
n

[
k00

k00 + k01
f(k)

]
= p00 E0,0

n−1[f(k00 + 1, k01, k10, k11)],

a corresponding identity for E0,1
n , and slightly modified identities for E1,0

n and E1,1
n . Since

1/(k00 + k01 − 1) ≤ 1/(k00 + k01) we also have

En

[
k00

k00 + k01
f(k)

]
≤ p00 En−1[f(k00 + 1, k01, k10, k11)]

if f ≥ 0.
In particular, by using the inequality log x ≤ x−1 we obtain the following for the second

sum S2

S2 = En

[
k00 lg

k00

p00(k01 + k10)

]
≤ 1

log 2
En

[
k2

00

p00(k00 + k01)
− k00

]

≤ 1
log 2

(En−1[k00 + 1]−En[k00]) .

In view of (51) these terms can be handled with the help of generating functions. By
differentiating the generating function G(z) derived in (51) with respect to p00, multiplying
by p00 and setting p00 + p01 = 1 and p10 + p11 = 1 we find

∑
n≥0

(En[k00]) zn = p0p00
z2

(1− z)2
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and consequently En[k00] = p0p00(n − 1). (Similarly, we find En[k01] = p0p01(n − 1),
En[k10] = p1p10(n− 1), and En[k11] = p1p11(n− 1)). This immediately implies

En−1[k00 + 1]−En[k00] = p0p00(n− 2) + 1− p0p00(n− 1) = 1− p0p00 ≤ 1

and, hence, S2 ≤ 1/ log 2.
The next sum

S3 = En

[
k01 lg

k01

p01(k00 + k01)

]
is much more delicate. We have to split it into three terms:

S3,1 = E·,0n

[
k01 lg

k01

p01(k01 + k10)

]
,

S3,2 = E·,1n

[
1[k01≤1]k01 lg

k01

p01(k01 + k10)

]
,

S3,3 = E·,1n

[
1[k01>1]k01 lg

k01

p01(k01 + k10)

]
.

By using (again) the inequality log x ≤ x− 1 and the identity

k2
01

k00 + k01
=

k2
00

k00 + k01
− k00 + k01

we obtain

S3,1 ≤
1

log 2
E·,0n

[
k2

01

p01(k00 + k01)
− k01

]

=
1

p01 log 2

(
E·,0n

[
k2

00

(k00 + k01)

]
−E·,0n [k00] + E·,0n [k01]− p01E·,0n [k01]

)

=
1

p01 log 2

(
p00E

·,0
n−1[k00 + 1]−E·,0n [k00] + p00E·,0n [k01]

)
.

The second sum S3,2 can be handled explicitly.‡ (We also assume that n > 2. The cases
n = 1 and n = 2 are easy to check separately.)

S3,2 = E0,1
n

[
1[k01=1] lg

1
p01(k00 + 1)

]
+ E1,1

n

[
1[k01=1] lg

1
p01(k00 + 1)

]
= S′3,2 + S′′3,2.

For the sake of brevity we just consider the first term S′3,2. Note that any source sequence
xn1 with x1 = 0, xn = 1 and k01 = 1 is of the form xn1 = 0`1n−` with 1 ≤ ` ≤ n− 1. Thus

S′3,2 =
p01p10

(p01 + p10) log 2

n−1∑
`=1

p`−1
00 pn−`−1

11 log
1
`p01

.

‡This is in fact crucial because it would not be bounded (but of order logn) if we use the inequality

log x ≤ x− 1 here.
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If p11 ≤ p00 we get (by using the inequality p00 = 1− p01 ≤ e−p01)

S′3,2 ≤
p01p10

(p01 + p10) log 2
pn−2

00

(
(n− 2) log

1
(n− 2)p01

+O(n− 2)
)

≤ p10

(p01 + p10) log 2
(n− 2)p01e

−(n−2)p01

(
log

1
(n− 2)p01

+O(1)
)

= O(1).

If p00 ≤ p11 then 1
p01
≤ 1

p10
and consequently

S′3,2 ≤
p01p10

(p01 + p10) log 2
pn−2

11

(
(n− 2) log

1
(n− 2)p10

+O(n− 2)
)

≤ p01

(p01 + p10) log 2
((n− 1)p10)e−(n−2)p10

(
log

1
(n− 2)p10

+O(1)
)

= O(1).

Thus, the second sum S3,2 is bounded.
The third sum S3,3 can be manipulated in a similar manner as the first sum, namely

S3,3 ≤
1

log 2
E·,1n

[
1[k01>1]

k2
01

p01(k00 + k01)
− k01

]

=
1

p01 log 2

(
E·,1n

[
1[k01>1]

k2
00

(k00 + k01)

]

−E·,1n [1[k01>1]k00] + p00E·,1n [1[k01>1]k01]

)
.

However, we must be more careful. We start by considering the following term:

E·,1n

[
1[k01>1]

k2
00

(k00 + k01)

]
= E·,1n

[
1[k01>1,k00>0]

k2
00

(k00 + k01 − 1)

]

−E·,1n

[
1[k01>1,k00>0]

k2
00

(k00 + k01)(k00 + k01 − 1)

]

= p00E
·,1
n−1

[
1[k01>1](k00 + 1)

]
− p00E

·,1
n−1

[
1[k01>1]

k00 + 1
(k00 + k01 + 1)

]
= p00E

·,1
n−1

[
1[k01>1](k00 + 1)

]
−p00E

·,1
n−1

[
1[k01>1]

]
+ p00E

·,1
n−1

[
1[k01>1]

k01

(k00 + k01 + 1)

]
.

Since k01 > 1 we have k01 ≤ 2(k01 − 1) and consequently

E·,1n−1

[
1[k01>1]

k01

(k00 + k01 + 1)

]
≤ 2E·,1n−1

[
1[k01>1]

k01 − 1
(k00 + k01 − 1)

]
= 2E·,1n−1

[
1[k01>1]

]
− 2E·,1n−1

[
1[k01>1]

k00

(k00 + k01 − 1)

]
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= 2E·,1n−1

[
1[k01>1]

]
− 2p00E

·,1
n−2

[
1[k01>1]

]
= 2Pn−1(xn−1 = 1, k01 > 1)− 2p00Pn−2(xn−2 = 1, k01>1)

= 2Pn−2(xn−2 = 1, k01 > 1)p11 + 2Pn−2(xn−2 = 0, k01 > 0)p01

−2p00Pn−2(xn−2 = 1, k01 > 1)

≤ 2 (Pn−2(xn−2 = 1, k01 > 1) + Pn−2(xn−2 = 0, k01 > 0)) p01

≤ 2p01.

Next, if k01 = 1 and xn = 1 then there is only one 0-sequence in xn1 . Hence, there is a natural
bijection between words of length n and n − 1 of that kind (by deleting resp. inserting a
zero if one assumes that there is a least one zero in the longer word xn1 ). Consequently

E·,1n
[
1[k01≤1]k00

]
− p00E

·,1
n−1

[
1[k01≤1]k00

]
= E·,1n

[
1[k01=1,k00>0]k00

]
− p00E

·,1
n−1

[
1[k01=1]k00

]
= p00E

·,1
n−1

[
1[k01=1](k00 + 1)

]
− p00E

·,1
n−1

[
1[k01=1]k00

]
= p00E

·,1
n−1

[
1[k01=1]

]
= p00E

·,1
n−1

[
1[k01≤1]k01

]
.

Furthermore we have

E·,1n−1

[
1[k01=1]

]
−E·,1n

[
1[k01=1]

]
= Pn−1(xn−1 = 1, k01 = 1)− Pn(xn = 1, k01 = 1)

= Pn−1(xn−1 = 1, k01 = 1)

−Pn−1(xn−1 = 1, k01 = 1)p11 − Pn−1(xn−1 = 0, k01 = 0)p01

= p10Pn−1(xn−1 = 1, k01 = 1) +O(p01)

= p10

p0

n−2∑
`=1

p`−1
00 p01p

n−l−2
11 + p1

n−2∑
`=1

n−1−`∑
j=1

p`+j−2
11 p10p01p

n−`−j−2
00

+O(p01)

≤ p10

(
p0p01

1
1− p11

+ p1p10p01
1

(1− p11)2

)
+O(p01)

= p01 +O(p01) = O(p01)

This implies

p00E
·,1
n−1

[
1[k01>1]k00

]
−E·,1n

[
1[k01>1]k00

]
+ p00E·,1n

[
1[k01>1]k01

]
= p00E

·,1
n−1 [k00]−E·,1n [k00] + p00E·,1n [k01] +O(p01).

Thus,

S3,3 ≤
1

p01 log 2

(
p00E

·,1
n−1

[
1[k01>1](k00 + 1)

]
− p00E

·,1
n−1[1[k01>1]] +O(p01)
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−E·,1n [1[k01>1]k00] + p00E·,1n [1[k01>1]k01]
)

=
1

p01 log 2

(
p00E

·,1
n−1 [k00]−E·,1n [k00] + p00E·,1n [k01] +O(p01)

)
.

Now, we add up the two upper bounds for S3,1 and S3,3, note that E·,0n−1[1] = Pr{xn−1 =
0} = p0, and obtain

S3,1 + S3,3 ≤
1

p01 log 2

(
p00En−1 [k00] + p00E

·,0
n−1[1]

−En [k00] + p00En [k01] +O(p01)
)

=
1

p01 log 2

(
p0p

2
00(n− 2) + p0p00 − p0p00(n− 1)

+p0p00p01(n− 1) +O(p01)
)

=
1

p01 log 2
(p0p00p01 +O(p01))

= O(1)

Thus, S3 = O(1), too. The remaining two terms are completely symmetric to S2 and S3

and are (also) bounded. This completes the proof of the lemma.

To complete the proof of Theorem 10 we need to verify condition (59) of Corollary 1.

Lemma 11 There exists a convex combination Q̃ of the probability distributions induces by
Markov sources such that as n→∞

max
xn1

∣∣∣∣∣lg Q∗(xn1 )
Q̃(xn1 )

∣∣∣∣∣ = O(1).

Proof (Sketch). In view of Lemma 6 we can replace the real distribution Q∗ by Q∗∗ which
is defined as

Q∗∗(xn1 ) =
1
dn

k̂

n

(
k00

k̃0

)k00
(
k01

k̃0

)k01
(
k10

k̃1

)k10
(
k11

k̃1

)k11

=
S∗∗(xn1 )
dn

,

where k̃0 = k00 + k01, k̃1 = k10 + k11, and

dn =
∑
k

Nk
k̂

n

(
k00

k̃0

)k00
(
k01

k̃0

)k01
(
k10

k̃1

)k10
(
k11

k̃1

)k11

.

Now it suffices to prove that there are βk > 0 such that the numbers

sk :=
∑

l

βl
l̂

n

(
l00

l̃0

)k00
(
l01

l̃0

)k01
(
l10

l̃1

)k10
(
l11

l̃1

)k11

43



satisfy
C1 ≤ sk ≤ C2

for some absolute constants C1, C2 > 0. It turns out that one can use

βk :=

∑
l

l̂

n

(
l00

l̃0

)k00
(
l01

l̃0

)k01
(
l10

l̃1

)k10
(
l11

l̃1

)k11
−1

.

The calculations are quite similar to those of Lemma 9 but much more involved. We leave
the details to the reader.

4.4 Proof of Lemma 3

We start with a recollection of some definitions. Let q = (q0, q1, q2, . . .) be a probability
distribution on the non-negative integers. A renewal process (with law q) generates a
random 0-1-sequence in the following way. It starts with a “1” followed by a series of 0s of
length α0 (with probability qα0) followed by a 1. Then there is again a series of 0s of length
α1(with probability qα1 and independent of α0) followed by a 1 and so on.

Certainly, such a renewal process induces (marginal) distributions on binary sequences
of length n. Suppose that xn1 is of the form

xn1 = 0α010α11 · · · 10αr10k
∗
, (68)

and let km denote the number of αi with αi = m. Then

P (xn1 ) = qk0
0 q

k1
1 · · · q

kn−1

n−1 (1− q0 − q1 − · · · − qk∗−1).

Note that
k0 + 2k1 + · · ·+ nkn−1 + k∗ = n

which is the integer partition of n.
To proceed we need a good approximation for the maximum likelihood distribution. We

state it in the next lemma that is easy to prove (cf. [11]), so we omit it here.

Lemma 12 Let R0 denote the set of all probability distributions on binary sequences of
length n induced by renewal processes. Suppose that xn1 is of the form (68) and let k0, k1, . . . , kn−1

and k∗ as above and set k′ = k0 + · · ·+ kk∗−1. Then

sup
P∈R0

P (xn1 ) =
n−1∏
i=0

(
ki

k + 1

)ki (
1 +

1
k − k′

)k−k′ (
1− k′

k + 1

)
.

Consequently, there exist two constants C1, C2 > 0 such that the ratio between supP∈R0
P (xn1 )

and
n−1∏
i=0

(
ki
k

)ki (
1− k′

k

)
is contained in the interval [C1, C2].
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We want to prove Lemma 3 that we repeat below for the reader’s convenience.

Lemma 3 For all probability distributions P ∈ R0 we have

cn(R0) =
∑
xn1

P (xn1 ) lg
supP∈R0

P (xn1 )
P (xn1 )

≤
1 + 2

e

log 2
√√

2
3 + 2

e

·
√
n+O(1) ≈ 2.278 ·

√
n. (69)

Proof. For reader’s convenience, let Kn denote the set of all n-tuples k = (k0, k1, . . . , kn−1)
of non-negative integers such that k0 + 2k1 + · · ·nkn−1 ≤ n. Furthermore, for fixed q =
(q0, . . . , qn−1) we will use the notation

En[f(k)] :=
∑

k∈Kn

(k0 + · · ·+ kn−1)!
k0! · · · kn−1!

n−1∏
i=0

qkii · (1− q0 − · · · − qk∗−1) f(k).

In what follows we will use the relation

En

[
ki

k0 + · · ·+ kn−1
f(k0, . . . , ki, . . .)

]
= qiEn−i−1[f(k0, . . . , ki + 1, . . .)] (70)

which is a direct consequence of the above definition. We will also use the inequality

En−1[ki] ≤ En[ki] (71)

that can be proved in the following way: Set q(x) = q0x+ q1x
2 + · · ·+ qn−1x

n. Then

G(x, u) :=
∑
n≥0

∑
xn1

P (xn1 )uki xn =
1− q(x)

(1− x)(1− q(x)− (u− 1)qixi+1)
.

Consequently
dG(x, u)
du

|u=1 =
∑
n≥0

(Enki)xn =
qix

i+1

(1− x)(1− q(x))

and ∑
n≥0

(En[ki]−En−1[ki])xn =
qix

i+1

1− q(x)
.

Since the function qix
i+1/1− q(x) has only non-negative Taylor coefficients, (71) follows

immediately.
Now we start with the proof of (69). By Lemma 12 it suffices to use

n−1∏
i=0

(
ki
k

)ki (
1− k′

k

)
instead of supP∈R0

P (xn1 ). Thus, we will have to deal with the following sum (here and in
what follows k is always an abbreviation for k0 + · · ·+ kn−1):

cn(R0) =
∑
xn1

P (xn1 )

lg
1− k0+···+kk∗−1

k

1− q0 − · · · − qk∗−1
+
n−1∑
i=0

ki lg
ki
qik

 .
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By using the inequality log x ≤ x we first find

∑
xn1

P (xn1 ) lg
1− k0+···+kk∗−1

k

1− q0 − · · · − qk∗−1
≤

∑
k∈Kn

k!
k0! · · · kn−1!

n−1∏
i=0

qkii ·
(

1− k0 + · · ·+ kk∗−1

k

)
:= An

Now the generating function of the last sum is given by

A(z) :=
∑
n≥0

Anx
n =

1− q(x2)
(1− x)(1− q(x))

.

Since q(1) ≤ 1 and the degree of q(x) is ≤ n it follows that the Taylor coefficients of
(1− q(x2))/((1− x)(1− q(x))) are bounded by 2.

Next consider the sum
S2 =

∑
xn1

P (xn1 )ki lg
ki
qik

.

By using the weights P (xn1 )ki/En[ki] and the concavity of the logarithm it follows from
Jensen’s inequality that

S2 =
∑
xn1

P (xn1 )ki lg
ki
qik
≤ En[ki] · lg

En

[
k2
i

qik

]
En[ki]

 .
By (70) and (71) we have

En

[
k2
i

qik

]
= En−i[ki] + 1 ≤ En[ki] + 1,

and consequently ∑
xn1

P (xn1 )ki lg
ki
qik
≤ En[ki] · lg

(
1 +

1
En[ki]

)
.

Thus, we we are led to estimate the sum

n−1∑
i=0

En[ki] · lg
(

1 +
1

En[ki]

)
.

Since
∑n−1
i=0 (i+ 1)Enki ≤ n we obtain an upper bound by determining the maximum of the

sum
n∑
i=1

yi lg
(

1 +
1
yi

)
=

1
log 2

n∑
i=1

yi log
(

1 +
1
yi

)
provided yi ≥ 0 and

∑n
i=1 iyi ≤ n. By Lagrange’s method we have to solve the system of

equations

log
(

1 +
1
yi

)
− 1

1 + yi
− λi = 0,
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where
∑n
i=1 iyi = n′ ≤ n. For this purpose consider the function y = y(x) defined by

log
(

1 +
1
y

)
− 1

1 + y
= x.

It is easy to show that y(x) is asymptotically given by

y(x) ∼ 1√
2x

for x→ 0

and by
y(x) ∼ e−x for x→∞.

Thus, for i < 1/λ we have yi ∼ 1/
√

2λi and for i > 1/λ we get yi ∼ e−λi. Consequently

n∑
i=1

iyi ∼
1/λ∑
i=1

√
i/
√

2λ+
∑
i>1/λ

ie−λi

∼ 1√
2λ

∫ 1/λ

0

√
xdx+

∫ ∞
1/λ

xe−λxdx

∼ 1√
2λ

2
3

(
1
λ

)3/2

+
2/e
λ2

=

(√
2

3
+

2
e

)
1
λ2

= n′

and
n∑
i=1

yi log
(

1 +
1
yi

)
∼
(

1 +
2
e

)
1
λ
.

Hence we have to choose

λ =

√√
2

3 + 2
e√

n′

and finally get the proposed bound. This completes the proof of Lemma 3.
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