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Abstract In the Minimal Supersymmetric Standard Model
heavy superparticles introduce large logarithms in the cal-
culation of the lightest CP-even Higgs-boson mass. These
logarithmic contributions can be resummed using effective
field theory techniques. For light superparticles, however,
fixed-order calculations are expected to be more accurate. To
gain a precise prediction also for intermediate mass scales,
the two approaches have to be combined. Here, we report on
an improvement of this method in various steps: the inclu-
sion of electroweak contributions, of separate electroweakino
and gluino thresholds, as well as resummation at the NNLL
level. These improvements can lead to significant numerical
effects. In most cases, the lightest CP-even Higgs-boson
mass is shifted downwards by about 1 GeV. This is mainly
caused by higher-order corrections to the MS top-quark mass.
We also describe the implementation of the new contributions
in the code FeynHiggs.

1 Introduction

With the discovery of the Higgs boson by the ATLAS [1] and
CMS [2] experiments at the CERN Large Hadron Collider
the Standard Model (SM) has been completed; there is, how-
ever, still ample room for Beyond Standard Model (BSM)
physics. One of the best motivated and studied BSM models
is the Minimal Supersymmetric Standard Model (MSSM)
realizing the concept of supersymmetry (SUSY). It extends
the Higgs sector of the SM by a second complex doublet
leading to five physical Higgs particles (h, H , A, and H±)
and three (would-be) Goldstone bosons. The light CP-even
state h can be identified with the discovered boson. At the
tree level, the Higgs sector can be conveniently parametrized
by the mass of the A boson, MA, and the ratio of the vacuum
expectation values of the two doublets, tan β = v2/v1.
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So far, no direct hints for SUSY particles have been found.
Still, the SUSY parameter space can be constrained indirectly
by precision observables, with the Higgs-boson mass consti-
tuting an important precision observable on its own. Since the
Higgs mass Mh is very sensitive to quantum effects via loop
contributions, much work has been dedicated to their cal-
culation within the MSSM. The full one-loop result [3–5],
the dominant two-loop corrections [6–20] as well as partial
three-loop results [21–23] are known. For heavy SUSY par-
ticles, fixed-order calculations suffer from large logarithms
originating in a potentially huge hierarchy between the elec-
troweak scale and the SUSY scale. Therefore, effective field
theory (EFT) calculations have been developed to resum
these logarithmic contributions [17,24,25]. Recent works
have refined these methods to include gaugino/higgsino
thresholds [26–28] and to allow for light non-standard Higgs
particles [29]. Furthermore, resummation at the next-to-
next-to-leading logarithm (NNLL) level has been adressed
in [28,30,31].

These computations, however, do not capture the effect of
terms that would be suppressed only in the case of a heavy
SUSY scale. Thus, fixed-order calculations are expected to be
more accurate for low SUSY scales. To gain the most accurate
prediction for intermediate SUSY scales, both approaches
have to be combined. This allows also to profit from the other
advantages of the diagrammatic approach: the easy inclusion
of many different SUSY scales, and the full control over
the Higgs-boson self-energies, which are needed for other
observables (e.g. production and decay rates). The authors
of [32] first realized the idea of combining the diagrammatic
and the EFT approach and implemented the method into the
publicly available program FeynHiggs [8,32–36], which
also contains the complete fixed-order one-loop result as well
as dominant two-loop results; NLL resummation was done
for the strong and top Yukawa coupling enhanced logarith-
mic terms beyond the two-loop order. Here, we report on an
extension of this work in a threefold respect: the inclusion
of the electroweak contributions, the inclusion of separate
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electroweakino and gluino thresholds, and resummation of
logarithms proportional to the top Yukawa coupling and the
strong gauge coupling at the NNLL level.

In Sect. 2, we outline the EFT calculation, focusing on
the ingredients needed to include electroweak contributions,
gaugino/higgsino thresholds and NNLL resummation. In
Sect. 3, we describe how the result of the EFT calcula-
tion is consistently combined with the fixed-order diagram-
matic result. In Sect. 4, we discuss the implementation of
the improvements in FeynHiggs. In Sect. 5, we present a
numerical analysis showing the impact of the improved ver-
sion on the calculation of Mh, with conclusions in Sect. 6.

2 Effective field theory calculation

In the case of heavy SUSY particles, large logarithms appear
in explicit diagrammatic calculations making a fixed-order
calculation an unreliable tool. The origin of this problem is
the large hierarchy between the electroweak scale and the
SUSY scale. Effective field theory techniques allow one to
resum these large logarithms to all orders and thus get stable
predictions.

In the simplest EFT framework, all SUSY particles are
assumed to share a common mass scale MS (this assumption
will be relaxed below), where MS is the stop mass scale,

MS = √
mt̃1mt̃2 , (1)

and mt̃1,2
are the stop masses. This scale is furthermore

assumed to be much heavier than the electroweak scale.
Below MS, all SUSY particles are integrated out from the
full theory. Thus, the low energy effective theory below the
SUSY scale is the SM.

The effective couplings of the EFT are fixed by matching
to the full MSSM at the matching scale MS (in the sim-
plest case of an effective SM below MS, this concerns only
the Higgs self-coupling λ). All of the other couplings of the
EFT are fixed by matching them to physical observables at
the electroweak scale [37], e.g. the top Yukawa coupling is
extracted from the top-quark pole mass.

In the EFT framework, we calculate the Higgs mass via
the relation

(MEFT
h )2 = λ(Mt)v

2, (2)

with the self-coupling λ evaluated at the top-quark pole mass
Mt and with the electroweak vacuum expectation value v (see
[38] and references therein). Since all SUSY particles are
integrated out at the electroweak scale, this ensures that all
large logarithms which would appear explicitly in a diagram-
matic calculation in the full model framework are contained

in λ(Mt). λ(Mt) is obtained via renormalization group equa-
tions (RGEs) from λ(MS), which is determined by matching
λ to the full MSSM at MS. The running between MS and Mt

corresponds to a resummation of large logarithms.
For the resummation of leading logarithms (LL), one-loop

RGEs and tree-level matching conditions are needed; for
the resummation of leading and next-to-leading logarithms
(NLL), two-loop RGEs and one-loop matching conditions,
and, accordingly, for the resummation of leading, next-to-
leading and next-to-next-to-leading logarithms, three-loop
RGEs and two-loop matching conditions.

2.1 Electroweak contributions

As a first improvement with respect to [32], we include elec-
troweak contributions in the resummation procedure at the
NLL level. Correspondingly, we use the full two-loop RGEs
of the SM (see [37] and references therein), including terms
proportional to the electroweak gauge couplings g and g′ (for
SU (2) and U (1)), to evolve the SM couplings.

Furthermore, the threshold correction of the Higgs self-
coupling at the SUSY scale has to be extended at the one-loop
level by adding the various electroweak one-loop contribu-
tions,

λSM(MS) = 1

4
(g2 + g′2) cos2(2β) + �stopλ + �heavyHλ

+ �EWinoλ + �DR→MSλ. (3)

�stopλ is the contribution from the top and stop sector
(extended by electroweak contributions in comparison to
[32]); �heavyHλ, the contribution from the heavy non-SM
Higgs bosons; �EWinoλ the contribution from charginos and
neutralinos. The term �DR→MSλ accounts for the fact that
the tree-level contribution is expressed in terms of MS-
renormalized gauge couplings of the SM and not in terms
of DR-renormalized gauge couplings of the MSSM. All of
these threshold corrections have been derived in previous
work [17,24,27,28]. We use the expressions given in [28].
Accordingly, also the relations used to extract SM gauge
and Yukawa couplings from physical observables at Mt must
include electroweak one-loop corrections [37]. This is espe-
cially relevant for the MS top-quark mass, respectively the
top Yukawa coupling, as will be discussed later in the section
on results.

2.2 Gaugino–higgsino thresholds

The assumption of a common mass scale for all SUSY parti-
cle is quite limiting. To allow for electroweakinos (charginos
and neutralinos) lighter than MS (but still much heavier
than the electroweak scale), we introduce an additional elec-
troweakino threshold Mχ . We assume that all charginos and
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neutralinos are nearly mass degenerate (having the mass
Mχ ),

Mχ = M1 = M2 = μ with MZ � Mχ ≤ MS, (4)

where M1 and M2 are the electroweak gaugino soft-breaking
masses and μ is the Higgsino mass parameter.

This means that at MS all SUSY particles but charginos
and neutralinos are integrated out. The corresponding EFT
below MS, the split model, is the SM with charginos and
neutralinos added. The corresponding effective Lagrangian
reads [28]

Lsplit = LSM+· · ·− 1

2
Mχ W̃ W̃ − 1

2
Mχ B̃ B̃ − MχH̃2 · H̃1

− 1√
2
H†(g̃2uσ

aW̃ a + g̃1u B̃)H̃u

− 1√
2
H · (−g̃2dσ

aW̃ a + g̃1d B̃)H̃d + h.c. (5)

The bino field is denoted by B̃, the wino field by W̃ , and
the higgsino fields by H̃u,d . The ellipsis stands for the asso-
ciated kinetic terms. The effective Higgs–Higgsino–gaugino
couplings are labeled g̃1u,.... The number in the subscript
refers to the symmetry groupU (1) or SU (2), the letter to the
involved Higgs doublet. These effective couplings are deter-
mined by a one-loop matching of the split model to the full
MSSM at the scale MS (for explicit expressions, see [27,28]).
All couplings are evolved between the electroweakino scale
and the stop mass scale using two-loop split model RGEs,
which can be found in [26–28].

At the scale Mχ , all electroweakinos are integrated out,
and the remaining EFT below Mχ is the SM. We match the
SM to the split model using the threshold corrections given
in [27,28], i.e. the term �EWinoλ in Eq. (3) is now part of the
matching condition of λ at Mχ . Also the top Yukawa coupling
receives a threshold correction at the electroweakino scale.
Below Mχ the SM RGEs are used for evolving the couplings.

In addition to allowing for light charginos and neutrali-
nos, we also consider the case of a light gluino. This case is
implemented by introducing an additional threshold marked
by the gluino mass Mg̃ , below which the gluino is integrated
out. The gluino is also assumed to be much heavier than
the electroweak scale such that eventually the SM is recov-
ered as the EFT close to the electroweak scale. However,
no assumption as regards the ordering of Mg̃ and Mχ is
made, i.e. Mg̃ ≤ Mχ as well as Mg̃ > Mχ is allowed.
Since the gluino does not couple directly to the Higgs boson,
no additional one-loop matching condition for λ has to be
considered. The same argument applies for the electroweak
gauge couplings, the Yukawa couplings (in the absence of
sfermions) and the effective Higgs–Higgsino–gaugino cou-
plings of the split model. An explicit calculation also shows

that the strong gauge coupling does not receive a threshold
correction. However, the presence of the gluino in the EFT
above Mg̃ modifies the RGEs (see Appendix A).

2.3 NNLL resummation

As a further improvement, we include resummation at the
NNLL level. This is restricted to the dominating contribu-
tions resulting from the top Yukawa coupling yt , respectively
αt = y2

t /4π , and the strong gauge coupling g3, respectively
αs = g2

3/4π . NNLL resummation requires two-loop thresh-
old corrections. Therefore, we extend Eq. (3) by the corre-
sponding two-loop contributions,

λSM(MS) =1

4
(g2 + g′2) cos2(2β)

+ �stopλ + �heavyHλ + �EWinoλ

+ �DR→MSλ + �αsαtλ + �α2
t
λ. (6)

These terms have already been calculated based on the work
of [20]. The O(αsαt) corrections are given in [28,30]; the
pure top Yukawa correction O(α2

t ) are listed in [30] and in a
slightly different form in [31]. We take use of the expressions
given in [31].

Also the matching conditions for the SM gauge and
Yukawa couplings at Mt have to be extended to include the
O(α2

s , αsαt, α
2
t ) corrections. These are taken from [37]. The

matching condition for the top Yukawa coupling involves
the MS top-quark mass which for NNLL resummation is
obtained from the pole mass by means of the standard QCD
and top Yukawa corrections at the two-loop level [37].

Furthermore, three-loop RGEs are needed for the coupling
constant evolution. Since only NNL logarithms of O(αs, αt)

are resummed in this step, we neglect the electroweak gauge
couplings at the three-loop level of the needed RGEs. All
couplings of electroweakinos, being present below MS for
Mχ < MS, are proportional to the electroweak gauge cou-
plings when their matching conditions at MS are plugged
in. In consequence, their presence has no influence on the
form of the three-loop RGEs at this level of approximation.
Hence for all considered hierarchies at all scales below MS,
the needed three-loop RGEs are just the corresponding SM
RGEs, which are well known [39–45]. The same argument
implies that the two-loop matching conditions of λ do not
have to be modified for Mχ lower than MS.

For NNLL resummation, we have to restrict ourselves to
the case of Mg̃ equal to MS in the resummation procedure,
since three-loop RGEs for the SM with added gluino are
not known. Nevertheless, the numerical effect of a gluino
threshold is so small that it can be safely neglected, as will
be seen in the numerical results.
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3 Combining fixed-order and EFT calculations

The final prediction for the physical Higgs mass is obtained
by adding the fixed-order result achieved by a Feynman-
diagrammatic calculation and the result obtained from the
effective field theory method with appropriate subtractions
in order to avoid double-counting of terms already contained
in the fixed-order expressions (see also [32]),

M2
h = (M2

h )FD(XOS
t ) + �M2

h , (7)

�M2
h = (M2

h )EFT(XDR
t ) − (�M2

h )1L,2L logs(XOS
t )

− (�M2
h )EFT, non-log(XOS

t ), (8)

where X t is the mixing parameter in the stop squared-mass
matrix. (M2

h )FD denotes the one- and two-loop fixed-order
Feynman-diagrammatic result in the on-shell renormaliza-
tion scheme, as implemented in FeynHiggs. �M2

h is the
result of the resummation beyond two-loop order, which con-
sists of the result of the EFT calculation (M2

h )EFT together
with the proper subtraction terms. (M2

h )EFT is obtained via
Eq. (2) from the RGEs and threshold corrections involving
the SUSY parameter X t defined in the DR-scheme at the
scale MS.

The first subtraction term (�M2
h )1L ,2Llogs ensures that the

one- and two-loop logarithms in the OS scheme, already con-
tained in the Feynman-diagrammatic result, are not counted
twice. We extracted these logarithms in the EFT frame-
work by solving the system of RGEs iteratively and con-
verting to the OS scheme afterwards. As a cross-check, we
also identified the one-loop logarithms within the Feynman-
diagrammatic result finding agreement (see Appendix B for
explicit expressions). It should be noted that FeynHiggs
also allows one to choose a MS top-quark mass [8]. If this
option is switched on, we have to subtract the one- and two-
loop logarithms as contained in the Feynman-diagrammatic
result, i.e. as obtained with a MS top-quark mass.

The second subtraction term (�M2
h )EFT, non-log is intro-

duced to cancel all non-logarithmic terms contained in the
EFT result. They originate from the matching conditions
of the Higgs self-coupling and have to be subtracted when
only higher-order logarithmic contributions are added to the
Feynman-diagrammatic result.

A particular issue to be taken care of when combining the
diagrammatic result with the EFT calculation, is the choice of
the renormalization scheme. The EFT calculation uses min-
imal subtraction schemes (DR for scales above MS, MS for
scales below MS) for renormalization. In contrast, in the dia-
grammatic calculation a mixed OS/DR scheme is employed
(see [36] for a detailed description). Consequently, the input
parameters of the EFT calculation are MS/DR parameters,
whereas they are OS parameters in the diagrammatic calcu-
lation [38], as indicated in Eq. (7). The logarithmic subtrac-

tion term takes OS parameters as input, because we want to
avoid double-counting of the one- and two-loop logarithms
in the OS scheme. Also the non-logarithmic subtraction term
takes OS parameters as input, although the non-logarithmic
terms contained in the EFT result are parametrized with DR
parameters. This is owing to the fact that non-logarithmic
terms in the DR scheme lead to logarithmic terms in the
OS scheme; consequently, the OS two-loop logarithms of
the Feynman-diagrammatic result would not be reproduced
when DR parameters were used as input.

We choose to work with OS parameters as principal input.
This means that OS input parameters are converted to DR
parameters when used as input for the EFT calculation. We
restrict ourselves to a one-loop conversion involving only
terms proportional to large logarithms. This conversion is
sufficient to reproduce all large logarithms already contained
in the diagrammatic two-loop result of FeynHiggs. In con-
trast, non-logarithmic terms and higher loop-order terms
would lead to terms in the EFT result which correspond
to unknown higher-order corrections in an OS renormal-
ized diagrammatic result. We, however, intend to add the
resummed logarithms as obtained in the MS/DR scheme to
the diagrammatic result. In consequence, all terms beyond
one-loop logarithms have to be omitted.

The main input parameters of the EFT calculation are the
stop mass scale MS and the stop-mixing parameter X t . The
conversion of MS does not involve any large logarithms [20,
32]; hence, MS is not converted. The conversion of X t at
O(αs, αt) is given by1

XDR
t = XOS

t

[

1 +
(

αs

π
− 3αt

16π
(1 − X2

t /M
2
S)

)
ln

M2
S

M2
t

]

.

(9)

The only other input parameters in our EFT calcula-
tion are the intermediate electroweakino mass scale Mχ and
the gluino mass Mg̃ . Since the diagrammatic FeynHiggs
result so far contains two-loop corrections only in the gauge-
less limit, a conversion of Mχ , which would contain only
terms proportional to the electroweak gauge couplings, is not
needed. Since the gluino mass appears first at the two-loop
level, also a conversion of Mg̃ is not necessary.

A further issue to be discussed is the treatment of tan β.
In the EFT approach, tan β appears only in the matching
condition of λ at the SUSY scale MS. This means that the
DR-renormalized tan β(MS) is required as an input of the
EFT calculation. In the Feynman-diagrammatic calculation,
tan β is also a DR-renormalized quantity. In FeynHiggs,
the corresponding renormalization scale, however, is chosen
to be Mt and not MS [36]. In consequence, we need to relate

1 The X2
t term is missing in [32], but it is properly included in

FeynHiggs and in agreement with [20].
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tan β(Mt), which is used as input of the overall calculation, to
tan β(MS). This presents a problem, since there is no proper
way to define tan β in the EFT below MS, where the non
SM-like Higgs bosons are integrated out. This problem has
already been noted in [24]. We find that without a running
of tan β the EFT calculation does not reproduce the one-
loop result of the Feynman-diagrammatic calculation (see
Appendix B for explicit expressions). This strongly motivates
to evolve tan β between Mt and MS despite the lack of a
rigorous definition. In practice, we regard tan β as a high-
energy parameter with an evolution according to the one-loop
RGE of the MSSM [24],

1

tan2β

d tan2β

d ln Q2 = − 3

16π2 h
2
t , (10)

which is determined by the anomalous dimensions of the
Higgs fields, with contributions only from the top-quark
loops. The parameter ht denotes the MSSM top Yukawa cou-
pling, which at lowest order is related to the SM top Yukawa
coupling yt by

yt = ht/ sin β. (11)

Rewriting the RGE in terms of yt yields

1

1 + tan2β

d tan2β

d ln Q2 = − 3

16π2 y
2
t . (12)

Since only SM entries contribute to the running [24], the
RGE has not to be modified for scales below MS, even if
passing an intermediate threshold. This method reproduces
correctly the one-loop result of the diagrammatic calculation,
as given in Appendix B. In principle, for a NLL resummation
also the two-loop RGE should be employed, which for the
MSSM can be found in [46,47]. It is, however, unclear which
contributions of the two-loop RGE are due to SM particles
and which are due to their supersymmetric partners. From
a practical point of view, numerical checks suggest that the
two-loop running is negligible. Therefore, only the one-loop
RGE is used in this work.

4 Implementation in FeynHiggs

As explained in [32], the shift �M2
h is implemented in

FeynHiggs by adding it with a factor 1/ sin2 β to the φ2φ2

self-energy (φ2 is the CP-even neutral component of the
second Higgs doublet). In this way, the result of the resum-
mation procedure enters also the calculation of other observ-
ables that are available from FeynHiggs.

The improved resummation of large logarithms is avail-
able in FeynHiggs from version 2.12.0 on. In this ver-

sion, the new flag loglevel is introduced to control the
resummation procedure. The various options are

• loglevel=0: no resummation;
• loglevel=1: O(αs, αt) LL and NLL resummation

(corresponds to former looplevel=3);
• loglevel=2: full LL and NLL resummation;
• loglevel=3: full LL, NLL and O(αs, αt) NNLL

resummation.

For loglevel greater than one, electroweak NLO correc-
tions to the MS top-quark mass are switched on automati-
cally.

So far, all matching conditions are only implemented
for degenerate soft-breaking masses, meaning that all soft-
breaking masses are set equal to their corresponding thresh-
old scale. The diagrammatic part of the calculation, how-
ever, captures the effects of non-degeneracy in an exact way
at the one- and two-loop level. The matching condition will
be extended to the non-degenerate case in a future update to
FeynHiggs.

5 Numerical analysis

To analyze the numerical impact of the improved resum-
mations, we first compare the results of the previous
FeynHiggs version 2.11.3 with the new version
2.12.0. As an example case, we look at a scenario where
all soft-breaking masses as well as the Higgsino mass param-
eter are chosen to be equal to MS, together with tβ ≡ tan β =
10. The results of FeynHiggs2.11.3 are obtained with
switched on O(αs, αt) LL and NLL resummation. Also
the two-loop QCD correction to the MS top-quark mass
are enabled, although no NNLL resummation is performed.
This is done because of the large numerical impact of this
two-loop correction on the Higgs mass calculation (see the
discussion at the end of this section). For the results of
FeynHiggs2.12.0, all improvements discussed above
are activated (loglevel=3).

The comparison is displayed in Fig. 1, where the upper
panel shows Mh as a function of MS for unmixed squarks
with X t/MS = 0 and for the mixed case with X t/MS = 2.
For vanishing stop mixing, we observe a small downwards
shift of �0.8 GeV over the whole MS range, and a bit more for
X t/MS = 2, of �1.7 GeV. The lower panel in Fig. 1 shows
Mh as a function of X t/MS for MS = 1 TeV and MS = 5 TeV.
We observe a smaller shift for negative values of X t; e.g. for
MS = 1 TeV the difference between FeynHiggs2.11.3
and FeynHiggs2.12.0 is ∼0.6 GeV for X t/MS = −2,
whereas it amounts to ∼1.6 GeV for X t/MS = 2.

To explore the origin of these shifts, we examine first
the contribution of the resummation of logarithms propor-

123



499 Page 6 of 10 Eur. Phys. J. C (2016) 76 :499

Fig. 1 Top Mh as a function of MS for X t/MS = 0 (solid) and
X t/MS = 2 (dashed). The results of FeynHiggs2.11.3 (blue) are
compared to the results of FeynHiggs2.12.0 (red). Bottom Mh as a
function of X t/MS for MS = 1 TeV (solid) and MS = 5 TeV (dashed).
The results of FeynHiggs2.11.3 (blue) are compared to the results
of FeynHiggs2.12.0 (red)

tional to the electroweak gauge couplings. The upper panel
of Fig. 2 shows Mh as a function of MS for X t/MS = 0
and X t/MS = 2. The results with a resummation of log-
arithms proportional to the electroweak gauge couplings
(loglevel=2) and without such a resummation are com-
pared (loglevel=1). The latter corresponds, apart from
some minor fixes, to the result of FeynHiggs2.11.3.
Furthermore, the result without resummation of logarithms
proportional to the electroweak gauge couplings but with
electroweak NLO corrections to the MS top mass is shown.
For vanishing stop mixing, we observe a downwards shift of
∼1.2 GeV for MS = 1 TeV. This shift is almost completely
caused by the electroweak NLO corrections to the MS top
mass yielding a reduction of the MS top mass by 1.1 GeV.
This translates directly to a downwards shift of Mh [48]. For
rising MS, the downwards shift caused by the corrections
to the MS top mass is more and more compensated by the
upwards shift caused by the resummed logarithms propor-
tional to the electroweak gauge couplings. For X t/MS = 2,
the behavior is very similar. For MS = 1 TeV, the downwards
shift is larger (∼1.7 GeV) owing to the increased depen-
dence on the MS top mass for nearly maximal stop mixing.
For rising MS, this downwards shift is again more and more

Fig. 2 Top Mh as a function of MS for X t/MS = 0 (solid) and
X t/MS = 2 (dashed). The results with (orange) and without (blue)
resummation of electroweak logarithms (LL+NLL) are compared. Fur-
thermore, the result without resummation of electroweak logarithms but
with electroweak NLO corrections to the MS top-quark mass (red) are
shown.BottomThe results with resummation of electroweak logarithms
at the LL and NLL level (blue) and at the LL level only (red) are com-
pared

compensated by the positive contributions of the resummed
electroweak logarithms.

The lower panel of Fig. 2 shows Mh as a function of
MS for X t/MS = 0 and X t/MS = 2. The results with a
resummation of logarithms proportional to the electroweak
gauge couplings at the LL and NLL level (loglevel=2)
and with a resummation of logarithms proportional to the
electroweak gauge couplings at the LL level and vanishing
electroweak gauge couplings at the NLL level are compared.
We observe that the effect of a NLL resummation of elec-
troweak logarithms is �0.5 GeV over the whole MS range
for both vanishing and nearly maximal mixing. This shows
the minor importance of the electroweak NLL resummation
in comparison to electroweak LL resummation, which leads
to shifts of up to 2.5 GeV for MS ∼20 TeV.

The effect of the electroweakino threshold is investigated
in the upper panel of Fig. 3, which displays Mh as a function
of MS for X t/MS = 0 and X t/MS = 2. In contrast to the
previous figures, the electroweakino mass scale Mχ is not
chosen to be equal to MS, but is fixed to 1 TeV. To disen-
tangle the effect of the electroweakino threshold in the EFT
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Fig. 3 Top Mh as a function of MS for X t/MS = 0 (solid) and
X t/MS = 2 (dashed). The results with (red) and without (blue) elec-
troweakino threshold are compared. Bottom The difference between the
NLL and the NNLL result as a function of X t/MS for MS = 1 TeV
(blue), MS = 2 TeV (red) and MS = 5 TeV (orange) is shown

calculation from the fixed-order one-loop corrections due to
neutralinos and charginos, we compare the results with an
electroweakino threshold to the results without a separate
electroweakino threshold. To get the results without a sepa-
rate electroweakino threshold, we set Mχ = MS in the EFT
calculation (namely in �M2

h ), but keep Mχ = 1 TeV in the
Feynman-diagrammatic calculation. The plot clearly shows
that the implementation of a separate electroweakino thresh-
old becomes only relevant for MS � 5 TeV. This behavior
does not depend on the size of the stop mixing.

The effect of a separate gluino threshold is found to be
negligible. For MS between 1 TeV and 20 TeV, its inclusion
shifts Mh downwards by at most 0.2 GeV for |X t/MS| ≤ 2.
The diagrammatic two-loop corrections capture almost the
entire effect of varying Mg̃ , which can be sizable (∼2 GeV)
for maximal mixing. This justifies to set Mg̃ = MS in the
resummation procedure in the case of NNLL resummation,
as explained in Sect. 2.

In the lower panel of Fig. 3, the difference between the
results without (loglevel=2) and with (loglevel=3)
NNLL resummation as a function of X t/MS is shown for
MS = 1 TeV, MS = 2 TeV and MS = 5 TeV. Between
X t/MS ∼ −1 and X t/MS ∼ 1.5, we observe only small
shifts (�0.3 GeV). For X t/MS ∼ −2, Mh is shifted upwards

by the inclusion of NNLL resummation by up to 1 GeV,
whereas Mh is shifted downwards by up to 0.5 GeV for
X t/MS = 2. This behavior is mainly caused by the O(αsαt)

matching condition of λ, which exhibits a similar dependence
on X t/MS. The large positive shift for negative X t compen-
sates the downwards shift originating from the electroweak
NLO correction to the MS top-quark mass. This downwards
shift is, however, enhanced by the negative shift for positive
X t . This is the reason for the asymmetric behavior observed
in the lower panel of Fig. 1.

Note that the comparison made in the bottom panel of
Fig. 3 does not exhibit the effect of the two-loop correc-
tions to the MS top mass, since also for the curve without
NNLL resummation the two-loop QCD corrections in the
MS-mass–pole-mass relation are employed. We have kept
them because they constitute the by far dominant part of the
two-loop corrections to the MS top mass, shifting the MS
top mass down by 1.9 GeV. This downwards shift causes a
downwards shift in Mh of about the same size, as discussed
before in the context of the electroweak NLO corrections to
the MS top mass. Two-loop corrections to the MS top mass
are formally not needed in the case of LL and NLL resum-
mation. This means actually that the main effect of going
from NLL to NNLL resummation is caused by the higher-
order matching condition of the MS top mass, as in the case
of including electroweak corrections into the resummation
procedure.

6 Conclusions

We have presented and discussed the inclusion of elec-
troweak contributions, electroweakino and gluino thresholds,
and NNLL resummation in the EFT resummation of loga-
rithmically enhanced terms in the calculation of the light-
est Higgs-boson mass Mh, on top of the fixed-order one-
and two-loop computation as currently available in the code
FeynHiggs. Special attention is payed to a consistent com-
bination of fixed-order diagrammatic and EFT methods tak-
ing care of scheme conversion and proper subtractions to
avoid double counting. These improvements have become
part of FeynHiggs. They shift the prediction for Mh, espe-
cially pronounced for positive values of the stop-mixing
parameter X t with downwards shifts in Mh of about 1.7 GeV.

We found that this is mainly caused by the electroweak
NLO corrections to the MS top-quark mass. The genuine
effect of resumming electroweak contributions shifts the
Higgs mass upwards compensating the downwards shift
induced by the smaller MS top-quark mass. This effect
becomes only relevant for SUSY scales larger than a few
TeV. Furthermore, electroweak NLL contributions are found
to be much smaller than electroweak LL contributions.

We also investigated the effect of various intermediate
thresholds. In our framework, an electroweakino threshold
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yields significant contributions only for SUSY scales above
5 TeV. We found that a gluino threshold is completely neg-
ligible, since the main contributions sensitive to the gluino
mass are already captured by the two-loop Feynman- dia-
grammatic result.

Furthermore, we found NNLL resummation of O(αs, αt)

to shift the lightest Higgs mass downwards for positive stop
mixing, whereas it leads to a larger upwards shift for negative
values of X t .

We aim to compare the results thoroughly to other publicly
available codes [31,49] in an upcoming publication. We also
plan to extend the resummation procedure to scenarios with
light non-SM Higgs bosons [29,50].

Acknowledgments We are thankful to Thomas Hahn for his invalu-
able help concerning all issues related to FeynHiggs, and to Sven
Heinemeyer and Georg Weiglein for useful discussions.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: RGEs for SM with gluinos

The RGEs for the SM with an added gluino are extracted
from the RGEs listed in [27]. The authors of [27] considered
a split model, where all gauginos and higgsinos are assumed
to be mass degenerate. In order to get the gluino part sepa-
rately we had to disentangle the gluino and electroweakino
contributions in the RGEs of [27]. The extracted RGEs have
been cross-checked using SARAH, version 4.9 [51].

The normalization of λ and v is fixed by the following
convention for the SM Higgs potential:

V (
) = −m2

2

†
 + λ

2
(
†
)2, (A.1)

with the SM Higgs doublet


 =
(

G+
1√
2
(v + h + iG0)

)

. (A.2)

Using this convention, the RGEs below and above the gluino
threshold are given by

dg2
3

d ln Q2 = g4
3

(4π)2 [−〈7; 5〉]

+ g4
3

(4π)4 [−〈26;−22〉g2
3 − 2y2

t ], (A.3a)

dy2
t

d ln Q2 = y2
t

(4π)2

[
9

2
y2

t − 8g2
3

]

+ y2
t

(4π)4

[
y2

t (−12y2
t − 6λ + 36g2

3)

+3

2
λ2 −

〈
108; 284

3

〉
g4

3

]
, (A.3b)

dλ

d ln Q2 = 6

(4π)2 [λ2 + λy2
t − y4

t ]

+ 1

(4π)4

[
y4

t (30y2
t − 32g2

3)

+ λy2
t

(
40g2

3 − 3

2
y2

t

)

−36λ2y2
t − 39λ3

]
. (A.3c)

The notation 〈a; b〉 indicates that a is to be used for scales
below Mg̃ and b for scales above Mg̃ . For clarity, we omit
terms proportional to the electroweak gauge couplings or the
effective Higgs–Higgsino–gaugino couplings, which are not
modified by the presence of the gluino.

Appendix B: Explicit one-loop expressions

Extracting all one-loop leading logarithms out of the
Feynman-diagrammatic result yields

(M2
h )1L ,LL

= M2
Z c2

2β(MS) − 1

72π2v2 ·

×
{
−3

8

[
288m4

t + 144m2
t M

2
Zc2β + 296M2

W

− 336M2
WM2

Z + 4
(

62M4
W − 84M2

WM2
Z + 39M4

Z

)
c4β

+189M4
Z − 9M4

Zc8β

]
ln

M2
S

M2
t

+ 3
[(

20M4
W − 10M2

WM2
Z − M4

Z

)
c4β

+44M4
W − 10M2

WM2
Z + 11M4

Z

]
ln

M2
χ

M2
t

}

. (B.1)

Here MZ (MW) is the mass of the Z (W ) boson, mt is
the top-quark mass used to parametrize the diagrammatic
result (i.e. OS mass or MS mass) and the abbreviation cx ≡
cos x is used. The terms proportional to ln(M2

χ/M2
t )originate

from charginos and neutralinos. The contributions of all other
sectors yield the terms proportional to ln(M2

S/M2
t ).

On the other hand, the EFT calculation yields

(M2
h )1L,LL

= M2
Z c2

2β(MS) − 1

72π2v2 ·
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{

− 3

8

[
288m4

t − 144m2
t M

2
Zc

2
2β + 296M2

W − 336M2
WM2

Z

+ 4
(

62M4
W − 84M2

WM2
Z + 39M4

Z

)
c4β

+189M4
Z − 9M4

Zc8β

]
ln

M2
S

M2
t

+ 3
[(

20M4
W − 10M2

WM2
Z − M4

Z

)
c4β

+44M4
W − 10M2

WM2
Z + 11M4

Z

]
ln

M2
χ

M2
t

}

. (B.2)

Using the dominant one-loop RGE for tanβ as explained in
Sect. 3,

c2
2β(MS) = c2

2β(Mt) + 3

2π2

m2
t

v2 c2
β c2β ln

M2
S

M2
t

+ . . . , (B.3)

we recover the result of the diagrammatic calculation.

References

1. G. Aad et al., Phys. Lett. B 716, 1 (2012). doi:10.1016/j.physletb.
2012.08.020

2. S. Chatrchyan et al., Phys. Lett. B 716, 30 (2012). doi:10.1016/j.
physletb.2012.08.021

3. P.H. Chankowski, S. Pokorski, J. Rosiek, Nucl. Phys. B 423, 437
(1994). doi:10.1016/0550-3213(94)90141-4

4. A. Dabelstein, Z. Phys. C 67, 495 (1995). doi:10.1007/
BF01624592

5. D.M. Pierce, J.A. Bagger, K.T. Matchev, R.J. Zhang, Nucl. Phys.
B 491, 3 (1997). doi:10.1016/S0550-3213(96)00683-9

6. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Lett. B 440, 296
(1998). doi:10.1016/S0370-2693(98)01116-2

7. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rev. D 58, 091701
(1998). doi:10.1103/PhysRevD.58.091701

8. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J.
C 9, 343 (1999). doi:10.1007/s100529900006. doi:10.1007/
s100520050537

9. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Lett. B 455, 179
(1999). doi:10.1016/S0370-2693(99)00417-7

10. S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Eur. Phys. J.
C 39, 465 (2005). doi:10.1140/epjc/s2005-02112-6

11. R.J. Zhang, Phys. Lett. B 447, 89 (1999). doi:10.1016/
S0370-2693(98)01575-5

12. J.R. Espinosa, R.J. Zhang, JHEP 03, 026 (2000). doi:10.1088/
1126-6708/2000/03/026

13. G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 611, 403 (2001).
doi:10.1016/S0550-3213(01)00343-1

14. R. Hempfling, A.H. Hoang, Phys. Lett. B 331, 99 (1994). doi:10.
1016/0370-2693(94)90948-2

15. A. Brignole, G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 643,
79 (2002). doi:10.1016/S0550-3213(02)00748-4

16. A. Dedes, G. Degrassi, P. Slavich, Nucl. Phys. B 672, 144 (2003).
doi:10.1016/j.nuclphysb.2003.08.033

17. M. Carena, M. Quiros, C.E.M. Wagner, Nucl. Phys. B 461, 407
(1996). doi:10.1016/0550-3213(95)00665-6

18. J.A. Casas, J.R. Espinosa, M. Quiros, A. Riotto, Nucl. Phys.
B 436, 3 (1995). doi:10.1016/0550-3213(94)00508-C. doi:10.

1016/0550-3213(95)00057-Y. (Erratum: Nucl. Phys. B 439, 466
(1995))

19. A. Brignole, G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 631,
195 (2002). doi:10.1016/S0550-3213(02)00184-0

20. J.R. Espinosa, R.J. Zhang, Nucl. Phys. B 586, 3 (2000). doi:10.
1016/S0550-3213(00)00421-1

21. R.V. Harlander, P. Kant, L. Mihaila, M. Steinhauser, Phys. Rev.
Lett. 100, 191602 (2008). doi:10.1103/PhysRevLett.101.039901.
doi:10.1103/PhysRevLett.100.191602

22. R.V. Harlander, P. Kant, L. Mihaila, M. Steinhauser, Phys. Rev.
Lett. 101, 039901 (2008)

23. P. Kant, R.V. Harlander, L. Mihaila, M. Steinhauser, JHEP 08, 104
(2010). doi:10.1007/JHEP08(2010)104

24. H.E. Haber, R. Hempfling, Phys. Rev. D 48, 4280 (1993). doi:10.
1103/PhysRevD.48.4280

25. H.E. Haber, R. Hempfling, A.H. Hoang, Z. Phys. C 75, 539 (1997).
doi:10.1007/s002880050498

26. M. Binger, Phys. Rev. D 73, 095001 (2006). doi:10.1103/
PhysRevD.73.095001

27. G.F. Giudice, A. Strumia, Nucl. Phys. B 858, 63 (2012). doi:10.
1016/j.nuclphysb.2012.01.001

28. E. Bagnaschi, G.F. Giudice, P. Slavich, A. Strumia, JHEP 09, 092
(2014). doi:10.1007/JHEP09(2014)092

29. G. Lee, C.E.M. Wagner, Phys. Rev. D 92(7), 075032 (2015). doi:10.
1103/PhysRevD.92.075032

30. P. Draper, G. Lee, C.E.M. Wagner, Phys. Rev. D 89(5), 055023
(2014). doi:10.1103/PhysRevD.89.055023

31. J. Pardo Vega, G. Villadoro, JHEP 07, 159 (2015). doi:10.1007/
JHEP07(2015)159

32. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Phys.
Rev. Lett. 112(14), 141801 (2014). doi:10.1103/PhysRevLett.112.
141801

33. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun.
124, 76 (2000). doi:10.1016/S0010-4655(99)00364-1

34. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Com-
put. Phys. Commun. 180, 1426 (2009). doi:10.1016/j.cpc.2009.02.
014

35. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein,
Eur. Phys. J. C 28, 133 (2003). doi:10.1140/epjc/s2003-01152-2

36. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Wei-
glein, JHEP 02, 047 (2007). doi:10.1088/1126-6708/2007/02/047

37. D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala,
A. Salvio, A. Strumia, JHEP 12, 089 (2013). doi:10.1007/
JHEP12(2013)089

38. M. Carena, H.E. Haber, S. Heinemeyer, W. Hollik, C.E.M. Wag-
ner, G. Weiglein, Nucl. Phys. B 580, 29 (2000). doi:10.1016/
S0550-3213(00)00212-1

39. L.N. Mihaila, J. Salomon, M. Steinhauser, Phys. Rev. Lett. 108,
151602 (2012). doi:10.1103/PhysRevLett.108.151602

40. L.N. Mihaila, J. Salomon, M. Steinhauser, Phys. Rev. D 86, 096008
(2012). doi:10.1103/PhysRevD.86.096008

41. K.G. Chetyrkin, M.F. Zoller, JHEP 06, 033 (2012). doi:10.1007/
JHEP06(2012)033

42. A.V. Bednyakov, A.F. Pikelner, V.N. Velizhanin, Phys. Lett. B 722,
336 (2013). doi:10.1016/j.physletb.2013.04.038

43. A.V. Bednyakov, A.F. Pikelner, V.N. Velizhanin, JHEP 01, 017
(2013). doi:10.1007/JHEP01(2013)017

44. A.V. Bednyakov, A.F. Pikelner, V.N. Velizhanin, Nucl. Phys. B 875,
552 (2013). doi:10.1016/j.nuclphysb.2013.07.015

45. K.G. Chetyrkin, M.F. Zoller, JHEP 04, 091 (2013). doi:10.
1007/JHEP04(2013)091. doi:10.1007/JHEP09(2013)155. (Erra-
tum: JHEP 09, 155 (2013))

46. M. Sperling, D. Stöckinger, A. Voigt, JHEP 07, 132 (2013). doi:10.
1007/JHEP07(2013)132

47. M. Sperling, D. Stöckinger, A. Voigt, JHEP 01, 068 (2014). doi:10.
1007/JHEP01(2014)068

123

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/0550-3213(94)90141-4
http://dx.doi.org/10.1007/BF01624592
http://dx.doi.org/10.1007/BF01624592
http://dx.doi.org/10.1016/S0550-3213(96)00683-9
http://dx.doi.org/10.1016/S0370-2693(98)01116-2
http://dx.doi.org/10.1103/PhysRevD.58.091701
http://dx.doi.org/10.1007/s100529900006
http://dx.doi.org/10.1007/s100520050537
http://dx.doi.org/10.1007/s100520050537
http://dx.doi.org/10.1016/S0370-2693(99)00417-7
http://dx.doi.org/10.1140/epjc/s2005-02112-6
http://dx.doi.org/10.1016/S0370-2693(98)01575-5
http://dx.doi.org/10.1016/S0370-2693(98)01575-5
http://dx.doi.org/10.1088/1126-6708/2000/03/026
http://dx.doi.org/10.1088/1126-6708/2000/03/026
http://dx.doi.org/10.1016/S0550-3213(01)00343-1
http://dx.doi.org/10.1016/0370-2693(94)90948-2
http://dx.doi.org/10.1016/0370-2693(94)90948-2
http://dx.doi.org/10.1016/S0550-3213(02)00748-4
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.033
http://dx.doi.org/10.1016/0550-3213(95)00665-6
http://dx.doi.org/10.1016/0550-3213(94)00508-C
http://dx.doi.org/10.1016/0550-3213(95)00057-Y
http://dx.doi.org/10.1016/0550-3213(95)00057-Y
http://dx.doi.org/10.1016/S0550-3213(02)00184-0
http://dx.doi.org/10.1016/S0550-3213(00)00421-1
http://dx.doi.org/10.1016/S0550-3213(00)00421-1
http://dx.doi.org/10.1103/PhysRevLett.101.039901
http://dx.doi.org/10.1103/PhysRevLett.100.191602
http://dx.doi.org/10.1007/JHEP08(2010)104
http://dx.doi.org/10.1103/PhysRevD.48.4280
http://dx.doi.org/10.1103/PhysRevD.48.4280
http://dx.doi.org/10.1007/s002880050498
http://dx.doi.org/10.1103/PhysRevD.73.095001
http://dx.doi.org/10.1103/PhysRevD.73.095001
http://dx.doi.org/10.1016/j.nuclphysb.2012.01.001
http://dx.doi.org/10.1016/j.nuclphysb.2012.01.001
http://dx.doi.org/10.1007/JHEP09(2014)092
http://dx.doi.org/10.1103/PhysRevD.92.075032
http://dx.doi.org/10.1103/PhysRevD.92.075032
http://dx.doi.org/10.1103/PhysRevD.89.055023
http://dx.doi.org/10.1007/JHEP07(2015)159
http://dx.doi.org/10.1007/JHEP07(2015)159
http://dx.doi.org/10.1103/PhysRevLett.112.141801
http://dx.doi.org/10.1103/PhysRevLett.112.141801
http://dx.doi.org/10.1016/S0010-4655(99)00364-1
http://dx.doi.org/10.1016/j.cpc.2009.02.014
http://dx.doi.org/10.1016/j.cpc.2009.02.014
http://dx.doi.org/10.1140/epjc/s2003-01152-2
http://dx.doi.org/10.1088/1126-6708/2007/02/047
http://dx.doi.org/10.1007/JHEP12(2013)089
http://dx.doi.org/10.1007/JHEP12(2013)089
http://dx.doi.org/10.1016/S0550-3213(00)00212-1
http://dx.doi.org/10.1016/S0550-3213(00)00212-1
http://dx.doi.org/10.1103/PhysRevLett.108.151602
http://dx.doi.org/10.1103/PhysRevD.86.096008
http://dx.doi.org/10.1007/JHEP06(2012)033
http://dx.doi.org/10.1007/JHEP06(2012)033
http://dx.doi.org/10.1016/j.physletb.2013.04.038
http://dx.doi.org/10.1007/JHEP01(2013)017
http://dx.doi.org/10.1016/j.nuclphysb.2013.07.015
http://dx.doi.org/10.1007/JHEP04(2013)091
http://dx.doi.org/10.1007/JHEP04(2013)091
http://dx.doi.org/10.1007/JHEP09(2013)155
http://dx.doi.org/10.1007/JHEP07(2013)132
http://dx.doi.org/10.1007/JHEP07(2013)132
http://dx.doi.org/10.1007/JHEP01(2014)068
http://dx.doi.org/10.1007/JHEP01(2014)068


499 Page 10 of 10 Eur. Phys. J. C (2016) 76 :499

48. S. Heinemeyer, W. Hollik, G. Weiglein, JHEP 06, 009 (2000).
doi:10.1088/1126-6708/2000/06/009

49. G. Lee, C. Wagner, http://gabrlee.com/code
50. K. Cheung, R. Huo, J.S. Lee, Y.L. Sming Tsai, JHEP 04, 151

(2015). doi:10.1007/JHEP04(2015)151

51. F. Staub, Comput. Phys. Commun. 185, 1773 (2014). doi:10.1016/
j.cpc.2014.02.018

123

http://dx.doi.org/10.1088/1126-6708/2000/06/009
http://gabrlee.com/code
http://dx.doi.org/10.1007/JHEP04(2015)151
http://dx.doi.org/10.1016/j.cpc.2014.02.018
http://dx.doi.org/10.1016/j.cpc.2014.02.018

	Precise prediction for the light MSSM Higgs-boson mass combining effective field theory and fixed-order calculations
	Abstract 
	1 Introduction
	2 Effective field theory calculation
	2.1 Electroweak contributions
	2.2 Gaugino–higgsino thresholds
	2.3 NNLL resummation

	3 Combining fixed-order and EFT calculations
	4 Implementation in FeynHiggs
	5 Numerical analysis
	6 Conclusions
	Acknowledgments
	Appendix A: RGEs for SM with gluinos
	Appendix B: Explicit one-loop expressions
	References


