
 Open access Proceedings Article DOI:10.1109/HPCA47549.2020.00040

Precise Runahead Execution — Source link

Ajeya Naithani, Josue Feliu, Almutaz Adileh, Lieven Eeckhout

Institutions: Ghent University, Polytechnic University of Valencia

Published on: 01 Feb 2020 - High-Performance Computer Architecture

Topics: Runahead, Register renaming, Out-of-order execution, Instruction prefetch and Instruction window

Related papers:

 Address generation interlock resolution under runahead execution

 Tolerating Load Miss-Latency by Extending Effective Instruction Window with Low Complexity

 The effective way of processor performance enhancement by proper branch handling

 Speculative execution for hiding memory latency

 Recovery Mechanism for Latency Misprediction

Share this paper:

View more about this paper here: https://typeset.io/papers/precise-runahead-execution-
1i2macvgwo

https://typeset.io/
https://www.doi.org/10.1109/HPCA47549.2020.00040
https://typeset.io/papers/precise-runahead-execution-1i2macvgwo
https://typeset.io/authors/ajeya-naithani-285o4mut2p
https://typeset.io/authors/josue-feliu-22j9c7xi89
https://typeset.io/authors/almutaz-adileh-11dzja2diw
https://typeset.io/authors/lieven-eeckhout-jqhe8vojc7
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/institutions/polytechnic-university-of-valencia-1nj8b7fi
https://typeset.io/conferences/high-performance-computer-architecture-j5a7h3a9
https://typeset.io/topics/runahead-2n6w0nv4
https://typeset.io/topics/register-renaming-1rl6m7ov
https://typeset.io/topics/out-of-order-execution-1ntdltvb
https://typeset.io/topics/instruction-prefetch-3fddhoq3
https://typeset.io/topics/instruction-window-37rcn9zr
https://typeset.io/papers/address-generation-interlock-resolution-under-runahead-4u2zcfl6us
https://typeset.io/papers/tolerating-load-miss-latency-by-extending-effective-39b0ele0nc
https://typeset.io/papers/the-effective-way-of-processor-performance-enhancement-by-d4e43ss4tl
https://typeset.io/papers/speculative-execution-for-hiding-memory-latency-7n88p33157
https://typeset.io/papers/recovery-mechanism-for-latency-misprediction-rddrotaork
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/precise-runahead-execution-1i2macvgwo
https://twitter.com/intent/tweet?text=Precise%20Runahead%20Execution&url=https://typeset.io/papers/precise-runahead-execution-1i2macvgwo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/precise-runahead-execution-1i2macvgwo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/precise-runahead-execution-1i2macvgwo
https://typeset.io/papers/precise-runahead-execution-1i2macvgwo

Precise Runahead Execution

Ajeya Naithani∗ Josué Feliu†‡ Almutaz Adileh∗ Lieven Eeckhout∗

∗Ghent University, Belgium †Universitat Politècnica de València, Spain

Abstract—Runahead execution improves processor perfor-
mance by accurately prefetching long-latency memory accesses.
When a long-latency load causes the instruction window to fill up
and halt the pipeline, the processor enters runahead mode and
keeps speculatively executing code to trigger accurate prefetches.
A recent improvement tracks the chain of instructions that leads
to the long-latency load, stores it in a runahead buffer, and exe-
cutes only this chain during runahead execution, with the purpose
of generating more prefetch requests. Unfortunately, all prior
runahead proposals have shortcomings that limit performance
and energy efficiency because they release processor state when
entering runahead mode and then need to re-fill the pipeline
to restart normal operation. Moreover, runahead buffer limits
prefetch coverage by tracking only a single chain of instructions
that leads to the same long-latency load.

We propose precise runahead execution (PRE) which builds
on the key observation that when entering runahead mode,
the processor has enough issue queue and physical register file
resources to speculatively execute instructions. This mitigates
the need to release and re-fill processor state in the ROB,
issue queue, and physical register file. In addition, PRE pre-
executes only those instructions in runahead mode that lead to
full-window stalls, using a novel register renaming mechanism
to quickly free physical registers in runahead mode, further
improving efficiency and effectiveness. Finally, PRE optionally
buffers decoded runahead micro-ops in the front-end to save
energy. Our experimental evaluation using a set of memory-
intensive applications shows that PRE achieves an additional
18.2% performance improvement over the recent runahead
proposals while at the same time reducing energy consumption
by 6.8%.

I. INTRODUCTION

Runahead execution [18, 40, 42] improves processor per-

formance by accurately prefetching long-latency loads. The

processor triggers runahead execution when a long-latency load

causes the instruction window to fill up and halt the pipeline.

Instead of stalling, the processor removes the blocking long-

latency load and speculatively executes subsequent instructions

to uncover future independent long-latency loads and expose

memory-level parallelism (MLP). The processor terminates

runahead execution and resumes normal operation when the

stalling load returns. Because runahead execution generates

memory loads by looking at the application’s code ahead of

time, the prefetch requests it generates are accurate, leading to

significant performance benefits.

Unfortunately, the performance benefits of runahead execu-

tion are limited by its prefetch coverage and the overheads

associated with speculative code execution. Prefetch coverage

relates to the number of useful prefetch requests generated

in runahead mode. The higher the prefetch coverage in

‡This work was done while visiting Ghent University.

runahead mode, the higher the performance benefit of runahead

execution. On the other hand, speculative code execution

imposes overheads for saving and restoring state, and rolling

the pipeline back to a proper state to resume normal operation

after runahead execution. The lower the performance penalty of

these overheads, the higher the performance gain. Consequently,

maximizing the performance benefits of runahead execution

requires (1) maximizing the number of useful prefetches per

runahead interval, and (2) limiting the switching overhead

between runahead mode and normal execution. We find

that prior attempts to optimize the performance of runahead

execution have shortcomings that impede them from adequately

addressing both issues, leaving significant room for improve-

ment.

Prior runahead proposals incur a high performance penalty

due to speculative execution in runahead mode [24, 40, 42]. All

the instructions beyond the stalling load are pseudo-retired and

leave the reorder buffer (ROB) and processor pipeline, and the

corresponding physical register file entries are freed—in other

words, processor state is released. These instructions must be re-

fetched and re-executed in normal mode. For memory-intensive

applications—the main beneficiaries of runahead execution—

the probability for blocking the ROB and invoking runahead

execution is high and so is its incurred performance penalty

for releasing processor state with every runahead invocation.

To mitigate this overhead, prior work [42] engages runahead

execution only for relatively long runahead intervals. By doing

so, the benefits of prefetching in runahead mode outweigh its

overheads. Unfortunately, this optimization does not reduce

the severe penalty incurred whenever runahead execution

is invoked. Moreover, it limits the opportunities to engage

runahead execution, thereby degrading prefetch coverage.

The original runahead proposal [40, 42] limits the prefetch

coverage that can be achieved. In runahead mode, the processor

executes all the instructions it encounters to generate useful

prefetch requests. However, not all these instructions are

necessary to calculate load addresses and generate prefetch

requests. Instructions that do not lead to long-latency loads

waste execution cycles and occupy processor resources that

could otherwise be used to generate useful prefetch requests.

Hashemi et al. [24] filter out unnecessary instructions by

storing the chain of instructions that generate the blocking

load in a so-called runahead buffer. In runahead mode, the

processor keeps replaying only this instruction chain from

the runahead buffer in a loop, which enables turning off the

processor front-end in runahead mode to save energy. However,

similar to other runahead techniques, runahead buffer incurs

the high performance overheads associated with invoking

runahead mode. More importantly, runahead buffer limits

397

2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/20/$31.00 ©2020 IEEE
DOI 10.1109/HPCA47549.2020.00040

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

Lieven Eeckhout
Copyright 2018 IEEE. Personal use of this material is permitted. Permission from ACM must be obtained for all other uses.

prefetch coverage to only a single chain of instructions per

runahead interval, while several benchmarks access memory

through multiple chains. Limited prefetch coverage reduces

the potential performance gains from runahead buffer.

In this paper, we propose precise runahead execution (PRE),

a technique that remedies the aforementioned shortcomings of

prior runahead proposals [45]. PRE builds upon the key obser-

vation that the processor has sufficient unused resources in the

issue queue and physical register file to continue speculatively

executing instructions in runahead mode, eliminating the need

to release processor state in the reorder buffer (ROB), issue

queue (IQ), and physical register file (PRF). PRE uses runahead

register reclamation (RRR), a novel mechanism to manage

free physical registers in runahead mode while preserving

dependencies among instructions. Moreover, PRE stores all

instructions in the backward slice of a long-latency load in

a dedicated cache, called the stalling slice table (SST). First,

the PC of the stalling long-latency load is stored in the SST,

then with every loop iteration, the register renaming unit is

leveraged to recursively identify all instructions in the load’s

backward slice, which are then stored in the SST. In runahead

mode, PRE receives decoded instructions from the front-end

but executes only the ones that hit in the SST. Because PRE

stores all long-latency load chains in the SST, it does not limit

prefetch coverage to a single load chain.

PRE can be augmented with an additional buffer to store

all the decoded instructions in runahead mode. When normal

execution resumes, instructions are then dispatched from this

buffer. Therefore, it is not necessary to fetch and decode

runahead-mode instructions again. We leverage and extend the

micro-op queue, typically present in modern-day processors to

hold decoded micro-ops, to buffer micro-ops during runahead

mode.

In summary, PRE’s key contributions are:

• PRE only speculatively pre-executes slices of load instruc-

tions that lead to full-window stalls.

• PRE does not release processor state when entering

runahead mode.

• PRE leverages the available issue queue and physical

register file entries to speculatively execute instructions

in runahead mode.

• PRE includes runahead register reclamation (RRR), a

novel mechanism to quickly free physical registers in

runahead mode.

• PRE optionally buffers decoded micro-ops during runa-

head mode in an extended micro-op queue to avoid

re-fetching and re-decoding instructions, thereby saving

energy.

Compared to an out-of-order core, the performance improve-

ments achieved through runahead execution [42], runahead

buffer [24], hybrid runahead (combining the best of runahead

execution and runahead buffer), and PRE for a set of memory-

intensive SPEC CPU benchmarks amount to 16%, 13.3%, 20%,

and 38.2% on average, respectively. While hybrid runahead is

energy-neutral relative to an out-of-order core, PRE reduces

energy consumption by 6.8%.

0

20

40

60

80

100

z
e

u
s
m

c
a
c
tu

s

w
rf

G
e
m

s

le
s
lie

o
m

n
e
t

m
ilc

s
o
p
le

x

s
p
h
in

x

b
w

a
v
e

lib
q

u
a

lb
m

m
c
f

ro
m

s

p
a
re

s
t

fo
to

n
ik

a
v
g

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e
 (

%
) ROB full

Fig. 1: Fraction of the execution time the ROB is full for

memory-intensive benchmarks. An out-of-order processor stalls

on a full ROB for about half the time.

II. BACKGROUND AND MOTIVATION

In this section, we describe the original runahead proposal

and the optimizations introduced in follow-on work. We then

describe the shortcomings of prior runahead techniques.

A. Full-Window Stalls

In an out-of-order core, a load instruction that misses in

the last-level cache (LLC) typically takes a couple hundred

cycles to bring data from off-chip memory. Soon, the load

instruction blocks commit and the core cannot make any

progress. Meanwhile, the front-end continues to dispatch new

instructions into the back-end. Once the ROB1 fills up, the

front-end can no longer dispatch instructions, leading to a full-

window stall. Figure 1 shows that an out-of-order processor

executing a set of memory-intensive SPEC CPU benchmarks

spends about half of its execution time waiting for long-latency

loads blocking the ROB (see Section IV for details about our

experimental setup). We refer to the load instruction that causes

a full-window stall as a stalling load, and to the backward

chain of instructions that leads to a stalling load as a stalling

slice.

B. Runahead Execution

Runahead execution [40] pre-executes an application’s own

code to prefetch data into the on-chip caches. Upon a full-

window stall, the processor checkpoints the Program Counter

(PC), architectural register file (ARF), the branch history

register, and the return address stack (RAS). The processor

enters runahead mode and marks the stalling load and its

dependents as invalid. The processor pseudo-retires instructions

without updating the processor architectural state to keep the

execution moving forward speculatively. Once the stalling load

returns, the pipeline is flushed and the checkpointed architecture

state is restored. This marks the exit from runahead mode.

The processor then fetches and executes instructions from the

stalling load again.

Runahead execution incurs a significant performance and

energy overhead by flushing and refilling the pipeline when

returning to normal execution mode. Mutlu et al. [42] propose

enhancements to the original runahead proposal to alleviate the

impact of this high overhead. Mainly, they propose invoking

runahead execution only when the runahead interval is long

1ROB and (instruction) window are used interchangeably.

398

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

enough to achieve high performance benefits that overshadow

the overheads of runahead execution. In particular, they propose

a policy to invoke runahead execution only if the stalling load

was issued to memory less than a threshold number of cycles

ago. They also propose another enhancement that prevents

triggering runahead execution if it overlaps with an earlier

runahead interval.

C. Future Thread

Future thread [6] shares the same purpose as runahead

execution, while relying on two hardware threads, each with

a dynamically allocated number of physical registers. When

the main thread exhausts its allocated physical registers due to

a long-latency load, it stalls and the processor switches to a

second hardware context (i.e., the future thread) in an attempt to

prefetch future stalling loads. This technique requires hardware

support for two hardware contexts. Further, it exposes less

MLP than runahead because the future thread needs to share

resources with the main thread, which limits how far the future

thread can speculate.

D. Filtered Runahead Execution

Both the original runahead and the future-thread techniques

execute all instructions coming from the processor front-end.

However, many instructions are not necessary to calculate

the memory addresses used in subsequent long-latency loads.

Hashemi et al. [24] propose a technique to track and execute

only the chain of instructions that leads to a long-latency load.

Upon a full-window stall, a backward data-flow walk in the

ROB and store queue is performed to find a dependency chain

that leads to another instance of the same stalling load. This

chain is stored in a buffer called the runahead buffer that

is placed before the rename stage. In runahead mode, the

instruction chain stored in the runahead buffer is renamed,

dispatched, and executed in a loop, instead of fetching new

instructions via the front-end. Therefore, the front-end can be

clock-gated to save dynamic power consumption in runahead

mode. By executing only the stalling slice, this technique

exposes more MLP per runahead interval than traditional

runahead.

E. Shortcomings of Prior Techniques

Both traditional runahead execution and runahead buffer

significantly improve single-threaded performance. However,

their full potential is limited by the following key factors.

Flushing and Refilling the Pipeline. Runahead execution

speculatively executes and pseudo-retires instructions. At

the exit of runahead execution, the processor flushes the

pipeline and starts fetching instructions from the stalling load.

Performing this operation for every runahead invocation incurs

significant performance and energy overheads. Assuming that

the ARF can be saved/restored in zero cycles, we estimate

that every runahead invocation incurs a performance penalty of

approximately 56 cycles for a 192-entry ROB: (1) refilling the

front-end (8 cycles, assuming an 8-stage front-end pipeline),

plus (2) refilling the ROB by re-dispatching 192 instructions

0%

20%

40%

60%

80%

100%

z
e

u
s
m

c
a
c
tu

s

w
rf

G
e

m
s

le
s
lie

o
m

n
e

t

m
ilc

s
o

p
le

x

s
p

h
in

x

b
w

a
v
e

lib
q

u
a

lb
m

m
c
f

ro
m

s

p
a

re
s
t

fo
to

n
ik

L
L

C
 m

is
s
e
s

identical to stalling load distinct from stalling load

Fig. 2: Percentage of long-latency load misses during runhead

that are identical to, versus distinct from, the stalling load.

Most of the long-latency loads during runahead mode differ

from the stalling load.

with a dispatch width of 4, starting from the stalling load

(48 cycles). These cycles cannot be hidden and thus directly

contribute to the total execution time. Our experimental results

reveal that compared to an out-of-order core, traditional

runahead execution improves performance by 16% on average.

However, if the instructions that occupy the ROB when the

core enters runahead mode would not need to be re-fetched

and re-processed after exiting runahead mode, the speedup has

the potential to reach 22.8%.

Limited Prefetch Coverage. Traditional runahead execution

has limited prefetch coverage because it executes all future

instructions in runahead mode, which limits how deep in the

dynamic instruction stream runahead execution can speculate.

Runahead buffer filters and executes only the most dominant

stalling slice per runahead interval. Runahead buffer assumes

that the load that triggers runahead execution is likely to

recur more than any other load within the same runahead

interval. Therefore, it decides to replay only the chain of

instructions that produces future instances of the same stalling

load. Although runahead buffer enables runahead execution to

speculate further down the instruction stream, it is limited

to a single slice. Unfortunately, this does not match the

characteristics of applications that access memory through

a diverse set of instruction slices and multiple different load

instructions.

Figure 2 classifies the long-latency loads (i.e., loads that

miss in the last-level cache) that are encountered in a runahead

interval into either identical to, or distinct from, the stalling

load that initiated the runahead interval. The figure shows

that most of the long-latency loads that are encountered in a

runahead interval differ from the stalling load that triggered

runahead execution. Relying on a single dominant stalling load

per interval, as in runahead buffer, therefore neglects major

prefetching opportunities. (Note further that miss-dependent

misses that appear in the dependence chain determined by

runahead buffer cannot be prefetched—miss-dependent misses

require a prediction mechanism such as address-value delta [43]

or require migrating the dependency chain to the memory

controller [25].)

In general, we find that memory-intensive applications

access off-chip memory through multiple load slices. Figure 3

categorizes all runahead intervals according to the number

of unique long-latency loads each interval contains. Most of

the runahead intervals feature off-chip memory accesses via

399

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

0%

20%

40%

60%

80%

100%

z
e
u
s
m

c
a
c
tu

s

w
rf

G
e

m
s

le
s
lie

o
m

n
e
t

m
ilc

s
o
p
le

x

s
p
h
in

x

b
w

a
v
e

lib
q
u
a

lb
m

m
c
f

ro
m

s

p
a
re

s
t

fo
to

n
ik

fr
a
c
ti
o
n
 r

u
n
a
h
e
a
d
 i
n
te

rv
a
ls 1 2-4 5-7 8+

Fig. 3: Runahead intervals categorized by the number of unique

long-latency loads. Most runahead intervals feature multiple

unique long-latency load instructions.

multiple unique load instructions.

Short Runahead Intervals. The proposed enhancements to

runahead execution prevent initiating runahead mode if the

runahead interval is estimated to be short. For such cases,

the overhead of invoking runahead execution outweighs its

benefit [42]. However, a significant fraction of runahead

intervals are short. We find that 40% of the runahead intervals

are shorter than 56 cycles for the memory-intensive workloads—

recall 56 cycles is the overhead for refilling the pipeline after

a runahead interval as previously determined. Excluding short

runahead intervals thus limits how often runahead is triggered,

which wastes significant opportunity to enhance MLP.

III. PRECISE RUNAHEAD EXECUTION

In this work, we propose precise runahead execution (PRE)

to alleviate the limitations of prior runahead proposals. PRE

improves prefetch coverage over prior proposals by prefetching

all stalling slices in runahead mode—unlike runahead buffer—

and executing only the instruction chains leading to the loads—

unlike the original runahead proposal. Moreover, PRE does not

release processor state when entering runahead mode, hence it

does not need to flush and refill the pipeline when resuming

normal mode. This reduces the cost for invoking runahead

execution.

We first describe the key insights that inspire the design of

PRE, after which we describe PRE’s architecture and operation

in detail.

A. PRE: Key Insights

PRE builds on three key insights.

Insight #1: There are enough available physical register file

(PRF) and issue queue (IQ) resources to initiate runahead

execution upon a full-window stall. To execute an instruction,

the processor minimally needs a physical register to hold

the instruction’s destination value plus an issue queue entry

for the instruction to wait until an execution unit becomes

available. Figure 4 shows the percentage of available (i.e.,

unused) processor issue queue and physical register file entries

at the entry of runahead mode. On average, 37% of the issue

queue entries, 51% of the integer registers and 59% of the

floating-point registers are free. This is not an artifact of an

unbalanced processor configuration. In fact, Section IV provides

quantitative evidence that our baseline configuration is indeed

a balanced design. We thus conclude that there are enough

0

20

40

60

80

100

ze
us

m

ca
ct

us w
rf

Ge
m

s

le
sli

e

om
ne

t

m
ilc

so
pl

ex

sp
hi

nx

bw
av

e

lib
qu

a

lb
m

m
cf

ro
m

s

pa
re

st

fo
to

ni
k

av
er

ag
e

%
 a

va
ila

bi
lit

y

GP registers FP registers IQ entries

Fig. 4: Percentage general-purpose (GP) registers, floating-point

(FP) registers and issue queue (IQ) entries that are available

upon a full-window stall due to a long-latency load blocking

commit. About half the issue queue and physical register file

entries are available upon a full-window stall.

issue queue entries and registers upon a full-window stall to

initiate the speculative execution of instructions that lead to

anticipated future long-latency load misses.

Insight #2: There is no need to pre-execute all instructions

during runahead mode. Instead we can speculate deeper in

the dynamic instruction stream by only pre-executing stalling

load slices. The majority of instructions executed during

runahead execution occupy core resources (e.g., PRF, IQ, ALU)

without actually contributing to generate useful prefetches.

Ideally, we only need to speculatively execute instructions

that lead to future long-latency load stalls, i.e., we need to

execute the producers of the long-latency loads and not their

consumers. This not only reduces the core resources needed

during runahead execution, it also allows for speculating deeper

down the dynamic instruction stream and extract more useful

prefetches. PRE achieves this by identifying and speculatively

executing stalling load slices, i.e., backward slices of long-

latency loads that lead to full-ROB stalls.

Insight #3: IQ resources are quickly recycled during runahead

execution. Recycling PRF resources requires a novel mechanism

that is different from conventional register renaming schemes.

Stalling load slices are relatively short chains of dependent in-

structions. These chains of load-producing instructions occupy

IQ resources for only a short time, i.e., instructions wait for their

input operands for a few cycles and then execute. In contrast,

the load consumers hold on to IQ resources as they wait for the

load values to return from memory. In other words, PRE is able

to quickly recycle IQ resources by only executing stalling load

slices during runahead mode. The situation is different for the

physical register file: stalling load slices hold up PRF resources

if they are released using conventional register renaming. PRE

therefore includes a novel register reclamation mechanism to

quickly recycle physical registers in runahead mode.

Figure 5 depicts a schematic diagram of an out-of-order

core supporting PRE. The following subsections describe its

operation in detail.

B. Entering Precise Runahead Execution

As in prior techniques, PRE is invoked on a full-window

stall. PRE enters runahead mode after checkpointing the PC

of the instruction past the full-ROB, the register alias table

400

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

Stalling Loads

PRDQ

SST Slice Instructions

I-Cache
Dispatch

Fetch Decode Issue Execute Commit

402ed2

4287fd
428809

….

Register

Read

Rename

(RAT)
EMQ

I1 P5 0

I2 P3 1

I3 0

….

New Structures

Modified Structures

Existing Structures

Normal Mode

Runahead Mode

Fig. 5: Core microarchitecture to support precise runahead execution.

(RAT), and the RAS. The instructions filling the ROB can still

execute as they do in normal mode. However, no instructions

are committed from the ROB in runahead mode. Therefore,

no updates are propagated to the ARF and the L1 D-cache.

During runahead execution, PRE dynamically identifies the

instructions that are part of potential stalling slices as they

arrive from the decode unit (as described in the next section),

and the core speculatively executes them.

C. Identifying Stalling Slices

PRE tracks the individual instructions that form a stalling

slice in a new cache that we call the stalling slice table (SST).

As Figure 5 shows, the SST is accessed after the decode

stage. The SST is a fully-associative cache that contains only

instruction addresses (i.e., PCs). If an instruction address hits

in the SST, that instruction is part of a stalling slice. Whenever

a stalling load blocks the ROB, we store it in the SST. To

facilitate tracking the chain of instructions that leads to that

load, we extend each entry in the RAT to hold the PC of the

instruction that last produced that register. When the register

renaming unit maps the destination architectural register of an

instruction to a new physical register, it also updates the RAT

entry corresponding to that architectural register with the PC

of the instruction.

We track the stalling slices in an iterative manner. First, the

stalling load is stored in the SST. When the stalling load is

decoded again, e.g., in the next iteration of a loop, the PC of

the stalling load hits in the SST. PRE checks the RAT entry for

the load’s source registers to find the PCs of the instructions

that last produced those registers; these PCs are then stored

in the SST. Similarly, whenever an instruction hits in the SST

in the following iterations, we track the PC information of

its producer instructions and add those to the SST as well.

This iterative process effectively builds up the stalling slice in

the SST. PRE follows this same process for all stalling loads.

By tracking all stalling slices in the SST, PRE does not limit

prefetch coverage to a single slice as in the runahead buffer

proposal.

Branch instructions are not part of a stalling load slice

because they are not involved in the load address calculation.

Therefore, branch instructions are not stored in the SST. A

branch instruction can modify the stalling slice by changing

the producer of one instruction in the slice, potentially forming

two slices that lead to the same load instruction. PRE simply

identifies the new producers and adds them to the SST. In the

following iterations, PRE builds the whole slice in the SST

similar to any other slice. In the end, SST tracks all slices that

lead to stalling loads.

We find that an SST of limited size is effective at capturing

stalling slices to generate useful prefetches in a runahead

interval. As the application progresses to a new loop, new

stalling slices are identified and stored in the SST. Old and

unused stalling slices are automatically evicted from the SST. It

may happen that a slice is not complete in the SST, e.g., while

being constructed, however, the slice will soon be completed

in the next few iterations. We find that an SST with 128 entries

is sufficient to gain the majority of the performance benefits

of runahead execution (see Section III-H).

D. Execution in Runahead Mode

PRE filters and speculatively executes all stalling slices that

follow the stalled window using the SST. After instruction

decode, PRE executes only the instructions that hit in the

SST because they are necessary to generate future loads. PRE

achieves the benefits of filtered runahead execution as with

runahead buffer because it executes only the stalling slices.

However, because the SST stores all stalling slices, PRE

manages to execute all potential stalling slices, which leads to

much improved prefetch coverage.

Instructions issued in runahead mode use only the free reg-

isters that are unused when runahead mode is triggered. These

registers are allocated and recycled in runahead mode without

affecting the physical registers allocated in normal execution.

PRE properly maintains dependencies among the executed

instructions and manages the allocation and reclamation of

registers in runahead mode as described in Section III-E. At

the same time, the processor continues executing the non-

speculative instructions that already occupy the ROB. The

results are written to the physical destination registers that

were allocated before triggering runahead execution. When the

processor resumes normal operation, it restores the architectural

state it checkpointed upon runahead entry. Only instructions

that were fetched in runahead mode need to be fetched and

processed again. The physical registers that were free prior to

runahead execution are reclaimed. The physical registers that

hold values written by instructions in the ROB in runahead

mode can properly update the architectural state and get

reclaimed when their respective instructions retire in normal

mode.

In runahead mode, PRE executes all the slices generated

by the front-end of the processor. The front-end relies on the

branch predictor to steer the flow of execution in runahead

mode. PRE does not update the state and history of the

401

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

inst.
id

instruction dst src1 src2 register
to free

I1 add r1 ← r2, r3 P1 P2 P3

I2 mul r2 ← r1, r4 P5 P1 P4 P2

I3 ld r1 ←mem[x] P6 P1

I4 add r2 ← r1, r3 P7 P6 P3 P5

I5 add r2 ← r4, r5 P9 P4 P8 P7

I6 sub r1 ← r2, r6 P11 P9 P10 P6

inst.
id

register
to free

executed
?

I1 1

I2 P2 1

I3 P1 0

I4 P5 0

I5 P7 1

I6 P6 0

PRDQRegister renaming and its outcome

Fig. 6: Recycling physical registers during precise runahead

execution.

branch predictor during runahead execution. However, branch

instructions that reside in the ROB can be resolved in runahead

mode and update the predictor as they would in normal mode.

If a branch instruction in the ROB turns out to be mispredicted,

the processor discards all wrong-path instructions (including

runahead instructions, if any), flushes the pipeline, and resumes

normal execution.

E. Runahead Register Reclamation

PRE requires sufficient issue queue entries and physical

registers to run ahead. As reported in Section III-A, such

resources are usually available when entering runahead mode.

Stalling slices are usually short and therefore issue queue

entries are quickly reclaimed and are unlikely to hinder forward

progress of runahead execution. In all of our experiments, we

did not observe issue queue pressure during runahead.

PRE requires special support for reclaiming physical registers

during runahead execution. In an out-of-order core, a physical

register can be freed only when the last consumer of the

renamed architectural register commits [62]. Since instructions

that are fetched in runahead mode are discarded after they finish

execution, we cannot rely on the conventional renaming policy

to free physical registers. Thus, we devise a new mechanism,

called runahead register reclamation (RRR), to free physical

registers in runahead mode. RRR relies on a new FIFO

hardware structure, called the precise register deallocation

queue (PRDQ) in Figure 5.

Figure 6 illustrates RRR in more detail. Each entry in the

PRDQ has three fields: an instruction identifier, a physical

register (tag) to be freed, and an ‘execute’ bit that marks

whether the instruction has completed execution. The figure also

provides a code example to help explain the operation of the

PRDQ. The instructions in the example are numbered following

program order. For example, instruction I2 precedes instruction

I4 in program order. The figure shows the instructions after

the register renaming stage. In this code example, instruction

I4 reads the value of architectural register r1 from physical

register P6, which is written by instruction I3. I4 also reads

the value of architectural register r3 from physical register P3

written by an older instruction not shown in the code example.

PRDQ entries are allocated in program order at the PRDQ

tail. Register renaming maps a free physical register to the

destination architectural register of an instruction in runahead

mode. We mark the old physical register mapped to the same

(destination) architectural register in the PRDQ entry. A PRDQ

entry is deallocated when the instruction is executed (i.e.,

‘execute’ bit is set) and reaches the PRDQ head. PRDQ deallo-

cation is also done in program order. The old physical register

associated with the instruction is freed upon deallocation. For

example, in Figure 6, the renaming unit maps the destination

architectural register of instruction I4 (i.e., r2) to physical

register P7 and marks the old physical register mapped to r2

(i.e., P5) to be freed when I4 is retired and deallocated from

the PRDQ.

While instructions may execute and thus mark the ‘execute’

bit out-of-order, in-order PRDQ deallocation guarantees that

a physical register is freed only when there are no more

instructions in-flight that may possibly read that register. The

PRDQ is only enabled in runahead mode and its entries are

discarded once the processor returns to normal mode.

F. Exiting Precise Runahead Execution

The core exits runahead mode when the stalling load returns.

Upon exit, the core resumes normal execution after having

restored the checkpointed PC, RAT, and RAS. As instructions

are preserved in the ROB, the core starts committing instruc-

tions starting from the stalling load. The front-end re-directs

fetch from the first instruction after the full-window stall, i.e.,

the PC which was checkpointed when entering runahead mode.

G. Front-End Optimization

PRE executes future stalling slices for the entire length

of a runahead interval. During this time, PRE requires the

front-end of the processor to keep fetching and decoding

instructions. Therefore, the front-end has to remain active

during runahead mode. The instructions fetched in runahead

mode are fetched and processed again for execution in normal

mode. This increases the energy overhead in the processor

front-end for PRE compared to runahead buffer [24].

To avoid wasting the work and energy of the front-end

in runahead mode, we propose the extended micro-op queue

(EMQ) as shown in Figure 5. Superscalar out-of-order pro-

cessors typically feature a micro-op queue to hold micro-ops

after the instruction decode pipeline stage. For example, Intel

Skylake uses a micro-op queues of 64 entries [29]. We propose

extending the number of entries of the processor’s micro-op

queue, hence the name EMQ. The micro-op queue is a circular

FIFO buffer and is extended without significantly impacting

the complexity of the design. We augment PRE with an EMQ

to store the micro-ops generated in runahead mode.

When using the EMQ, PRE stores all the decoded instruc-

tions in runahead mode, including the ones that hit in the SST.

When the processor resumes normal execution, it does not

need to fetch and decode these instructions again. Note that

with this optimization, the number of speculatively executed

instructions in runahead mode is constrained by the size of the

EMQ. When the EMQ fills up, the core stalls until the stalling

load returns, at which point, the processor exits runahead mode.

Alternatively, the processor can continue fetching instructions

beyond the size of EMQ for the whole runahead interval. In this

case, the processor only needs to re-fetch the instructions that

could not be buffered in the EMQ during runahead execution.

This design alternative, however, is similar to PRE’s original

402

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

1.0

1.1

1.2

1.3

1.4

1.5

32 64 12
8

25
6

51
2

no
rm

al
ize

d
IP

C

SST size

1.0

1.1

1.2

1.3

1.4

16 32 64 12
8

19
2

25
6

no
rm

al
ize

d
IP

C
PRDQ size

Fig. 7: Performance impact of changing the sizes of the SST

and PRDQ. Performance is normalized to the OoO core. An

SST size of 128 entries balances performance and hardware

cost; performance saturates for PRDQ size of 192 entries.

design and does not lead to significant variation in its energy

and performance profile.

Engaging the EMQ is an optional design optimization. It is

not mandatory for PRE’s runahead operation. As we show in

Section V-C, augmenting PRE with an EMQ of various sizes

leads to different design points that trade off performance for

energy. Designers can select a suitable design choice based on

the available area and energy budgets, and performance goals.

H. Hardware Overhead

As mentioned before, PRE relies on the newly proposed SST

and PRDQ. We conduct a sensitivity analysis to empirically

select their sizes. Figure 7 reports the impact of varying the

SST and PRDQ sizes on performance (normalized to a baseline

OoO core). To balance hardware cost and performance, we

opt for an SST with 128 entries; increasing the SST size

beyond 128 entries leads to a minor gain in performance while

incurring a significant hardware cost. We set the PRDQ size

to 192 entries because it achieves the best performance and its

hardware cost is small.

An SST with 128 entries each with a 4-byte tag requires

512 Bytes of storage. An entry in the PRDQ consists of a

single bit to indicate that the instruction has finished execution,

an 8-bit tag for the physical register to free, and 12 bits

(assuming a maximum of 4096 runahead instructions) to give

each instruction explored in runahead mode a unique ID. This

adds up to a total of 504 Bytes. Additionally, we extend each

mapping of the 64-entry RAT by 4 bytes for a total of 256 Bytes.

This leads to a total hardware cost of 1.24 KB. When PRE is

augmented with an (optional) EMQ, the hardware overhead is

increased according to the selected EMQ size, with each EMQ

entry requiring 4 Bytes to hold a micro-op. In comparison,

runahead buffer incurs a hardware cost of about 1.7 KB and

uses expensive CAM lookups in the ROB to determine stalling

slices. Overall, the hardware cost and complexity of PRE is

smaller compared to the runahead buffer proposal.

IV. METHODOLOGY

Simulation Setup. We evaluate precise runahead execution

using the cycle-level, hardware-validated Sniper 6.0 [10]

0.0

0.2

0.4

0.6

0.8

1.0

32 64 96 12
8

16
8

19
2

25
6

no
rm

al
ize

d
IP

C

PRF size

0.0

0.2

0.4

0.6

0.8

1.0

32 48 64 92 12
8

16
0

no
rm

al
ize

d
IP

C

IQ size

Fig. 8: Impact of PRF and IQ sizes on performance while

keeping other configuration parameters constant. Overall, the

baseline OoO core with 168 PRF entries and 92 IQ entries is

a balanced configuration.

Frequency 2.66 GHz
Type out-of-order
ROB size 192
Issue queue size 92
Load queue size 64
Store queue size 64
Micro-op queue size 28
Pipeline width 4
Pipeline depth 8 stages (front-end only)
Branch predictor 8 KB TAGE-SC-L

Functional units 3 int add (1 cyc), 1 int mult (3 cyc),
1 int div (18 cyc), 1 fp add (3 cyc),
1 fp mult (5 cyc), 1 fp div (6 cyc)

Register file 168 int (64 bit)
168 fp (128 bit)

SST size 128 entry, fully assoc, 6r 2w
PRDQ size 192 entry, 4r 4w

L1 I-cache 32 KB, assoc 4, 2 cyc
L1 D-cache 32 KB, assoc 8, 4 cyc
Private L2 cache 256 KB, assoc 8, 8 cyc

Shared L3 cache 1 MB, assoc 16, lat 30 cyc

Memory DDR3-1600, 800 MHz
ranks: 4, banks: 32
page size: 4 KB, bus: 64 bits
tRP-tCL-tRCD: 11-11-11

TABLE I: Baseline configuration for the out-of-order core.

simulator, using its most accurate core model. The configuration

for our baseline out-of-order core is provided in Table I. The

sizes of the ROB, the physical register files, and the micro-op

queue are based on the Haswell architecture [19, 23]; the size

of the issue queue is set as in the runahead buffer paper [24]

for fair comparison. We verify that this baseline configuration

is indeed balanced, see Figure 8, i.e., the physical register

file (PRF) and issue queue (IQ) sizes are the minimum sizes

that lead to the best performance for the given ROB size.

We assume that hardware prefetching is not enabled in our

baseline core. However, we do evaluate the impact of hardware

prefetching in Section V-D. We consider an 8 KB TAGE-SC-L

branch predictor as implemented for the 2016 Branch Prediction

Championship [55].

Power. We use McPAT [37] to calculate power consumption

assuming a 22 nm chip technology. We calculate power for the

SST, EMQ and PRDQ using CACTI 6.5 [38] and add those

403

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

estimates to the McPAT power numbers. We report system

power (processor plus main memory).

Cycle Time. We model the impact of the newly added hardware

structures on processor cycle time using CACTI 6.5 [38]. We

assume that the front-end can deliver up to six micro-ops

per cycle to the micro-op queue. Therefore, the SST has 6/2

read/write ports. In runahead mode, we can check up to six

micro-ops per cycle in the SST. PRDQ is an in-order queue

with 4/4 read/write ports. The cycle time for accessing the SST

and PRDQ equals 0.314 ns and 0.102 ns, respectively. Since

this is below the processor cycle time (0.375 ns), we conclude

that the accesses to the SST and PRDQ do not impact processor

timing. (The SST can be pipelined, if needed, since it is not

on the critical path.)

Workloads. We evaluate a total of 16 memory-intensive

benchmarks from the SPEC CPU2006 and SPEC CPU2017

suites. From the CPU2006 suite, we select the same benchmarks

as runahead buffer [24], and we maintain the same order when

presenting our results. Compared to SPEC CPU2006, there are

fewer memory-intensive benchmarks in the CPU2017 suite and,

even though some benchmarks (e.g., bwaves) have multiple

input data sets, their fraction of full-window stalls is similar

in our setup. The three new memory-intensive benchmarks we

have included from the SPEC CPU2017 suite are roms_r_1,

parest_r_1 and fotonik3d_r_1. We create 1 Billion

instruction SimPoints [56] for each benchmark.

V. EVALUATION

We compare the following four mechanisms:

• OoO: Our baseline out-of-order core from Table I.

• RA: Runahead execution, as explained in Section II-B,

with the following enhancements [24, 42]:

– There are no overlapping runahead intervals.

– Runahead execution is triggered only when the stalling

load instruction was issued to memory less than 250

cycles earlier.

• RA-buffer: The runahead buffer mechanism explained

in Section II-D. In runahead mode, the front-end of the

processor is clock-gated and the dominant stalling load

slice for each runahead interval is executed from the

runahead buffer. We assume all the chains are stored in a

chain cache. Therefore, no extra overhead is required to

perform backward walks in the ROB.

• RA-hybrid: The hybrid runahead approach selects the

runahead technique (RA or RA-buffer) that yields the

highest performance on a per-application basis.

• PRE: The precise runahead execution proposal as de-

scribed in this paper.

We use instructions per cycle (IPC) to quantify performance.

We calculate average performance across all benchmarks using

the harmonic mean IPC across all benchmarks.

A. Performance

Figure 9 reports performance for the various runahead

techniques, normalized to the baseline OoO core. While

RA and RA-buffer improve performance over the OoO

0.0

0.5

1.0

1.5

2.0

2.5

ze
us

m

ca
ct

us w
rf

Ge
m

s

le
sli

e

om
ne

t

m
ilc

so
pl

ex

sp
hi

nx

bw
av

e

lib
qu

a

lb
m

m
cf

ro
m

s

pa
re

st

fo
to

ni
k

HM
ea

n

no
rm

al
ize

d
IP

C

OoO RA RA-buffer RA-hybrid PRE

2.
7

2.
5

2.
7

Fig. 9: Performance (IPC) normalized to an out-of-order core

for runahead execution, runahead buffer and precise runahead

execution. PRE improves performance by 38% on average

compared to the baseline out-of-order core.

core by on average 16.0% and 13.3%, respectively, RA-

hybrid which selects the best of both techniques improves

performance by 20%. PRE on the other hand manages to

improve performance by 38.2%. This is an additional 18.2%

improvement over prior runahead techniques. Most of the

applications gain a significant performance improvement with

PRE. In general, we find that applications that spend more

time waiting on a full-window stall have a higher chance

to benefit from PRE. PRE achieves the highest performance

improvements for GemsFDTD, leslie3d, libquantum,

roms and fotonik. As Figure 1 shows, these applications

spend more than 60% of their execution time on full-window

stalls, providing PRE a significant opportunity to generate

useful prefetches. The performance improvements for these

applications range from 52% up to more than 2×, see

libquantum, roms and fotonik. Other applications that

spend less time waiting for long-latency loads like zeusmp,

wrf, milc, sphinx3, bwaves and parest still achieve a

significant performance improvement that ranges between 20%

and 40%.

The significant performance improvement of PRE relative

to prior runahead techniques comes from its higher prefetch

coverage and the fact that it avoids flushing and re-filling

the pipeline when leaving runahead mode. However, we find

a few outlier cases where PRE has only a minor benefit

compared to either the OoO or to prior runahead techniques.

We observe that none of the runahead techniques significantly

improve performance of the OoO core for lbm. This benchmark

experiences full-window stalls for only 2.7% of the total

execution time because the pipeline stalls on other resources.

Therefore, the opportunity to prefetch in runahead mode is

quite small. On the other hand, omnetpp is characterized by

long stalling slices, as corroborated by [24]. The long stall

slices limit PRE’s opportunity to explore multiple slices per

runahead interval. Therefore, PRE performs similarly to prior

runahead execution for omnetpp.

The only benchmarks that benefit from RA-buffer more

than PRE are libquantum and mcf. For libquantum,

about 50% of the load instructions that access memory in

a runahead interval are identical to the stalling load as

Figure 2 shows. The rate at which RA-buffer executes the

404

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

z
e

u
s
m

c
a
c
tu

s

w
rf

G
e
m

s

le
s
lie

o
m

n
e
t

m
ilc

s
o
p
le

x

s
p
h
in

x

b
w

a
v
e

lib
q

u
a

lb
m

m
c
f

ro
m

s

p
a
re

s
t

fo
to

n
ik

H
M

e
a
n

n
o
rm

a
liz

e
d
 I

P
C

OoO RA RA-no-overhead

Fig. 10: Performance impact of flushing the pipeline when

leaving runahead mode and refilling it when resuming normal

execution in RA. PRE avoids this overhead as it does not need

to flush the pipeline when leaving runahead mode.

same stalling slice to generate prefetches exceeds that of

PRE, which has to dynamically determine the slices. The

benefits of the faster prefetch generation in a limited runahead

interval for libquantum outweigh the benefits of finding all

slices. On the other hand, mcf is characterized by its high

branch misprediction rate. This means that both PRE and

prior runahead techniques invoke useless runahead intervals

that execute wrong-path instructions, and thus do not improve

performance. Branch instructions that wait for the stalling load

to be resolved benefit from RA-buffer because it prefetches

only stalling load slices. RA-buffer is particularly beneficial

for load-dependent branches that are mispredicted. Therefore,

it manages to slightly improve performance over PRE which

dynamically explores all stall slices.

We now further analyze the sources of performance improve-

ment for PRE over prior runahead techniques.

Pipeline Refill Overhead. PRE does not need to flush and refill

the pipeline when resuming normal mode. This alone gives

PRE a significant performance improvement over the original

runahead proposal. Even with the enhancements introduced to

the original runahead technique, the overhead of flushing the

pipeline when leaving runahead mode and refilling it starting

from the stalling load still limits its performance improvement.

Figure 10 demonstrates the significant impact of flushing and re-

filling the processor pipeline on RA’s performance improvement.

Every exit from the runahead mode is followed by a pipeline

bubble of at least 56 cycles—8 cycles to re-fill the front-end

and 48 cycles to re-dispatch the same instructions to the ROB.

As the figure shows, RA improves the performance of the OoO

core by 16% on average. The performance improvement jumps

to 22.8% when the flushing and refilling overhead is avoided.

MLP. PRE improves the degree of MLP that is exposed over

prior proposals, for three reasons. First, PRE triggers runahead

execution even for relatively short runahead intervals. This

allows PRE to invoke runahead execution 1.8× more than

RA and RA-buffer. Second, PRE executes only the stalling

slices, which enables PRE to uncover long-latency loads at a

higher rate than RA per runahead interval, and thus speculate

deeper down the dynamic instruction stream. Third, PRE targets

multiple stalling load slices during runahead execution in

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

ze
us

m

ca
ct

us w
rf

Ge
m

s

le
sli

e

om
ne

t

m
ilc

so
pl

ex

sp
hi

nx

bw
av

e

lib
qu

a

lb
m

m
cf

ro
m

s

pa
re

st

fo
to

ni
k

av
g

no
rm

al
ize

d
M

LP

OoO RA RA-buffer RA-hybrid PRE

Fig. 11: Normalized MLP. PRE improves MLP by 2× compared

to an out-of-order core.

0.0

0.2

0.4

0.6

0.8

1.0

ze
us

m

ca
ct

us w
rf

Ge
m

s

le
sli

e

om
ne

t

m
ilc

so
pl

ex

sp
hi

nx

bw
av

e

lib
qu

a

lb
m

m
cf

ro
m

s

pa
re

st

fo
to

ni
k

av
g

no
rm

al
ize

d
LL

C
m

iss
es

OoO RA RA-buffer RA-hybrid PRE

Fig. 12: Normalized LLC miss count during normal (non-

runahead) execution. PRE’s accurate prefetches reduce the

number of LLC misses by 50% compared to an OoO core.

contrast to RA-buffer which speculatively executes only one

stalling slice in a loop.

As Figure 11 shows, the MLP generated by RA, RA-buffer,

RA-hybrid, and PRE is 1.5×, 1.3×, 1.6×, and 2× higher

than for the OoO core. PRE improves MLP for most of the

applications, except for the few outlier applications that were

previously discussed. In general, the higher MLP of PRE

reflects its superior prefetch quality, which leads to higher

overall performance. It is worth noting that although RA-buffer

can generate about 2× more memory requests than RA per

runahead interval as reported in [24], overall performance is

not proportionally improved.

LLC Miss Rate. Figure 12 reports normalized LLC miss rate

in normal mode for all the runahead techniques. All runahead

techniques reduce the number of LLC misses observed during

normal mode. However, we find that PRE covers more LLC

misses than any other prior runahead technique. On average,

RA, RA-buffer, and RA-hybrid reduce the number of LLC

misses by 26.4%, 27.7% and 31%, respectively, whereas PRE

reduces the number of LLC misses by 50.2%. This higher

reduction in LLC miss rate is a result of covering more stalling

slices deeper down the dynamic instruction stream.

B. Energy Analysis

Figure 13 shows the energy consumption for all runahead

techniques normalized to the OoO core. RA increases energy

consumption of an OoO core by 2.4% on average. RA-buffer

clock-gates the front-end during runahead mode to reduce

energy overhead to only 0.4% relative to the baseline OoO

core. RA-hybrid slightly reduces the energy consumption

compared to RA-buffer. In general, we find that the significant

performance improvement of PRE allows it to complete the

same task with less energy than the other techniques for most

405

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

ze
us

m

ca
ct

us w
rf

Ge
m

s

le
sli

e

om
ne

t

m
ilc

so
pl

ex

sp
hi

nx

bw
av

e

lib
qu

a

lb
m

m
cf

ro
m

s

pa
re

st

fo
to

ni
k

av
g

no
rm

al
ize

d
en

er
gy

RA RA-Buffer RA-hybrid PRE

0.71 0.71 0.76 0.8

1.16

Fig. 13: Normalized energy consumption. PRE reduces energy

consumption by 6.8% compared to an out-of-order core, while

runahead execution slightly increases energy consumption or

is energy-neutral.

0.8

0.9

1.0

1.1

1.0 1.1 1.2 1.3 1.4 1.5

en
er
gy

performance

EMQ=1X
PRE

EMQ=2X
EMQ=4X EMQ=8X

RA

RA-buffer
RA-hybrid

Fig. 14: Performance versus energy normalized to the OoO core.

PRE improves performance and reduces energy consumption

compared to an out-of-order core. Increasing the size of

the (optional) EMQ further reduces energy consumption and

presents an energy-performance trade-off.

of the applications. Similar to our earlier discussion, only few

outlier cases such as libquantum and mcf consume less

energy using RA-buffer than with PRE. On average, PRE

performs the same task with 6.8% less energy compared to

the baseline OoO core.

C. Front-End Energy Optimization

PRE requires the front-end of the processor to remain active

in runahead mode to find stalling slices further down the

dynamic instruction stream. Upon resuming normal mode, the

processor fetches and executes all the instructions that were

fetched in runahead mode again. In Section III-G, we proposed

the EMQ as an optimization to save the energy consumed by

the front-end in runahead mode. The EMQ is a design choice

that trades off performance for energy.

Figure 14 shows the performance-energy trade-off for PRE

with an EMQ of different sizes in multiples of the ROB size.

(For example, an EMQ of size 2× has 384 entries.) Without

an EMQ, PRE keeps exploring the code throughout the entire

runahead interval, leading to the highest performance improve-

ment, however, this requires refetching instructions upon return

to normal mode. With a limited EMQ, PRE can save the

work of the front-end but may halt runahead execution before

the end of the runahead interval. In contrast, larger EMQs

enable PRE to explore more code than smaller ones, leading

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ze
us

m

ca
ct

us w
rf

Ge
m

s

le
sli

e

om
ne

t

m
ilc

so
pl

ex

sp
hi

nx

bw
av

e

lib
qu

a

lb
m

m
cf

ro
m

s

pa
re

st

fo
to

ni
k

HM
ea

n

no
rm

al
ize

d
IP

C

OoO PRE OoO+L3 pref PRE+L3 pref OoO+all pref PRE+all pref

Fig. 15: Performance relative to the baseline OoO core (without

prefetching) when hardware prefetching is enabled at the LLC

and all the cache levels. PRE improves performance even when

conventional stride prefetching is enabled at the LLC and all

the cache levels.

to higher performance and saving more work in the front-end.

Thus, with a larger EMQ size, performance improves and

energy consumption decreases. With a sufficiently large EMQ,

it is possible to find design points that achieve comparable

performance to PRE (without EMQ) while significantly saving

energy, such as in the case for the EMQ=8× and EMQ=4×

configurations. This comes at an increase in hardware cost

though, e.g., an EMQ=4× storing 4 Bytes per entry requires

3 KB.

Interestingly, Figure 14 also shows that augmenting PRE with

an EMQ provides better performance-energy trade-off points

than prior runahead techniques even with limited EMQ sizes.

For example, for the EMQ=1× configuration, PRE yields

higher performance than RA-buffer at a lower energy cost.

Similarly, for the EMQ=2× configuration, PRE yields higher

performance than all prior runahead techniques at a lower

energy cost. Whether to use an EMQ or not, and which EMQ

size to select, are design alternatives that can be selected at

design time based on the available energy and area budgets.

D. Architecture Sensitivity

Hardware Prefetching. Hardware prefetchers and runahead

techniques both aim at bringing data into the on-chip caches

before it is needed by the workload. Generally speaking,

hardware prefetchers exploit memory access patterns to predict

which data to prefetch. On the other hand, runahead techniques

generate prefetch requests by pre-executing the code. Both

techniques are complementary to each other. If the hardware

prefetchers are able to predict LLC misses and convert them

into hits, runahead execution is not triggered. Conversely, when

runahead techniques are effective at prefetching data, hardware

prefetchers are invoked fewer times.

Figure 15 shows the performance improvement of the

baseline OoO core and PRE when augmented with hardware

prefetchers. We evaluate two configurations: (i) a stride-based

LLC hardware prefetcher with 16 streams, and (ii) a stride-

based hardware prefetcher with 16 streams incorporated at all

levels in the hierarchy. PRE leads to significant performance

improvements even for processor configurations with conven-

406

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

96 12
8

14
4

16
8

19
2

25
6

IP
C

no
rm

al
ize

d
to

 O
oO

 co
re

(a) PRF size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

32 48 64 80 92 12
8

16
0

19
2

IP
C

no
rm

al
ize

d
to

 O
oO

 co
re

(b) IQ size

Fig. 16: Performance improvement through PRE as a function

of PRF and IQ sizes. PRE improves performance even for PRF

and IQ sizes that are underprovisioned.

tional hardware prefetchers. For the configuration with the LLC

prefetcher as a baseline, PRE improves performance by 21.5%.

For the configuration with prefetchers engaged at all cache

levels, PRE improves performance by 9.1%. The performance

benefit obtained through PRE is expected to reduce with more

aggressive hardware prefetching. Nevertheless, we conclude

that PRE offers non-trivial performance improvements even

under (aggressive) hardware prefetching.

Physical Register File. PRE leverages available PRF entries

to speculate beyond a full ROB. Figure 16(a) quantifies PRE’s

average performance improvement as we scale the number

of PRF entries (PRF=N means N integer and N floating-

point registers). PRE performance is (obviously) sensitive to

the number of physical registers. Small PRF sizes exhaust

the number of available PRF entries, preventing PRE from

speculating beyond the full ROB. Our baseline configuration

assumes a balanced PRF size of 168 entries. Smaller PRF sizes,

even if this leads to an unbalanced baseline design, would still

experience a non-trivial improvement through PRE: 19.7%

average performance improvement for a PRF size of 128 and

31.2% for a PRF size of 144.

Issue Queue. Similarly, PRE leverages available issue queue

(IQ) sizes to speculate beyond a full ROB. Figure 16(b) reports

the average performance improvement achieved through PRE

as a function of IQ size. Small IQ sizes limit the number of

resources that PRE can use during runahead mode, which limits

the performance improvement achieved by PRE. Our baseline

assumes an IQ size of 92. Smaller IQ sizes still enable PRE

to achieve substantial performance improvements: 31.9% for

an IQ size of 64 and 35.8% for an IQ size of 80.

LLC Size and Skylake. Data footprints for memory-intensive

applications go beyond the LLC. Even when quadrupling the

LLC size to 4 MB, PRE still achieves twice the performance

of the best performing prior work (15% improvement for prior

work versus 31% for PRE relative to baseline). We observe

similar performance results and double the performance gain

over prior work for a Skylake-like architecture (224-entry

ROB, 97-entry IQ, and 180 physical registers). The average

performance gains over the baseline (Skylake) core for RA,

RA-buffer, RA-hybrid, and PRE amount to 13.1%, 12%, 17.2%,

and 31.5%, respectively.

VI. RELATED WORK

A large body of processor microarchitecture research has

focused on improving single-thread performance over the past

four decades. Various proposals scaled microarchitecture struc-

tures for better performance and energy-efficiency. Examples

include proposals that dynamically scale operating voltage and

clock frequency [8, 30, 50] or resize critical structures like

issue queue [9, 20, 28, 34, 49] and caches [1, 2, 5] or throttle

the front-end pipeline [39]. PRE fits in the category of work

that performs some form of runahead execution, pre-execution

or prefetching.

Runahead. PRE improves upon the runahead execution pro-

posed within a single core [24, 40, 41, 42, 43, 44]. Since

traditional runahead execution cannot prefetch dependent long-

latency load instructions, address-value delta [43] predicts the

data value of earlier long-latency load instructions to enable the

execution of future ones. An enhanced memory controller [25]

filters this chain of dependent long-latency load instructions

and executes it at the memory controller; now, the dependent

load instructions can execute as soon as the data is available

from DRAM. Because the effective runahead interval shortens

with the increasing size of the ROB, continuous runahead [26]

proposes a tiny accelerator that is located at the last-level cache

controller of a multi-core chip. The accelerator executes the

dependency chain that leads to the highest number of full-

window stalls within the core. However, the area overhead of

the accelerator is 2% of a quad-core chip, and likely higher for

a single core. Prior work has also proposed runahead threads in

an SMT processor [51, 52, 66]. PRE is a runahead technique

that does not require a separate core or runahead thread to

pre-execute stalling slices.

Pre-Execution. This category of work executes performance

critical instruction slices early in a software-only, hardware-

only or a hardware-software cooperative fashion. Helper

threads [32] and speculative precomputation [14] are software-

only techniques that require a hardware context for early

execution. Hardware-only techniques filter critical instruction

slices from the back-end of a processor for early execution on

a separate hardware context [15, 72]. Waiting instruction buffer

(WIB) [36] and continual flow pipelines (CFP) [60] execute

a large number of independent instructions by releasing the

resources occupied by miss-dependent instructions. BOLT [27]

builds upon CFP but reuses SMT hardware to rename deferred

slices and introduces a set of mechanisms to avoid useless

pre-execution of slices. Slipstream processors [61] improve

performance and reliability by precomputing demand misses.

Dependence graph precomputation (DGP) [3] dynamically

precomputes and executes instructions responsible for memory

accesses on a separate execution engine. Dual-core [70] and

explicitly-decoupled architecture (EDA) [21, 22, 33, 48] use

two hardware threads where one thread feeds its output to

the other. Hardware-software cooperative techniques involve

new instructions, advanced profiling, or binary translation for

separating critical instruction slices, see for example DAE [57],

speculative slice execution [71], flea-flicker multi-pass pipelin-

ing [7], braid processing [65], and OUTRIDER [16]. Instruction

slices have also been exploited to improve the energy-efficiency

407

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

of both in-order and OoO processors [11, 35, 54, 63, 64]. PRE

does not require a helper thread, hardware context, or support

from software for converting demand misses into hits.

Prefetching. Hardware prefetchers are typically employed

in modern processors [29]. Stride or stream prefetchers are

able to prefetch common stride data access patterns that are

independent of other memory accesses [17, 31, 47]. The

accesses are either contiguous or separated by a constant stride.

Address-correlating prefetchers require larger tables and target

pointer-chasing access patterns [4, 12, 13, 58, 59, 67, 68, 69].

These prefetchers build on the premise that data structures are

typically accessed in the same manner, generating the same

cache misses repeatedly. Global history buffer (GHB) [46]

splits the correlation table into two separate structures and also

lowers the hardware overhead. PRE is implemented completely

within the core and is orthogonal to other hardware prefetching

techniques.

VII. CONCLUSION AND FUTURE WORK

Runahead execution improves processor performance by

accurately prefetching long-latency memory accesses. We show

that the performance of prior runahead proposals is limited

by the high overhead they incur and the limited prefetch

coverage they achieve. Prior proposals release processor state

when entering runahead mode and need to re-fill the pipeline

when resuming normal operation. This operation introduces

significant performance overhead. Moreover, prior proposals

have limited prefetch coverage due to executing instructions

that are unnecessary to generate prefetches as in the original

runahead proposal, or due to not exploring all possible stalling

loads as in runahead buffer.

In this paper, we propose precise runahead execution (PRE),

to alleviate the shortcomings of prior runahead proposals.

We observe that at the entry of runahead mode, there are

sufficient free PRF and IQ resources to speculatively execute

instructions without having to release processor state. PRE

does not incur the performance overhead of refilling the

pipeline when resuming normal operation, by featuring a novel

mechanism to quickly recycle physical registers in runahead

mode. Furthermore, PRE tracks all stalling slices in a dedicated

cache, which it executes in runahead mode, i.e., PRE filters

unnecessary instructions and pre-executes all stalling slices to

improve prefetch coverage. Our experimental evaluation shows

that PRE outperforms recent runahead proposals by 18.2% on

average, while reducing energy consumption by 6.8%.

For all runahead techniques including PRE, there is a risk of

leaking information as instructions are executed speculatively.

For mitigating such risk, we can exploit recently proposed

techniques such as CleanupSpec [53] which adds small area

and performance overhead for undoing the changes made to

the cache hierarchy by speculative instructions. Investigating

the interplay between (precise) runahead and recently proposed

security mitigation techniques is subject of future work.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable

comments. This work was supported by European Research

Council (ERC) Advanced Grant agreement no. 741097, and

FWO projects G.0434.16N and G.0144.17N. Josué Feliu was

supported through a postdoctoral fellowship by the Generalitat

Valenciana (APOSTD/2017/052).

REFERENCES

[1] D. H. Albonesi. Selective cache ways: On-demand cache resource alloca-
tion. In Proceedings of the International Symposium on Microarchitecture

(MICRO), pages 248–259, Nov. 1999.
[2] D. H. Albonesi, R. Balasubramonian, S. G. Dropsbo, S. Dwarkadas, E. G.

Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott, G. Semeraro,
P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E. Schuster. Dynamically
tuning processor resources with adaptive processing. Computer, 36(12):
49–58, 2003.

[3] M. Annavaram, J. M. Patel, and E. S. Davidson. Data prefetching
by dependence graph precomputation. In Proceedings 28th Annual

International Symposium on Computer Architecture (ISCA), pages 52–61,
2001.

[4] J. Baier and G. R. Sager. Dynamic improvement of locality in virtual
memory systems. IEEE Transactions on Software Engineering, SE-2(1):
54–62, 1976.

[5] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas.
Memory hierarchy reconfiguration for energy and performance in general-
purpose processor architectures. In Proceedings of the 33rd Annual

International Symposium on Microarchitecture (MICRO), pages 245–257,
2000.

[6] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Dynamically
allocating processor resources between nearby and distant ILP. In Pro-

ceedings of the 28th International Symposium on Computer Architecture

(ISCA), pages 26–37, 2001.
[7] R. D. Barnes, S. Ryoo, and W. W. Hwu. ”Flea-flicker” multipass

pipelining: an alternative to the high-power out-of-order offense. In
Proceedings of the 38th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 319–330, 2005.
[8] T. Burd and R. Brodersen. Design issues for dynamic voltage scaling. In

Proceedings of the International Symposium on Low Power Electronics

and Design (ISLPED), pages 9–14, June 2000.
[9] A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and P. Bose. Energy

efficient co-adaptive instruction fetch and issue. In Proceedings of the

30th Annual International Symposium on Computer Architecture (ISCA),
pages 147–156, 2003.

[10] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An
evaluation of high-level mechanistic core models. ACM Transactions on

Architecture and Code Optimization (TACO), 11(3):28, 2014.
[11] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout. The

load slice core microarchitecture. In Proceedings of the 42nd International

Symposium on Computer Architecture (ISCA), pages 272–284, 2015.
[12] M. J. Charney. Correlation-based Hardware Prefetching. PhD thesis,

1995.
[13] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching

for general-purpose programs. In Proceedings of the ACM SIGPLAN

2002 Conference on Programming Language Design and Implementation

(PLDI), pages 199–209, 2002.
[14] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and J. P.

Shen. Speculative precomputation: Long-range prefetching of delinquent
loads. In Proceedings of the 28th Annual International Symposium on

Computer Architecture (ISCA), pages 14–25, July 2001.
[15] J. D. Collins, D. M. Tullsen, , and J. P. Shen. Dynamic speculative

precomputation. In Proceedings of the 34th Annual International

Symposium on Microarchitecture (MICRO), pages 306–317, 2001.
[16] N. C. Crago and S. J. Patel. OUTRIDER: Efficient memory latency

tolerance with decoupled strands. In Proceedings of the 38th Annual

International Symposium on Computer Architecture (ISCA), pages 117–
128, 2011.

[17] F. Dahlgren and P. Stenström. Effectiveness of hardware-based stride and
sequential prefetching in shared-memory multiprocessors. In Proceedings

of the 1st IEEE Symposium on High-Performance Computer Architecture

(HPCA), pages 68–, 1995.
[18] J. Dundas and T. Mudge. Improving data cache performance by pre-

executing instructions under a cache miss. In Proceedings of the

International Conference on Supercomputing (ICS), pages 68–75, July
1997.

[19] A. Fog. The microarchitecture of Intel, AMD and VIA CPUs. https:
//www.agner.org/optimize/microarchitecture.pdf.

408

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

[20] D. Folegnani and A. Gonzalez. Energy-effective issue logic. In
Proceedings of the 28th Annual International Symposium on Computer

Architecture (ISCA), pages 230–239, 2001.
[21] A. Garg and M. C. Huang. A performance-correctness explicitly-

decoupled architecture. In Proceedings of the 41st International

Symposium on Microarchitecture (MICRO), pages 306–317, 2008.
[22] A. Garg, R. Parihar, and M. C. Huang. Speculative parallelization

in decoupled look-ahead. In Proceedings of the 2011 International

Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 413–423, 2011.

[23] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,
H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne,
R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty,
S. Jourdan, S. Gunther, T. Piazza, and T. Burton. Haswell: The fourth-
generation Intel Core processor. IEEE Micro, pages 6–20, 2014.

[24] M. Hashemi and Y. N. Patt. Filtered runahead execution with a
runahead buffer. In Proceedings of the 48th International Symposium on

Microarchitecture (MICRO), pages 358–369, 2015.
[25] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt. Acceler-

ating dependent cache misses with an enhanced memory controller.
In Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), pages 444–455, 2016.
[26] M. Hashemi, O. Mutlu, and Y. N. Patt. Continuous runahead: Transparent

hardware acceleration for memory intensive workloads. In Proceedings

of the 49th International Symposium on Microarchitecture (MICRO),
pages 1–12, 2016.

[27] A. Hilton and A. Roth. BOLT: Energy-efficient out-of-order latency-
tolerant execution. In Proceedings of the 16th International Symposium

on High-Performance Computer Architecture (HPCA), pages 1–12, 2010.
[28] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and

P. Bose. Microarchitectural techniques for power gating of execution
units. In Proceedings of the 2004 International Symposium on Low

Power Electronic Design (ISLPED), pages 32–37, 2004.
[29] Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel,

Apr. 2019.
[30] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi.

An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget. In Proceedings

of the International Symposium on Microarchitecture (MICRO), pages
347–358, Dec. 2006.

[31] N. P. Jouppi. Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers. In Proceedings

of the 17th International Symposium on Computer Architecture (ISCA),
pages 364–373, June 1990.

[32] D. Kim and D. Yeung. A study of source-level compiler algorithms
for automatic construction of pre-execution code. ACM Transactions on

Computer Systems (TOCS), 22(3):326–379, 2004.
[33] S. Kondguli and M. Huang. R3-DLA (reduce, reuse, recycle): A more

efficient approach to decoupled look-ahead architectures. In Proceedings

of the 25th IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 533–544, 2019.
[34] Y. Kora, K. Yamaguchi, and H. Ando. MLP-aware dynamic instruction

window resizing for adaptively exploiting both ILP and MLP. In
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), pages 37–48, 2013.
[35] R. Kumar, M. Alipour, and D. Black-Schaffer. Freeway: Maximizing mlp

for slice-out-of-order execution. In Proceedings of the 25th International

Symposium on High-Performance Computer Architecture (HPCA), pages
558–569, 2019.

[36] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. A
large, fast instruction window for tolerating cache misses. In Proceedings

of the 29th Annual International Symposium on Computer Architecture

(ISCA), pages 59–70, 2002.
[37] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and

N. P. Jouppi. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of

the IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 469–480, Dec. 2009.

[38] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-P:
Architecture-level modeling for SRAM-based structures with advanced
leakage reduction techniques. In Proceedings of the International

Conference on Computer-Aided Design (ICCAD), pages 694–701, 2011.
[39] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: Speculation

control for energy reduction. In Proceedings of the 25th Annual

International Symposium on Computer Architecture, (ISCA), pages 132–
141, 1998.

[40] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An

alternative to very large instruction windows for out-of-order processors.
In Proceedings of the 9th International Symposium on High-Performance

Computer Architecture (HPCA), pages 129–140, Feb. 2003.
[41] O. Mutlu, , J. Stark, and Y. N. Patt. On reusing the results of pre-

executed instructions in a runahead execution processor. IEEE Computer

Architecture Letters, 4(1):2–2, 2005.
[42] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for efficient processing

in runahead execution engines. In Proceedings of the 32nd Annual

International Symposium on Computer Architecture (ISCA), pages 370–
381, June 2005.

[43] O. Mutlu, H. Kim, and Y. N. Patt. Address-value delta (AVD) prediction:
increasing the effectiveness of runahead execution by exploiting regular
memory allocation patterns. In Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 233–244, 2005.

[44] O. Mutlu, H. Kim, and Y. N. Patt. Efficient runahead execution: Power-
efficient memory latency tolerance. IEEE Micro, 26(1):10–20, 2006.

[45] A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout. Precise runahead
execution. IEEE Computer Architecture Letters, 18(1):71–74, 2019.

[46] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history
buffer. In Proceedings of the 10th IEEE Symposium on High-Performance

Computer Architecture (HPCA), pages 96–105, 2004.
[47] S. Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary

cache replacement. In Proceedings of the 21st Annual International

Symposium on Computer Architecture (ISCA), pages 24–33, 1994.
[48] R. Parihar and M. C. Huang. Accelerating decoupled look-ahead via

weak dependence removal: A metaheuristic approach. In Proceedings of

the 20th IEEE International Symposium on High Performance Computer

Architecture (HPCA), pages 662–677, 2014.
[49] D. V. Ponomarev, G. Kucuk, O. Ergin, K. Ghose, and P. M. Kogge.

Energy-efficient issue queue design. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 11(5):789–800, 2003.
[50] G. Qu. What is the limit of energy saving by dynamic voltage scaling? In

Proceedings of the International Conference on Computer-Aided Design

(ICCAD), pages 560–563, Nov. 2001.
[51] T. Ramirez, A. Pajuelo, O. J. Santana, and M. Valero. Runahead threads

to improve SMT performance. In Proceedings of the 14th International

Symposium on High-Performance Computer Architecture (HPCA), pages
149–158, Feb. 2008.

[52] T. Ramirez, A. Pajuelo, O. J. Santana, O. Mutlu, and M. Valero. Efficient
runahead threads. In Proceedings of the 19th International Conference

on Parallel Architectures and Compilation Techniques (PACT), pages
443–452, 2010.

[53] G. Saileshwar and M. K. Qureshi. CleanupSpec: An “undo” approach to
safe speculation. In Proceedings of the 52nd International Symposium

on Microarchitecture (MICRO), pages 73–86, 2019.
[54] A. Sembrant, T. Carlson, E. Hagersten, D. Black-Shaffer, A. Perais,

A. Seznec, and P. Michaud. Long term parking (LTP): Criticality-
aware resource allocation in OOO processors. In Proceedings of the

48th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 334–346, 2015.
[55] A. Seznec. TAGE-SC-L branch predictors again. In 5th JILP Workshop

on Computer Architecture Competitions (JWAC-5): Championship Branch

Prediction (CBP-5), 2016.
[56] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically

characterizing large scale program behavior. In Proceedings of the 10th

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 45–57, 2002.
[57] J. E. Smith. Decoupled access/execute computer architectures. In

Proceedings of the 9th Annual International Symposium on Computer

Architecture (ISCA), pages 112–119, 1982.
[58] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.

Spatial memory streaming. In Proceedings of the 33rd International

Symposium on Computer Architecture (ISCA), pages 252–263, 2006.
[59] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi. Spatio-temporal

memory streaming. In Proceedings of the 36th International Symposium

on Computer Architecture (ISCA), pages 69–80, 2009.
[60] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton.

Continual flow pipelines. In Proceedings of the 11th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 107–119, Oct. 2004.
[61] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slipstream processors:

Improving both performance and fault tolerance. In Proceedings of the

9th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 257–268, 2000.
[62] H. Tabani, J. Arnau, J. Tubella, and A. Gonzalez. A novel register

renaming technique for out-of-order processors. In International

409

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

Symposium on High Performance Computer Architecture (HPCA), pages
259–270, 2018.

[63] K. A. Tran, T. E. Carlson, K. Koukos, M. Själander, V. Spiliopoulos,
S. Kaxiras, and A. Jimborean. Clairvoyance: Look-ahead compile-time
scheduling. In Proceedings of the International Conference on Code

Generation and Optimization (CGO), pages 171–184, 2017.
[64] K. A. Tran, A. Jimborean, T. E. Carlson, K. Koukos, M. Själander, and

S. Kaxiras. SWOOP: Software-hardware co-design for non-speculative,
execute-ahead, in-order cores. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation

(PLDI), pages 328–343, 2018.
[65] F. Tseng and Y. N. Patt. Achieving out-of-order performance with almost

in-order complexity. In Proceedings of the 35th Annual International

Symposium on Computer Architecture (ISCA), pages 3–12, 2008.
[66] K. Van Craeynest, S. Eyerman, and L. Eeckhout. MLP-aware runahead

threads in a simultaneous multithreading processor. In Proceedings

of the 4th International Conference on High Performance Embedded

Architectures and Compilers (HiPEAC), pages 110–124, 2009.
[67] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and

B. Falsafi. Temporal streaming of shared memory. In Proceedings of the

32nd Annual International Symposium on Computer Architecture (ISCA),
pages 222–233, 2005.

[68] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos.
Practical off-chip meta-data for temporal memory streaming. In
Proceedings of the 15th IEEE Symposium on High-Performance Computer

Architecture (HPCA), pages 79–90, 2009.
[69] X. Yu, C. J. Hughes, N. Satish, and S. Devadas. Imp: Indirect memory

prefetcher. In Proceedings of the 48th Annual International Symposium

on Microarchitecture (MICRO), pages 178–190, 2015.
[70] H. Zhou. Dual-core execution: Building a highly scalable single-thread

instruction window. In Proceedings of the 14th International Conference

on Parallel Architectures and Compilation Techniques (PACT), pages
231–242, 2005.

[71] C. Zilles and G. Sohi. Execution-based prediction using speculative
slices. In Proceedings of the 28th Annual International Symposium on

Computer Architecture (ISCA), pages 2–13, July 2001.
[72] C. B. Zilles and G. S. Sohi. Understanding the backward slices of

performance degrading instructions. In Proceedings of the Annual

International Symposium on Computer Architecture (ISCA), pages 172–
181, June 2000.

410

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.

