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Abstract

A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing
spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff
rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic
adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term
potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility
trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The
properties of this learning rule are investigated extensively through experimental simulations, including its learning
performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the
effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern
classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion.
The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show
that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about
the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.
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Introduction [11-13]. However, the complexity of processing temporal codes
[14,15] might limit their usage in SNNs, which demands the
development of efficient learning algorithms.

Supervised learning was proposed as a successful concept of
information processing [16]. Neurons are driven to respond at
desired states under a supervisory signal, and an increasing body of
evidence shows that this kind of learning is exploited by the brain

With the same capability of processing spikes as biological
neural systems, spiking neural networks (SNNs) [1-3] are more
biologically realistic and computationally powerful than the
traditional artificial neural networks (ANNSs). Spikes are believed
to be the principal feature in the information processing of neural

systems, though the neural coding mechanism, 1.e., how informa- [17-20]. Supervised mechanism has been widely used to develop

tif)n is encoded in spikes still rema.ins unclear. For exaplple, many various learning algorithms for processing spatiotemporal spike
different neural codes have been introduced to describe how the . B
patterns in SNNs [15,21-27].

spatiotemporal spikes convey the information of external stimuli,
and among them rate code and temporal code [4] are the two
most widely studied coding schemes. The rate code is a basic
example of a neural code where information is conveyed through
the spike count within a time window. Evidence to support the
hypothesis of the rate code is demonstrated in [5], where a
correlation of firing rates with sensory variables is shown. In the
temporal code, the precise timing of each spike is considered.
Recently, increasing experimental evidence suggests that neural
systems use the exact time of spikes to convey information. For
example, neurons are revealed to precisely respond to stimuli on a
millisecond precision in the retina [6,7], the lateral geniculate
nucleus [8] and the visual cortex [9,10]. These observations
support the hypothesis of the temporal code. Additionally, recent
studies also show that the temporal coding scheme can offer
significant computational advantages over the rate coding scheme

Some of the existing supervised learning rules, such as spike-
driven synaptic plasticity [21], are formulated in a rate-based
framework and are not feasible for the processing of precise-timing
spike patterns. In the spike-driven synaptic plasticity approach, the
learning process is supervised and stochastic, meaning that a
teacher signal steers the output neuron to a desired firing rate.
According to this algorithm, synaptic weights are modified upon
the arrival of presynaptic spikes, considering the state of the
postsynaptic neuron’s potential and its recent firing activity.

SpikeProb [22] is one of the first supervised learning algorithms
for processing precise spatiotemporal patterns in SNNs. It is a
gradient descent based learning rule, which can solve nonlinear
classification tasks by emitting single spikes at the desired firing
time. However, in its original form, SpikeProb cannot learn to
reproduce a multi-spike train. The tempotron rule [15], another
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gradient descent approach that is evaluated to be efficient for
binary temporal classification tasks, cannot output multiple spikes
either. As the tempotron is designed mainly for pattern
recognition, it is unable to produce precise spikes. The time of
the tempotron’s output spike seems to be arbitrary and does not
carry information. By this nature, the output of a tempotron
cannot serve as the input for another tempotron. To produce a
desired spike train, several learning algorithms have been
proposed such as ReSuMe [23,28], Chronotron [24] and SPAN
[25]. These three learning rules are all capable of training a
neuron to generate a desired spike train in response to an input
stimulus. The ReSuMe rule is based on a learning window concept
similar to spike-timing-dependent plasticity (STDP) [29,30]. The
ReSuMe interprets the Widrow-Hoff (WH) rule [16] through
interaction of two biological processes: Hebbian and anti-Hebbian
learning. In the Chronotron, two learning rules are introduced.
One is analytically-derived (E-learning) and another one is
heuristically-defined (I-learning). The I-learning rule is more
biologically plausible but comes with less memory capacity than
the E-learning rule. The performance of the I-learning rule
depends on the weight initialization, where initial zero values can
cause information loss from the corresponding afferent neurons.
The E-learning rule and the SPAN rule are both based on an error
function of the difference between the actual output spike train
and the desired spike train. Their applicability is therefore limited
to the tractable error evaluation, which might be unavailable in
actual biological networks and inefficient from a computational
point of view. These arithmetic-based rules can reveal explicitly
how SNNs can be trained but the biological plausibility of the
error calculation is somewhat questionable.

In this paper, we propose an alternative learning mechanism
called Precise-Spike-Driven (PSD) synaptic plasticity, that is able
to learn the association between precise spike patterns. Similar to
ReSuMe [23] and SPAN [25], the PSD rule is derived from the
WH rule but based on a different interpretation. The PSD rule is
derived analytically based on converting the spike trains into
analog signals by applying the spike convolution method. Such an
approach is rarely reported in the existing learning rule studies
[25]. Synaptic adaptation in the PSD is driven by the error
between the desired and the actual output spikes, with positive
errors causing long-term potentiation (LTP) and negative errors
causing long-term depression (LTD). The amount of adaptation
depends on an eligibility trace determined by the afferent spikes.
Without complex error calculation, the PSD rule provides an
efficient way for processing spatiotemporal patterns. We show that
the PSD rule inherits the advantageous properties of both
arithmetic-based and biologically realistic rules, being simple and
efficient for computation, and yet biologically plausible. Further-
more, the PSD is an independent plasticity rule that can be applied
to different neuron models. This straightforward interpretation of
the WH rule also provides a possible direction for further
exploitation of the rich theory of ANNs, and minimizes the gap
between the learning algorithms of SNNs and the traditional
ANNG.

Various properties of the PSD rule are investigated through an
extensive experimental analysis. In the first experiment, the basic
concepts of the PSD rule are demonstrated, and its learning ability
on hetero-association of spatiotemporal spike pattern is investigat-
ed. In the second experiment, the PSD rule is shown to be
applicable to different neuron models. Thereafter, experiments are
conducted to analyze the learning rule regarding its robustness
against noisy conditions, its memory capacity, effects of the
learning parameters and its classification performance. The
capability of the PSD rule is further demonstrated on a practical
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example of an optical character recognition (OCR) problem.
Finally, a detailed discussion about the PSD rule and several
related algorithms including tempotron, SPAN, Chronotron and
ReSuMe is presented.

Methods

In this section, we begin by presenting the spiking neuron
models. We then describe the PSD rule for learning hetero-
association between the input spatiotemporal spike patterns and
the desired spike trains.

Spiking Neuron Model

As the third generation neuron model, spiking neurons raise the
level of biological realism by utilizing spikes [3]. The spiking
neurons perform computation using the precise timing spikes, and
offer improvements over the traditional neural models in terms of
accuracy and computational power [31]. There are several kinds
of spiking neuron models such as the integrate-and-fire (IF) model
[1], the resonate-and-fire model [32], the Hodgkin-Huxley model
[33], and the Izhikevich (IM) model [34]. Because the IF model is
simple and computationally effective, it has become the most
widely used spiking neuron model [15,21,22,28,35-37], despite
other more biologically realistic models.

For the sake of simplicity, the leaky integrate-and-fire (LIF)
model is firstly considered. The dynamics of each neuron evolves
according to the following equation:

dVi
7 = _(Vn1_E)+(Inx+Isyn)Rm (1)

Tiﬂ

where V), is the membrane potential, 7, =R,C, is the
membrane time constant, R,,=1MQ and C,,=10nF are the
membrane resistance and capacitance, respectively, E is the
resting potential, I,; and Iy, are the background current noise and
synaptic current, respectively. When V), exceeds a constant
threshold Vi, the neuron is said to fire, and V;,, is reset to Vieger
for a refractory period f.r. We set E= Vi =0mV and
Vip=E+18mV  for clarity, but any other values as
E=—60mV will result in equivalent dynamics as long as the
relationships among E, Vieer and Vi, are kept.

For the postsynaptic neuron, we model the input synaptic
current as:

Ixyn([) = E WiI;;SC([) (2)

where w; is the synaptic efficacy of the i-th afferent neuron, and
Ipge is the un-weighted postsynaptic current from the corre-
sponding afferent.

Ipseln)= ZK(z—z-f)H(t_,j) 3)

o

where #/ is the time of the j-th spike emitted from the i-th afferent
neuron, H(t) refers to the Heaviside function, K denotes a
normalized kernel and we choose it as:

—(t—1t))

T

K(t—¥)=Vy(exp(— )— exp( ) (4)

(=)
Ts
where V) is a normalization factor such that the maximum value
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of the kernel is 1, 7y and 17 are the slow and fast decay constants
respectively, and their ratio is fixed at 7,/7, =4.

Fig. 1 illustrates the neuron structure. Each spike from the
afferent neuron will result in a postsynaptic current (PSC). The
membrane potential of the postsynaptic neuron is a weighted sum
of all incoming PSCs over all afferent neurons.

In addition to the LIF model, we also investigate the flexibility
of the PSD rule to different neuron models. For this, we use the IM
model [34], where the dynamics of the IM model is described as:

AV, /dt=0.04V2+5V,, 4+ 140 — U + Ly, + L
dU /dt=a(bV,,— U)

if V,,, >30mV,

thenV,,« ¢, U« U+d

()

where V), again represents the membrane potential. U is the
membrane recovery variable. The synaptic current () is in the
same form as described before, and I,; again represents the
background noise. The parameters a=0.02, b=0.2, c= —65 and
d =8 are chosen such that the neuron exhibits a regular spiking
behavior which is the most typical behavior observed in cortex
[34].

For computational efficiency, the LIF model is used in the
following studies, unless otherwise stated.

PSD Learning Rule

In this section we describe in detail the PSD learning rule. Note
that the spiking neuron models were developed from the
traditional neuron models. In a similar way, we develop the
learning rule for spiking neurons from traditional algorithms.
Inspired by [25], we derive the proposed rule from the common
Widrow-Hoft (WH) rule. The WH rule is described as:

Aw; =nx{(ya — o) (6)

where 7 is a positive constant referring to the learning rate, x;, y4
and y, refer to the input, the desired output and the actual output,
respectively.

Note that because the WH rule was introduced for the
traditional neuron models such as perceptron, the variables in
the WH rule are regarded as real-valued vectors. In the case of
spiking neurons, the input and output signals are described by the
timing of spikes. Therefore, a direct implementation of the WH
rule does not work for spiking neurons. This motivates the
development of the PSD rule.

Afferent Neurons

Precise-Spike-Driven (PSD) Synaptic Plasticity

A spike train is defined as a sequence of impulses triggered by a
particular neuron at its firing time. A spike train is expressed in the
form of:

S(0) =211 (7

where t/ is the f-th firing time, and §(x) is the Dirac function:
o(x)=1 (if x=0) or 0 (otherwise). Thus, the input, the desired
output and the actual output of the spiking neuron are described
as:

si()=2p0(1—1t))
Sa(1)=Zg0(t—1%) (8)
$o(1) =Zpd(t—11))

The products of Dirac functions are mathematically problem-
atic. To solve this difficulty, we apply an approach called spike
convolution. Unlike the method used in [25], which needs a
complex error evaluation and requires spike convolution on all the
spike trains of the input, the desired output and the actual output,
we only convolve the input spike trains.

5i(1) = si(1) * (1) )

where k(f) is the convolving kernel, which we choose to be the
same as Eq. (4). In this case, the convolved signal is in the same
form as Ipsc in Eq. (3). Thus, we use Ipsc as the eligibility trace
for the weight adaptation. The learning rule becomes:

d‘zft(t) =n[sa(t) = 5o(D) I ps (1) (10)

Eq. (10) formulates an online learning rule. The dynamics of this
learning rule is illustrated in Fig. 2. It can be seen that the polarity
of the synaptic changes depends on three cases: (1) a positive error
(corresponding to a miss of the spike) where the neuron does not
spike at the desired time, (2) a zero error (corresponding to a hit)
where the neuron spikes at the desired time, and (3) a negative
error (corresponding to a false-alarm) where the neuron spikes
when it is not supposed to.

Thus, the weight adaptation is triggered by the error between
the desired and the actual output spikes, with positive errors
causing long-term potentiation and negative errors causing long-
term depression. No synaptic change will occur if the actual output

Figure 1. lllustration of the neuron structure. The afferent neurons are connected to the postsynaptic neuron through synapses. Each emitted
spike from afferent neurons will trigger a postsynaptic current (PSC). The membrane potential of the postsynaptic neuron is a weighted sum of all
incoming PSCs from all afferent neurons. The yellow neuron denotes the instructor which is used for learning.

doi:10.1371/journal.pone.0078318.g001
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spike fires at the desired time. The amount of synaptic changes is
determined by the current Ihg (7).

With the PSD learning rule, each of the variables involved has
its own physical meaning. Moreover, the weight adaptation only
depends on the current states. This is different from rules involving
STDP, where both the pre- and post-synaptic spiking times are
stored and used for adaptation.

By integrating Eq. (10), we get:

Awi=n L (800 — 5 () Tos (Dt

(11)
=n>_ S K@ —tHHEG— )= 3 S K — i) H(eh—1])]
g f f

h

This equation could be used for trial learning where the weight
modification is performed at the end of the pattern presentation.

In order to measure the distance between two spike trains, we
use the van Rossum metric [38] but with a different filter function
as described in Eq. (4). This filter is used to compensate for the
discontinuity of the original filter function. The distance can be
written as:

pist— 1 r [f (1) —g(1)*dr (12)

TJo

where 7 is a free parameter (we set 7= 10 ms here), f(¢) and g(¢)
are filtered signals of the two spike trains that are considered for
distance measurement. More details can be found in [38].
Noteworthily, this distance parameter Dis? is not involved in the
PSD learning rule, but is used for measuring and analyzing the
performance of the learning rule, which reflects the dissimilarity
between the desired and the actual spike trains. In the following
experiments, different values of Dist are used for analysis
depending on the problems. For single-spike and multi-spike
target trains, we set Dist to be 0.2 and 0.5, respectively,
corresponding to an average time difference of around 2.5 ms
for each pair of the actual and desired spikes. Smaller Dist can be
used if exact association is the main focus, e.g., Dist=0.06
corresponds to a time difference about 0.6 ms, where no obvious
dissimilarity can be seen between the two spike trains.

Precise-Spike-Driven (PSD) Synaptic Plasticity

Results

In this section, several experiments are presented to demon-
strate the characteristics of the PSD rule. The basic concepts of the
PSD rule are first examined, by demonstrating its ability to
associate a spatiotemporal spike pattern with a target spike train.
Furthermore, we show that the PSD has desirable properties, such
as generality to different neuron models, robustness against noise
and learning capacity. The effects of the parameters on the
learning are also investigated. Then, the application of the
proposed algorithm to the classification of spike patterns is also
shown, with the final experiment demonstrating its performance
on a practical OCR task.

Association of Single-Spike and Multi-Spike Patterns

This experiment is devised to demonstrate the ability of the
proposed PSD rule for learning a spatiotemporal spike pattern.
The neuron is trained to reproduce spikes that fire at the same
spiking time of a target train.

Experiment setup. The neuron is connected with n afferent
neurons, and each fires a single spike within the time interval of
(0,T). Each spike is randomly generated with a uniform
distribution. We set n=1000, 7'=200ms here. To avoid a single
synapse dominating the firing of the neuron, we limit the weight
below Wyx =6nA. The initial synaptic weights are drawn
randomly from a normal distribution with mean value of 0.5n4
and a standard deviation of 0.2n4. For the learning parameters,
we set 1=0.01w,4y and 7,=10ms. The target spike train can be
randomly generated, but for simplicity, we specify it as
[40,80,120,160]ms. In this way, the spikes are evenly distributed
over the whole interval 7.

Learning process. Fig. 3 illustrates a typical run of the
learning. Initially, the neuron is observed to fire at any arbitrary
time and with a firing rate different from the target train, resulting
in a large distance value. The actual output spike train is quite
different from the target train at the beginning. During the
learning process, the neuron gradually learns to produce spikes at
the target time, and that is also reflected by the decreasing
distance. After finishing the first 10 epochs of learning, both the
firing rate and the firing time of the output spikes match those in
the target spike train. The dynamics of neuron’s membrane
potential is also shown in Fig. 3. Whenever the membrane
potential exceeds the threshold, a spike is emitted and the potential

S (1) I I I

() f\[\\ N

S, (1) | I

5,0 | |
L

o (1) :

Figure 2. lllustration of the weight adaptation. S;(¢) is the presynaptic spike train. S;(7) and S,(¢) are the desired and the actual postsynaptic
spike train, respectively. Ihs(¢) is the postsynaptic current and can be referred to as the eligibility trace for the adaptation of w;(¢). A positive error,
where the neuron does not spike at the desired time, causes synaptic potentiation. A negative error, where the neuron spikes when it is not
supposed to, results in synaptic depression. The amount of adaptation is proportional to the postsynaptic current. There will be no modification
when the actual output spike fires exactly at the desired time. This figure is inspired from [28].

doi:10.1371/journal.pone.0078318.9002
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is kept at reset level for a refractory period. The detailed
mathematical description governing this behaviour was presented
previously in the section on the Spiking Neuron Model.

This experiment shows the feasibility of the PSD rule to train
the neuron to reproduce a desired spike train. After several
learning epochs, the neuron can successfully spike at the target
time. In other words, the proposed rule is able to train the neuron
to associate the input spatiotemporal pattern with a desired output
spike train within several training epochs. The information of the
input pattern is stored by a specified spike train.

Causal weight distribution. We further examine how the
PSD rule drives the synaptic weights and the evolution of the
distance between the actual and the target spike trains. In order to
guarantee statistical significance, the task described in Fig. 3 is
repeated 100 times. Each time is referred to as one run. At the
initial point of each run, different random weights are used for
training. As can be seen from Fig. 4, the initial weights are
normally distributed around 0.574, which reflects the fact that
there are no significant differences among the input synapses. This
initial distribution of weights is expected due to the experimental
setup. After learning, a causal connectivity is established.
According to the learning rule, the synapses that fire temporally
close to the time of the target spikes are potentiated. Those
synapses that result in undesired output spikes are depressed. This
temporal causality is clearly reflected on the distribution of weights
after learning (Fig. 4). Among those causal synapses, the one with a
closer spiking time to the desired time normally has a relatively
higher synaptic strength. The synapses firing far from the desired
time will have lower causal effects. Additionally, the evolution of
distance along the learning shows that the PSD rule successfully
trains the neuron to reproduce the desired spikes in around ten
epochs. The results also validate the efficiency of the PSD learning
rule in accomplishing the single association task.

Precise-Spike-Driven (PSD) Synaptic Plasticity

Adaptive learning performance. At the beginning, the
neuron is trained to learn a target train as in the previous tasks.
After one successful learning, the target spike train is changed to
another arbitrarily generated train, where the precise spike time
and the firing rate are different from the previous target. We
discover that, with the PSD learning rule, we successfully train the
neuron to learn the new target within several epochs. As shown in
Fig. 5, during learning, the neuron gradually adapts its firing status
from the old target to the new target.

Learning multiple spikes. In the
above, all afferent neurons are supposed to fire only once during
the entire time window. The applicability of the PSD rule is not
limited to this single spike code. We further illustrate the case
where each synaptic input transmits multiple spikes during the
time window. We again use the same setup as above, but each
synaptic input is now generated by a homogeneous Poisson
process with a random rate ranging from 5—25 Hz. Multiple
spikes increase the difficulty of the learning since these spikes
interfere with the local learning processes [28]. As shown in Fig. 6,
the learning although slower, is again successful. The interference
of local learning processes results in fluctuations of the output
spikes around the target time. In the subsequent learning epochs,
the neuron gradually converges to spiking at the target time. This
experiment demonstrates that the PSD rule deals with multiple
spikes quite well. Compared to multiple spikes, the single spike
code is simple for analysis and efficient for computation. Thus, for
simplicity, we use the single spike code in the following
experiments where each afferent neuron fires only once during

scenario considered

the time window.

These experiments clearly demonstrate that the PSD rule is
capable of training the neuron to fire at the desired time. The
causal connectivity is established after learning with this rule. In
the following sections, some more challenging learning scenarios

20 5
£ 10 :

O 1 1 1 1 1

0 20 40 60 80

50 T 4 T 4 50

45~ mm e §--- - : 450 -]

; i

40f---------- P H 40f------1

5L SR S S S —— 1] S

30f- - - S e 30f -1
[ . .
5 | |
8 25F---------- - - - - - - ----- $---------- e e ity 25F------1
& $ H

S | SR S —— 20} -1
7777777777 e EEEEEEEEEES B L1 R
W R PP AP UL B ‘
120 140 160 180 200 O 20

20— — - — — — — — Distance
£
£ 10

0 | | | | |

0 20 40 60 80 100 120 140 160 180 200

Time (ms)

Figure 3. lllustration of the temporal sequence learning of a typical run. The neuron is connected with n=1000 synapses, and is trained to
reproduce spikes at the target time (denoted as light blue bars in the middle). The bottom and top show the dynamics of the neuron’s potential
before and after learning, respectively. The dashed red lines denote the firing threshold. In the middle, each spike is denoted as a dot. The right figure
shows the distance between the actual output spike train and the target spike train.

doi:10.1371/journal.pone.0078318.9003
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Figure 4. Effect of the learning on synaptic weights and the evolution of distance along the learning process. The top and the middle
show the averaged weights before and after learning, respectively. The height of each bar in the figure reflects the corresponding synaptic strength.
All the afferent neurons are chronologically sorted according to their spike time. The target spikes are overlayed on the weights figure according to
their time, and are denoted as red lines. The bottom shows the averaged distance between the actual spike train and the desired spike train along

the learning process. All the data are averaged over 100 runs.
doi:10.1371/journal.pone.0078318.g004

are taken into consideration to further investigate the properties of
the PSD rule.

Generality to Different Neuron Models

We carry out this experiment to demonstrate that the PSD
learning rule is independent of the neuron model. In this
experiment, we only compare the results of learning association
for the LIF and IM neuron models that were described previously.
For a fair comparison, both neurons are connected to the same
afferent neurons, and they are trained to reproduce the same
target spike train. The setup for generating the input spatiotem-
poral patterns is the same as the experiment in Fig. 5. The

connection setup is illustrated in Fig. 7. Except for the neuron
dynamics described in Eq. (1) and Eq. (5) respectively, all the other
parameters are the same for the two neurons.

The dynamic difference between the two types of spiking
neuron models is clearly demonstrated in Fig. 7. Although the
neuron models are different, both of the neurons can be trained to
successfully reproduce the target spike train with the proposed
PSD learning rule. It is seen that the two neurons fire at arbitrary
time before learning, while after learning they fire spikes at the
desired time.

In the PSD rule, synaptic adaptation is triggered by both the
desired spikes and the actual output spikes. The amount of

50 50
45 451 - - - - - - - -
40 40F - - - -~~~
35 35F--------
» 30 3ok —————————
g 25 25
w 20 20F -
15 15F--------
10 10 K fffffffff
5 5
0 00 2‘0
Time (ms) Distance

Figure 5. lllustration of the adaptive learning of the changed target trains. Each dot denotes a spike. At the beginning, the neuron is
trained to learn one target (denoted by the light blue bars). After 25 epochs of learning (the dashed red line), the target is changed to another
randomly generated train (denoted by the green bars). The right figure shows the distance between the actual output spike train and the target spike
train along the learning process.

doi:10.1371/journal.pone.0078318.g005
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bottom left shows the neuron’s output spikes. The right column shows the distance between the actual output spike train and the target spike train

along learning.
doi:10.1371/journal.pone.0078318.9006

updating depends on the presynaptic spikes firing before the
triggering spikes. That is to say, the weight adaptation of our rule
is based on the correlation between the spiking time only. This
suggests the PSD has the generality to work with various neuron
models, a capability similar to that of the ReSuMe rule [28].

Robustness to Noise

In previous experiments, we only consider the simple case
where the neuron is trained to learn a single pattern under noise-
free condition. However, the reliability of the neuron response
could be significantly affected by noise. In this experiment, two
noisy cases are considered: stimuli noise and background noise.

Experiment setup. In this experiment, a single LIF neuron
with n=1500 afferent neurons is tested. Initially, a set of 10 spike
patterns are randomly generated as in previous experiments.
These 10 spike patterns are fixed as the templates. The neuron is
trained for 400 epochs to associate all patterns in the training set
with a desired spike train (the same train as is used before). Two
training scenarios are considered in this experiment, i.e.,
deterministic training (in the noise-free condition) and noisy
training. In the testing phase, a total number of 200 noise patterns
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are used. Each template is used to construct 20 testing patterns.
We determine the association to be correct, if the distance between
the output spike train and the desired spike train is lower than a
specified level (0.5 is used here).

Input jittering noise. In the case of input jittering noise, a
Gaussian jitter with a standard deviation (6y,) is added to each
input spike to generate the noise patterns. The strength of the jitter
is controlled by the standard deviation of the Gaussian. The top
row in Fig. 8 shows the learning performance. In the deterministic
training, the neuron is trained purely with the initial templates. In
the noisy training, a noise level of 3ms is used. Different levels of
noise are used in the testing phase to evaluate the generalization
ability. For the deterministic training, the output stabilizes quickly
and can exactly converge to the desired spike train within tens of
learning epochs. However, the generalization accuracy decreases
quickly with the increasing jitter strength. In the scenario of noisy
training, although the training error cannot become zero, a better
generalization ability is obtained. The neuron can successfully
reproduce the desired spike train with a relatively high accuracy
when the noise strength is not higher than the one used in the
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Figure 7. Learning with different spiking neuron models. The LIF and IM neuron models are considered. The left panel shows the connection
setup of the experiment. Both the two neurons are connected to the same n= 1000 afferent neurons, and are trained to reproduce target spikes
(denoted by the yellow parts). The right panel shows the dynamics of neurons’ potential before and after learning. The dashed red lines denote the

firing threshold.
doi:10.1371/journal.pone.0078318.g007

training. In conclusion, the neuron is less sensitive to the noise if
the noisy training is performed.

Background current noise. In this case, the background
current noise (I,s) is considered as the noise source. The mean
value of I, is assumed zero, and the strength of the noise is
determined by its variance (oy,,). A strength of 10nA4 noise is used
in the noisy training. We report the results in the bottom row of
Fig. 8. Similar results are obtained as with the first case. Although
the output can quickly converge to zero error in the deterministic
training, the generalization performance is quite sensitive to the
noise. The association accuracy drops quickly when the noise
strength increases. When the neuron is trained with noise patterns,
it becomes less sensitive to the noise. A relatively high accuracy
can be obtained with a noise level up to 14n4.

This experiment shows that the trained neuron under noise-free
conditions will be significantly affected by noise. Such an influence
of noise on the timing accuracy and reliability of the neuron
response has been considered in many studies [15,24,25,27,28,39].
Under the noisy training, the trained neuron demonstrates high
robustness against the noise. The noisy training enables the neuron
to reproduce desired spikes more reliably and precisely.

Learning Capacity

As used for the perceptron [40] and tempotron [15,26] learning
rules, the ratio of the number of random patterns (p) that a neuron
can correctly classify over the number of its synapses (1), x=p/n, is
used to measure the memory load. An important characteristic of
a neuron’s capacity is the maximum load that it can learn. In this
experiment, the memory capacity of the PSD rule is investigated.

Experiment setup. We devise an experiment that has a
similar setup to that in [25]. A number of p patterns are randomly
generated in the same process as previous experiments, where
each pattern contains 7 spike trains and each train has a single
spike. The patterns are randomly and evenly assigned to ¢
different categories. Here we choose ¢=4 for this experiment. A
single LIF neuron is trained to memorize all patterns correctly in a
maximum number of 500 training epochs. The neuron is trained
to emit a single spike at a specified time for patterns from each
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category. The desired spikes for the 4 generated categories are set
to the time of 40, 80, 120 and 160ms, respectively. A pattern is
considered to have been correctly memorized by the neuron if the
distance between the actual spike train and the desired train is
below 0.2. The learning process is considered a failure if the
number of training epochs reaches the maximum number.

Maximum load factor. Fig. 9 shows the results of the
experiment for the case of 500, 750 and 1000 afferent neurons,
respectively. All the data are averaged over 100 runs. In each run,
different initial weights are used. As seen from Fig. 9, the number
of epochs required for the training increases slightly as the number
of patterns increases when the load is not too high, but a sharp
increase of learning epochs occurs after a certain high load. This
suggests that the task becomes tougher with an increasing load. It
is also noted that a larger number of synapses leads to a bigger
memory capacity for the same neuron. It is reported that the
maximum load factors for 500, 750 and 1000 synapses are 0.144,
0.133 and 0.124, respectively.

Efficient load factor. Besides the maximum load factor, we
heuristically define another factor, the efficient load o,. As
described above, the neuron can perform the task efficiently with
a relatively high load when the number of patterns does not exceed
a certain value (p.). The efficient load is denoted as o, =p,/n.
When the load is below «,, the neuron can reliably memorize all
patterns with a small number of training epochs. There are
different ways to define o,. We show two possible ways. One is to
derive the definition from a mathematical calculation such as
(dEpochs/ dp),, =9, where 4 is a specified value (for example
0=0.5). A simpler method is where a specified number of training
epochs is used. The corresponding number of patterns that can be
correctly learnt is considered as p,. For simplicity, we use the latter
as an example for demonstration and the specified number of
epochs is set to 100. As seen from Fig. 9, the efficient load factors
for 500, 750 and 1000 synapses are 0.112, 0.109 and 0.108,
respectively. Surprisingly, these efficient load factors seem to all be
around a stable value which only changes slightly across different
numbers of synapses. This fixed value of efficient load factor for
different values of 7 indicates that the number of patterns that a
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Figure 8. Robustness of the learning rule against jittering noise of input stimuli and background noise. The top row presents the case
where the noise comes from the input spike jitters. The bottom row presents the case of background noise. The neuron is trained under noise-free
conditions (denoted as deterministic training), or is trained under noisy conditions (denoted as noisy training). In the training phase (left two
columns), the neuron is trained for 400 epochs. Along the training process, the average distance between the actual output spike train and the
desired spike train is shown. The standard deviation is denoted by the shaded area. In the testing phase (right column), the generalization accuracies
of the trained neuron on different levels of noise patterns are presented. Both the average value and the standard deviation are shown. All the data
are averaged over 100 runs.

doi:10.1371/journal.pone.0078318.g008

neuron can efficiently memorize grows linearly with the number of
afferent synapses. It is worth noting that the concept of efficient
load factor o, provides an important guideline for choosing the

500 T T T 7 — G| load of patterns when a reliable and efficient training is required.
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S 4 tion. As a decay constant, T, is an important parameter

200 SR involved in the postsynaptic current. It determines how long a

presynaptic spike will still have causal effect on the postsynaptic
neuron. In the phase of synaptic adaptation, 7, also determines the
] magnitude of modification on the synaptic weights at the time of a
triggering spike. Thus, 7, will affect the distribution of weights after
the training. To look into this effect, we conduct an experiment
with a similar setup as in Fig. 4 but with different values of t,. Here
we choose T,=3, 10 and 30ms. As can be seen from Fig. 10, a
smaller 74 (3ms) can result in a very uneven distribution with only a
few synapses being given relatively higher weights. A flat
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Figure 9. The memory capacity of the PSD rule with different
numbers of synapses. The neuron is trained to memorize all patterns
correctly in a maximum number of 500 epochs. The reaching points of
500 epochs are regarded as failure of the learning. The cases of 500, 750
and 1000 synapses are denoted by blue, red and green parts,
respectively. The marked lines denote average learning epochs and
the shaded areas show the standard deviation. The dashed line at 100
epochs is used for evaluating the efficient load «, described in the main
text. All the data are averaged over 100 runs.
doi:10.1371/journal.pone.0078318.g009
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distribution is obtained with an increasing t,. This is because 74
determines how long the causal effect of an afferent spike will
sustain. A smaller 7, means that only the nearer neighbors are
involved in generating the desired spikes, hence resulting in a
smaller number of causal synapses. With a smaller number of
causal synapses, a higher synaptic strength will be required to
generate spikes at the desired time. On the other hand, with a
larger 74, a wider range of causal neighbors can contribute to
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generating the desired spikes, and therefore a lower synaptic
strength will be sufficient. The synaptic strength and distribution
for different values of 74 are obtained as in Fig. 10.

Effects of both 1 and 7, on the learning. We further
conduct another experiment to evaluate the effects of both # and
T, on the learning. In this experiment, a single LIF neuron with
n=>500 afferent neurons is considered. The neuron is trained to
correctly memorize a set of 10 spike patterns randomly generated
over a time window of 200 ms. The neuron is trained in a
maximum number of 500 epochs to correctly associate all these
patterns with a desired spike train of [40, 80, 120, 160] ms. We
denote that a pattern is correctly memorized if the distance
between the output spike train and the desired spike train is below
0.06. If the number of training epochs exceeds 500, we regard it as
a failure. We conduct an exhaustive search over a wide range of 1
and 14 Fig. 11 shows how 7 and 14 jointly affect the learning
performance, which can be used as a guidance to select the
learning parameters. With a fixed 1y, a larger # results in a faster
learning speed (shown in Fig. 11, right panel), but when # is
increased above a critical value (e.g., 0.1 for 7,=30 ms in our
experiments), the learning will slow down or even fail. For small #,
a larger 7, leads to a faster learning, however, for large 7, a larger
7, has the opposite effect. As a consequence, when 7y is set in a
suitable range (e.g., [5,15] ms), a wide range of # can result in a
fast learning speed (e.g., below 100 epochs).

Classification of Spatiotemporal Patterns

In this experiment, the ability of the proposed PSD rule for
classifying spatiotemporal patterns is investigated by using a multi-
category classification task. The setup of this experiment is similar
to that in [25]. Three random spike patterns representing three
categories are generated in a similar fashion to that in the previous
experiments, and they are fixed as the templates. A Gaussian jitter
with a standard deviation of 3ms is used to generate training and
testing patterns. The training set and the testing set contain 3 x 25
and 3 x 100 samples, respectively. Three neurons are trained to
classify these three categories, with each neuron representing one
category. Different neurons for each category can be specified to
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fire different spike trains. However, for simplicity, all the neurons
in this experiment are trained to fire the same spike train
([40,80,120,160]ms). The experiment is repeated 100 times, with
each run having different initial conditions.

After training, classification is performed on both the training
and the testing set. In the classification task, we propose two
decision-making criteria: absolute confidence and relative confi-
dence. With the absolute confidence criterion, only if the distance
between the desired spike train and the actual output spike train of
the corresponding neuron is smaller than a specified value (0.5 is
used here), then the input pattern will be regarded as being
correctly classified. As for the relative confidence criterion, a
scheme of competition is used. The incoming pattern will be
labeled by the winning neuron that produces the closest spike train
to its desired spike train.

Fig. 12 shows the average classification accuracy for each
category under the two proposed decision criteria. From the
absolute confidence criterion, we see that the neuron successfully
classifies the training set with an average accuracy of 99.65%. The
average accuracy for the testing set is 77.11%. Noteworthily,
under the relative confidence, both the average accuracies for the
training and the testing set reach 100%. The performance for the
classification task is therefore significantly improved by the relative
confidence decision making criterion. With the absolute confi-
dence criterion, the trained neuron strives to find a good match
with the memorized patterns. However, with the relative
confidence criterion, the trained neuron attempts to find the most
likely category through competition.

For the classification of spatiotemporal patterns, the tempotron
is an efficient rule [15] in training LIF neurons to distinguish two
classes of patterns by firing one spike or by keeping quiescent. We
use the tempotron rule to benchmark the PSD rule in the
classification of spatiotemporal patterns. The tempotron rule is
applied to perform the same classification task as above. The
classification accuracies are shown in Table 1. As can be seen from
Table 1, our proposed rule with the relative confidence criterion
has a comparable performance to the tempotron rule. Moreover,
the PSD rule is advantageous in that it is not limited to performing
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Figure 10. Effect of decay constant 7, on the distribution of weights. The averaged weights after learning are shown. The height of each bar
reflects the synaptic strength. The afferent neurons are chronologically sorted according to their spike time. The target spikes are overlayed and
denoted as red lines. Cases of 7,=3, 10 and 30ms are depicted. All the data are averaged over 100 runs.

doi:10.1371/journal.pone.0078318.g010
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Figure 11. Effects of 1 and 7, on the learning. The neuron is trained in a maximum number of 500 epochs to correctly memorize a set of 10 spike
patterns. The average learning epochs are recorded for each pair of i and ;. The reaching points of 500 epochs are regarded as failure of the
learning. The left shows an exhaustive investigation of a wide range of 1 and t,, and the data are averaged over 30 runs. A small number of learning
parameters are examined in the right figure, and the data are averaged over 100 runs.

doi:10.1371/journal.pone.0078318.9011

classification, but it is also able to memorize patterns by firing
desired spikes at precise time.

Optical Character Recognition

In order to investigate the capability of the PSD rule over a
practical problem, an OCR task is considered in this experiment.
Images of digits 0-9 are used. Each image has a size of 20 x 20
black/white (B/W) pixels. Additionally, a reversal noise is
introduced to generate noisy images. We do this by reversing a
pixel randomly with a probability denoted as the noise level.
Fig. 13 illustrates some image samples. The digits are destroyed
gradually with an increasing noise level. When the noise level is
above 15%, the digits are hardly recognizable.

One of the major challenges of applying SNNs to practical
problems is that proper encoding methods are required to produce

Absolute Confidence

the input data [26,41]. Encoding is the first step of utilizing spiking
neurons. It aims to generate spike patterns that represent the
external stimuli. However, how the external information 1is
encoded in the brain still remains unclear. Many encoding
mechanisms have been proposed for converting images into spikes
such as rate code [21], latency code [26,42] and phase code
[27,43]. The rate code is unsuitable for the rules that learn precise
spike patterns. A direct utilization of the latency code is also found
to be inappropriate. For example, if a simple latency code is used
in this OCR task, the spikes in the input spatiotemporal pattern
will all occur at t=0 ms. This does not work for spatiotemporal
mapping algorithms including PSD, ReSuMe [23], Chronotron
[24] and SPAN [25]. These spatiotemporal mapping algorithms
cannot guarantee successful learning of an arbitrary spatiotempo-
ral spike pattern. To trigger a desired spike, a sufficient number of
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Figure 12. The average accuracies for the classification of spatiotemporal patterns. There are 3 categories to be classified. The average
accuracies are represented by shaded bars. Two types of criteria for making decision are proposed and investigated. The left is the absolute
confidence criterion, and the right is the relative confidence criterion. All the data are averaged over 100 runs.

doi:10.1371/journal.pone.0078318.g012
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Table 1. Multi-Category Classification of Spatiotemporal Patterns.

Accuracy (%) Category 1 Category 2 Category 3
Training Testing Training Testing Training Testing
Absolute Confidence 99.6 83.15 99.68 80.06 99.68 68.12
+1.21 +6.79 +1.09 +4.73 +1.23 +6.09
Relative Confidence 100 100 100 100 100 100
Tempotron 100 99.65 100 99.74 100 99.61
+1.21 +1.01 +1.0

doi:10.1371/journal.pone.0078318.t001

input spikes around it are required. Long delays will not be
effectively learnt since the causal connection could not be built. In
real nervous systems, neurons rarely fire in such a highly
synchronized manner but rather in a distributed one [7,8,44].
Thus, proper encoding is required not only for successful learning
association but also for maintaining some level of biological
realism.

An increasing body of evidence shows that action potentials are
related to the phases of the intrinsic subthreshold membrane
potential oscillations [45-47]. These observations support the
hypothesis of a phase code. Following the phase code presented in
[27,43], we develop a simple encoding method for this task. The
mechanism of our encoding model is illustrated in IFig. 14. The
encoding unit consists of a positive neuron (Pos), a negative
neuron (Neg) and an output neuron (E,,). Each encoding unit is
connected to a pixel and a subthreshold membrane potential
oscillation. For simplicity, the oscillation for the i-th encoding unit
is described as:

OSC;=Acos (wt+¢;) (13)
where A4 is the magnitude of the subthreshold membrane
oscillation,  is the phase angular velocity and ¢; is the initial
phase. ¢; is defined as:

¢i=do+(i—1)A¢

where ¢ is the reference phase and A¢ is the phase difference
between nearby encoding units. We set A¢ =21/ N,, where N, is
the number of encoding units. N, is equal to the number of pixels
in the image (400 here). The oscillation period is set to be 200 ms
which corresponds to a frequency of 5 Hz.

(14)

0]1/2]3 4]
516]71819)
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Figure 13. lllustration of image samples. Each image has a size of
20x20 B/W pixels. The top two rows show template images. The
bottom two rows show images with noise introduced to the templates.
Reversal noise is used where each pixel is randomly reversed with a
probability denoted as the noise level. A range of noise level of 0—20%

is illustrated.
doi:10.1371/journal.pone.0078318.g013
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The Pos neuron only responds to positive activation potential,
while the Neg neuron only reacts to negative activation potential.
An input of B/W pixel will cause a downward/upward shift from
the subthreshold membrane oscillation. Whenever the membrane
potential crosses the threshold, a spike is generated. Through the
fine tuning of parameter 4, the amount of shift and the threshold
values, we set the spike to occur at peaks of the oscillation. The
firing of either the Pos neuron or the Neg neuron will immediately
trigger the firing of the E,,, neuron. The encoding units therefore
output a spike at one phase for a white pixel and another shifted
phase of 180 degrees for a black pixel. Also, the emitted phases
change depending which pixel is the input.

We select 10 neurons to learn the patterns generated by the
encoding units. Each learning neuron corresponds to one
category. The parameter setting of the learning neurons is the
same as that in the previous task of spatiotemporal pattern
classification. Each neuron is trained to produce a target spike
train ([40,80,120,160]ms) when a pattern from the assigned class is
presented, and not to spike when patterns from other classes are
presented. In principle, different target spike trains can be used for
different digits. The neurons are trained for 100 epochs. In each
training epoch, a training data set of 10 x 10 samples is formed.
There are 10 samples for each digit. Among these 10 samples, one
is the template image and the other 9 are generated with a random
noise level of 0—10%. After training, the neurons are tested on
different noise levels. On each noise level, 100 noise patterns are
generated for each digit. The relative confidence criterion is used
for making decision. In our test, the category of an input pattern
will be decided by one of the neurons that generates the lowest
spike distance.

Fig. 15 shows the testing results. In order to observe the
association ability of the neuron to map a digit with the desired
spike train, digit “8” is used as an example. The neuron
corresponding to digit “8” can successfully produce a spike train
close to the target train when the noise level is low. This
association worsens as the noise level increases. As shown in
Fig. 15, the classification accuracy remains high when the noise
level is low and will drop gradually with increasing noise level.
Even when the image is seriously damaged by the noise (15% noise
level), a high accuracy of around 85% can still be obtained. The
results show that the trained neurons can successfully associate the
template images with the target spike train. Moreover, the trained
neurons present a high recognition ability under the relative
confidence criterion even if images are damaged by noise.

Discussion

The PSD rule is proposed for the association and recognition of
spatiotemporal spike patterns. In summary, the PSD rule
transforms the input spike trains into analog signals by convolving
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Figure 14. lllustration of the encoding schema. The left shows the structure of an encoding unit. The encoding unit includes a positive neuron
(Pos), a negative neuron (Neg) and an output neuron (E,,,). Each encoding unit is assigned to a subthreshold membrane oscillation. Both Pos and
Neg neurons receive signals from this subthreshold membrane oscillation and the corresponding pixel. The Pos neuron only reacts to positive
activation voltage, while the Neg neuron only reacts to negative activation voltage. The firing of either the Pos neuron or the Neg neuron will
immediately cause the firing of the E,,, neuron. The right illustrate the dynamics of the encoding. The B/W pixel will cause a downward/upward shift

from the subthreshold membrane oscillation. A spike is generated if the membrane potential crosses the threshold line (P, and Ny,).

doi:10.1371/journal.pone.0078318.g014

the spikes with a kernel function. By using a kernel function, the
analog signals are presented in the simple form of synaptic
currents. It is biologically plausible because it allows us to interpret
the signals with physical meaning. Synaptic adaptation is driven by
the error between the desired and the actual output spikes, with
positive errors causing LTP and negative errors causing LTD. The
amount of synaptic adaptation is determined by the transformed
signal of the input spikes (postsynaptic currents here) at the time of
modification occurrence. When the actual spike train is the same
as the desired spike train, the adaptation of the weights will be
terminated.

There is a supervisory signal involved in the PSD rule. The most
documented evidence for supervised rules comes from studies of
the cerebellum and the cerebellar cortex [18,19]. It is shown that
supervisory signals are provided to the learning modules by
sensory feedback [20] or other supervisory neural structures in the
brain [19]. A neuromodulator released by the supervisory system
can induce the control of the adaptation. This control occurs for
several neuromodulatory pathways, such as dopamine and
acetylcholine [48,49]. Experimental evidence shows that N-
methyl-D-aspartate (NMDA) receptors are critically involved in
the processes of LTP and LTD [50-52]. After opening the NMDA
channels, the resulting Ca*>* entry then activates the biochemistry
of potentiation which leads to L'TP [52]. Suppression of NMDA
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receptors by spike-mediated calcium entry may be a necessary step
in the induction of LTD [52,53]. The synaptic modification can be
implemented through a supervisory control of opening or
suppression of these NMDA channels.

The PSD rule is simple and efficient in synaptic adaptation.
Ultilizing the postsynaptic current as the eligibility trace for weight
adaptation is a simple and efficient choice. The same signals of
postsynaptic currents are also used in the synaptic adaptation as in
the neuron dynamics, unlike the learning rules such as [22,25,28]
where different sources of signals were used. Thus, the number of
signal sources involved in the learning is reduced, which will
directly benefit the computation. Secondly, unlike the arithmetic-
based rules [22,24,25], where a complex error calculation is
required for the synaptic adaptation, the PSD rule is based on a
simple form of spike error between the actual and the desired
spikes. The synaptic adaptation is driven by these precise spikes
without complex error calculation. As a matter of fact, the weight
modification only depends on currently available information
(shown as Fig. 2). Additionally, due to the ability of the PSD rule to
operate online, it is suitable for real-time applications. According
to the PSD rule, different kernels, such as the exponential kernel
and o kernel, can also be used in convolving the spikes to provide
different eligibility traces.
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Figure 15. Performance on OCR task. The left shows the association ability of the neuron to map a typical digit with the desired spike train. Digit
“8" is used as an example here. The distance between the output spike train and the desired spike train is depicted versus the noise level. The right
shows the classification accuracy on the testing set. Solid lines denote the average and shaded areas denote the standard deviation. All the data are
averaged over 30 runs.

doi:10.1371/journal.pone.0078318.g015
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The PSD rule is designed for processing spatiotemporal
patterns, where the exact time of each spike is used for information
transmission. The PSD rule is unsuitable for learning patterns
under the rate code because this rule is designed to process precise-
timing spikes by its nature. The rate code uses the spike count but
not the precise time to convey information. Like other spatiotem-
poral mapping algorithms, including ReSuMe [23], Chronotron
[24] and SPAN [25], the PSD rule cannot guarantee successful
learning of an arbitrary spatiotemporal spike pattern. A sufficient
number of input spikes around the desired time are required for
establishing causal connections. In other words, the temporal
range covered by the desired spikes should be covered by the input
spikes.

The spiking neurons are equivalent to traditional neurons such
as perceptron under certain conditions [15,54]. The running of a
spiking neuron is a continuous process over a period of time while
a perceptron does not involve the concept of time. However, the
common feature between perceptrons and spiking neurons is that
the calculation of a weighted sum is needed. Segmenting the
running time of the spiking neuron into several fixed points, the
perceptron can replace the spiking neuron. The input vectors for
the perceptron are the postsynaptic currents at these fixed time
points. According to [54], the supervised association can be
transformed into a classification problem and then be solved by
using the perceptron learning rule. The target of the classification
is to distinguish the spike firing time from non-spike firing time.
However, a large number of fixed points are required for the
perceptron to achieve similar dynamics of the spiking neuron. This
means the perceptron needs to remember all pattern vectors at
these fixed points. The computational power of spiking neurons is
sacrificed by using perceptrons at this point.

In all the experiments, a single spike code is used for afferent
neurons, where each input neuron only fires a single spike during
the entire time window. This single spike code is chosen for various
reasons but more than one spike is also allowed for the PSD rule.
Firstly, a single spike code is simple for analysis and efficient for
computation [22,26]. Secondly, there is strong biological evidence
supporting the single spike code. Visual systems can analyze a new
complex scene in less than 150 ms [44,55]. This period of time is
impressive for processing, considering the billions of neurons
involved. This suggests neurons exchange only one or few spikes.
Single spike codes can also fit situations where information is
coded in the time of the first spike, relative to the onset of stimuli
[56], or situations where information is coded relative to a
background oscillation [24,47]. The PSD rule is also suitable for
multi-spike train (results shown in Fig. 6). When the number of
spikes from each afferent neuron is not high enough, the neuron
can produce the desired spike train after several epochs. When the
number of spikes increases, the learning becomes slower and more
difficult to converge. Additionally, the biological plausibility of an
encoding scheme that can use multiple spikes to code information
is still unclear.

Related Works

Several learning algorithms have been proposed to explore how
spiking neurons may respond for processing and memorizing
spatiotemporal patterns.

The tempotron rule [15] is one such learning rule where
neurons are trained to discriminate between two classes of
spatiotemporal patterns. This learning rule is based on a gradient
descent approach. In the tempotron rule, the synaptic plasticity is
governed by the temporal contiguity of presynaptic spike and
postsynaptic depolarization and a supervisory signal. The neurons
could be trained to successfully distinguish two classes by firing a
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spike or by remaining quiescent. However, the neurons do not
learn to fire at precise time. Since the tempotron rule mainly aims
at decision-making tasks, it cannot support the same coding
scheme used in both the input and output spikes. To support the
same coding scheme through the input and output, a learning rule
is needed to let the neuron not only fire but also fire at the
specified time. In addition, the tempotron is designed for a specific
neuron model, which might limit its usage on other spiking neuron
models. For the decision-making task (classification), our proposed
rule can obtain a comparable performance as the tempotron rule
(see Table 1).

SpikeProp [22] is a supervised learning rule for SNNs that can
solve nonlinear classification problems by emitting a single spike at
the desired time. The major limitation is that SpikeProp and its
extension in [57] do not allow multiple spikes in the output spike
train. Thus, several different learning rules have been developed to
train neurons to produce multiple output spikes in response to a
spatiotemporal stimulus, such as ReSuMe [23,28], Chronotron
[24] and SPAN [25], as well as our PSD rule.

In both the SPAN rule and the Chronotron E-learning rule, the
synaptic weights are modified according to a gradient descent
approach in an error landscape. The error function in the
Chronotron is based on the Victor & Purpura (VP) distance [58],
while in the SPAN rule the error function is based on a metric
similar to the van Rossum metric [38]. These arithmetic
calculations can easily reveal why and how networks with spiking
neurons can be trained, but the arithmetic-based rules are not a
good choice for designing networks with biological plausibility.
The biological plausibility of error calculation is at least
questionable. In contrast, the PSD minimizes the error between
the actual output spike train and the desired spike train without the
need for an explicit gradient calculation. Without extra calculation
of the error, the PSD provides an efficient way for processing
spatiotemporal patterns. On the other hand, since the PSD rule is
derived from the common WH rule, it can also easily reveal why
and how neurons can be trained similarly with arithmetic-based
rules.

From the perspective of increased biological plausibility, the
Chronotron I-learning rule and the ReSuMe rule are considered
below. The I-learning rule was heuristically defined in [24] where
synaptic changes depend on the synaptic currents. This learning
rule is quite similar to the PSD rule and it can be considered as a
variation of the PSD rule. According to the I-learning rule, its
development seems to be based on a particular case of the Spike
Response Model [1], which might also limit its usage on other
spiking neuron models or at least is not clearly demonstrated.
Moreover, those synapses with zero initial weights will never be
updated according to the I-learning rule. This will inevitably lead
to information loss from those afferent neurons. In the PSD rule,
all these issues are considered. The PSD is a more general rule and
it is analytically derived. Through careful choice, the eligibility
trace in the PSD rule can be represented by the postsynaptic
current. In the tempotron rule, the postsynaptic voltage is involved
in the learning. We refer to both the postsynaptic current and the
postsynaptic voltage as the postsynaptic state. A crucial role of the
postsynaptic state in the induction of long term plasticity has been
demonstrated in [50-52]. Similar to the PSD rule and the SPAN
rule, the ReSuMe rule is derived from the WH rule. The ReSuMe
mterprets the WH rule as a combination of a Hebbian and an
anti-Hebbian process within a learning window. It was demon-
strated in [25] that the form of the SPAN rule has a surprising
similarity to the ReSuMe rule with an exponential kernel.
Similarly, we can transform the PSD rule by replacing the kernel
used in Eq. (11) with the exponential kernel. This leads to:
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A batch learning version of the ReSuMe rule given in [24] is
described as:
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where a; is a non-Hebbian term used for speeding up the
convergence of the learning.

As can be seen from the above equations, the PSD rule is also
mathematically similar to the ReSuMe rule under -certain
conditions. The similarity among PSD, SPAN and ReSuMe
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results from the common WH rule. All these rules are derived
from the WH rule with different interpretations.

Surprisingly, the WH rule also guarantees an intrinsical
similarity among other learning rules such as synaptic scaling
rules [59,60]. For example, a synaptic scaling rule was introduced
in [60] as:

Awf“’”"g:11~A,-[Ad—Ao}-w,- (17)

where the variable 4 measures the average activity of neurons,
and it can be referred to as the firing rate. If a kernel with a long
time constant is used to convolve the input, the actual output and
the desired spikes, a similar measurement of the average firing
activity will be obtained. Thus, the common WH rule can be
presented in a similar form as the scaling rule.
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