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Abstract

A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing
spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff
rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic
adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term
potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility
trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The
properties of this learning rule are investigated extensively through experimental simulations, including its learning
performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the
effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern
classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion.
The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show
that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about
the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.
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Introduction

With the same capability of processing spikes as biological

neural systems, spiking neural networks (SNNs) [1–3] are more

biologically realistic and computationally powerful than the

traditional artificial neural networks (ANNs). Spikes are believed

to be the principal feature in the information processing of neural

systems, though the neural coding mechanism, i.e., how informa-

tion is encoded in spikes still remains unclear. For example, many

different neural codes have been introduced to describe how the

spatiotemporal spikes convey the information of external stimuli,

and among them rate code and temporal code [4] are the two

most widely studied coding schemes. The rate code is a basic

example of a neural code where information is conveyed through

the spike count within a time window. Evidence to support the

hypothesis of the rate code is demonstrated in [5], where a

correlation of firing rates with sensory variables is shown. In the

temporal code, the precise timing of each spike is considered.

Recently, increasing experimental evidence suggests that neural

systems use the exact time of spikes to convey information. For

example, neurons are revealed to precisely respond to stimuli on a

millisecond precision in the retina [6,7], the lateral geniculate

nucleus [8] and the visual cortex [9,10]. These observations

support the hypothesis of the temporal code. Additionally, recent

studies also show that the temporal coding scheme can offer

significant computational advantages over the rate coding scheme

[11–13]. However, the complexity of processing temporal codes

[14,15] might limit their usage in SNNs, which demands the

development of efficient learning algorithms.

Supervised learning was proposed as a successful concept of

information processing [16]. Neurons are driven to respond at

desired states under a supervisory signal, and an increasing body of

evidence shows that this kind of learning is exploited by the brain

[17–20]. Supervised mechanism has been widely used to develop

various learning algorithms for processing spatiotemporal spike

patterns in SNNs [15,21–27].

Some of the existing supervised learning rules, such as spike-

driven synaptic plasticity [21], are formulated in a rate-based

framework and are not feasible for the processing of precise-timing

spike patterns. In the spike-driven synaptic plasticity approach, the

learning process is supervised and stochastic, meaning that a

teacher signal steers the output neuron to a desired firing rate.

According to this algorithm, synaptic weights are modified upon

the arrival of presynaptic spikes, considering the state of the

postsynaptic neuron’s potential and its recent firing activity.

SpikeProb [22] is one of the first supervised learning algorithms

for processing precise spatiotemporal patterns in SNNs. It is a

gradient descent based learning rule, which can solve nonlinear

classification tasks by emitting single spikes at the desired firing

time. However, in its original form, SpikeProb cannot learn to

reproduce a multi-spike train. The tempotron rule [15], another
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gradient descent approach that is evaluated to be efficient for

binary temporal classification tasks, cannot output multiple spikes

either. As the tempotron is designed mainly for pattern

recognition, it is unable to produce precise spikes. The time of

the tempotron’s output spike seems to be arbitrary and does not

carry information. By this nature, the output of a tempotron

cannot serve as the input for another tempotron. To produce a

desired spike train, several learning algorithms have been

proposed such as ReSuMe [23,28], Chronotron [24] and SPAN

[25]. These three learning rules are all capable of training a

neuron to generate a desired spike train in response to an input

stimulus. The ReSuMe rule is based on a learning window concept

similar to spike-timing-dependent plasticity (STDP) [29,30]. The

ReSuMe interprets the Widrow-Hoff (WH) rule [16] through

interaction of two biological processes: Hebbian and anti-Hebbian

learning. In the Chronotron, two learning rules are introduced.

One is analytically-derived (E-learning) and another one is

heuristically-defined (I-learning). The I-learning rule is more

biologically plausible but comes with less memory capacity than

the E-learning rule. The performance of the I-learning rule

depends on the weight initialization, where initial zero values can

cause information loss from the corresponding afferent neurons.

The E-learning rule and the SPAN rule are both based on an error

function of the difference between the actual output spike train

and the desired spike train. Their applicability is therefore limited

to the tractable error evaluation, which might be unavailable in

actual biological networks and inefficient from a computational

point of view. These arithmetic-based rules can reveal explicitly

how SNNs can be trained but the biological plausibility of the

error calculation is somewhat questionable.

In this paper, we propose an alternative learning mechanism

called Precise-Spike-Driven (PSD) synaptic plasticity, that is able

to learn the association between precise spike patterns. Similar to

ReSuMe [23] and SPAN [25], the PSD rule is derived from the

WH rule but based on a different interpretation. The PSD rule is

derived analytically based on converting the spike trains into

analog signals by applying the spike convolution method. Such an

approach is rarely reported in the existing learning rule studies

[25]. Synaptic adaptation in the PSD is driven by the error

between the desired and the actual output spikes, with positive

errors causing long-term potentiation (LTP) and negative errors

causing long-term depression (LTD). The amount of adaptation

depends on an eligibility trace determined by the afferent spikes.

Without complex error calculation, the PSD rule provides an

efficient way for processing spatiotemporal patterns. We show that

the PSD rule inherits the advantageous properties of both

arithmetic-based and biologically realistic rules, being simple and

efficient for computation, and yet biologically plausible. Further-

more, the PSD is an independent plasticity rule that can be applied

to different neuron models. This straightforward interpretation of

the WH rule also provides a possible direction for further

exploitation of the rich theory of ANNs, and minimizes the gap

between the learning algorithms of SNNs and the traditional

ANNs.

Various properties of the PSD rule are investigated through an

extensive experimental analysis. In the first experiment, the basic

concepts of the PSD rule are demonstrated, and its learning ability

on hetero-association of spatiotemporal spike pattern is investigat-

ed. In the second experiment, the PSD rule is shown to be

applicable to different neuron models. Thereafter, experiments are

conducted to analyze the learning rule regarding its robustness

against noisy conditions, its memory capacity, effects of the

learning parameters and its classification performance. The

capability of the PSD rule is further demonstrated on a practical

example of an optical character recognition (OCR) problem.

Finally, a detailed discussion about the PSD rule and several

related algorithms including tempotron, SPAN, Chronotron and

ReSuMe is presented.

Methods

In this section, we begin by presenting the spiking neuron

models. We then describe the PSD rule for learning hetero-

association between the input spatiotemporal spike patterns and

the desired spike trains.

Spiking Neuron Model
As the third generation neuron model, spiking neurons raise the

level of biological realism by utilizing spikes [3]. The spiking

neurons perform computation using the precise timing spikes, and

offer improvements over the traditional neural models in terms of

accuracy and computational power [31]. There are several kinds

of spiking neuron models such as the integrate-and-fire (IF) model

[1], the resonate-and-fire model [32], the Hodgkin-Huxley model

[33], and the Izhikevich (IM) model [34]. Because the IF model is

simple and computationally effective, it has become the most

widely used spiking neuron model [15,21,22,28,35–37], despite

other more biologically realistic models.

For the sake of simplicity, the leaky integrate-and-fire (LIF)

model is firstly considered. The dynamics of each neuron evolves

according to the following equation:

tm
dVm

dt
~{(Vm{E)z(InszIsyn)Rm ð1Þ

where Vm is the membrane potential, tm~RmCm is the

membrane time constant, Rm~1MV and Cm~10nF are the

membrane resistance and capacitance, respectively, E is the

resting potential, Ins and Isyn are the background current noise and

synaptic current, respectively. When Vm exceeds a constant

threshold Vthr, the neuron is said to fire, and Vm is reset to Vreset

for a refractory period tref . We set E~Vreset~0mV and

Vthr~Ez18mV for clarity, but any other values as

E~{60mV will result in equivalent dynamics as long as the

relationships among E, Vreset and Vthr are kept.

For the postsynaptic neuron, we model the input synaptic

current as:

Isyn(t)~
X

i

wiI
i
PSC(t) ð2Þ

where wi is the synaptic efficacy of the i-th afferent neuron, and

I iPSC is the un-weighted postsynaptic current from the corre-

sponding afferent.

I iPSC(t)~
X

t j

K(t{t j)H(t{t j) ð3Þ

where t j is the time of the j-th spike emitted from the i-th afferent

neuron, H(t) refers to the Heaviside function, K denotes a

normalized kernel and we choose it as:

K(t{tj)~V0
:( exp (

{(t{t j)

ts
){ exp (

{(t{t j)

tf
)) ð4Þ

where V0 is a normalization factor such that the maximum value
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of the kernel is 1, ts and tf are the slow and fast decay constants

respectively, and their ratio is fixed at ts=tf~4.

Fig. 1 illustrates the neuron structure. Each spike from the

afferent neuron will result in a postsynaptic current (PSC). The

membrane potential of the postsynaptic neuron is a weighted sum

of all incoming PSCs over all afferent neurons.

In addition to the LIF model, we also investigate the flexibility

of the PSD rule to different neuron models. For this, we use the IM

model [34], where the dynamics of the IM model is described as:

dVm=dt~0:04V2
mz5Vmz140{UzIsynzIns

dU=dt~a(bVm{U)

ifVm§30mV ,

thenVm/ c,U/ Uzd

8

>

>

>

<

>

>

>

:

ð5Þ

where Vm again represents the membrane potential. U is the

membrane recovery variable. The synaptic current (Isyn) is in the

same form as described before, and Ins again represents the

background noise. The parameters a~0:02, b~0:2, c~{65 and

d~8 are chosen such that the neuron exhibits a regular spiking

behavior which is the most typical behavior observed in cortex

[34].

For computational efficiency, the LIF model is used in the

following studies, unless otherwise stated.

PSD Learning Rule
In this section we describe in detail the PSD learning rule. Note

that the spiking neuron models were developed from the

traditional neuron models. In a similar way, we develop the

learning rule for spiking neurons from traditional algorithms.

Inspired by [25], we derive the proposed rule from the common

Widrow-Hoff (WH) rule. The WH rule is described as:

Dwi~gxi(yd{yo) ð6Þ

where g is a positive constant referring to the learning rate, xi, yd
and yo refer to the input, the desired output and the actual output,

respectively.

Note that because the WH rule was introduced for the

traditional neuron models such as perceptron, the variables in

the WH rule are regarded as real-valued vectors. In the case of

spiking neurons, the input and output signals are described by the

timing of spikes. Therefore, a direct implementation of the WH

rule does not work for spiking neurons. This motivates the

development of the PSD rule.

A spike train is defined as a sequence of impulses triggered by a

particular neuron at its firing time. A spike train is expressed in the

form of:

s(t)~Sf d(t{t f ) ð7Þ

where t f is the f -th firing time, and d(x) is the Dirac function:

d(x)~1 ( if x~0) or 0 (otherwise ). Thus, the input, the desired

output and the actual output of the spiking neuron are described

as:

si(t)~Sf d(t{t
f
i )

sd (t)~Sgd(t{t
g
d )

so(t)~Shd(t{tho)

8

>

<

>

:

ð8Þ

The products of Dirac functions are mathematically problem-

atic. To solve this difficulty, we apply an approach called spike

convolution. Unlike the method used in [25], which needs a

complex error evaluation and requires spike convolution on all the

spike trains of the input, the desired output and the actual output,

we only convolve the input spike trains.

~ssi(t)~si(t) � k(t) ð9Þ

where k(t) is the convolving kernel, which we choose to be the

same as Eq. (4). In this case, the convolved signal is in the same

form as IPSC in Eq. (3). Thus, we use IPSC as the eligibility trace

for the weight adaptation. The learning rule becomes:

dwi(t)

dt
~g½sd (t){so(t)�I

i
PSC(t) ð10Þ

Eq. (10) formulates an online learning rule. The dynamics of this

learning rule is illustrated in Fig. 2. It can be seen that the polarity

of the synaptic changes depends on three cases: (1) a positive error

(corresponding to a miss of the spike) where the neuron does not

spike at the desired time, (2) a zero error (corresponding to a hit)

where the neuron spikes at the desired time, and (3) a negative

error (corresponding to a false-alarm) where the neuron spikes

when it is not supposed to.

Thus, the weight adaptation is triggered by the error between

the desired and the actual output spikes, with positive errors

causing long-term potentiation and negative errors causing long-

term depression. No synaptic change will occur if the actual output

Figure 1. Illustration of the neuron structure. The afferent neurons are connected to the postsynaptic neuron through synapses. Each emitted
spike from afferent neurons will trigger a postsynaptic current (PSC). The membrane potential of the postsynaptic neuron is a weighted sum of all
incoming PSCs from all afferent neurons. The yellow neuron denotes the instructor which is used for learning.
doi:10.1371/journal.pone.0078318.g001
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spike fires at the desired time. The amount of synaptic changes is

determined by the current I iPSC(t).

With the PSD learning rule, each of the variables involved has

its own physical meaning. Moreover, the weight adaptation only

depends on the current states. This is different from rules involving

STDP, where both the pre- and post-synaptic spiking times are

stored and used for adaptation.

By integrating Eq. (10), we get:

Dwi~g

ð

?

0

½sd (t){so(t)�I
i
PSC(t)dt

~g½
X

g

X

f

K(t
g
d{t

f
i )H(t

g
d{t

f
i ){

X

h

X

f

K(t ho{t
f
i )H(t ho{t

f
i )�

ð11Þ

This equation could be used for trial learning where the weight

modification is performed at the end of the pattern presentation.

In order to measure the distance between two spike trains, we

use the van Rossum metric [38] but with a different filter function

as described in Eq. (4). This filter is used to compensate for the

discontinuity of the original filter function. The distance can be

written as:

Dist~
1

t

ð

?

0

½f (t){g(t)�2dt ð12Þ

where t is a free parameter (we set t~10 ms here), f (t) and g(t)

are filtered signals of the two spike trains that are considered for

distance measurement. More details can be found in [38].

Noteworthily, this distance parameter Dist is not involved in the

PSD learning rule, but is used for measuring and analyzing the

performance of the learning rule, which reflects the dissimilarity

between the desired and the actual spike trains. In the following

experiments, different values of Dist are used for analysis

depending on the problems. For single-spike and multi-spike

target trains, we set Dist to be 0.2 and 0.5, respectively,

corresponding to an average time difference of around 2:5 ms

for each pair of the actual and desired spikes. Smaller Dist can be

used if exact association is the main focus, e.g., Dist~0:06
corresponds to a time difference about 0:6 ms, where no obvious

dissimilarity can be seen between the two spike trains.

Results

In this section, several experiments are presented to demon-

strate the characteristics of the PSD rule. The basic concepts of the

PSD rule are first examined, by demonstrating its ability to

associate a spatiotemporal spike pattern with a target spike train.

Furthermore, we show that the PSD has desirable properties, such

as generality to different neuron models, robustness against noise

and learning capacity. The effects of the parameters on the

learning are also investigated. Then, the application of the

proposed algorithm to the classification of spike patterns is also

shown, with the final experiment demonstrating its performance

on a practical OCR task.

Association of Single-Spike and Multi-Spike Patterns
This experiment is devised to demonstrate the ability of the

proposed PSD rule for learning a spatiotemporal spike pattern.

The neuron is trained to reproduce spikes that fire at the same

spiking time of a target train.

Experiment setup. The neuron is connected with n afferent

neurons, and each fires a single spike within the time interval of

(0,T). Each spike is randomly generated with a uniform

distribution. We set n~1000, T~200ms here. To avoid a single

synapse dominating the firing of the neuron, we limit the weight

below wmax~6nA. The initial synaptic weights are drawn

randomly from a normal distribution with mean value of 0:5nA
and a standard deviation of 0:2nA. For the learning parameters,

we set g~0:01wmax and ts~10ms. The target spike train can be

randomly generated, but for simplicity, we specify it as

½40,80,120,160�ms. In this way, the spikes are evenly distributed

over the whole interval T .

Learning process. Fig. 3 illustrates a typical run of the

learning. Initially, the neuron is observed to fire at any arbitrary

time and with a firing rate different from the target train, resulting

in a large distance value. The actual output spike train is quite

different from the target train at the beginning. During the

learning process, the neuron gradually learns to produce spikes at

the target time, and that is also reflected by the decreasing

distance. After finishing the first 10 epochs of learning, both the

firing rate and the firing time of the output spikes match those in

the target spike train. The dynamics of neuron’s membrane

potential is also shown in Fig. 3. Whenever the membrane

potential exceeds the threshold, a spike is emitted and the potential

Figure 2. Illustration of the weight adaptation. Si(t) is the presynaptic spike train. Sd (t) and So(t) are the desired and the actual postsynaptic
spike train, respectively. I iPSC(t) is the postsynaptic current and can be referred to as the eligibility trace for the adaptation of wi(t). A positive error,
where the neuron does not spike at the desired time, causes synaptic potentiation. A negative error, where the neuron spikes when it is not
supposed to, results in synaptic depression. The amount of adaptation is proportional to the postsynaptic current. There will be no modification
when the actual output spike fires exactly at the desired time. This figure is inspired from [28].
doi:10.1371/journal.pone.0078318.g002
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is kept at reset level for a refractory period. The detailed

mathematical description governing this behaviour was presented

previously in the section on the Spiking Neuron Model.

This experiment shows the feasibility of the PSD rule to train

the neuron to reproduce a desired spike train. After several

learning epochs, the neuron can successfully spike at the target

time. In other words, the proposed rule is able to train the neuron

to associate the input spatiotemporal pattern with a desired output

spike train within several training epochs. The information of the

input pattern is stored by a specified spike train.

Causal weight distribution. We further examine how the

PSD rule drives the synaptic weights and the evolution of the

distance between the actual and the target spike trains. In order to

guarantee statistical significance, the task described in Fig. 3 is

repeated 100 times. Each time is referred to as one run. At the

initial point of each run, different random weights are used for

training. As can be seen from Fig. 4, the initial weights are

normally distributed around 0:5nA, which reflects the fact that

there are no significant differences among the input synapses. This

initial distribution of weights is expected due to the experimental

setup. After learning, a causal connectivity is established.

According to the learning rule, the synapses that fire temporally

close to the time of the target spikes are potentiated. Those

synapses that result in undesired output spikes are depressed. This

temporal causality is clearly reflected on the distribution of weights

after learning (Fig. 4). Among those causal synapses, the one with a

closer spiking time to the desired time normally has a relatively

higher synaptic strength. The synapses firing far from the desired

time will have lower causal effects. Additionally, the evolution of

distance along the learning shows that the PSD rule successfully

trains the neuron to reproduce the desired spikes in around ten

epochs. The results also validate the efficiency of the PSD learning

rule in accomplishing the single association task.

Adaptive learning performance. At the beginning, the

neuron is trained to learn a target train as in the previous tasks.

After one successful learning, the target spike train is changed to

another arbitrarily generated train, where the precise spike time

and the firing rate are different from the previous target. We

discover that, with the PSD learning rule, we successfully train the

neuron to learn the new target within several epochs. As shown in

Fig. 5, during learning, the neuron gradually adapts its firing status

from the old target to the new target.

Learning multiple spikes. In the scenario considered

above, all afferent neurons are supposed to fire only once during

the entire time window. The applicability of the PSD rule is not

limited to this single spike code. We further illustrate the case

where each synaptic input transmits multiple spikes during the

time window. We again use the same setup as above, but each

synaptic input is now generated by a homogeneous Poisson

process with a random rate ranging from 5{25 Hz. Multiple

spikes increase the difficulty of the learning since these spikes

interfere with the local learning processes [28]. As shown in Fig. 6,

the learning although slower, is again successful. The interference

of local learning processes results in fluctuations of the output

spikes around the target time. In the subsequent learning epochs,

the neuron gradually converges to spiking at the target time. This

experiment demonstrates that the PSD rule deals with multiple

spikes quite well. Compared to multiple spikes, the single spike

code is simple for analysis and efficient for computation. Thus, for

simplicity, we use the single spike code in the following

experiments where each afferent neuron fires only once during

the time window.

These experiments clearly demonstrate that the PSD rule is

capable of training the neuron to fire at the desired time. The

causal connectivity is established after learning with this rule. In

the following sections, some more challenging learning scenarios

Figure 3. Illustration of the temporal sequence learning of a typical run. The neuron is connected with n~1000 synapses, and is trained to
reproduce spikes at the target time (denoted as light blue bars in the middle). The bottom and top show the dynamics of the neuron’s potential
before and after learning, respectively. The dashed red lines denote the firing threshold. In the middle, each spike is denoted as a dot. The right figure
shows the distance between the actual output spike train and the target spike train.
doi:10.1371/journal.pone.0078318.g003

Precise-Spike-Driven (PSD) Synaptic Plasticity

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e78318



are taken into consideration to further investigate the properties of

the PSD rule.

Generality to Different Neuron Models
We carry out this experiment to demonstrate that the PSD

learning rule is independent of the neuron model. In this

experiment, we only compare the results of learning association

for the LIF and IM neuron models that were described previously.

For a fair comparison, both neurons are connected to the same

afferent neurons, and they are trained to reproduce the same

target spike train. The setup for generating the input spatiotem-

poral patterns is the same as the experiment in Fig. 5. The

connection setup is illustrated in Fig. 7. Except for the neuron

dynamics described in Eq. (1) and Eq. (5) respectively, all the other

parameters are the same for the two neurons.

The dynamic difference between the two types of spiking

neuron models is clearly demonstrated in Fig. 7. Although the

neuron models are different, both of the neurons can be trained to

successfully reproduce the target spike train with the proposed

PSD learning rule. It is seen that the two neurons fire at arbitrary

time before learning, while after learning they fire spikes at the

desired time.

In the PSD rule, synaptic adaptation is triggered by both the

desired spikes and the actual output spikes. The amount of

Figure 4. Effect of the learning on synaptic weights and the evolution of distance along the learning process. The top and the middle
show the averaged weights before and after learning, respectively. The height of each bar in the figure reflects the corresponding synaptic strength.
All the afferent neurons are chronologically sorted according to their spike time. The target spikes are overlayed on the weights figure according to
their time, and are denoted as red lines. The bottom shows the averaged distance between the actual spike train and the desired spike train along
the learning process. All the data are averaged over 100 runs.
doi:10.1371/journal.pone.0078318.g004

Figure 5. Illustration of the adaptive learning of the changed target trains. Each dot denotes a spike. At the beginning, the neuron is
trained to learn one target (denoted by the light blue bars). After 25 epochs of learning (the dashed red line), the target is changed to another
randomly generated train (denoted by the green bars). The right figure shows the distance between the actual output spike train and the target spike
train along the learning process.
doi:10.1371/journal.pone.0078318.g005
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updating depends on the presynaptic spikes firing before the

triggering spikes. That is to say, the weight adaptation of our rule

is based on the correlation between the spiking time only. This

suggests the PSD has the generality to work with various neuron

models, a capability similar to that of the ReSuMe rule [28].

Robustness to Noise
In previous experiments, we only consider the simple case

where the neuron is trained to learn a single pattern under noise-

free condition. However, the reliability of the neuron response

could be significantly affected by noise. In this experiment, two

noisy cases are considered: stimuli noise and background noise.

Experiment setup. In this experiment, a single LIF neuron

with n~500 afferent neurons is tested. Initially, a set of 10 spike

patterns are randomly generated as in previous experiments.

These 10 spike patterns are fixed as the templates. The neuron is

trained for 400 epochs to associate all patterns in the training set

with a desired spike train (the same train as is used before). Two

training scenarios are considered in this experiment, i.e.,

deterministic training (in the noise-free condition) and noisy

training. In the testing phase, a total number of 200 noise patterns

are used. Each template is used to construct 20 testing patterns.

We determine the association to be correct, if the distance between

the output spike train and the desired spike train is lower than a

specified level (0.5 is used here).

Input jittering noise. In the case of input jittering noise, a

Gaussian jitter with a standard deviation (sInp) is added to each

input spike to generate the noise patterns. The strength of the jitter

is controlled by the standard deviation of the Gaussian. The top

row in Fig. 8 shows the learning performance. In the deterministic

training, the neuron is trained purely with the initial templates. In

the noisy training, a noise level of 3ms is used. Different levels of

noise are used in the testing phase to evaluate the generalization

ability. For the deterministic training, the output stabilizes quickly

and can exactly converge to the desired spike train within tens of

learning epochs. However, the generalization accuracy decreases

quickly with the increasing jitter strength. In the scenario of noisy

training, although the training error cannot become zero, a better

generalization ability is obtained. The neuron can successfully

reproduce the desired spike train with a relatively high accuracy

when the noise strength is not higher than the one used in the

Figure 6. Illustration of a typical run for learning multi-spike pattern. Each dot denotes a spike. The top left shows the input spikes from the
first 50 afferent neurons out of 1000. Each synaptic input is generated by a homogeneous Poisson process with a random rate from 5{25 Hz. The
bottom left shows the neuron’s output spikes. The right column shows the distance between the actual output spike train and the target spike train
along learning.
doi:10.1371/journal.pone.0078318.g006
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training. In conclusion, the neuron is less sensitive to the noise if

the noisy training is performed.

Background current noise. In this case, the background

current noise (Ins) is considered as the noise source. The mean

value of Ins is assumed zero, and the strength of the noise is

determined by its variance (sIns ). A strength of 10nA noise is used

in the noisy training. We report the results in the bottom row of

Fig. 8. Similar results are obtained as with the first case. Although

the output can quickly converge to zero error in the deterministic

training, the generalization performance is quite sensitive to the

noise. The association accuracy drops quickly when the noise

strength increases. When the neuron is trained with noise patterns,

it becomes less sensitive to the noise. A relatively high accuracy

can be obtained with a noise level up to 14nA.

This experiment shows that the trained neuron under noise-free

conditions will be significantly affected by noise. Such an influence

of noise on the timing accuracy and reliability of the neuron

response has been considered in many studies [15,24,25,27,28,39].

Under the noisy training, the trained neuron demonstrates high

robustness against the noise. The noisy training enables the neuron

to reproduce desired spikes more reliably and precisely.

Learning Capacity
As used for the perceptron [40] and tempotron [15,26] learning

rules, the ratio of the number of random patterns (p) that a neuron

can correctly classify over the number of its synapses (n), a~p=n, is
used to measure the memory load. An important characteristic of

a neuron’s capacity is the maximum load that it can learn. In this

experiment, the memory capacity of the PSD rule is investigated.

Experiment setup. We devise an experiment that has a

similar setup to that in [25]. A number of p patterns are randomly

generated in the same process as previous experiments, where

each pattern contains n spike trains and each train has a single

spike. The patterns are randomly and evenly assigned to c

different categories. Here we choose c~4 for this experiment. A

single LIF neuron is trained to memorize all patterns correctly in a

maximum number of 500 training epochs. The neuron is trained

to emit a single spike at a specified time for patterns from each

category. The desired spikes for the 4 generated categories are set

to the time of 40, 80, 120 and 160ms, respectively. A pattern is

considered to have been correctly memorized by the neuron if the

distance between the actual spike train and the desired train is

below 0.2. The learning process is considered a failure if the

number of training epochs reaches the maximum number.

Maximum load factor. Fig. 9 shows the results of the

experiment for the case of 500, 750 and 1000 afferent neurons,

respectively. All the data are averaged over 100 runs. In each run,

different initial weights are used. As seen from Fig. 9, the number

of epochs required for the training increases slightly as the number

of patterns increases when the load is not too high, but a sharp

increase of learning epochs occurs after a certain high load. This

suggests that the task becomes tougher with an increasing load. It

is also noted that a larger number of synapses leads to a bigger

memory capacity for the same neuron. It is reported that the

maximum load factors for 500, 750 and 1000 synapses are 0.144,

0.133 and 0.124, respectively.

Efficient load factor. Besides the maximum load factor, we

heuristically define another factor, the efficient load ae. As

described above, the neuron can perform the task efficiently with

a relatively high load when the number of patterns does not exceed

a certain value (pe). The efficient load is denoted as ae~pe=n.
When the load is below ae, the neuron can reliably memorize all

patterns with a small number of training epochs. There are

different ways to define ae. We show two possible ways. One is to

derive the definition from a mathematical calculation such as

(dEpochs=dp)pe~d, where d is a specified value (for example

d~0:5). A simpler method is where a specified number of training

epochs is used. The corresponding number of patterns that can be

correctly learnt is considered as pe. For simplicity, we use the latter

as an example for demonstration and the specified number of

epochs is set to 100. As seen from Fig. 9, the efficient load factors

for 500, 750 and 1000 synapses are 0.112, 0.109 and 0.108,

respectively. Surprisingly, these efficient load factors seem to all be

around a stable value which only changes slightly across different

numbers of synapses. This fixed value of efficient load factor for

different values of n indicates that the number of patterns that a

Figure 7. Learning with different spiking neuron models. The LIF and IM neuron models are considered. The left panel shows the connection
setup of the experiment. Both the two neurons are connected to the same n~1000 afferent neurons, and are trained to reproduce target spikes
(denoted by the yellow parts). The right panel shows the dynamics of neurons’ potential before and after learning. The dashed red lines denote the
firing threshold.
doi:10.1371/journal.pone.0078318.g007
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neuron can efficiently memorize grows linearly with the number of

afferent synapses. It is worth noting that the concept of efficient

load factor ae provides an important guideline for choosing the

load of patterns when a reliable and efficient training is required.

Effects of Learning Parameters
Two of the major parameters involved in the PSD learning rule

are the learning rate g and the decay constant ts. In this section,

we aim to investigate the effects of these parameters on the

learning process.

Small ts results in strong causal weight distribu-

tion. As a decay constant, ts is an important parameter

involved in the postsynaptic current. It determines how long a

presynaptic spike will still have causal effect on the postsynaptic

neuron. In the phase of synaptic adaptation, ts also determines the

magnitude of modification on the synaptic weights at the time of a

triggering spike. Thus, ts will affect the distribution of weights after

the training. To look into this effect, we conduct an experiment

with a similar setup as in Fig. 4 but with different values of ts. Here

we choose ts~3, 10 and 30ms. As can be seen from Fig. 10, a

smaller ts (3ms) can result in a very uneven distribution with only a

few synapses being given relatively higher weights. A flat

distribution is obtained with an increasing ts. This is because ts
determines how long the causal effect of an afferent spike will

sustain. A smaller ts means that only the nearer neighbors are

involved in generating the desired spikes, hence resulting in a

smaller number of causal synapses. With a smaller number of

causal synapses, a higher synaptic strength will be required to

generate spikes at the desired time. On the other hand, with a

larger ts, a wider range of causal neighbors can contribute to

σ

σ

Figure 8. Robustness of the learning rule against jittering noise of input stimuli and background noise. The top row presents the case
where the noise comes from the input spike jitters. The bottom row presents the case of background noise. The neuron is trained under noise-free
conditions (denoted as deterministic training), or is trained under noisy conditions (denoted as noisy training). In the training phase (left two
columns), the neuron is trained for 400 epochs. Along the training process, the average distance between the actual output spike train and the
desired spike train is shown. The standard deviation is denoted by the shaded area. In the testing phase (right column), the generalization accuracies
of the trained neuron on different levels of noise patterns are presented. Both the average value and the standard deviation are shown. All the data
are averaged over 100 runs.
doi:10.1371/journal.pone.0078318.g008

Figure 9. The memory capacity of the PSD rule with different
numbers of synapses. The neuron is trained to memorize all patterns
correctly in a maximum number of 500 epochs. The reaching points of
500 epochs are regarded as failure of the learning. The cases of 500, 750
and 1000 synapses are denoted by blue, red and green parts,
respectively. The marked lines denote average learning epochs and
the shaded areas show the standard deviation. The dashed line at 100
epochs is used for evaluating the efficient load ae described in the main
text. All the data are averaged over 100 runs.
doi:10.1371/journal.pone.0078318.g009
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generating the desired spikes, and therefore a lower synaptic

strength will be sufficient. The synaptic strength and distribution

for different values of ts are obtained as in Fig. 10.

Effects of both g and ts on the learning. We further

conduct another experiment to evaluate the effects of both g and

ts on the learning. In this experiment, a single LIF neuron with

n~500 afferent neurons is considered. The neuron is trained to

correctly memorize a set of 10 spike patterns randomly generated

over a time window of 200 ms. The neuron is trained in a

maximum number of 500 epochs to correctly associate all these

patterns with a desired spike train of [40, 80, 120, 160] ms. We

denote that a pattern is correctly memorized if the distance

between the output spike train and the desired spike train is below

0:06. If the number of training epochs exceeds 500, we regard it as

a failure. We conduct an exhaustive search over a wide range of g
and ts. Fig. 11 shows how g and ts jointly affect the learning

performance, which can be used as a guidance to select the

learning parameters. With a fixed ts, a larger g results in a faster

learning speed (shown in Fig. 11, right panel), but when g is

increased above a critical value (e.g., 0.1 for ts~30 ms in our

experiments), the learning will slow down or even fail. For small g,
a larger ts leads to a faster learning, however, for large g, a larger

ts has the opposite effect. As a consequence, when ts is set in a

suitable range (e.g., [5,15] ms), a wide range of g can result in a

fast learning speed (e.g., below 100 epochs).

Classification of Spatiotemporal Patterns
In this experiment, the ability of the proposed PSD rule for

classifying spatiotemporal patterns is investigated by using a multi-

category classification task. The setup of this experiment is similar

to that in [25]. Three random spike patterns representing three

categories are generated in a similar fashion to that in the previous

experiments, and they are fixed as the templates. A Gaussian jitter

with a standard deviation of 3ms is used to generate training and

testing patterns. The training set and the testing set contain 3|25

and 3|100 samples, respectively. Three neurons are trained to

classify these three categories, with each neuron representing one

category. Different neurons for each category can be specified to

fire different spike trains. However, for simplicity, all the neurons

in this experiment are trained to fire the same spike train

(½40,80,120,160�ms). The experiment is repeated 100 times, with

each run having different initial conditions.

After training, classification is performed on both the training

and the testing set. In the classification task, we propose two

decision-making criteria: absolute confidence and relative confi-

dence. With the absolute confidence criterion, only if the distance

between the desired spike train and the actual output spike train of

the corresponding neuron is smaller than a specified value (0.5 is

used here), then the input pattern will be regarded as being

correctly classified. As for the relative confidence criterion, a

scheme of competition is used. The incoming pattern will be

labeled by the winning neuron that produces the closest spike train

to its desired spike train.

Fig. 12 shows the average classification accuracy for each

category under the two proposed decision criteria. From the

absolute confidence criterion, we see that the neuron successfully

classifies the training set with an average accuracy of 99:65%. The

average accuracy for the testing set is 77:11%. Noteworthily,

under the relative confidence, both the average accuracies for the

training and the testing set reach 100%. The performance for the

classification task is therefore significantly improved by the relative

confidence decision making criterion. With the absolute confi-

dence criterion, the trained neuron strives to find a good match

with the memorized patterns. However, with the relative

confidence criterion, the trained neuron attempts to find the most

likely category through competition.

For the classification of spatiotemporal patterns, the tempotron

is an efficient rule [15] in training LIF neurons to distinguish two

classes of patterns by firing one spike or by keeping quiescent. We

use the tempotron rule to benchmark the PSD rule in the

classification of spatiotemporal patterns. The tempotron rule is

applied to perform the same classification task as above. The

classification accuracies are shown in Table 1. As can be seen from

Table 1, our proposed rule with the relative confidence criterion

has a comparable performance to the tempotron rule. Moreover,

the PSD rule is advantageous in that it is not limited to performing

τ

τ

τ

Figure 10. Effect of decay constant ts on the distribution of weights. The averaged weights after learning are shown. The height of each bar
reflects the synaptic strength. The afferent neurons are chronologically sorted according to their spike time. The target spikes are overlayed and
denoted as red lines. Cases of ts~3, 10 and 30ms are depicted. All the data are averaged over 100 runs.
doi:10.1371/journal.pone.0078318.g010
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classification, but it is also able to memorize patterns by firing

desired spikes at precise time.

Optical Character Recognition
In order to investigate the capability of the PSD rule over a

practical problem, an OCR task is considered in this experiment.

Images of digits 0-9 are used. Each image has a size of 20|20

black/white (B/W) pixels. Additionally, a reversal noise is

introduced to generate noisy images. We do this by reversing a

pixel randomly with a probability denoted as the noise level.

Fig. 13 illustrates some image samples. The digits are destroyed

gradually with an increasing noise level. When the noise level is

above 15%, the digits are hardly recognizable.

One of the major challenges of applying SNNs to practical

problems is that proper encoding methods are required to produce

the input data [26,41]. Encoding is the first step of utilizing spiking

neurons. It aims to generate spike patterns that represent the

external stimuli. However, how the external information is

encoded in the brain still remains unclear. Many encoding

mechanisms have been proposed for converting images into spikes

such as rate code [21], latency code [26,42] and phase code

[27,43]. The rate code is unsuitable for the rules that learn precise

spike patterns. A direct utilization of the latency code is also found

to be inappropriate. For example, if a simple latency code is used

in this OCR task, the spikes in the input spatiotemporal pattern

will all occur at t~0 ms. This does not work for spatiotemporal

mapping algorithms including PSD, ReSuMe [23], Chronotron

[24] and SPAN [25]. These spatiotemporal mapping algorithms

cannot guarantee successful learning of an arbitrary spatiotempo-

ral spike pattern. To trigger a desired spike, a sufficient number of

η

τ

η

τ

τ

τ

Figure 11. Effects of g and ts on the learning. The neuron is trained in a maximum number of 500 epochs to correctly memorize a set of 10 spike
patterns. The average learning epochs are recorded for each pair of g and ts . The reaching points of 500 epochs are regarded as failure of the
learning. The left shows an exhaustive investigation of a wide range of g and ts, and the data are averaged over 30 runs. A small number of learning
parameters are examined in the right figure, and the data are averaged over 100 runs.
doi:10.1371/journal.pone.0078318.g011

Figure 12. The average accuracies for the classification of spatiotemporal patterns. There are 3 categories to be classified. The average
accuracies are represented by shaded bars. Two types of criteria for making decision are proposed and investigated. The left is the absolute
confidence criterion, and the right is the relative confidence criterion. All the data are averaged over 100 runs.
doi:10.1371/journal.pone.0078318.g012
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input spikes around it are required. Long delays will not be

effectively learnt since the causal connection could not be built. In

real nervous systems, neurons rarely fire in such a highly

synchronized manner but rather in a distributed one [7,8,44].

Thus, proper encoding is required not only for successful learning

association but also for maintaining some level of biological

realism.

An increasing body of evidence shows that action potentials are

related to the phases of the intrinsic subthreshold membrane

potential oscillations [45–47]. These observations support the

hypothesis of a phase code. Following the phase code presented in

[27,43], we develop a simple encoding method for this task. The

mechanism of our encoding model is illustrated in Fig. 14. The

encoding unit consists of a positive neuron (Pos), a negative

neuron (Neg) and an output neuron (Eout). Each encoding unit is

connected to a pixel and a subthreshold membrane potential

oscillation. For simplicity, the oscillation for the i-th encoding unit

is described as:

OSCi~A cos (vtzwi) ð13Þ

where A is the magnitude of the subthreshold membrane

oscillation, v is the phase angular velocity and wi is the initial

phase. wi is defined as:

wi~w0z(i{1):Dw ð14Þ

where w0 is the reference phase and Dw is the phase difference

between nearby encoding units. We set Dw~2p=Nen where Nen is

the number of encoding units. Nen is equal to the number of pixels

in the image (400 here). The oscillation period is set to be 200 ms

which corresponds to a frequency of 5 Hz.

The Pos neuron only responds to positive activation potential,

while the Neg neuron only reacts to negative activation potential.

An input of B/W pixel will cause a downward/upward shift from

the subthreshold membrane oscillation. Whenever the membrane

potential crosses the threshold, a spike is generated. Through the

fine tuning of parameter A, the amount of shift and the threshold

values, we set the spike to occur at peaks of the oscillation. The

firing of either the Pos neuron or the Neg neuron will immediately

trigger the firing of the Eout neuron. The encoding units therefore

output a spike at one phase for a white pixel and another shifted

phase of 180 degrees for a black pixel. Also, the emitted phases

change depending which pixel is the input.

We select 10 neurons to learn the patterns generated by the

encoding units. Each learning neuron corresponds to one

category. The parameter setting of the learning neurons is the

same as that in the previous task of spatiotemporal pattern

classification. Each neuron is trained to produce a target spike

train (½40,80,120,160�ms) when a pattern from the assigned class is

presented, and not to spike when patterns from other classes are

presented. In principle, different target spike trains can be used for

different digits. The neurons are trained for 100 epochs. In each

training epoch, a training data set of 10|10 samples is formed.

There are 10 samples for each digit. Among these 10 samples, one

is the template image and the other 9 are generated with a random

noise level of 0{10%. After training, the neurons are tested on

different noise levels. On each noise level, 100 noise patterns are

generated for each digit. The relative confidence criterion is used

for making decision. In our test, the category of an input pattern

will be decided by one of the neurons that generates the lowest

spike distance.

Fig. 15 shows the testing results. In order to observe the

association ability of the neuron to map a digit with the desired

spike train, digit ‘‘8’’ is used as an example. The neuron

corresponding to digit ‘‘8’’ can successfully produce a spike train

close to the target train when the noise level is low. This

association worsens as the noise level increases. As shown in

Fig. 15, the classification accuracy remains high when the noise

level is low and will drop gradually with increasing noise level.

Even when the image is seriously damaged by the noise (15% noise

level), a high accuracy of around 85% can still be obtained. The

results show that the trained neurons can successfully associate the

template images with the target spike train. Moreover, the trained

neurons present a high recognition ability under the relative

confidence criterion even if images are damaged by noise.

Discussion

The PSD rule is proposed for the association and recognition of

spatiotemporal spike patterns. In summary, the PSD rule

transforms the input spike trains into analog signals by convolving

Table 1. Multi-Category Classification of Spatiotemporal Patterns.

Accuracy (%) Category 1 Category 2 Category 3

Training Testing Training Testing Training Testing

Absolute Confidence 99:6 83:15 99:68 80:06 99:68 68:12

+1:21 +6:79 +1:09 +4:73 +1:23 +6:09

Relative Confidence 100 100 100 100 100 100

Tempotron 100 99:65 100 99:74 100 99:61

+1:21 +1:01 +1:0

doi:10.1371/journal.pone.0078318.t001

Figure 13. Illustration of image samples. Each image has a size of
20|20 B/W pixels. The top two rows show template images. The
bottom two rows show images with noise introduced to the templates.
Reversal noise is used where each pixel is randomly reversed with a
probability denoted as the noise level. A range of noise level of 0{20%
is illustrated.
doi:10.1371/journal.pone.0078318.g013
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the spikes with a kernel function. By using a kernel function, the

analog signals are presented in the simple form of synaptic

currents. It is biologically plausible because it allows us to interpret

the signals with physical meaning. Synaptic adaptation is driven by

the error between the desired and the actual output spikes, with

positive errors causing LTP and negative errors causing LTD. The

amount of synaptic adaptation is determined by the transformed

signal of the input spikes (postsynaptic currents here) at the time of

modification occurrence. When the actual spike train is the same

as the desired spike train, the adaptation of the weights will be

terminated.

There is a supervisory signal involved in the PSD rule. The most

documented evidence for supervised rules comes from studies of

the cerebellum and the cerebellar cortex [18,19]. It is shown that

supervisory signals are provided to the learning modules by

sensory feedback [20] or other supervisory neural structures in the

brain [19]. A neuromodulator released by the supervisory system

can induce the control of the adaptation. This control occurs for

several neuromodulatory pathways, such as dopamine and

acetylcholine [48,49]. Experimental evidence shows that N-

methyl-D-aspartate (NMDA) receptors are critically involved in

the processes of LTP and LTD [50-52]. After opening the NMDA

channels, the resulting Ca2z entry then activates the biochemistry

of potentiation which leads to LTP [52]. Suppression of NMDA

receptors by spike-mediated calcium entry may be a necessary step

in the induction of LTD [52,53]. The synaptic modification can be

implemented through a supervisory control of opening or

suppression of these NMDA channels.

The PSD rule is simple and efficient in synaptic adaptation.

Utilizing the postsynaptic current as the eligibility trace for weight

adaptation is a simple and efficient choice. The same signals of

postsynaptic currents are also used in the synaptic adaptation as in

the neuron dynamics, unlike the learning rules such as [22,25,28]

where different sources of signals were used. Thus, the number of

signal sources involved in the learning is reduced, which will

directly benefit the computation. Secondly, unlike the arithmetic-

based rules [22,24,25], where a complex error calculation is

required for the synaptic adaptation, the PSD rule is based on a

simple form of spike error between the actual and the desired

spikes. The synaptic adaptation is driven by these precise spikes

without complex error calculation. As a matter of fact, the weight

modification only depends on currently available information

(shown as Fig. 2). Additionally, due to the ability of the PSD rule to

operate online, it is suitable for real-time applications. According

to the PSD rule, different kernels, such as the exponential kernel

and a kernel, can also be used in convolving the spikes to provide

different eligibility traces.

Figure 14. Illustration of the encoding schema. The left shows the structure of an encoding unit. The encoding unit includes a positive neuron
(Pos), a negative neuron (Neg) and an output neuron (Eout). Each encoding unit is assigned to a subthreshold membrane oscillation. Both Pos and
Neg neurons receive signals from this subthreshold membrane oscillation and the corresponding pixel. The Pos neuron only reacts to positive
activation voltage, while the Neg neuron only reacts to negative activation voltage. The firing of either the Pos neuron or the Neg neuron will
immediately cause the firing of the Eout neuron. The right illustrate the dynamics of the encoding. The B/W pixel will cause a downward/upward shift
from the subthreshold membrane oscillation. A spike is generated if the membrane potential crosses the threshold line (Pthr and Nthr).
doi:10.1371/journal.pone.0078318.g014

Figure 15. Performance on OCR task. The left shows the association ability of the neuron to map a typical digit with the desired spike train. Digit
‘‘8’’ is used as an example here. The distance between the output spike train and the desired spike train is depicted versus the noise level. The right
shows the classification accuracy on the testing set. Solid lines denote the average and shaded areas denote the standard deviation. All the data are
averaged over 30 runs.
doi:10.1371/journal.pone.0078318.g015
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The PSD rule is designed for processing spatiotemporal

patterns, where the exact time of each spike is used for information

transmission. The PSD rule is unsuitable for learning patterns

under the rate code because this rule is designed to process precise-

timing spikes by its nature. The rate code uses the spike count but

not the precise time to convey information. Like other spatiotem-

poral mapping algorithms, including ReSuMe [23], Chronotron

[24] and SPAN [25], the PSD rule cannot guarantee successful

learning of an arbitrary spatiotemporal spike pattern. A sufficient

number of input spikes around the desired time are required for

establishing causal connections. In other words, the temporal

range covered by the desired spikes should be covered by the input

spikes.

The spiking neurons are equivalent to traditional neurons such

as perceptron under certain conditions [15,54]. The running of a

spiking neuron is a continuous process over a period of time while

a perceptron does not involve the concept of time. However, the

common feature between perceptrons and spiking neurons is that

the calculation of a weighted sum is needed. Segmenting the

running time of the spiking neuron into several fixed points, the

perceptron can replace the spiking neuron. The input vectors for

the perceptron are the postsynaptic currents at these fixed time

points. According to [54], the supervised association can be

transformed into a classification problem and then be solved by

using the perceptron learning rule. The target of the classification

is to distinguish the spike firing time from non-spike firing time.

However, a large number of fixed points are required for the

perceptron to achieve similar dynamics of the spiking neuron. This

means the perceptron needs to remember all pattern vectors at

these fixed points. The computational power of spiking neurons is

sacrificed by using perceptrons at this point.

In all the experiments, a single spike code is used for afferent

neurons, where each input neuron only fires a single spike during

the entire time window. This single spike code is chosen for various

reasons but more than one spike is also allowed for the PSD rule.

Firstly, a single spike code is simple for analysis and efficient for

computation [22,26]. Secondly, there is strong biological evidence

supporting the single spike code. Visual systems can analyze a new

complex scene in less than 150 ms [44,55]. This period of time is

impressive for processing, considering the billions of neurons

involved. This suggests neurons exchange only one or few spikes.

Single spike codes can also fit situations where information is

coded in the time of the first spike, relative to the onset of stimuli

[56], or situations where information is coded relative to a

background oscillation [24,47]. The PSD rule is also suitable for

multi-spike train (results shown in Fig. 6). When the number of

spikes from each afferent neuron is not high enough, the neuron

can produce the desired spike train after several epochs. When the

number of spikes increases, the learning becomes slower and more

difficult to converge. Additionally, the biological plausibility of an

encoding scheme that can use multiple spikes to code information

is still unclear.

Related Works
Several learning algorithms have been proposed to explore how

spiking neurons may respond for processing and memorizing

spatiotemporal patterns.

The tempotron rule [15] is one such learning rule where

neurons are trained to discriminate between two classes of

spatiotemporal patterns. This learning rule is based on a gradient

descent approach. In the tempotron rule, the synaptic plasticity is

governed by the temporal contiguity of presynaptic spike and

postsynaptic depolarization and a supervisory signal. The neurons

could be trained to successfully distinguish two classes by firing a

spike or by remaining quiescent. However, the neurons do not

learn to fire at precise time. Since the tempotron rule mainly aims

at decision-making tasks, it cannot support the same coding

scheme used in both the input and output spikes. To support the

same coding scheme through the input and output, a learning rule

is needed to let the neuron not only fire but also fire at the

specified time. In addition, the tempotron is designed for a specific

neuron model, which might limit its usage on other spiking neuron

models. For the decision-making task (classification), our proposed

rule can obtain a comparable performance as the tempotron rule

(see Table 1).

SpikeProp [22] is a supervised learning rule for SNNs that can

solve nonlinear classification problems by emitting a single spike at

the desired time. The major limitation is that SpikeProp and its

extension in [57] do not allow multiple spikes in the output spike

train. Thus, several different learning rules have been developed to

train neurons to produce multiple output spikes in response to a

spatiotemporal stimulus, such as ReSuMe [23,28], Chronotron

[24] and SPAN [25], as well as our PSD rule.

In both the SPAN rule and the Chronotron E-learning rule, the

synaptic weights are modified according to a gradient descent

approach in an error landscape. The error function in the

Chronotron is based on the Victor & Purpura (VP) distance [58],

while in the SPAN rule the error function is based on a metric

similar to the van Rossum metric [38]. These arithmetic

calculations can easily reveal why and how networks with spiking

neurons can be trained, but the arithmetic-based rules are not a

good choice for designing networks with biological plausibility.

The biological plausibility of error calculation is at least

questionable. In contrast, the PSD minimizes the error between

the actual output spike train and the desired spike train without the

need for an explicit gradient calculation. Without extra calculation

of the error, the PSD provides an efficient way for processing

spatiotemporal patterns. On the other hand, since the PSD rule is

derived from the common WH rule, it can also easily reveal why

and how neurons can be trained similarly with arithmetic-based

rules.

From the perspective of increased biological plausibility, the

Chronotron I-learning rule and the ReSuMe rule are considered

below. The I-learning rule was heuristically defined in [24] where

synaptic changes depend on the synaptic currents. This learning

rule is quite similar to the PSD rule and it can be considered as a

variation of the PSD rule. According to the I-learning rule, its

development seems to be based on a particular case of the Spike

Response Model [1], which might also limit its usage on other

spiking neuron models or at least is not clearly demonstrated.

Moreover, those synapses with zero initial weights will never be

updated according to the I-learning rule. This will inevitably lead

to information loss from those afferent neurons. In the PSD rule,

all these issues are considered. The PSD is a more general rule and

it is analytically derived. Through careful choice, the eligibility

trace in the PSD rule can be represented by the postsynaptic

current. In the tempotron rule, the postsynaptic voltage is involved

in the learning. We refer to both the postsynaptic current and the

postsynaptic voltage as the postsynaptic state. A crucial role of the

postsynaptic state in the induction of long term plasticity has been

demonstrated in [50–52]. Similar to the PSD rule and the SPAN

rule, the ReSuMe rule is derived from the WH rule. The ReSuMe

interprets the WH rule as a combination of a Hebbian and an

anti-Hebbian process within a learning window. It was demon-

strated in [25] that the form of the SPAN rule has a surprising

similarity to the ReSuMe rule with an exponential kernel.

Similarly, we can transform the PSD rule by replacing the kernel

used in Eq. (11) with the exponential kernel. This leads to:
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A batch learning version of the ReSuMe rule given in [24] is

described as:
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where as is a non-Hebbian term used for speeding up the

convergence of the learning.

As can be seen from the above equations, the PSD rule is also

mathematically similar to the ReSuMe rule under certain

conditions. The similarity among PSD, SPAN and ReSuMe

results from the common WH rule. All these rules are derived

from the WH rule with different interpretations.

Surprisingly, the WH rule also guarantees an intrinsical

similarity among other learning rules such as synaptic scaling

rules [59,60]. For example, a synaptic scaling rule was introduced

in [60] as:

Dw
Scaling
i ~g:Ai½Ad{Ao�:wi ð17Þ

where the variable A measures the average activity of neurons,

and it can be referred to as the firing rate. If a kernel with a long

time constant is used to convolve the input, the actual output and

the desired spikes, a similar measurement of the average firing

activity will be obtained. Thus, the common WH rule can be

presented in a similar form as the scaling rule.
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50. Artola A, Bröcher S, SingerW(1990) Different voltage-dependent thresholds for
inducing long-term depressiona and long-term potentiation in slices of rat visual
cortex. Nature 347: 69–72.

51. Ngezahayo A, Schachner M, Artola A (2000) Synaptic activity modulates the

induction of bidirectional synaptic changes in adult mouse hippocampus. The

Journal of Neuroscience 20: 2451–2458.

52. Lisman J, Spruston N (2005) Postsynaptic depolarization requirements for LTP

and LTD: a critique of spike timing-dependent plasticity. Nature Neuroscience

8: 839–841.

53. Froemke RC, Poo Mm, Dan Y (2005) Spike-timing-dependent synaptic

plasticity depends on dendritic location. Nature 434: 221–225.

54. Xu Y, Zeng X, Zhong S (2013) A new supervised learning algorithm for spiking

neurons. Neural Computation 25: 1472–1511.

55. Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual

system. Nature 381: 520–522.

56. VanRullen R, Guyonneau R, Thorpe SJ (2005) Spike times make sense. Trends

in Neurosciences 28: 1–4.

57. Booij O, Nguyen HT (2005) A gradient descent rule for spiking neurons emitting

multiple spikes. Information Processing Letters 95: 552–558.

58. Victor JD, Purpura KP (1997) Metric-space analysis of spike trains: theory,

algorithms and application. Network: Computation in Neural Systems 8: 127–

164.

59. Van Rossum MC, Bi G, Turrigiano G (2000) Stable Hebbian learning from

spike timing-dependent plasticity. The Journal of Neuroscience 20: 8812–8821.

60. Buonomano DV (2005) A learning rule for the emergence of stable dynamics

and timing in recurrent networks. Journal of Neurophysiology 94: 2275–2283.

Precise-Spike-Driven (PSD) Synaptic Plasticity

PLOS ONE | www.plosone.org 16 November 2013 | Volume 8 | Issue 11 | e78318


