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ABSTRACT

Time delays between the multiple images of strongly lensed Type Ia supernovae (glSNe Ia) have the
potential to deliver precise cosmological constraints, but the effects of microlensing on the measurement
have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the
Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy
of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on
the LSST glSN Ia yield, but it can be increased by a factor of ∼2 to 930 systems using a novel
photometric identification technique based on spectral template fitting. Crucially, the microlensing of
glSNe Ia is achromatic until 3 rest-frame weeks after the explosion, making the early-time color curves
microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of
microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution
of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent
level and peaked at 1% for color curve observations in the achromatic phase, while for light curve
observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of
LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing
time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained.
Accounting for microlensing, the 1–2 day time delay on the recently discovered glSN Ia iPTF16geu
can be measured to 40% precision, limiting its cosmological utility.
Keywords: Supernovae: general — gravitational lensing: strong — gravitational lensing: micro

1. INTRODUCTION

Since the discovery of cosmic acceleration (Riess et al.
1998; Perlmutter et al. 1999), ΛCDM has become the ob-
servationally favored cosmology, implying that the uni-
verse is spatially flat, that it contains cold dark matter
and baryons, and that its accelerated expansion is driven
by a cosmological constant. Recently, a deviation from
ΛCDM was reported by Riess et al. (2016), whose mea-
surement of the Hubble constant H0 using the cosmic
distance ladder is in 3.4σ tension with the value inferred
from the cosmic microwave background (CMB; Planck
Collaboration et al. 2016), assuming a ΛCDM cosmology
and the standard model of particle physics. Independent
measurements of H0 with percent-level accuracy are nec-
essary to determine whether the discrepancy is due to
new physics (e.g., a new neutrino species; Riess et al.
2016; Bonvin et al. 2017) or to systematics.
Strong gravitational lensing is an independent probe

of the cosmological parameters (Oguri et al. 2012; Suyu
et al. 2013; Collett & Auger 2014). Time delays be-
tween multiple images of strongly gravitationally lensed
variable sources are particularly sensitive to H0, making
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them ideal tools to test this discrepancy. They also are
sensitive to other parameters of the cosmological model,
such as the dark energy equation of state and its evolu-
tion with redshift (Linder 2004, 2011; Treu & Marshall
2016).
Measuring cosmological parameters to percent level ac-

curacy with strong lens time delays requires three main
ingredients (Suyu et al. 2017). First, one must measure
the time delays (e.g. Tewes et al. 2013; Bonvin et al.
2017). Second, the lensing potential must be inferred to
convert the observed time delays into measurements of
the time delay distance (e.g., Wong et al. 2017). This re-
lies on reconstruction of the extended features of a lensed
host. Finally, the effect of weak lensing by mass close to
the lens and along the line of sight must be included (e.g.,
Suyu et al. 2010; Collett et al. 2013; Rusu et al. 2017;
McCully et al. 2017), since lenses are typically found in
overdense regions of the universe (Fassnacht et al. 2011).
To date, time delay cosmography has only been

attempted with strongly lensed active galactic nuclei
(AGNs; e.g., Vuissoz et al. 2008; Suyu et al. 2013; Tewes
et al. 2013; Bonvin et al. 2016). Lensed AGNs complicate
these ingredients, making percent-level constraints onH0

difficult. Because the light curves of AGNs are stochas-
tic and heterogeneous, they typically require years of ca-
denced monitoring to yield precise time delays (Liao et al.
2015). Inferring the lensing potential by reconstructing
the lensed host light is challenging since AGNs typically
outshine their host galaxies by several magnitudes. De-
tecting lensed AGNs requires observations of multiple
images introducing a selection function for larger Ein-
stein radii and hence an overdense line of sight (Collett
& Cunnington 2016), leading to systematic overestimates
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Figure 1. Source-plane magnification patterns of nine of 78,184 the lens galaxy star fields considered in this analysis. Each panel consists
of 1,0002 pixels and has a side length of 10 times the Einstein radius of a 1M⊙ deflector projected onto the source plane. The detailed
parameters of each map are given in Table 1. The size of the exterior shell (4 × 104 km s−1) of the SN Ia model W7 at 20 (50) days
after explosion is plotted as the interior (exterior) purple circle at the center of each map. Negative (positive) ∆m indicates magnification
(demagnification) over the value from a smooth mass model without microlensing.
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of H0.
In contrast, the light curves of Type Ia supernovae

(SNe Ia) are remarkably homogeneous, and strongly
lensed SN Ia (glSN Ia) light curves evolve over weeks,
not years, allowing their time delays to be measured with
far less observational overhead than those of AGNs. In
addition, glSNe Ia fade away, allowing a simpler recon-
struction of the lensed hosts. glSNe Ia can be detected
without resolving multiple images (Goobar et al. 2017),
simplifying the selection function. Because glSNe Ia are
standardizable candles, they also have the potential to
directly determine the lensing magnification factor µ,
which breaks the degeneracy between the lens poten-
tial and the Hubble constant (Oguri & Kawano 2003),
if the microlensing and macrolensing magnifications can
be separated. The well known spectral energy distri-
butions (SEDs) of SNe Ia also allow one to correct for
extinction along the paths of each SN Ia image—another
major advantage over AGNs.
So far, only one glSN Ia, iPTF16geu, has been discov-

ered with resolved images (Goobar et al. 2017). How-
ever, future surveys, especially the Large Synoptic Sur-
vey Telescope (LSST; LSST Science Collaboration et al.
2009), are expected to discover hundreds (Goldstein &
Nugent 2017). Thus the prospects for discovering a suffi-
cient number of glSNe Ia to perform time-delay cosmog-
raphy in the near future are good.
However, there is a foreground that threatens this out-

look: microlensing. It has long been known that lens
galaxy field stars can significantly magnify and demag-
nify cosmologically distant background AGNs (Chang
& Refsdal 1979) and supernovae (Dobler & Keeton
2006; Bagherpour et al. 2006). In the microlensing sce-
nario, different macroimages of the same source propa-
gate through different regions of the lens galaxy, pass-
ing through distinct lens galaxy star fields. The star
fields possess rich networks of caustics that introduce
magnification patterns into the source plane. These pat-
terns vary over characteristic angular scales of microarc-
seconds (hence “microlensing,” see Figure 1), which are
typically comparable to the physical sizes of supernovae
and AGNs. Thus, as a strongly lensed supernova ex-
pands over the source plane, it can experience time-
and wavelength-dependent magnifications unique to each
lensed image, distorting their light curves and spectra in
different ways. These distortions can make it harder to
“match up” the light curves of multiple images and ex-
tract an accurate time delay.7

Microlensing of lensed variable sources is more than
a theoretical exercise: it has been reported in many
strongly lensed quasars (e.g., Kayser et al. 1986), and
there is also evidence that it affects the images of
iPTF16geu (More et al. 2017). Dobler & Keeton (2006)
estimated that microlensing can introduce uncertainties
of several days into the features of supernova light curves
that can yield time delays. Typical time delays for
glSNe Ia are a couple of weeks (Goldstein & Nugent
2017), translating to a typical fractional time delay un-
certainty of (a few days) / (two weeks) ∼ 20%. At this

7 N.B. The general relativistic time delays introduced by mi-
crolensing into macroimages are of order microseconds (Moore &
Hewitt 1996)—too small to detect. The uncertainty microlensing
introduces into time delays is solely due to time- and wavelength-
dependent distortions of macroimage light curves and spectra.

Table 1
Properties of the magnification

patterns in Figure 1.

κ f∗ γ q 〈µ〉

a 1.30 0.84 1.30 0.20 0.63
b 0.24 0.35 0.25 0.10 1.93
c 1.25 0.83 1.26 0.20 0.65
d 0.87 0.72 0.93 1.00 1.19
e 0.75 0.80 0.76 1.00 1.96
f 0.30 0.38 0.27 1.00 2.39
g 0.36 0.49 0.33 1.00 3.30
h 0.84 0.72 0.79 0.10 1.66
i 0.37 0.50 0.31 1.00 3.29

Note. — κ: local convergence.
f∗: fraction of surface density in
stars. γ: local shear. q: mass ra-
tio mmin/mmax of the stellar mass
function. 〈µ〉: magnification of the
field from a smooth mass model
without microlensing.

precision, ∼400 glSN Ia time delays would be required to
reach a 1% uncertainty on H0, assuming no other sources
of error, whereas a single glSN Ia time delay with 1% pre-
cision could accomplish the same goal. Thus, controlling
microlensing is of critical importance to the success of
time delay cosmography with glSNe Ia.
If, as proposed by Goldstein & Nugent (2017), the mi-

crolensing magnification affects all wavelengths equally
(i.e., if it is “achromatic”)—then one could use the color
curves of glSNe Ia instead of the broadband light curves
to extract time delays even if the images are affected by
microlensing. For example, for a given image, if the B-
band is macro- and microlensed as much as the U -band,
then in the U−B color curve, the micro- and macrolens-
ing magnifications will both cancel out, leaving features
common to the color curves of all images that can pin
down the time delays to high precision. This would
enable color curves of different images to be compared
meaningfully, yielding time delays with less uncertainty.
In this article, we use detailed radiation transport sim-

ulations of a well-understood SN Ia model to assess the
viability of extracting time delays from the color curves
of glSNe Ia to circumvent the effects of microlensing. We
also perform the first glSN Ia yield calculation that takes
microlensing into account. The structure of the paper is
as follows. In Section 2, we describe the radiation trans-
port, glSN Ia population, and microlensing models used
to synthesize representative microlensed glSN Ia SEDs.
In Section 3, we present the results of our simulations
and use them to show that the microlensing of glSNe Ia
exhibits an achromatic phase at early times. In Section
4, we present a novel spectral template-based glSN Ia
photometric detection technique and use it to forecast
the glSN Ia yield of LSST. In Section 5, we forecast the
time delay uncertainty due to microlensing and show that
it can be controlled to 1% for typical LSST systems.
We conclude in Section 6. Throughout this paper we
assume a Planck Collaboration et al. (2016) cosmology
with ΩΛ = 0.6925, Ωm = 0.3075, and h = 0.6774.

2. POPULATION, RADIATION TRANSPORT, AND
MICROLENSING SIMULATIONS
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In this section, we describe the simulation framework
we use to generate a realistic population of glSNe Ia.
First, the framework realizes a population of unlensed
SNe Ia and elliptical galaxy lenses using measured red-
shift distributions. It solves the lens equation for super-
novae and lenses close together on the sky, and when a
multiply imaged system is produced, it yields image mul-
tiplicities, time delays, magnifications, and image posi-
tions. For each lensed supernova image, the framework
generates a microlensing magnification pattern based on
the image properties. A theoretical SN Ia spectral time
series is convolved with the magnification pattern, giv-
ing the lensing amplification of the supernova SED as a
function of time and wavelength. This in turn is applied
to an empirical SN Ia SED template. Realistic LSST
light curves are generated from these microlensed spec-
tral templates and fed to a novel detection algorithm.

2.1. The Strongly Lensed Type Ia Supernova
Population

In the present analysis we use the same glSN Ia popu-
lation model as Goldstein & Nugent (2017). We consider
only elliptical galaxy lenses and model their mass distri-
bution as a Singular Isothermal Ellipsoid (SIE; Kormann
et al. 1994), which has shown excellent agreement with
observations (e.g., Koopmans et al. 2009). The SIE con-
vergence κ is given by:

κ(x, y) =
θE
2

λ(e)
√

(1− e)−1x2 + (1− e)y2
, (1)

where

θE = 4π
(σ

c

)2 Dls

Ds

. (2)

In the above equations, σ is the velocity dispersion of
the lens galaxy, e is its ellipticity, and λ(e) is its so-
called “dynamical normalization,” a parameter related
to three-dimensional shape. Here we make the simplify-
ing assumption that there are an equal number of oblate
and prolate galaxies, which Chae (2003) showed implies
λ(e) ≃ 1. As in Oguri et al. (2008), we assume e follows
a truncated normal distribution on the interval [0.0, 0.9],
with µe = 0.3, σe = 0.16.
We also include external shear to account for the ef-

fect of the lens environment (e.g., Kochanek 1991; Kee-
ton et al. 1997; Witt & Mao 1997) We assume log10 γext
follows a normal distribution with mean −1.30 and
scale 0.2, consistent with the level of external shear ex-
pected from ray tracing in N -body simulations (Holder
& Schechter 2003). The orientation of the external shear
is assumed to be random.
We model the velocity distribution of elliptical galaxies

as a modified Schechter function (Sheth et al. 2003):

dn = φ(σ)dσ = φ∗

(

σ

σ∗

)α

exp

[

−

(

σ

σ∗

)β
]

β

Γ(α/β)

dσ

σ
,

(3)
where Γ is the gamma function, and dn is the dif-
ferential number of galaxies per unit velocity disper-
sion per unit comoving volume. We use the parame-
ter values of Choi et al. (2007) from the Sloan Digital
Sky Survey (SDSS; York et al. 2000): (φ∗, σ∗, α, β) =
(8 × 10−3 h3 Mpc, 161 km s−1, 2.32, 2.67). We assume

the mass distribution and velocity function do not evolve
with redshift, consistent with the results of Chae (2007),
Oguri et al. (2008), and Bezanson et al. (2011).
To convert Equation 3 into a redshift distribution, we

use the definition of the comoving volume element:

dVC = DH

(1 + z)2D2
A

E(z)
dzdΩ, (4)

where DH = c/H0 is the Hubble distance, E(z) =
√

ΩM (1 + z)3 +ΩΛ in our assumed cosmology, and DA

is the angular diameter distance. Since dn = dN/dVC ,
for the unnormalized all-sky (dΩ = 4π) galaxy distribu-
tion we have

dN

dσdz
= 4πDH

(1 + z)2D2
A

E(z)
φ(σ). (5)

Integrating Equation 3 over 0 ≤ z ≤ 1 and
101.7 km s−1

≤ σ ≤ 102.6 km s−1, we find that there are
Ngal ≃ 3.8 × 108 elliptical galaxies, all sky, that can act
as strong lenses. This gives the joint probability density
function for σ and z:

p(σ, z) =
1

Ngal

dN

dσdz
. (6)

SNe Ia exhibit a redshift-dependent volumetric rate
and an intrinsic dispersion in rest-frame MB . In our
model of the SN Ia population, we take the redshift-
dependent SN Ia rate from Sullivan et al. (2000). We
assume that the peak rest-frame MB is normally dis-
tributed with µM = −19.3 and σM = 0.2. For simplicity,
we neglect extinction.
The lens and source populations are realized in a Monte

Carlo simulation. We generate 105 lens galaxies with pa-
rameters drawn at random from their underlying distri-
butions. For each lens galaxy, an effective lensing area
of influence is estimated as a [8θE,zs=∞]2 box centered
on the galaxy.8 We simulate 5 × 104 years of SNe Ia,
randomly distributed across the box, rejecting systems
where zs < zl. For each remaining source, we solve the
lens equation using glafic (Oguri 2010) to determine
the macrolensing magnification, image multiplicity, and
time delays. In total we generated 37,100 multiply im-
aged systems containing a total of 78,184 images. Since
our simulation only covers 105/Ngal ≈ 0.026% of the sky,
this corresponds to a rate of 2,675 systems, all sky, per
year to zs = 2.

2.2. Microlensing Magnification Patterns

For each image we calculate a source-plane magnifica-
tion pattern with microlens (Wambsganss 1990, 1999),
an inverse ray-tracing code. In this scheme, stars mod-
eled as point-mass deflectors are realized from a mass
function at random locations in a two-dimensional field
of the lens galaxy. The size of the pattern is character-
ized by the Einstein radius R̄E of a deflector of mass m̄
projected onto the source plane,

R̄E =

√

4Gm̄

c2
DlsDs

Dl

, (7)

8 This box size was chosen to be large enough to accommodate
the effects of ellipticity and external shear.
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where Dl is the angular diameter distance to the lens, Ds

is the angular diameter distance to the source, and Dls is
the angular diameter distance between the lens and the
source. Our magnification patterns are 10R̄E on a side,
which for typical source and lens redshifts (zs = 1.2, zl =
0.6) corresponds to an angular scale of 10R̄E/Ds ≈ 1.5×
10−5 arcsec. At the same redshifts, R̄E ≈ 2.7× 103 AU,
which is roughly 5 times larger than the extent of the
supernova model near peak brightness.
The magnification patterns are specified by four pa-

rameters: (1) the local convergence, κ, (2) the local
shear, γ, including the contributions of both the SIE and
external potentials, (3) the fraction of the local conver-
gence in stars, f∗,

9 and (4) the dynamic range of the
stellar mass function, q = mmin/mmax. Supplying these
parameters allows microlens to solve the general mi-
crolensing equation, β = θ −α, which resolves to

β =

(

1− γ − κc 0
0 1 + γ − κc

)

θ −

N∗
∑

i=1

Mi(θ − θi)

(θ − θi)2
, (8)

where κc = (1− f∗)κ is the local convergence in continu-
ously distributed matter, the two-dimensional vector β is
the angular position of the source in the absence of lens-
ing, θ is the angular position of the observed macroim-
age, θi is the angular position of the i’th star, and N∗

is the number of stars in the field, determined from the
local convergence in stars κ∗ = f∗κ using the procedure
of Schneider & Weiss (1987).
We use a Salpeter (1955) mass function, dn/dm ∝

m−2.35, to model the population of stars in our mi-
crolensing calculations. As we will show in Section 3, this
choice has no effect on our results as the achromaticity
of glSN Ia microlensing is driven entirely by the color
evolution of SNe Ia and not by the properties of the mi-
crolensing magnification patterns. Following Dobler &
Keeton (2006), we take the mean mass m̄ = 1M⊙. The
microlensing parameters κ and γ are determined by eval-
uating the SIE and external shear lensing potentials at
the location of each image. f∗ is estimated following the
method of Dobler & Keeton (2006), assuming a de Vau-
couleurs stellar profile normalized so that the maximum
f∗ = 1. For each image, the dynamic range parameter q
is sampled uniformly at random from (0.1, 0.2, 0.5, 1.0),
appropriate for the old stellar populations in elliptical
galaxies. Figure 1 shows a random selection of nine of the
maps, highlighting their morphological diversity. Figure
2 shows two dimensional projections of the joint distribu-
tions of the macrolensing parameters σ, e, and γext, the
microlensing parameters κ, γ, and f∗, and the time- and
wavelength-averaged microlensing magnification µML.

2.3. Supernova Modeling

We use the well-understood, spherically symmetric10

SN Ia atmosphere model W7 (Nomoto et al. 1984) to esti-
mate the time- and wavelength-dependent magnification
of glSNe Ia due to microlensing. This radiation transport
model is the result of a one-dimensional explosion sim-
ulation in which a Chandrasekhar-mass carbon-oxygen

9 The remainder of the convergence is assumed to take the form
of continuously distributed matter (i.e., dark matter).

10 Spectropolarimetry indicates that SNe Ia are globally spheri-
cally symmetric to ∼a few percent. See Wang & Wheeler (2008).

white dwarf undergoes a deflagration. The explosion of
the white dwarf completely unbinds the star and deposits
the energy liberated by nuclear burning into the ejected
mass. The deposited energy controls the velocity dis-
tribution of the ejecta and its density profile, which is
assumed to reach homology seconds after the explosion.
We use the time-dependent, Monte Carlo radiation trans-
port code SEDONA (Kasen et al. 2006) to calculate the
spectral time series of the model. Details of our SEDONA
simulations appear in Appendix A.
The observed spectrum Fλ of the model at wavelength

λ and time t is obtained by convolving its time-evolving
specific intensity with the lensing amplification pattern
over a plane normal to the observer’s line of sight. Since
the model is spherical, this integral takes the form:

Fλ(λ, t) = D−2
L

ˆ 2π

0

ˆ Pm

0

Iλ(P, φ, λ, t)µ(P, φ)P dP dφ,

(9)
where φ and P are azimuthal and impact parameter co-
ordinates on the plane, Iλ is the specific intensity of the
model, µ is the lensing amplification,11 DL is the lu-
minosity distance to the supernova, and Pm is the maxi-
mum impact parameter of the model. For a derivation of
Equation 9, see Appendix B. The time- and wavelength-
dependent magnification of a given magnification pattern
is obtained by dividing Fλ by the unlensed spectrum of
the model (Equation 9 with µ = 1).
We interpolate each magnification pattern bilinearly

and convolve it with the redshifted12 specific intensities
of the supernova model. The redshift configurations con-
trol the projected size of the supernova on the magnifi-
cation pattern and thus the magnification experienced
by each differential element of the projected supernova
atmosphere. They also control θE and thus κ, γ, and f∗
at the location of the image. We always place the super-
nova model at the center of the magnification pattern.
We model the homologous expansion of the supernova
behind the magnification pattern (i.e., the projected size
of the supernova on the magnification pattern changes
with time), but not relative motion between the super-
nova and the lens galaxy star field. In general, supernova
atmospheres both expand and move with respect to the
lens galaxy, but the characteristic expansion velocity of
the atmosphere (∼104 km s−1) is much larger than the
characteristic relative velocity between the lens galaxy
and the supernova (∼102 km s−1), so here we model only
the effects of expansion.

3. TWO PHASES OF TYPE IA SUPERNOVA
MICROLENSING

Example spectra and difference light curves of our mi-
crolensed SN Ia atmosphere appear in Figures 3 and 4,
respectively; confidence regions of all U − B, B − V ,
V − R, and R − I color curves produced by our simula-
tion appear in Figure 5. The difference light curves give

11 In this paper, µ refers exclusively to lensing amplification.
Nowhere should µ be interpreted as µ = cos θ, the viewing angle
parameter that frequently appears in supernova modeling papers.

12 We refer here to cosmological redshift only; Doppler shifts due
to supernova expansion velocity are accounted for implicitly in the
radiation transport simulation.
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Figure 2. Two-dimensional projections of the joint distributions of lensed image macrolensing and microlensing parameters. The input
distributions (blue) represent all 78,184 simulated lensed images from Section 2.1, and the detected distributions (red) represent only the
images of the glSNe Ia detected in Section 4.2. The bimodal input distributions of f∗, γ, and κ represent the amplified (f∗ ≈ 0.4) and
overfocussed (f∗ ≈ 1) images produced by SIE lenses. Joint contours show 1 and 2σ. Marginal shaded regions show 1σ.

the microlensing amplification in magnitudes,

∆M(t) = −2.5 log10

(

L(t)

µ0U(t)

)

, (10)

where U(t) and L(t) are the unlensed and observed fluxes
of the supernova, respectively, and µ0 is the magnifica-
tion in the absence of microlensing (i.e., if there were only
macrolensing due to the lens galaxy). In the absence of
microlensing, ∆M = 0.
Each of these figures demonstrates that glSN Ia mi-

crolensing has two phases, an “achromatic” phase, in
which the microlensing magnification is the same at all
wavelengths to a few millimag, followed by a “chromatic”
phase, in which the microlensing magnification varies
strongly (and unpredictably) with wavelength. The dif-
ference light curves show that the achromatic phase lasts
roughly 3 rest-frame weeks after the explosion, transi-
tioning to a chromatic phase between the time of peak
brightness and the onset of the infrared secondary max-
imum. During the achromatic phase, the light curves of
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glSNe Ia can be deformed enough to bias time delay ex-
traction; although ∆M is the same in all bands, it is not
necessarily constant in time.

3.1. Physics of Achromatic and Chromatic SN Ia
Microlensing

What is the physics responsible for the “achromatic”
and “chromatic” phases of microlensing evident in Fig-
ures 4 and 5? Figure 6 shows the specific intensity profile
Iλ(v) of our unlensed model at 20 and 40 days after ex-
plosion, where v is the velocity of the shell, equivalent to
a radial variable (i.e., P ).13 The left panel of the figure
shows that near peak (20 days after explosion), the ra-
tio IX1

(v)/IX2
(v), where X1 and X2 are any two bands,

is roughly constant over all v. Thus the supernova near
peak has a specific intensity profile that is independent of
v up to an overall normalization factor. As a result, any
magnification pattern µ(P, φ) will not change its color.
However, after peak, the supernova expands and cools

enough for some part of the atmosphere to reach a tem-
perature of 7000K. Kasen (2006) and Kasen & Woosley
(2007) note that this is the temperature at which Fe III
recombines to Fe II, which presents a significantly higher
opacity to blue and ultraviolet radiation than Fe III. This
line blanketing has the effect of enabling one to see redder
emission from deeper in the supernova, while emission in
the blue and the UV is pushed to larger radii. Addition-
ally, a “fluorescent shell” of iron recombination, which
causes a peak in the redder bands in the specific inten-
sity profile of the supernova, develops near the onset of
the secondary maximum. This shell is clearly visible in
the righthand panel of Figure 6. These two effects, line
blanketing and a fluorescent shell, make the supernova’s
specific intensity ratio no longer spatially constant. As
a result, the supernova atmosphere becomes susceptible
to chromatic fluctuations.

4. THE EFFECT OF MICROLENSING ON LSST
LENSED TYPE IA SUPERNOVA YIELDS

Previous estimates of glSN Ia yields, including those
of Oguri & Marshall (2010), Quimby et al. (2014), and
Goldstein & Nugent (2017), modeled only the effects of
macrolensing. In this section, we present a novel method
of identifying glSNe Ia photometrically based on spec-
tral template fitting. We apply this technique to our
simulated micro- and macrolensed glSN Ia light curves
to present a new estimate of glSN Ia yields for LSST.

4.1. Efficient Identification of Lensed Type Ia
Supernovae with Spectral Template Fitting

Our detection strategy rests on three observational
facts. First, normal SNe Ia are the brightest type of
supernovae that have ever been observed to occur in el-
liptical galaxies (Maoz et al. 2014). Second, the abso-
lute magnitudes of normal SNe Ia in elliptical galaxies
are remarkably homogenous, even without correcting for
their colors or lightcurve shapes (σM ∼ 0.4 mag), with
a component of the population being underluminous (Li
et al. 2011). Finally, due to the sharp 4000Å break in
their spectra, elliptical galaxies tend to provide accurate

13 As our model is spherically symmetric, Iλ possesses no φ-
dependence.

photometric redshifts from large-scale multi-color galaxy
surveys such as SDSS.
A high-cadence, wide-field imaging survey can leverage

these facts to systematically search for strongly lensed
SNe Ia in the following way. First, by spatially cross-
matching its list of supernova candidates with a catalog
of elliptical galaxies for which secure photometric red-
shifts have been obtained, supernovae that appear to be
hosted by elliptical galaxies can be identified. The hy-
pothesis that one of these supernovae actually resides in
its apparent host can be tested by fitting its broadband
light curves with an SN Ia spectral template (as SNe Ia
are the only types of supernovae that occur in ellipti-
cals) fixed to the photometric redshift of the galaxy and
constrained to obey −18.5 > MB > −20, a liberal abso-
lute magnitude range for SNe Ia, assuming a fiducial cos-
mology. If the transient is a lensed supernova at higher
redshift, then the spectral template fit will fail catas-
trophically, as the supernova light curves will be strongly
inconsistent with the redshift and brightness implied by
the lens galaxy.

4.2. Monte Carlo Simulation

We use SALT2 (Guy et al. 2007), a parametrized SN Ia
spectral template that is the de facto standard tool to
place SNe Ia on the Hubble diagram, to test this method.
The template possesses four parameters: t0, x0, x1, and
c, encoding a reference time, an overall SED normaliza-
tion, a supernova “stretch,” and a color-law coefficient,
respectively. The flux of the template is given by

Fλ(λ, t) = x0[M0(λ, t) + x1M1(λ, t)] exp[cCL(λ)], (11)

where M0 and M1 are eigenspectra derived from a train-
ing sample of measured SN Ia spectra and CL(λ) is the
average color-correction law of the sample (see Guy et al.
2007, for details). The template aims to model the mean
evolution of the SED sequence of SNe Ia and its varia-
tion with a few dominant components, including a time
independent variation with color, whether it is intrinsic
or due to extinction by dust in the host galaxy (or both).
We consider an LSST lensed supernova search in which

the photometry is performed with a PSF that is artifi-
cally enlarged to blend the multiple images together into
a single source. We randomly assign each of the 37,100
simulated glSNe Ia from Section 2.1 an LSST field from
the nominal observing strategy (minion 1016; LSST Sci-
ence Collaborations in preparation).14 We compute the
phase- and wavelength- dependent magnification µ(λ, t)
of each lensed image by placing its corresponding mi-
crolensed W7 SED into the rest frame, then dividing
each by the unlensed spectral sequence of the model. We
then generate the rest-frame spectral model for the image
F (λ, t) according to

F (λ, t) = µ(λ, t)H(λ, t), (12)

where H(λ, t) is the Hsiao et al. (2007) SN Ia spectral
template. We employ a warped Hsiao template rather
than the microlensed W7 SEDs to mitigate uncertainties
in the radiation transport.15 We then place the templates
of each image at their correct redshifts, and we rescale

14 https://github.com/LSSTScienceCollaborations/
ObservingStrategy

15 The Hsiao template is an empirical, time-dependent SED

https://github.com/LSSTScienceCollaborations/ObservingStrategy
https://github.com/LSSTScienceCollaborations/ObservingStrategy
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Figure 3. Rest-frame spectra of model W7 (Nomoto et al. 1984) computed with SEDONA near peak brightness and well into the onset
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and time-shift them to account for the macrolensing and
time delays. Finally, we draw a random time for the
system (arbitrarily chosen to be the observer-frame time
of rest-frame B-band maximum of the first image) from
the 11 year period spanning 6 months before the begin-
ning of the survey until 6 months following the end of
the survey.
We realize broadband photometry of each blended

glSN Ia (summing the flux of each microlensed image)
using the sky brightnesses, FWHMs, exposure times, ob-
servation times, and limiting magnitudes of the assigned
field provided by minion 1016, assuming the total area
covered by the survey is 25,000 deg2. Starting from the
first observation of the SN Ia, we fit the light curve with
SALT2, fixed to the redshift of the lens galaxy (assumed
to be known either as a photometric or spectroscopic
redshift) and fixed to obey −18.5 > MB > −20 at that
redshift (effectively a constraint on x0). Additionally, we
enforce bounds of [−0.2, 0.2] on c and [−1, 1] on x1, val-
ues characteristic of normal SNe Ia (Scalzo et al. 2014).
We use the CERN minimization routine MIGRAD (James
& Roos 1975) to fit the data. If the light curve has at
least one data point that is at least 5σ discrepant from
the best fit and at least 4 data points with S/N ≥ 5, then
the object is marked “detected.” If not, then the next ob-
servation is added and the process is repeated until the
object is detected or all observations are added, resulting
in a non-detection.
Figure 7 shows an example of this procedure being used

to detect one of our simulated glSNe Ia at zs = 1.91. The
red data points show the “current” light curve, and the
red line shows the best fit model, fixed to zl = 0.96. Al-
though the model fits the data well in the bluer bands,
the high redshift of the source makes the data much
brighter in the infrared than the model expects given the
redshift of the lens. Thus the object is detected shortly
after peak due to 10σ discrepant points in y-band.

4.3. Yields

Our spectral template fitting approach to glSN Ia iden-
tification delivers almost twice as many LSST glSNe Ia
than the method of Goldstein & Nugent (2017). In to-
tal, LSST should find ∼925 microlensed glSNe Ia with
the new method over the duration of its 10-year survey.
This is almost identical to the case with no microlensing,
which would yield 935 glSNe Ia over the same period,
with a nearly identical redshift distribution (see Figure
9). This represents a major increase in the expected
glSN Ia yield for LSST, comparable to the number of
expected lensed quasars (Oguri & Marshall 2010).
Figure 8 shows the rest-frame phase distribution of dis-

covered microlensed glSN Ia images (a phase of 0 corre-
sponds to peak brightness in B). The 68% confidence
interval of the image phase distribution is −1.01+10.24

−10.77,
so about half of the images should be discovered before
peak brightness. 73% of the images and 64% of the image
pairs should be discovered during the achromatic phase.

5. THE EFFECT OF MICROLENSING ON LENSED
TYPE IA SUPERNOVA TIME DELAYS

In Section 3, we showed that microlensing introduces
time- and wavelength-dependent fluctuations into the
light curves of SNe Ia. In this section, we quantify the

effect of these fluctuations on the time delays that can
be extracted from simulated photometric observations
of typical LSST glSNe Ia, using as input the results of
Section 4.3. We demonstrate that microlensing can in-
troduce time delay uncertainties of ∼4% into the light
curves of typical LSST glSNe Ia, but that this number
decreases to ∼1% when achromatic-phase color curves of
the same supernovae are used instead.

5.1. Monte Carlo Simulations of Microlensing Time
Delay Uncertainty

Since many of the glSNe Ia that will be discovered
by LSST will require higher-spatial resolution follow-up
observations to extract time delays, either with ground-
based adaptive optics or space-based imaging, we simu-
late “time-delay observations” with the Wide Field Cam-
era 3 (WFC3) on the Hubble Space Telescope (HST ). The
redshift distribution in Figure 9 implies that most LSST
glSNe Ia will be brightest in the IR, so we use the F814W,
F125W, and F160W filters (roughly I, J , and H bands,
respectively) on WFC3 for this simulation.
For each of the “detected” microlensed glSN Ia systems

from Section 4.3, we realize 45 photometric observations
of each image in F814W, F125W, and F160W with in-
finite signal to noise, with a uniform temporal spacing,
spanning the light curve. The spectral template for each
image is the same as the one used in Section 4 (see Equa-
tion 12). Using MIGRAD, we fit the realized light curves of
each pair of images using the redshifted, unlensed spec-
tral template H(λ, t). For each fit, we estimate the fitted
time delay as

∆t = t0,2 − t0,1, (13)

where t0,2 and t0,1 are the fitted reference times of the
second and first images, respectively. We then measure
the error on the fitted time delay as

ǫ =

∣

∣

∣

∣

∆t−∆t′

∆t′

∣

∣

∣

∣

, (14)

where ∆t′ is the true time delay of the pair of images.16

Next, we prune the photometric observations to the
achromatic phase, masking all observations more than 5
rest-frame days from the date of B-band maximum. We
then synthesize F814W−F125W, F125W−F160W, and
F814W − F160W color curves from the photometry.
We apply the same fitting procedure to the color curves

and estimate the fitted time delays and uncertainties us-
ing Equations 13 and 14. Figure 10 shows an exam-
ple of the procedure being applied to the light curves
and achromatic-phase color curves of two images of a su-
pernova. While the light curve data show microlensing-
induced offsets near peak brightness and the secondary
maximum that produce a large time delay error of ∼10%,
the residuals show that these offsets are nearly the same
in all bands during the achromatic phase, and thus the
fits to the color curve have errors < 1%.
Figure 11 shows the joint distribution of time delays

and microlensing-induced time delay uncertainties for all
detected pairs of images in our simulation. We find that
the median time delay of detected pairs of images is ∼10

16 N.B. If ∆t is distributed as a Gaussian with width σ, then
the ensemble average of ǫ is only 0.79σ.
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days, and that the median microlensing-induced time de-
lay uncertainty using light curve fits is 4%, comparable
to the current uncertainties on mass modeling. However,
this number drops down to 1% (∼2.5 hours on a 10 day
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Figure 10. Fitting infinite S/N light curves and color curves (in the achromatic phase) of two images of a microlensed supernova with
the unlensed Hsiao template to estimate time delay error. Microlensing produces visible offsets in the features of the light curves, but the
residuals show that during the achromatic phase (until a few weeks after peak brightness) the offsets are achromatic. Thus when the color
curves are fit in the achromatic phase, the uncertainty on the time delay is more than an order of magnitude smaller.

time delay) when achromatic-phase color curves are used
instead of light curves.
Figure 12 shows the systematic microlensing bias on

time delays from fitting light curves and color curves in
the achromatic phase. The achromatic phase color curve
fits are consistent with zero bias down to ∆t = 1 day,
while the light curve fits are consistent with zero bias
down to ∆t =∼a few days. This result indicates that
time delay bias from microlensing will not be a major
systematic for cosmography with glSNe Ia.

5.2. iPTF16geu

iPTF16geu is the only glSN Ia with resolved images
that has been discovered to date. Here we consider its
potential time delay precision and cosmological impact.
Before it faded, multiwavelength follow-up observations
of the event were obtained with a variable cadence us-
ing the Washington C, g, r, wide I, Z, J , and H bands
of WFC3 on HST (DD 14862, PI: Goobar). The bluer
bands were only observed sporadically, but the redder
bands were observed with a roughly 4-day cadence.17

Unfortunately, the observations were obtained well into
the chromatic phase, and thus the light curves and color
curves exhibit significant microlensing uncertainties. Fi-
nal photometry of the event has not yet been produced,

17 A full description of the observations is available here.

as not enough time has passed to take final reference im-
ages. The current best estimate of the time delay on this
system is 35 hours (Goobar et al. 2017). Based on Figure
11, we estimate the time delay uncertainty due to mi-
crolensing from this event to be ∼40%. If the event were
discovered earlier so that color curves during the achro-
matic phase could be constructed, then the microlensing
time delay uncertainty would drop to ∼10%.

6. CONCLUSION

In this article, we assessed the impact of microlens-
ing on the yields and time delay precisions of LSST
glSNe Ia. We presented microlensed broadband differ-
ence light curves and color curves of the well-understood
SN Ia ejecta model W7 for 78,184 microlensing magnifi-
cation patterns drawn from a realistic population model
of glSN Ia images. We found that until shortly after peak
brightness, the microlensing of SNe Ia is achromatic, and
thus time delays from early-time color curves are less sen-
sitive to microlensing than time delays from light curves.
We interpreted the achromaticity of microlensing before
the onset of the secondary maximum as being due to UV
line blanketing and the emergence of a fluorescent shell
of Fe III → II recombination that alters the specific in-
tensity profile of the ejecta as suggested by Kasen (2006)
and Kasen & Woosley (2007). We found that microlens-
ing does not have a significant impact on glSN Ia yields,

 https://archive.stsci.edu/proposal_search.php?mission=hst&id=14862
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but that they can be increased by a factor of ∼2 over the
predictions of Goldstein & Nugent (2017) using a novel
photometric detection techinque.
Our SEDONA calculation of W7 represents the most de-

tailed SN Ia spectrum synthesis calculation that has been
used to investigate SN Ia microlensing to date, but it
is inherently one-dimensional and makes a number of
physical approximations for computational expediency.
It does not perfectly reproduce the observed colors of
SNe Ia, especially at UV wavelengths, where line blan-
keting is strong and small differences in the underlying

model can have pronounced effects. Additionally, W7 is
just one SN Ia model, and there is diversity in the SN Ia
population. However, we expect that this model captures
the key physical behavior that leads to chromatic effects,
and so we do not expect the results to change significantly
with different one-dimensional models. Although there
is evidence from spectropolarimetry that global asym-
metry in SNe Ia is very small (Wang & Wheeler 2008),
asymmetric explosion scenarios have not been ruled out
by observations. In the future, it will be useful to as-
sess whether asymmetric, multi-dimensional supernova
models confirm the two phases of glSN Ia microlensing
identified in this work, or whether viewing angle effects
become important.
Despite the complication of microlensing, time-delays

can be robustly measured to sub-percent precision for
many glSNe Ia. By photometrically detecting the first
image of a strongly lensed core-collapse supernova be-
fore light from the other images arrives, one can use the
sharp shock-breakout light curve as a time delay indica-
tor with precision∼(30min)(1+zs)/∆t. Such precision is
difficult to achieve with lensed AGNs (Tewes et al. 2013;
Bonvin et al. 2017; Tie & Kochanek 2017), which also
require a significantly longer observing campaign (Liao
et al. 2015). This result provides a straightforward first
step to inferring cosmological parameters with glSNe Ia.
The latter steps of inferring the lens potential, and the
effect of line-of-sight structures have already been im-
plemented for lensed AGNs (e.g. Suyu et al. 2017; Rusu
et al. 2017; Wong et al. 2017; Bonvin et al. 2017), and the
solutions from lensed AGNs should be directly portable
to glSNe Ia. Inferring the lens potential may even be eas-
ier than for AGNs as a more detailed reconstruction of
the lensed SN Ia host should be possible once the super-
nova has faded. Those lensed SNe Ia with time-delays
greater than a month are therefore golden lenses with
which to measure H0. With a method for extracting pre-
cise time delays from these objects in hand, a renewed
focus should be placed on the discovery and follow up of
glSNe Ia.

APPENDIX

A. RADIATION TRANSPORT SIMULATION

In this Appendix, we provide the details of the radi-
ation transport simulations that we use to calculate the
time-evolving SN Ia SED in Section 2.3. The SEDONA
code (Kasen et al. 2006) is a time-dependent, multi-
dimensional Monte Carlo radiative transfer code, de-
signed to calculate the light curves, spectra and polar-
ization of supernova explosion models. Given a homolo-
gously expanding SN ejecta structure, SEDONA calculates
the full time series of emergent spectra at high wave-
length resolution. In the present calculations, we employ
a modified version of SEDONA that tags photons with their
P and φ values, thus we calculate Iλ(P, φ, t, λ). In ad-
dition to being fully time-dependent, the SEDONA calcu-
lation accounts for the extendedness of continuum emit-
ting regions in SN Ia atmospheres and the wavelength
dependence of their location and extent. It also explic-
itly accounts for light travel time across the atmosphere.
Broadband light curves are constructed by convolving
the synthetic spectrum at each time with the appropriate
instrumental throughputs. SEDONA includes a detailed
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treatment of gamma-ray transfer to determine the in-
stantaneous energy deposition rate from radioactive 56Ni
and 56Co decay. Other decay chains that can change the
composition of the ejecta, such as 48Cr →48 V →48 Ti,
are not treated. Radiative heating and cooling rates are
evaluated from Monte Carlo estimators, and the temper-
ature structure of the ejecta is determined by iterating
the model to thermal equilibrium.
Several significant approximations are made in our

SEDONA simulation, notably the assumption of local ther-
modynamic equilibrium (LTE) in computing the atomic
level populations. In addition, bound-bound line transi-
tions are treated using the expansion opacity formalism
(implying the Sobolev approximation; Jeffery 1995). In
this formalism, the opacities of spectral lines within a
wavelength bin are represented in aggregate by a single
effective opacity. Although the SEDONA code is capable of
a direct Monte Carlo treatment of NLTE line processes,
due to computational constraints this functionality is not
exploited here. Instead, the line source functions are
treated using an approximate two-level atom approach.
In the present calculations, we assume for simplicity that
all lines are “purely absorptive,” i.e., in the two-level
atom formalism the ratio of the probability of redistri-
bution to pure scattering is taken to be ǫth = 1 for all
lines. In this case, the line source functions are given
by the Planck function, consistent with our adoption of
LTE level populations.
The numerical gridding in the present calculations was

as follows: spatial: 100 equally spaced radial zones with
a maximum velocity of 4 × 104 km s−1; temporal: 459
time points beginning at day 1 and extending to day 100
with logarithmic spacing ∆ log t = 0.175; wavelength:

covering the range 100-30,000 Å with resolution of 10 Å.
Extensive testing confirms the adequacy of this griding
for the problem at hand. Atomic line list data were taken
from the Kurucz CD 23 line list (Kurucz & Bell 1995),
which contains nearly 500,000 lines. 1010 photon pack-
ets were used for the calculation, which allowed for ac-
ceptable signal-to-noise in the synthetic broadband light
curves, spectra, and velocity-dependent specific intensity
profiles.

B. DERIVATION OF EQUATION 9

The observed monochromatic flux density Fλ of a
source is obtained by setting up a small element of area
dA perpendicular to the line of sight at the location of
the observer, and integrating the specific intensity of the
field Iλ in the direction normal to dA over the solid angle
subtended by the source (Rybicki & Lightman 1979),

Fλ =

ˆ

Iλ cos θdΩ. (B1)

In Equation B1, θ is defined by tan θ = P/DL, where
DL is the luminosity distance from the observer to the
closest point on the plane.18 From this definition we can
construct the radial differential dP ,

dP = DL sec2 θ dθ. (B2)

18 The luminosity distance (not the angular diameter distance)
is used here because the intrinsic luminosity of the source is known.

P

DL

θ

φ

µ(P,φ)

dP

O

dφ

Pm

Iλ(P,φ,λ, t)

Figure 13. Integration geometry for Appendix B.

Using dΩ ≡ sin θ dθ dφ, Equation B1 becomes

Fλ =

ˆ 2π

0

ˆ θm

0

Iλ cos θ sin θ dθ dφ, (B3)

where θm is the maximum angular extent of the at-
mosphere. Making the change of variables shown in
Equation B2, and using cos θ = DL/

√

P 2 +D2
L and

sin θ = P/
√

P 2 +D2
L, Equation B3 becomes

Fλ =

ˆ 2π

0

ˆ Pm

0

PD2
LIλ

(P 2 +D2
L)

2
dP dφ. (B4)

As we are in the P ≪ DL limit, by Taylor expanding the
denominator of the integrand of Equation B4 in powers
of (P/DL) and keeping only first order terms, Equation
B4 reduces to

Fλ = D−2
L

ˆ 2π

0

ˆ Pm

0

Iλ P dP dφ. (B5)

Since lensing conserves surface brightness, the applica-
tion of a spatially varying microlensing magnification
pattern transforms Iλ → µ(P, φ)Iλ(P, φ). Making this
substitution in equation B5, we are left with Equation 9.
A schematic of the integration geometry is presented in
Figure 13.
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