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PRECISE VARIATIONAL FORMULAS
FOR ABELIAN DIFFERENTIALS

By AKIRA YAMADA

In the present paper, we shall study two basic types of degenerations of
compact Riemann surfaces considered by Schiffer-Spencer [10] and Fay [3].
According to the simple formalism of the degeneration considered here, the
precice variational formulas without error terms will be obtained for w(x, ¥)
the fundamental normalized Abelian differentials of the second kind (Theorems
4 and 6), from which one may deduce similar formulas for any Abelian differ-
entials and period matrices in the usual way. It turns out, however, that all
the variational formulas found in the book by Fay [3] disagree with ours and
it seems to us that they are incorrect, which is, to some extent, seen from the
examples in the last section of this paper. In our formulas the coefficients 5,
of an expansion of w(x, y) plays an important role. In this connection a variant
of Golusin’s inequality will be obtained for B,,’s (Theorem 5) which can be
viewed as the generalized Faber coefficients. Our method is completely element-
ary (c.f. Fay [3]) and yields some extension of the results in [3] and [6].

1. Pinching along a cycle homologous to zero and preliminary estimates.

On any Riemann surface, it is well-known that the following orthogonal
decomposition holds [173:

(1) [’:[’h@[’eo@r?;

where I is the Hilbert space of square integrable differential forms, [, its sub-
space of harmonic differentials, I, the closure of the subspace of smooth
differentials with compact supports, 1% the *-conjugate of I,. The above
decomposition easily gives a lemma concerning the “distance” between the
functions each defined on one of the boundary components of an annulus.

LeMMA. 1. Let D be an annulus »<|z| <R and assume that ¢(z) (resp. ¢(z))
is holomorphic on |z|=r (resp. |z|=R), where they have the Laurent expansions

¢(z):n§_)wanz" , g[}(z):n:ﬁ_wbnz”.
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PRECISE VARIATIONAL FORMULAS FOR ABELIAN DIFFERENTIALS 115

Then the Diriclet norm |df—i*dfl|p attains its minimum among the (non-void)
Jfamily

F={feCDINC(D); lldf|p<co, f=¢ on |z|=r, f=¢ on |z]=R}
of and only if f s harmonic. Moreover, the minimum 15 giwen by:

lﬁjn“a~nlz Ibohaolz

H kli Sk 2.— oo/ _
@ I?elg 2r laf-i*dfl= ng—eo REP—yp2n * 2InR/r

(The notation X' indicates that in the summation n+0.)
Proof. First note that (c.f. Weyl [11] p. 105)
3 du—dvel,, for any u, ved .,

The sketch of the proof of (3) goes as follows:
Choose a £=C>(R) such that

1, x=2
§(x)= 0=&(x)=1
0 x<1
and set up the following function for ¢>0:

ea=e((E XD N p

In order to conclude that
Ip=dlé. - (u—v)]—d(u—v)  (¢—0),
it is only necessary to use the inequality

2n ) In P/V . ”dw[[%<\zl<p
5 !w@wwﬂMﬁ§{ (r<p<R)
0 InR/p-lldwlii<i.<r
with w=u—v (4, veF), evaluating the norm of wdé§..
In view of (3) and the decomposition (1), the first assertion stated in Lemma
1 holds at once. It remains to compute the minimum. An easy calculation
shows that the extremal harmonic function A(z)eF is given explicitly by :

o, RP7"Mb,—ra ©, b.p—a.
. ’ n n n ’ n % =n
R A =

bo—a, _@InR—byInr
In R/r In 2]+ InR/r :
By the identity dh—i*dh=2h;dZ, (2) is immediately obtained and the proof is

completed.

+

Let S, and S, be two compact Riemann surfaces of genus g,, g, each with
a point p., ps fixed and let z,: U;—A={z&C; |z| <1} and 2,: U,—A be coor-
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dinates in neighborhoods U,, U, of these points with z,(p;)=0 (y=1, 2). Set
4 pU,={pel,; lz{p)I<p}, pC=1{pel,; lz(p)=p} (=1,2)

with 0<p<1. A family of compact Riemann surfaces {S.; e=C, 0<]e| <1}
formed from S; and S, is constructed by defining

Se:<Sl\ l 5| U1>U(Sz\ I €| Uz)
where x&U,\|e| U, is identified with y=U,\|¢|U, by the equation
) z(x)z{x)=¢.

The coordinates z;, and z, are called the pinching coordinates for S, and S, at
p: and p, respectively. Clearly, S. is a compact Riemann surface of genus
g=g:+g,. Both the pinching coordinates map conformally the “pinched region”
SA(SA\UDI(S\Uy)), denoted by P., onto the annulus |e| <lz]<1, so that S.
may be regarded as the union of S\U;, S:\U. and |¢|<]z| <1 under appropriate
identification.

From Lemma 1, we obtain the following theorem which is the basis for
the derivation of the variational formulas in this paper.

THEOREM 1. Let 2, be a meromorphic differential on S, which is holomor-
phic on U, except for a possible sumple pole at p, with residue (—1Ya (j=1, 2).
z — 1y
Let ¢j(x):S (QJ——E-'%dz,) wm U, and have a Taylor expansion n terms of
p; 7
the coordinates z, given by

bia)= 3 afz",  1zl<l (=1,2),

Then there exists a meromorphic differential 2, on S. which is holomorphic on
P, with the same singularities as £, on S\U, (3=1, 2), satisfying, for any
pe(lel?, 1),

[2n

2 o
(©) 2 10.- 0, Sx 2wl (a1 — ¢

4n_l5|2n M

Proof. Let h, be the harmonic function on an annulus |e|/p=[z] <p such
that

[9251(2‘): "21 o'zt on |z|=p,
=1

he(z)=
lgbg(e/z): nz aPehz " on |z|l=|el/p.

Then, by Lemma 1, it is seen that
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=y njat|®
-+ T
ng_‘_—ll pZn__JEIZn/pzn

X an—ane N i
(7) 277._ ”dhs 1 dthIEI/P<Iz[<PM nE:1 pzn_lsjzn/pwb

= i‘ n(|ad 24| a® 2)_‘1,0_81f*
" pr—lel*

By passing to the usual smoothing process, it is easy to find an A (n=1, 2, ---)
with the same boundary value as k. satisfying

. , . 1
(1) ”dhgn)—l*dhgn)Hzlellp<lzl<p < ” dhs—l*dlls||TsI/p<lzl<p—{’; ’

(i) If we define @ on S. by

[Ql(z) s zeS\pU,
) V0= AP @), ze(e; lel/p=]zl<p)
02 , z2€5\plU,,

then @ <l(S,), the space of closed Cl-differentials =/77(S.).

Here the coordinate z, is used to identify the pinched region with |e|/p<|z| <p.
Note that (*) is well-defined, because of (5) and the restriction imposed on the
residues of £, and £, at p, and p,. Clearly,

)
® @ém,i*d)gm:{ 0 ’ 2SS UIVS A U)
dh®P—i*dhi™, zellel/p<izi<p} .
From the decomposition (1), it follows that
¢én>_i*@én):w;ln)+wé3)+w;|:)(n)

where oy el},, o el and wfPelE. Let t=0"—w, then ¢ is closed
and co-closed. [t is also square integrable off the poles of 2, and &,, so that
it is harmonic there by Weyl’s lemma. Noting the fact that any harmonic
differential with isolated singularities is never square integrable, we see that
7 is harmonic on S. except for the same singularities as £, and £, off the
pinched region. Now let us define 2 by

‘an)____;_(fgn)_l_ l’*z.én))

1 . .
=5 (O + PO — oy — Faly).

Then Q¢ is meromorphic on S. with the same singularities as 7 and the
following estimate holds:

2 1 2 .
3120 = 2o, = 35 o+ %0 [,
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1 . 1
= Tlo+ a3 =5l I3,
1 .
<100~ O, .
Here we used the orthogonal decomposition (1). Thus, from (8),
2 1 . 1
;1 ”Qén)‘gj”g'j\pUjégndhs_z*dthzleI/p<lzl<p+7ﬁ—
for n=1, 2, ---. By a normal family argument, a properly chosen subsequence

of {Q¢}%_; converges to a meromorphic differential £, on S, uniformly off the
poles of £, and £2,. Letting n—oo, we conclude that

P 1 .
(9) ng ”‘Qe_Qj”?Sj\pUjé?“dhe_l*dhell?ellp<1zl<p .

By combining (7) and (9), the proof is completed.
The above theorem is slightly stronger than what is needed for later
applications. Indeed, it is sufficient to obtain the estimate

(10) 212~ Q)lsper,<As (e=0)

with some information about the bound for the constant A. If (10)is rewritten
in the form

(10y 122, pow, =0,

the constant A will be called an “implied constant” of the estimate (10). After
obtaining variational formulas, we will see that the estimate O(g) in (10)
cannot be replaced by o(¢) in general.

2. Derivation of variational formulas.

Let us fix, once and for all, a canonical homology basis (A<, B?) for
S, where AW=(A,, -, Az), BP=(By, -, By), A®=(Ag., -, 4,) and
B®=(Bg,s1, -+, By), and assume that every cycle in (A, BY”) is contained
in SA\U, (j=1, 2) without loss of generality. To choose some canonical homo-
logy basis for S, let A(e), By(e), ---, Ay(e), B,(¢) simply be a canonical basis
A, By, -+, A,, B, for S, and S,. Letv,. (=1,2, -+, g) be the normalized
differential of the first kind on S, such that

gAk(E)U])S 7”5]/& (]) k ’ ’ g)

where J;, is the Kronecker 4. This normalization is used throughout the
present paper.



PRECISE VARIATIONAL FORMULAS FOR ABELIAN DIFFERENTIALS 119

Let O be a relatively compact region of a Riemann surface, and assume
that u is a nowhere-vanishing holomorphic differential on the closure O. Then
a differential v defined in O is said to be bounded if so is the function v/u.
This definition is clearly independent of the choice of .

The uniform boundedness of v, . (;=I, -+, g) with respect to ¢ will now
be considered, which is crucial for the later development.

LEMMA 2. Let z€(S\pU)J(S\pU,) with 0<p<1. Then, for ;=1,', g,
v, {(2)=0(1)  (¢—0)

uniformly. (Here and hereafter estimates like f(2)=0(e—s&y)") (¢—¢p) are said
to be uniform i1f “implied constants” can be chosen independently of the variable

z.)

Proof. Choose the pairs of differentials £ and £ on S, and S, respec-
tively as follows:

i <<
(ij), ‘Qéj)):{ (v]: O) lf 1:]:g1 s
(O} Uj) lf g1<]§g)

where v, for ;=<g, (resp. j>g,) are a normalized basis for the holomorphic
differentials on S; (resp. S;). Then, by applying Theorem 1, there exists a
differential £,.. holomorphic on S, such that, for ¢—0,

12, c—villspor, +192, clls o0, =0(), 155541,

192, eNspor, H 192, =il sp00,=0(),  £:1<j=g-

Since this holds for any p<(0, 1), it follows immediately that
2, (2)=0(Q1) (e—0)

uniformly for z&(S\\pU)\J(S,\pU,). Let M, be the period matrix of 2,., -,
2,.. with respect to the cycles A,(e), -+, A,(¢). Then one verifies that

1
2r1
where [, is the gX g identity matrix, since the period along a fixed cycle isa
bounded linear functional on I, the space of closed square integrable differ-

entials (c.f. Ahlfors-Sario [17], p. 284). Therefore the inverse matrix M;! exists
for ¢ sufficiently small and is of the form

M:'=I,+0().

M=( SAj(E)Qk,s)ikzlzngFO(s), (c—0)

Consequently,
Wy, =M, )8, =(2,.)5.,+0(e)2,, 50=0(1)  (¢—0).

This completes the proof.
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Let w(x, y) (resp. wyx, ¥), wx, ¥)) be the fundamental normalized differ-
ential of the second kind on S; (resp. S,, S.), that is, the bilinear meromorphic
differential with vanishing Aj-periods which is holomorphic everywhere except
for a double pole along x=y, where, in terms of a coordinate, it has an ex-
pansion given by

dxdy
————-regular terms.
(x—yp 8
For x=S\U, (resp. x=S,\U,, x=S\P.), let the following expansions, in terms
of the pinching coordinates, hold in U, (resp. Us, Po):

[Po, 0= 2 ez, 1al<l 0=1,2)
(11 )
[Po.c 0= 8 ez, lsl<ial<L,

Here the constant term q, .(x) needs not to be determined. The coefficients
a¥(x) are easily seen to be extended so that these become normalized differ-
entials of the second kind on S, holomorphic everywhere except for a pole of
order n+1 at p, where, in terms of the pinching coordinates,

ai?(@)=w/z, p;)
12)
aP(z))=dz;/z7 " +regular terms (=1,2; n=1, 2, ---).
LEMMA 3. The following uniform estimates hold with 0<p<1:

wix, y)+0(), x, yES,\pU, ‘
oz, y)= (=1, 2)
O(e) , xeS\pU,, yeS;\pU,

Here and hereafter we use the convention that
{ 2, 7=1
J=
1, 7=2.

Proof. Set £i=wy(-, x), £2,=0and apply Theorem 1, assuming that xS \pU,
without loss of generality. Then there exists a differential 2.(-; x) meromor-
phic on S, satisfying, for positive p’'<p,

1205 O, DlEpew, LG, D300,

nlaP(x)[*| p-el®™
p/4n_|€|2n

=r i
n=1
By Cauchy’s estimate, it follows that

a2 K=Max{|[ o, 0| 121 <, x25)\p0}
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Thus
nlel?®

nlad(x)®p’e|™ 1
p/4n__ | c I an

p/4n__ | e ] 2n

IA

=0(e?)

> K3
n=1 n=1

uniformly in x€S,\pU,. Analogous to Lemma 2, the following uniform estimates

hold:
wl(x’ y)”‘l_O(E) X, yESI\pUly

2y; 0={
O(e) x€S\pU,, yES:\pU,,

SAj(E)QE(y; x)=0C(e) (=1,2, - g).

In order to conclude the proof, it is sufficient to note that

oz, 9=00; 0= 5= (], 20, D))

and that v, (¥)=0(1) uniformly by Lemma 2.

For our later development, it will be useful to derive an identity which
comes from the method of contour integration. For simplicity, let us define

w(x, ¥) by:

{ wj('x’ J/), X, yESJ ( 1 2)
J=L14).

(13) w(x, ¥)=
’ ,XES], yesj’

LEMMA 4. Let ¢, ,&C and peR satisfy Max {|e|Y?, |& |V} <p<1l. Then
the following identity holds: for x, ye(S\pUD\I(S:\pU,)

- ([ otx, Nor, .

271 Sp01+p02

wx, Y=o x, y)=

Proof. Case 1. x, yeS\pU, (=1, 2): Integration along the boundary of
SApU, canonically dissected yields

olx, y)—w.x, y)zj%gpcl(gz(weo(x, D—wdx, -)))we(y, z).

Here the Riemann bilinear relation and the residue theorem were used. The

term
Spq(&zwﬁ(x’ '))ws(y, z)

vanishes because the integrand is holomorphic on S\(S,\pU;} where Cauchy’s
integral theorem can be applied. On the other hand, the same theorem again
shows

27lr1 SpCﬂ(SzwsO(x’ '))a)e(y, z)=0
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since the integrand is holomorphic on S,\pU,. This completes the proof of
Case 1.

Case 2. x€S;\pU, and yeS5;\pU, (y=1, 2): Similar reasoning as above
gives

1
2r1

SPC](SZ(CU%(X’ )—olz, ')))a)e(y, 2)=0.

The residue theorem implies

Thus

By symmetry and Stokes’ theorem, it is seen that

Z}rl Spcquzwe@’ ')>weo(x: z)
1

T 2m Spcj,dz‘”%("’ ')>“’é<y 2

This completes the proof of Case 2, so that Lemma 4 is proved.

@{x, V)=, (y, X)=

We are now in position to obtain the variational formulas of arbitrary
order for w,(x, y) and w,(x, ¥). To this end, however, it is important first to
recognize that w.(x, ¥) is holomorphic in e. Thus the first or second order
variational formulas for w.(x, y) are needed in advance. Let w,(x, y) have an
expansion near x=y=p,, in terms of the pinching coordinate, given by

(14) wx, Y)=———+ Z‘ JBExty (=1.2).

(x y)“’

THEOREM 2. w.(x, ¥) has an expansion

w{x, ¥)+ B cwlx, plwly, pH+0(%, x, yES\pU,

(15) wx, y):{
—_swj(x; pj)a)j'<yy pj’)+0<52>! XESJ\pU]! yesj’\pU.i'

near ¢=0 with 0<p<1. Here the estimates O(c®) and O(e®) are uniform and the
differentials w.x, ¥), w{x, p;) and wf{y, p;) are all evaluated in terms of the
pinching coordinates.

Proof. Let us fix p’ and p” with [e]|"2<p’<p<p”<1 and assume that
xeS,\pU, without loss of generality. From Lemma 4 with ¢,==0, (11) and
Cauchy’s integral theorem, it is seen that, for y&S,\pU,,



PRECISE VARIATIONAL FORMULAS FOR ABELIAN DIFFERENTIALS

123
wlx, y)=

27ln Spfcl(g;wl(x’ '))we(y, 2)

d 1
— ¢V] n
nzs)l [ (x) 27[1 Splolzla)s(y’ 21)

= 1
— n 4 (1 n
2 cra(n) - - Sp,czwe(y, z)/28 .
Thus Lemma 3 combined with the residue theorem and the equation (12) shows

wx, y)=—ca(x)

5o @0 20124 O(E)

1
——ewi(x, b g @iy, 22O

—ewy(x, pwy, pa)+0(e?).

Here, the estimates O(e®) are all uniform for x&S\pU, and y&S,\pU,.
When yeS\pU,, a similar reasoning shows

ox, D=olx, D5 (2o, s, 2

® 1
=z, N+ 3 a5 el 2)

= 1
=ox, )= X e (x) - Spwzwe(y, z5)/25 .

By definition y&S\pU, and p”"C,CS,\pl,, so that the result already obtained
above can be applied to give

1
oz, N=0lx, y)—eai’(x)5 Sp,czws(y, z3)/2,4-0(e?)

1
=ou(x, D+ Doy, g oiby 2)+0()
=w,(x, )+ B w(x, plwly, p)+O0().
Again, the estimates O(s®) are all uniform. This concludes the proof

THEOREM 3. wx, ¥) has an expansion near =g, (+0)

(16) wx, )=w.(x, y)———"

2 1 ()0 (9)HO(e—e))
unmiformly for x, y€(S\pU)I(S\pU,) with e |2 p< 1.

Proof. Now let us fix a p” with |e]?<p’<p. From Lemma 4 it is seen
that
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1 P
.(x, y)—w.(x, y)= 9 S Eman,go(x)zws(y, zy)

o'Cyn=-

1 o3 i
271 S‘O'CZ n:_ma”’ EO(X)S [Z8w.(y, 22)

17 ==2 271” Splczan.eo(x)(sn/zg)coe(y, Zs)

1

21

+ 2 Sp,czan,EO(X)(EO"/ZQ)wE(y, 25)

1
=2 (eS—s")an,eo(x)~27m~sp,czws(y, 22)/7% .

Lemma 3 shows that the estimate
0y, 2)=01)  yE(S\pUDI(S:\pl:), 2:.€p0'C,
holds uniformly. In addition, the identity

et —ef=nel e—ey)t+(e—eo) R,

where

1 zZ"dz
>
[ 271 Siz[=r1 (z—eg)¥(z—e) ’ n=0

l 1 S z"dz n<0

211 Jim=ry, (z—eg)¥(z—e)

with 0<r,<|eo| <r,;, implies that
O((v' &)™) n—+oo,

(18 Rn:{ -
OleVp’)") n——co.

Thus the estimate
(19) 0%, V)~ x, )=0(—¢) (e—e&)

holds uniformly for x, y(S\\pU)\/(S\pU,). Since p is arbitrary, (19) also
holds for x, y=(S\p"UD\J(S:\p"U,) with |e,|"2<p”<p’. Therefore, if (19)
with p replaced by p” is substituted in (17), it follows easily that

(1)5(.7(, y)—wso(x: y)

= 2 (=D 5| on 2O

= S (e of ) | (5, 2)H0(e—e)
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= (" —ef)eg ™ An, o (XN (= 1) p, ((¥)+O(e—20)?)

=k 3 120, (1) @0, (D) +O((e—20)%).

€o

Here we used (18), (19) and Cauchy’s integral theorem.

Theorems 2 and 3 clearly show that w.(x, y) is holomorphic in e at ¢=0.

To obtain the Taylor expansions of w.(x, y) with respect to ¢, the following
observations are in order: let

(20) af=g | )l =125k 1=12, )
7

with 0<p<1 and set, for |e]<p?
(21) olx, )= 3 e ulx, 3), %, yESA\PUIISApUS)

where 2,(x, y)=w,(x, y) defined before. From (11) and (14) it follows easily that
(22) af =B /k (=1,2; k, [=1,2, ).

Thus the symmetry fg'=p{ implies

(23) kad=lai  (j=1,2; k, I=1,2, ).

2.(x, y) (n=1, 2, ---) are bilinear holomorphic differentials on (S;\pU)\V(S:\pU>),
since the singularities of w.(x, y) are cancelled out by those of £2,(x, ).

With the above preparation, the following theorem concerning the vari-
ational formulas of any order will now be demonstrated.

THEOREM 4. The n-th order variational coefficients 2,(x, y) (n=1, 2, --) are
given by: for j=1,2 and 0<p <],

htk

A

n

Qka(0aP(y),  x, yeS\pU,,

h, k=1

®

+ksn

L2 2k a(0ad () —naf()aid (),

29 2n(x, y)=1

xeS\pU,, yES;\pUy

where
[ i () 4"
(25) Q’i,jj—h > aé%fdﬁ{zﬂiézé SOk
’ nk i (3 (G )
(25) ‘Qn,jj’—_h > al(z]tlat{tzat'gtg 7 A

with summation taken over all integral vectors (t;) such that

n—h—k=31t,, 121,520, s€Z
7=1
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and
28+1
n—h—k= 2 t,, t;21, s=0, s€Z
J=1

respectively.

Proof. From Lemma 4, (5), (21) and Cauchy’s integral theorem, it is seen
that, for x€S\p’U, with 0<|e]"?*<p’<p<1 and j=1, 2,

oo 1 oo i
> e"2u(x, ”I“gw, P2} a;ﬁ(x)zy)ws(y, z)

271

=g (B o) B0 20)

271 n=

n=1 m=90

£ ) } 1
— n+m 4 (f) - " .
> X aP(x) - Sp,cj,Qm(y, 2 )/ZJ

Compairing coefficients of like powers of ¢, we obtain

1 h
- SPICJ,Qn_n(y, zj)/ 2}

for n=1,2, -, x€5;\p'U, (=1, 2) and ye(S\p'U)U(S:\p'U;). Since o’ is
arbitrary, the repeated use of (26) gives

(26) Qulz, == 3 aiP(x)

htksn 1

aP(x)as .vS
B F=1 Px)ai(y) 2ri)? Jproyxprcy

Qrn-alz, w)/z"w*

@) 2ux, 9= for % y=SA0ly,

h+k

A

n

AP D) | Dneneale, W)/t

h, k=1 ' Cj'xp'C,y

—naP(x)af(y) for x€S\pU, y=S,\pU, .
For it is easily seen that Q,=w, satisfies

0 yeS\pU,

naf(y)  yES;\pU,

by definitions (11) and (13). On setting (for n=1,2, ---; h, k=1, h+k=Zn;
j=1,2)

Sp,cj,Qo(y, 2,')/29?':{

21

1
e Rk
" A= Spcj,xpcjpn_h-xz, w)/2hw*,
1
Q’;k"’:'—~g Qn— - ) " k»
FZ (271.1)2 pCy xpC, h k<2 w)/z w

it remains only to show that the formulas (25) and (25) hold. But this is
easy, if one notes the following recurrence formulas for 24, and %%, obtained
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by substituting (24) in the integrand @,-,-.(z, w) on the right hand side of
(28): for n=1,2, ---; h, k=1, h+k=n; j=1, 2,

p+esn-h- ka G ]/Z—{—k
n kg g O O <n
(29) ’n”fjj: p,g=1 i 7T
haf’ h-t+k=n
’ nk prospch-k G () ") »
29 Qn,jj': o5l 2r,_y, i ]ap]h aqjk—(n—h—k)anjvh—k,han]—h—k.lz .

By induction on 7, it turns out that (25) and (25)" are the direct consequences
of (23), (29) and (29). This completes the proof of Theorem 4.

Clearly, (23), (25) and (25)’ show that the important quantities £0%; have
the symmetry :

(30) ‘Qﬁkﬁ—_Qfth s 'QZIZJJ “Qﬁ{ij
for n=1,2, ---; h, k=1, h+k=n; j=1, 2.

Remark. The coefficients 24, satisfy the following identity : for n=1, 2, ---;
h; kzl’ 2) Tty h+k§7’l; ]:1; 2;

+hsv m+k

A

n-y

31 (n—h—B@= 5 (i st sy 2hm

?M

1=1 1

To show (31) we calculate a,, (x) (n==%1, £2, ---) explicitly by using Theorem
4, For x=S\U, termwise integration gives

© hitkszn z
[Po.(, n=const.t B apa+ B3 e om e ap
n=1h, 1

By (20) the integrals on the right hand side have expansions
23 1 = afy
S aP=——tconst.+ -H 2t k=12, -
kZl 1=1 !

Thus, from the definition (11), it is seen that a, .(x) is given by: for xeS\U,
and n=1, 2, ---,

1 r+nsm
a—n,s(x):__ e™hnai(x),
n L h=
1 @, neis
@, (X)=aP(x)+— 2 e™agy Qnk al(x) .
N m=1 h, k=

Hence it follows from Theorems 3 and 4 that, for x, yeS\U,

2 ne"Qu(x, ¥)= Z (X e 2010 () (nad’(9)+ 2 emain 25 1ai’(9)

+ 3 (3 em 2 anl(M)naP(x)+ X e alhual (@)
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Compairing coefficients of ¢* in the above expansions, we find an expression
of £.(x, y) different from (24), which, together with (24), easily implies (31).
Similar identities will also be obtained by choosing x or y=S,\U, in the above
calculations.

Now that Theorem 4 is obtained, it will be possible to derive variational
formulas for any meromorphic differentials on S. which is holomorphic on P..
However, instead of computing complicated formulas for the general case, we
restrict ourselves to the case of the normalized differentials of the first and
the third kind.

Let w{, (resp. wq-s..) be the normalized differential of the third kind on
S, (resp. S.) with simple poles of residue 1 and —1 at «, b S, (resp. S.) re-
spectively. Then the Riemann bilinear relation gives

S (-, x) xS, 1=k=g,
B

vi(x)=
(32) “B (-, x) x€S,, gi+1=k=g,
k

w&jib(x):S:“’j(" x) x&S,, j=1,2

with the path of integration from b to a taken in S, cut along its homology
basis. For notational convenience, let the following expansion holds in terms
of the pinching coordinates:

(33) Sp p= 20l 131<1

where 7 is any differential holomorphic on U, (;=1,2). Thus (11) may be
rewritten as
rPlw(, x)]=a(x).

Furthermore, let us write for short
G rPwd=rd, 1Pl d=ra, b), 7Pled, dz/z1=r(a).

Analogous to (32), the Riemann bilinear relation again gives
(35) [, av0=r,  [arer=roa, b
By b

If (21) is integrated term by term along the cycle B,(¢)=DB,, an expansion of
Vs Will be obtained at once in view of (32) and (35). Indeed, this is legitimate
since B, is contained in the region where Theorem 4 is valid.

COROLLARY 1. The normalized differentials of the first kind on S. have
expansions near ¢=0: for i=1,2, -, g; and 0<p<],
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( { vi(x) e BRvpowlx, p)+0(*) xeS\el,
Vi, (X)=

(36)
—ev(pwx, p)+0(e?) XESZ\PUz

where B 1s the constant defined by (14) and the estimates O(e?) and O(e®) are uniform.
More precisely - for 1=1, -, g and x<(S\pU)\V(S:\pU,)

(37 Vi, (x)= é e™(Vi)n(x)

where, for i=1, -+, g, and n=1, 2, -,

Ul(-x) xESl b
()ox)=
0 xeS,,
h+kzn
J B F=1 Quk rBaP(x) xeS\pU,,
(W)a(x)= -
+Eksn
1 2 leriaP()—nrRaP(x)  x€S\eUs.
For i=g,+1, -, g, similar formulas are obtained by symmetry.

If (37) is integrated term by term along B, once again, a variational
formula for the period matrix for S,, denoted by 7., is obtained.

COROLLARY 2. The period matrix t. has an expansion near =0
7, 0 0 'R.R,
(38) 7= —e +0(e?)
0 =, ‘R,R, 0
where v, and 7, are the period matrices for S; and S, respectively, and
Ri=\(py), -, vgl(pl))ngl »
Rz:(yg1+1(pz); L, ve(ha))EC2,
Movre precisely:
(39) r.=3 e,

where t,=(Tpj)¢,-1 and, for n=1,2, -+,

BAEE™ bk (D) s
AQnL,nTm?’k] 1=, j=g,,
h, k=1
Tn,mj:

=

+ksn

k
(40) W DR atlsy, j=g,
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htksn
Tna=Tn = 20 SBNTRTE —nrnry  for 1sisg, eitlsisg.

Here 79 (j=1, 2) is the constant defined by (33) and (34).

Similarly, variational formulas for w,.,. are obtained if both a and
beS)\pU, with 0<p<1 (j=1, 2). On the other hand, if a€S)\pU, and b&S;\
eU; (=1, 2), such a simple method as above fails immediately since the path
of integration must across the pinched region. In this case, however, we can
proceed as follows: analogous to Lemma 4, w,-, (x) is given in terms of
wx, y) by

I e I (WO IRT ) R

27 D

_iwgpcj" (S’ (@5, +dzy /Zj')>we<x’ 2

2r1 ;
where a=S\pU,, b&S;\pU;, x&(S\pU)I(S:\pU;) and
o (x) xS,
wa—b,o(-x):

0P _(x) x€S,.

(41) follows from a similar reasoning as in the proof of Lemma 4, so that the
proof may be omitted. If the expansion (21) is substituted in the right hand
side of (41), the desired variational formula is obtained from Theorem 4 by
termwise integration. The results are summarized as follows.

COROLLARY 3. The normalized diffevential of the third kind wq -y, {x) has an
expansion near e=0:

(1) for a, beS)\pU,,
0Py (x)+* B w2 o(pwx, p,)+0() xeS\pU,,
(42)  @g-p.(x)=
—ewdo(ppw; (x, py)+0(e?) xeS;\pU, ,
(ii) for x, aeS)\pU, and b&S;\pU,; ,
(43) g5, (X)=0F 5 (2)Fedy (D)%, py)+0(e?)
where, in terms of the pinching coordinates,

da)= lilgl [wa-p(2)+1/2)]eC  (j=1, 2)
Py

and all the estimates O(e?), O(e®) are uniform.
Movre precisely:

(“4) Gams (D)= 3 e"@aalx)  xE(SN\PUIISAUY)
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where, for n=1, 2, .-+,

(i)Y for a, beS\oU,,

htks=n B .
n kglg’ﬁ{ejﬁ;{)(a, b)aiﬂ(x) ’ XES;\PU; s
@5)  (@a-ala)=
+ksn
I 2 e, D)ai ()= nri(ae, bai (%),  xES\pUy,

iy for x, a=S\pU, and b=S;\pU, ,

6)  (@an)u(x)= 3% AU P(@)— QM 7B aP () + a1 (B)a(x) .

h, k=1

Here 7{(a, b) and 73’(a) are the constants defined by (33) and (34).

On account of the importance of the coefficients a¥), we make mention of
the close connection between the differentials a¢$(x) (n=1, 2, ---) and the Faber

polynomials.
For convenience, let us omit the letter “;” in our notation and write

S=S,, U=U,, auJx)=a9(x), etc.

The local coordinate z: U—4 is, on the other hand, regarded as a univalent
mapping @¢()=z"*(1/t): {t; |t]>1} —S. In the case where S=C (the Riemann
sphere) and p=co (EC‘), ¢ is a complex-valued function and the expansion (11)
reduces to

i cw (b P(s)ds 1
7 S aor={ BO)—xF — x—g(D) "

Recall that a generating function for the Faber polynomials p, (n=1, 2, --+)
belonging to ¢ is given by

x¢'(t) _ o x) | pax)
“8) () —x S et

[2]. From (47) and (48) it is easily seen that

(49) o= pu(xo=—n{ axdt (=12, ).

In view of this identity, it is natural to call the Abelian integrals Z,(x)

=——n5xandt the Faber integrals belonging to a local coordinate z, which agree,

up to a constant, the Faber polynomials if S=C and p=co. From (20) F,-¢
(n=1, 2, ---) has an expansion
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o0

(50 Frnop(w)=w"+const.— T %
With this analogy, a.:; (n, k=1, 2, :--) may be called the generalized Faber
coefficients and the equation (23) corresponds to the classical Grunsky law of
symmetry [2]. Furthermore, a generalization of Golusin inequality is obtained
from a straightforward analog of area theorems as follows.

o rw™F, |wi>1.

THEOREM 5. Let {x,} be an arbitrary sequence of complex numbers. Then
the coefficients «,, satisfy

© 1 N 2 N1
(51) E_ E-X (229 § 2'—|xn|2y (A7:1: 2: )
=1 k| am 17

Equality holds for a non-zero sequence {x,} 1f and only 1f the complement of the
image of ¢ wn S has areal measure zero.

N
Proof. Let us evaluate the norm of glxnan(x) on.S\pU with 0<p<1.

The Riemann bilinear relation and (50) give

o] Exnanl,,
. —
o Sgsw NENEOVNS TWNE
:72%—&0(5{1’"%:1 x"an(.)> nlz\jl Fnn(x)
érdligxwl 1p nzzl;g ¢(w)d[ 2 ——79"” ¢<w>]
Letting p—1, we have
1 N

TH PN = E ~|xn|2 nlnk|

which obviously implies Theorem 5. The equahty statement is a direct con-
sequence of the linear independence of a,(x)’s.

When S=C the inequality (51) has been already obtained by Jenkins [5],
Milin [7] and Pommerenke [9]. Applying the Cauchy inequality to (51), we
have at once a version of Grunsky inequality : let {x,} be an arbitrary sequence
of complex numbers. Then,

N N
(52) 3 Basiertata| S Dalmlt V=12, )
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where 8, (n, k=0, 1, ---) are the coefficients of the expansion (14). (Note the
identity (22).) Equality condition is the same as in Theorem 5.

In particular the important quantities S appearing in Theorem 2 and
Corollaries 3 and 4 satisfy

(®3) 1BPi=1  (=1,2).

Remark. Schiffer and Spencer have proved an inequality more general
than (52) in their book [10] where they generalized, to the case of finite
bordered Riemann surfaces, Grunsky’s necessary and sufficient condition for
the univalence of an analytic function defined on the exterior of the unit
circle. Since (61) implies (52), their theorem 5.5.3. [10, p. 168] can be restated.
For the sake of completeness, we record this fact as a

COROLLARY. Let ¢ map a neighborhood of 04 conformally wnio o neigh-
borhood of p=¢(0)=S. Using a local coordinate ¢=* around p, one may calculate
the series expansion (14). Then ¢ can be extended over 4 to gwe an analytic
imbedding of 4 wmto S if and only 1f the wmequalities (51) hold for every sequence
{x.} of complex numbers.

3. Pinching along a non-zero homology cycle.

Here, the notation and the definitions in the previous sections are used
unless otherwise stated.

Let S be a compact Riemann surface of genus g and choose coordinates
z;t Uy—4d and z,: U,—4 in disjoint neighborhoods U, and U, of two points
b1, P.€S. Again, a family of compact Riemann surfaces {S.; e=C, 0<|¢| <1}
formed from S is constructed by identifying U, and U, under the condition (5).
S. is a compact Riemann surface of genus g+1 while the pinched region
P.=S\S\(U,\VU,)) is usually identified by the pinching coordinates z, and z,
with the annulus |e|<|z| <1 as before. To choose some canonical homology
basis for S, let Ae), Bi(e), -, Ay le), B,(¢) simply be a canonical basis
Ay, By, -, A, By for S lying in S\(U,JU,). In addition let A,,,(e)=pC, with
any p satisfying |e|<p<1 and let B,,,(¢) be any path from z7'(v¢) to z7'(+¢)
lying within S\(|e|U,\J|e|U,) cut along the homology basis for S.

Corresponding to Theorem 1, the following analogous theorem holds with
trivial modification, so that proof will be omitted.

THEOREM 1’. Let 2 be a meromorphic differential on S which 1s holomorphic
on U, and U, except for possible simple poles at p, and p, with residues —a
and « respectively, and let
aP=rPLR—(—1Yadz;/z,]
for j=1, 2 and n=1, 2, ---. Then there exists a meromorphic differential 2. on
S. which is holomorphic on P, with the same singularities as 2 on S\(U,\JUy),
satisfying
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6y 192, = Qv 57 5, nllal (4 0217 lpel®

[€|2n

with |e|V:<p<1.

On applying Theorem 1’ and using the identity analogous to Lemma 4

(54 ox, D=olw, =y | (o, D)otz )

for x, y=eS\(pU,\VpU,) with |e|¥*<p<], it is now easy to deduce such vari-
ational formulas as in Theorems 2, 3 and 4 by a method similar to the one
used in section 2. For instance, the uniform boundedness of v, . (j=I, -,
g+1) will be shown immediately by choosing

Wpy-p, if j=g-+1

and applying Theorem 1l’. (This is the reason why simple poles at p; and p,
must be permitted for the £ in Theorem 1’ as the singularity.)

Now the main results in this section will be summarized almost without
proof in the form of a theorem and corollaries. In order to state these, let us
define

1
(20y W= o FEI (5 =125 b =12, )

which, corresponding to (20), are important to express the variational coefficients.
Again, it follows the symmetry :

23y laft=maly,  (j, k=1,2; [, m=1, 2, --)

THEOREM 6. w.x, y) has an expansion near ¢=0: for x, y&S/(pU,\JpU,)
with 0<p<1,

15y o(x, y)=u(x, y)—ela(x, plu(y, p)+twlx, paly, p)]+0(e*)
where the estimate O(e?) is uniform.

Movre precisely: for |e|'?<p<1
2Ly oz, D= T e 2u(x,3)  x, ySS\(pU\pl)

where Q,(x, v)=wlx, v) and, for n=1, 2, ---,
l+msn

(247 Qux, = 3 T8 Qe (e (9)— 3 na (e ().

Js 11, m=1
The coefficients 24, are gwen by: for I, m, n=1,2, -« (I4+m=n) and j, k=1, 2,

(25) Q=1 (=D adiraypaisy - addl
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with summation taken over all vectors (s,) and (t)sZ* such that
d
n—Il—m= 2 t,, t;z1, s,=1, 2, d=0.
7=1

Instead of (29), the recurrence formula for 2/, is given by

pHgsn-l-m " , 2 " e
Qg?—l—m,szayl aé’;n— 2 (n—l_m)afz]rl—m,laifl-m,m
@9y Q= P _
if l+m=n,
lad¥ if [Hm<n.
By induction on n, (25)” is verified from (23)" and (29)" as before.
Integration of (21) along the cycle B(e) (=1, ---, g) immediately yields

COROLLARY 4. For i=1, -, g, vi,(x) has an expansion near e=0: for
x€S\(pU.\VpUy) with 0<p<],

36) v, (1) =vi(x) —e[vi(ple(x, p+vi(pwlx, p)]+0(e)

where the estimate O(e?) 1s uniform.
Movre precisely:

v 0= 3 rwn(x)  xES\(UpUy)

where (V;)(x)=v{x) and, for n=1, 2, -,

l+rmsn

- 2 R "
(Waa(x)= 01 aw (x)— ]Z=)1 nyidiaid’(x)

7y

o

m
1l,m=1
with 1h=rlve].

On the other hand, Theorem 6 and the identity

1 SPCIGZ(pr—p;i- d21/21)>w5(z, x)

(55) Ug+1,s(x)"‘wp2—p1(x):’§i—

for x€S\(pU,\VpU,) with |e]¥?<p<1 give
COROLLARY 5. v, (x) has an expansion near e=0: for x&S\(pU,\JpU,)
(56) Vgin (X)=Wp,-p, () —e[7:0(x, p)+T10(x, p2)]1+O(e?)
where the estimate O(&?) is uniform and the constants
67 7i= lim ey, 5, ()~ (~17dz(2)/2(])  G=1,2)

are evaluated in terms of the pinching coordinates.
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Movre precisely:
(58) Ver D)= 3 " Wanda(x)  xES\OUpUY)

where (Vgi1)(X)=wp,-»(x) and, for n=1, 2, -,

i+tms=n . Dk 2 i .
Qimar? all(x)— ]21 nyad (x)

(59) Warda(0)= %

7 1!, m=1

with 19=19T@p,-p,—(—1)dz;/2,].

Let

Tu.a 01.,5 g
Te=| oo (EGL(g+], C)
| 7=

be the period matrix for S, with respect to a canonical basis A,(e), By(e), -,
Agsi(e), Bgea(e). From Corollaries 4 and 5, it is easy to calculate the Taylor
expansion of 7z, at ¢=0 except for the (g+1, g+1)-element o, for which the
path of integration B,.,(¢) must across the pinched region. The next lemma
shows that ¢, can be expressed through the line integrals whose paths of
integration avoid the pinched region.

LEMMA 5. For ecC and p&R satisfymg 0<|e|V:<p<1/2, the following
identity holds:

2t 1

(60) o.=ln 45+S wpz'p1+"§7?gpcl(gi_l(1/2>(0)172'P1+ d21/21))7/g+1,s<3)
1

~1
24 1/2)

g o (0 @rimmi—d20/20) (2

271 sty

(The proper choice of the logarithm depends on the path chosen to define the
cycle Byiq(e).)

Proof. Cauchy’s integral theorem and the bilinear relation give

Sp01+p02<gz <Ug+1'é—wpz—pl))vgﬂ,e(z):() .

st
Hence

Szglcuz)

Vgs1, e Wp,y- )
alare £ P27 P

1 z
= 2zt Spc‘l(Szl‘l(1/2)(0)”2'1’1—}_‘12—211))7}%1. «(2)

™ 27];‘1 Sp02(5;'1(1/g)<wp2’p1_—dz%>>vg+1.e(z)
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B *2‘51_75!)01(5;1(”2)(1)g+1, EMIM%»UHL )

h ‘2%5902(5j51<1/2)(vg+1' 5—%?>>Ug+1, 42)-

On the other hand, a change of parameter by using z,z,=¢ yields

'72%7&9016:;1(1/2)(%“’ ¢ +d?211)>1’g+ 1(2)

= —"erTS,, 026:;1(25)(1}“1' o %Zzl»vgﬂ, (2).

Therefore

251 (2e) 2yl 25 2e)
Vgt1,e™ Wpy-py— dz,/z,

e e 27ty

:-21;1-3‘1)01(S:1'1(1/2><wp2~pl—i—%?*))vgﬂ, «(2)

+72%Sp02<5:§1(1/2)<wp2’p1_‘%))”g+1. (2).

Note that the path of integration from z;'(1/2) to z;'(2¢) can be identified with
B,::(e), so that the proof is completed.

From the above lemma, it is seen that the constant term in the expansion
(60) is given by :

In 4+Sz;1(1/2)wi’2‘p1+ﬂ2‘711759 01<S‘2 (wpz_p;%_‘iz?))wprm('?)

—1 =1
712 277(1/2)

+§%SﬂCzq;"<1/2)<wp2'p1_%gu>>wpz—pl(Z)

7l 271 dz 25 1o dz

_ 2 1 1 2 2
=In 4—1—5 wpz_pl——g (wpz-pl+ )+S <wp2-p1—'———2 )

2

e a7ty z; ExeTeVE))

This, in turn, is seen to be equal to the constant

li zz‘l(z)
im x)a)pz-pl—Zln x]|.

z-0 zfi(
Corollaries 4, 5 and Lemma 5 give immediately the expansion ofjthe period

matrix.

COROLLARY 6. Let 74, 7o, 757 and 74} be defined as in Corollaries 4 and 5.
Then the period matrix for S. has an expansion



138 AKIRA YAMADA
T, €0, a;teo,
(38) .=

a,+‘eo, Inetcytce

>+O(52)

. P2
where (t,;)%,-, 15 the period matrix for S, GLZS Uy,
b1

0= _(Ui(pl)vj(pz)"i“Ui(Pz)'U;(pl)) s o, =—wi(p2)+720:(P1)),

. z;l(x) .
¢o=lim )w,,z_pl—Zln x| and ¢;=—2r:7.

- -1
z-0 il

Move precisely -
( i) z-1],5': 7§0 ‘sn(le)n 1) ]:l) 2: Ty g

where (7,;),=1,, and, for n=1, 2, -

R lm ~+(8)arlt) : (8)as(8")
(61) (th)n: 2 ‘Qn,stflilr';n]_ Z nrnzrn] .
$,t=1 1, m=1 s§=1
.. hid .
(ii) Uz,e=n§0 (0 )n =1, -, g

23
where (at)ong a)pz-plzg v; and, for n=1,2, -,
2 Py

t+m

TA

n 2
13 (8)aa(t) (8)as(s')
nﬁstrls Vi — 321 717’15 77{?2 .

(62 (0= 3

s 10, m=1

(iii) o.=In e+ i;oen(,f)n

where (0)y=c, and, for n=1, 2, -+,

l+ms=n

(63) (@)=, T 2N

s 11, m=1

From Theorem 6, it is also possible to derive a variational formula for the
prime form E(x, y). For the basic properties of E(x, y) the reader may consult
[3, Chap. 2].

Since the multipliers of E(x, y) and EJ(x, y) (the prime form for S.)
along the cycles pC, and pC; are both equal to 1 (c.f. [3]), we can choose a
single-valued branch of In(E.x, y)/E(x, ¥)) over S\(oU,\YpU,) canonically
dissected so as to satisfy

(64) lim In (E(x, ¥)/E(x, y)=0
z,y—q
for any g S\(pU,JpU,) [3, Corollary 2.5]. From now on, all paths of inte-

gration are taken within a fixed canonical dissection containing pU, and pU..
With this agreement we have
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COROLLARY 7. In E(x, y) has an expansion: for x, yES\(pU,\JpU,) with
le|¥2< p<1,

(65) In E(x, y)=In E(x, 3)—cwy—(Pwy-(p2)+0(H

where the estimate O(e%) 1s uniform.
More precisely.

(66) In E(x, y)=In E(x, y)— i:}lne"gyaif)g a®

+%§)e" ZZI
el

n=1 g,

l+msn
E le S (J)S agrl:).
m

1, m=

Proof. First we note the identity [3, Corollary 2.6]: for x, y=S,

2

(67) o(x, y)= aa In E(x, y)dxdy .
To prove (66), set

F(x, 3)=In(B(x, 9)/E(x, )+ 3 nsS S a®
——i:)e" I %’,"jkgyaéﬁsya%’

. 0?
and consider WF(X, ¥). (67) and Theorem 6 show

62
“Gxay [0 =0

On account of the symmetry F(x, y)=F(y, x) (c.f. [3]), it is seen that F(x, y)
has the form

F(x, y)y=h(x)+h(y)

where A(x) is single-valued and holomorphic on S\(pU,\JpU,) canonically
dissected, since a{’(x) (j=1, 2 and n=1, 2, ---) has no residues at p, and p,.
(64) implies that F(x, x)=0 or A(x)=0, so that F(x, y)=0. This gives (66)
while (65) is proved by recalling the identity (c.f. [3])

(68) va-s)= 0l 2)

and the proof is completed.

Remark. Let g(x, y) be the Green’s function on a planar regular region
D. Then it can be verified that

(69) g(x, y)=In

E(x, y‘)1 %, yeD

E(x, ¥)
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where E(x, y) is the prime form for the double of D with respect to a suitable
canonical homology basis and ¥ is the conjugate point of y=D. (69) shows
that Robin’s constant ¢(x) is given by

70) ox)=In | E(x, X)] .

By using the representations (69) and (70), Corollary 7 will yield variational
formulas for g(x, ¥) and ¢{x), but we do not enter into these calculations.

4. Examples.

To guarantee the validity of our formulas, we consider here two cases
where w.(x, ¥) can be calculated easily by other methods.

ExaMPLE 1. Let S; and S, be the extended complex plane C. Then the
fundamental normalized differential w;(x, y) is given by
dxdy

(71) wy(x, y)= =y

(4=1, 2).

If |k;| <1, the function ¢j(z):%+x,z maps conformally the unit disk 4 onto

ché with ¢,(0)=oco (j=1, 2). Hence it is possible to take ¢;' as a coordinate
z,: Ui—4 on S, centered at p,=co (y=1,2). Since S, has genus zero, it is
well-known that, for any fixed x=S,\U,, there exists a conformal mapping
fe: S.—C satisfying f{x)=co. To calculate w.(x, y) on S,, we shall first study
the mapping f. itself. Let f, be the restriction of f. to S;\|e]U, (=1, 2), and
assume without loss of generality that f, is holomorphic on S\|e| U, except
for a simple pole at x with residue 1. In view of the equation (5), f; and f,
must satisfy

(72) Fp(N=Tlgo(e/2))  for el <|z|<1.

From the functional equations

(73) s@=0{1y) =12

(for simplicity assume &£,#0 here, as in the sequel), it follows that (1) is
extended meromorphically to the function F(z) which is now defined on
0<|z]|<oo. By (72) and (73) F(z) satisfies

Fay=F(-2)=r(""),

K1z z

g0 that
F(2)=F(xx,8%2), 0<iz| <o,

Thus F(e*) becomes a doubly periodic function with periods 2zi and
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a(=1n £k,c?) which is holomorphic except for simple poles at z=In 3 and
. . . 1\-t 1\-t .

=—Ink, (mod periods) with residues <Elﬂ_§) and —(EI‘B——?) respectively ;

here 8 denotes a number satisfying ¢,(8)=x. As is seen from the theory of
elliptic functions, F(¢*) has an explicit representation :

(74) F(ez):(fclﬁ—% “[Ue—1n B)—E(z-1n £, B)]+const.

where {(z2)=((z; 2m1, a) is the Weierstrassian zeta-function. On the other hand,
it is well-known (see [4, p, 4771) that {(z) has a series expansion given by

e -H s  hte’ o hre”
(75) U=z +— TR T e A e

where
h=et=rpmet and g=p (Ut 2m)—0(2).

Hence, if (75) is substituted in (74), we have

1 1 z+ﬁ h" e htz
(.8 ﬂ)F(z) const.+5~ + 3 N
1 mpzt+l = h™ »  h", Bz
(76) 2 k. fz—1 it g fz—h" Bo—hv 2—1 1—h™k,fz
=B 3

:const.+m+ > dil ]and,zl—d(xiiﬁd_‘B—d><z—d+f£§izd),
1 n=1 d=

Observe that, for fixed xeS\U,, w.x, ¢.(2)) is given by

w(x, $:(2)=—F"(2)/$:(2)
Thus, if (76) is differentiated, it follows that

-%1 —dpnd (£:B)*—8- ¢ (g,2)'—z""
(@) — 2 Bdah e —

for x, ¢.(z2)S\U,. To show that (77) agrees with the expansion given by
Theorem 4, let us determine the differentials a,(x) and the coefficients 7%,
By (71) and the definition (11), a®(x) (n=1, 2, ---) are given by the expansion

77 w.x, ¢.(2)=

© 1 .
) P - =
7121 an] (x)Z - x_¢j(2) (] ]-: 2) >
and thus, after easy calculation, it is seen that
(/flﬁ) ,B_ (£2)%—
D] — [6}] i A ——
(78) =", =

If (78) is substituted in (77), we conclude finally
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(79) 0z, y)= ng "2 drrtadx)ad(y)

(x—y¢
with h=#x.x,6% On the other hand, one verifies that
(80) anm:'—anm/f? (]:1: 2)

with 0,, the Kronecker d, since the expansion (14) has the form
1 . K, . 1
(x—y3  A—xxy) (x—y)

From (80) and (25) the variational coeflicients £2%%; are easily calculated. The
result is that 2%%,’s all vanish except when » is even and hA==Fk. In the ex-
ceptional case, 2% ,, is given by

Qa { —d (ko) kT? if djn,
on, 117

0 otherwise.

Piofx, y)= E (n+Def 2"y

Hence (79) completely agrees with our Theorem 4.
ExaMpPLE 2. With the same notation as in section 3, we set:
S=C, U,=1{z; |z|<r}, Up={z; |z| >R}, p,=0, py=co, z,=2/r, 2,=R/z
where » and R are numbers satisfying 0<r<R. Thus, by (5), z€ U, and wel,
are identified if and only if 2= w. Similar reasoning as in example 1 at

R
once shows

@81) o(x, y)=[2(In x/y)—vjd%jy—n %, yES\U,UT)

where @PE)=%P(z; 2n1, Iner/R) is the Weierstrassian pe-function with
p=gr; (et2m)—Ua). Again, it is wellknown (see [4, p. 477]) that (2

has an expansion given by

hre N
(82) P(z)—n= = 1)2 + 21 a 1,; e Em
with h=er/R. Thus (81) and (82) give
n d—l Xd_l
83) 0, D= )2 +3e % d07R) (e +aer)-

On the other hand, from (71) and (11) it is seen that

xn—l

W=, AP =12, )



and
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aj=a3=0, a}=af=—0;(/RY, (j, k=12,-).

Hence, by (25)”, @4~,’s all vanish except when [=m and j=%k. In the ex-
ceptional case, we have

dd . ()dd  .—
n,127 @& 0,217

{ —d(@r/R)"¢ if dln (d<n),

otherwise,

concluding that (83) agrees with our Theorem 6.
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