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Abstract. This paper studies the privacy breaches caused by multi-dimensional
range (MDR) sum queries in online analytical processing (OLAP) systems. We
show that existing inference control methods are generally infeasible for control-
ling MDR queries. We then consider restricting users to even MDR queries (that
is, the MDR queries involving even numbers of data values). We show that the
collection of such even MDR queries is safe if and only if a special set of sum-two
queries (that is, queries involving exactly two values) is safe. On the basis of this
result, we give an efficient method to decide the safety of even MDR queries.
Besides safe even MDR queries we show that any odd MDR query is unsafe.
Moreover, any such odd MDR query is different from the union of some even
MDR queries by only one tuple. We also extend those results to the safe subsets
of unsafe even MDR queries.

1 Introduction

Multi-dimensional range (MDR) query is an important class of decision support query
in online analytical processing (OLAP) systems [19]. One of the most popular data
models of OLAP systems, data cube [18], can be viewed as a special collection of MDR
queries. MDR queries are intended to assist users in exploring trends and patterns in
large amounts of data stored in data warehouses. Contrary to this initial objective, MDR
queries can be used to obtain protected sensitive data, which results in the breach of
an individual’s privacy. Access control alone is insufficient in controlling information
disclosure, because information not released directly may be inferred indirectly from
the answers to legitimate queries, which is known as the inference problem in databases.
Providing precise answers to MDR queries without privacy breaches is the subject of
this paper.

The inference problem has been investigated since the 1970’s with many inference
control methods proposed, especially for statistical databases. Those methods usually
have run times proportional to the size of the queries or the data sets, and they are invoked
only after queries have arrived. On the other hand, OLAP applications demand instant

� This work was partially supported by the National Science Foundation under grant CCR-
0113515.

�� The author’s current address is School of Information Systems, Singapore Management Uni-
versity, Singapore 259756

E. Snekkenes and D. Gollmann (Eds.): ESORICS 2003, LNCS 2808, pp. 100–115, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Precisely Answering Multi-dimensional Range Queries without Privacy Breaches 101

Table 1. An Example of a Two-dimensional Data Core.

The Data Core year emp adj
year / emp / adj Alice Bob Mary Jim

2002 1000.00 500.00 -2000.00
2003 1500.00 -500.00 1000.00

responses to queries, although the queries usually aggregate a large amount of data.
Consequently, the delay in query answering renders most existing methods impractical
for OLAP systems. In this paper we propose efficient inference control methods by
exploiting the unique structures of MDR queries.

The first contribution of this paper is that it will call more attention to the privacy
issue of OLAP systems, which is unfortunately ignored in most of today’s commercial
products. We study several existing inference methods and the results show that they
are infeasible for MDR queries. We also show that finding maximal safe subsets of
unsafe MDR queries is NP-hard. Second, we reduce the inference control of MDR
queries to that of sum-two queries with a necessary and sufficient condition on their
compromisability. By treating sum-two queries as edges of simple undirected graphs,
this reduction relates the inference control of MDR queries with existing results in
inference control in statistical databases and graph theory. Finally, we give efficient
methods (the complexity is bounded by O(mn), where m, n are the number of queries
and tuples, respectively) to determine safe MDR queries, safe arbitrary queries, and large
subsets of unsafe MDR queries.

The rest of the paper is organized as follows. Section 1.1 gives a motivating exam-
ple, and Section 1.2 describes our assumptions. Section 2 reviews existing inference
control methods proposed in traditional statistical databases and modern decision sup-
port systems. Section 3 presents basic definitions and formalizes MDR queries and the
compromisability. Section 4 gives negative results of applying existing inference control
methods to MDR queries. Section 5 investigates the problem of determining safe MDR
queries. Section 6 extends the results to subsets of unsafe MDR queries. Section 7 dis-
cusses the implementation. Section 8 concludes the paper. Due to space limitations, we
have omitted the proofs of all theorems, lemmata, corollaries, and propositions, which
can be found in [31].

1.1 Motivating Example

Suppose that part of a data set owned by a fictitious organization, Company A, is shown
in Table 1. It contains salary adjustments for four employees in years 2002 and 2003.
Let the three attributes be year, emp (employee), and adj (adjustment), respectively.
The empty cells in Table 1 indicate that the employee did not work for Company A in
that year.

Company A invites an analyst Mallory to analyze the data set. For this purpose, Mal-
lory is allowed to ask sum queries about the attribute adj in Table 1. In addition, she has
access to the non-sensitive attributes year, emp as well as the locations of empty cells in
Table 1. On the other hand, Company A worries that Mallory may inappropriately use the
information she learns about each employee. Hence, Mallory is prohibited from directly



102 Lingyu Wang et al.

Table 2. An Example of Even MDR Queries.

Ranges Answer

[(Alice, 2002), (Jim, 2003)] 1500
[(Alice, 2002), (Bob, 2002)] 1500
[(Bob, 2002), (Mary, 2002)] −1500
[(Bob, 2002), (Bob, 2003)] 2000
[(Mary, 2003), (Jim, 2003)] 500

asking the individual values (of attribute adj) in Table 1. Now we ask the following
Questions: Can Mallory learn any of the individual values through sum queries? If so,
how can we safeguard these values? Suppose Mallory asks the following query:

SELECT emp, SUM(adj)
FROM year emp adj
GROUP BY emp;
The answer to the above query contains four records (Alice, 1000), (Bob, 2000),

(Mary, −2500) and (Jim, 1000). Each record corresponds to a one-dimensional MDR
sum query, such as (Alice, 1000), which sums the values in the first column of the table.
Intuitively, by viewing each MDR query as a box, we can represent it using its longest
diagonal. For example, use [(Alice, 2002), (Alice, 2003)] for the first column of the
table and [(Alice, 2002), (Bob, 2003)] for the first two columns. For simplicity purpose,
we shall use this notation instead of SQL for MDR query henceforth.

Mallory is able to learn from the MDR query [(Alice, 2002), (Alice, 2003)] that the
adjustment for Alice in 2002 is 1000.00, because the query sums a single value. This
threat can be thwarted by answering only the MDR queries that sum two or more values.
However, Mallory can easily get around this restriction by subtracting (the answers to)
[(Bob, 2002), (Mary, 2002)] from [(Alice, 2002), (Mary, 2002)].

This second inference occurs because the queries [(Bob, 2002), (Mary, 2002)] and
[(Alice, 2002), (Mary, 2002)] sum even (two) and odd (three) number of values, re-
spectively. Is it helpful for protecting the individual values to restrict Mallory to only
even MDR queries (MDR queries involving even number of values) or only odd MDR
queries (MDR queries involving odd number of values)? The restriction to odd MDR
queries is ineffective because the difference of two odd numbers yields an even number.
For example, the first two and three columns of Table 1 are both odd, but their difference
gives the third column, which is even. Conversely, to obtain odd MDR queries from even
ones is not always straightforward. Because an individual value can also be viewed as an
odd MDR query, restricting users to even MDR queries makes inferences substantially
more difficult.

Nonetheless, inference is still possible with only even MDR queries. A series of five
even MDR queries asked by Mallory and their answers are given in Table 2. The first
query sums all six values and the remaining four queries each sum two values. Mallory
then adds the answers to the last four queries (2500) and subtracts from the result the
answer to the first queries (1500). Dividing the result of the subtraction (1000) by two
gives Bob’s adjustment in 2002 (500).

In the rest of this paper we address the following questions naturally motivated by
the above example: 1. How can we efficiently determine whether even MDR queries are



Precisely Answering Multi-dimensional Range Queries without Privacy Breaches 103

safe? 2. What is the impact on users if only even MDR queries are allowed? 3. Besides
the even MDR queries, what else can be answered safely? 4. If even MDR queries are
unsafe, can we find a large safe subset?

1.2 Assumptions

We only consider stateless inference control methods. That is, the methods that grant
or deny incoming queries independent of the queries previously asked by the user. For
example, restrictions on the size or parity of queries are stateless. On the other hand,
the stateful methods base authorization decisions on the history of queries asked by
a specific user, for example, controlling the size of overlaps between queries. Stateful
restrictions are usually infeasible in practice, because users can subvert them by using
aliases for login or colluding.

We assume users do not possess the external knowledge1 about the boundaries of pro-
tected individual values. Consequently, we consider the protected values as unbounded
reals. Under that assumption, it is relevant for inference control to know which values
users know and which they do not, but the specific values are irrelevant. For example,
all the inferences we discuss in Section 1.1 are possible regardless of the explicit values
we put in Table 1. Inference of approximate values caused by external knowledge about
boundaries or data types has been studied in [22, 24]. Their inference control methods
can be incorporated into our methods as post-processing, because the inferences we
study require less external knowledge and should be checked first.

On the other hand, we assume users may know some of the protected values from
external knowledge. For example, in Table 1 users know Alice does not have a valid salary
adjustment in year 2003 because she has left Company A by the end of 2002. Regardless
of the specific sources of external knowledge, we shall treat all known values as empty
cells. We do not consider the known values of which the inference control mechanism
is not aware (undetected external knowledge). Under this assumption, the summation of
any two real unbounded values is considered safe. We address the issue of undetected
external knowledge in Section 7.

2 Related Work

Inference control has been extensively studied in statistical databases [12, 1, 14] and the
proposed methods are usually classified into two categories: restriction-based techniques
and perturbation-based techniques. Restriction-based techniques include restricting the
size of query sets (i.e., the tuples that satisfy a single query) [17], restricting the size
of overlaps [15] between query sets, detecting inferences by auditing all queries asked
by a specific user [10, 8, 20, 5], suppressing sensitive data in released statistical tables
[11], and grouping tuples and treating each group as a single tuple [9, 25]. Perturbation-
based techniques add noise to source data or outputs [28, 4, 27]. Other aspects of the
inference problem include the inference caused by arithmetic constraints [6], inferring
approximate values instead of exact values [24] and inferring intervals enclosing exact
values [22, 21, 23]. The inference control methods proposed for statistical databases do

1 The knowledge obtained from sources other than queries [12].
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not consider the unique structure of MDR queries. This renders them ineffective and
inefficient for MDR queries. We show some examples in Section 4.

Recently a variation of the inference control problem, namely, privacy preserving
data mining, has drawn considerable attention as seen in [2, 26]. They all attempt to
perturb sensitive values while preserving the classifications or association rules that
can be learned from the data set. In doing so, they assume that a user’s objective of
data analysis is predictable. However, in OLAP systems this assumption may not hold,
because we do not know in advance what users may want to discover. Our work does not
have this limitation, because what we give users is not the results (e.g., classifications
or association rules), but the means (the precise answers to their queries) to obtain the
results they desire.

Controlling inferences of a special class of MDR queries, namely, data cubes, is
studied in [29]. They give sufficient conditions for safe data cubes based on the cardinality
of the data core. A data core is safe if it is full or dense (the number of known values is
either zero or under the given bound). Note that this condition does not apply to those
MDR queries that are not included in the data cube. This paper strengthens this result
by giving necessary and sufficient conditions for all MDR queries.

The inference problem of one-dimensional range queries is studied in [8], and the
MDR case is considered difficult. The usability (i.e., the highest possible ratio of the
number of safe queries to that of all queries) of MDR queries in the full core is stud-
ied in [5]. They mention but do not fully explore the restriction of even MDR queries.
However, the general case with known values (referred to as holes in [5]) is thought to
be challenging. In [7, 10] Chin gives necessary and sufficient condition for the compro-
misability of sum-two queries. He also proves that finding the maximal safe subsets of
unsafe sum-two queries is NP-hard. However, sum-two queries are rare in practice. In
this paper we use his results by reducing the compromisability of even MDR queries to
that of sum-two queries.

3 Basic Definitions

This section defines the basic concepts and notations. We use I, R, Ik, Rk, Rm×n to de-
note the set of integers, reals, k-dimensional integer vectors, k-dimensional real vectors
and m by n real matrices, respectively. For any u, v, t ∈ R

k, we write u ≤ v and
t ∈ [u, v] to mean that u[i] ≤ v[i] and min{u[i], v[i]} ≤ t[i] ≤ max{u[i], v[i]} for
all 1 ≤ i ≤ k, respectively. We use t for the singleton set {t} whenever clear from the
context.

Definition 1 (Core).
For any d ∈ I

k, use F(d) to denote the Cartesian product Πk
i=1[1, d[i]]. We say

F = F(d) is the full core. Any C ⊆ F is a core. Any t ∈ F is a tuple. Any t ∈ F \ C is
a tuple missing from C.

Definition 1 formalizes the concepts of full core, core, and tuple. The full core is
formed by the Cartesian product of closed integer intervals. A core is any subset of the
full core. A tuple is any vector in the full core and a tuple missing from the core is any
vector in the complement of the core with respect to the full core.
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Definition 2 (MDR Query, Sum-two Query and Arbitrary Query). Given any full
core F and core C ⊆ F ,

1. Define functions

(a) q�(.) : F × F → 2C as q�(u, v) = {t : t ∈ C, t ∈ [u, v]}.
(b) q2(.) : C × C → 2C as q2(u, v) = {u, v} if u �= v, and φ otherwise.

2. Use Qd(C) and Qt(C) (or simply Qd and Qt when C is clear from context) for
{q�(u, v) : q�(u, v) �= φ} and {q2(u, v) : q2(u, v) �= φ}, respectively.

3. We call any non-empty q ⊆ C an arbitrary query, any q�(u, v) ∈ Qd an MDR query
(or simply query), and any q2(u, v) ∈ Qt a sum-two query.

In Definition 2 we formalize the concepts of arbitrary query, MDR query, and sum-
two query. An arbitrary query is any non-empty subset of the given core. An MDR query
q�(u, v) is a non-empty subset of the core that includes all and only those tuples bounded
by two given tuples. Intuitively, an MDR query can be viewed as a multi-dimensional
axis-parallel box. A sum-two query is any set of exactly two tuples. We use Qd and Qt

for the set of all MDR queries and all sum-two queries, respectively.

Definition 3 (Compromisability). Given any full core F , core C ⊆ F , and any set of
arbitrary queries S, use M(S) to denote the incidence matrix2 of the set system formed
by C and S, we say that

1. S1 is derivable from S2, denoted as S1 �d S2, if there exists M ∈ R
|S1|×|S2| such

that M(S1) = M · M(S2) holds, where S1 and S2 are sets of arbitrary queries.
2. S1 compromises t ∈ C if t �d S1 (we write t for {{t}}), and S1 is safe if it

compromises no t ∈ C.
3. S1 is equivalent to S2, denoted as S1 ≡d S2, if S1 �d S2 and S2 �d S1.

Definition 3 formalizes the concept of compromisability and related concepts. Be-
cause an arbitrary query is a set of tuples, any given set of arbitrary queries can be
characterized by the incidence matrix of the set system formed by the core and the set of
arbitrary queries. Given two sets of arbitrary queries S1, S2, and the incidence matrices
M(S1), M(S2), we say S1 is derivable from S2 if the row vectors of M(S1) can be
represented as the linear combination of those of M(S2). Intuitively, this implies that
the information disclosed through S1 can be computed from that through S2. We say
S1 compromises a tuple t in the core if the set of queries {{t}} (notice {t} is an MDR
query) is derivable from S1, and S1 is safe if it compromises no tuple in the core. We
say any two sets of arbitrary queries are equivalent if they are mutually derivable.

Example 1. Table 3 gives an example of the core, MDR queries, and compromisability.
As shown in the left upper table in Table 3, the core C contains six tuples. The subscripts
of the tuples give their order. The right upper table shows a set of five MDR queries S.
The lower equation shows that S compromises (1, 2). The left side of the equation is

2 M(S)[i, j] = 1 if the ith arbitrary query in S contains the jth tuple in C, and M(S)[i, j] = 0
otherwise.
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Table 3. An Example of Core, MDR Queries, and Compromisability.

The Core C A Set of MDR Queries:S

1 2 3 4

1 (1,1)1 (1,2)2 (1,3)3
2 (2,2)4 (2,3)5 (2,4)6

q�((1, 1), (2, 4)) {(1, 1), (1, 2), (1, 3),
(2, 2), (2, 3), (2, 4)}

q�((1, 1), (1, 2)) {(1, 1), (1, 2)}
q�((1, 2), (1, 3)) {(1, 2), (1, 3)}
q�((1, 2), (2, 2)) {(1, 2), (2, 2)}
q�((2, 3), (2, 4)) {(2, 3), (2, 4)}

(1, 2) �d S because

[0, 1, 0, 0, 0, 0] = [−1
2 , 1

2 , 1
2 , 1

2 , 1
2 ]·




1 1 1 1 1 1
1 1 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 1




the incidence matrix of (1, 2), and the right side gives a linear combination of the row
vectors in the incidence matrix of S. Table 3 characterizes exactly the same example
given in Tables 1 and 2, except that it uses the concepts and notations we defined in this
section.

The relation ≡d of Definition 3 is an equivalence relation on the family of all sets of
arbitrary queries, because it is reflexive, symmetric, and transitive. Hence if any two sets
of arbitrary queries are equivalent, then one is safe iff the other is. In Section 5 we shall
reduce the compromisability of even MDR queries to that of a special set of sum-two
queries based on this fact.

4 Ineffective or Infeasible Restrictions

In this section we apply several existing restriction-based inference control methods to
MDR queries. Our results show that they are ineffective or infeasible for MDR queries.
We first investigate three methods, Query set size control, overlap size control, and Audit
Expert in Section 4.1. Then we consider the problem of finding maximal safe subsets of
unsafe MDR queries in Section 4.2.

4.1 Query Set Size Control, Overlap Size Control, and Audit Expert

Query Set Size Control. This method prohibits users from asking small queries whose
cardinalities are smaller than some pre-determined threshold nt [17]. For arbitrary
queries, query set size control can be easily subverted by asking two legitimate queries
whose intersection yields a prohibited one, a mechanism known as the tracker in statisti-
cal databases [13]. It is shown that finding a tracker for arbitrary queries is possible even
when nt is about half of the cardinality of the core. At first glance, trackers may seem
to be more difficult to find when users are restricted to MDR queries. However, in [30]
we show that when nt is not big enough ( nt ≤ n

3k ) a tracker can always be found to
derive any given small MDR query, and the tracker consists of only MDR queries.
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Overlap Size Control. This method prevents users from asking queries with large in-
tersections [15]. Any answerable query must have a cardinality of at least n, and the
intersection of any two queries is required to be no larger than r. In order to compromise
any tuple t, one must first ask one query q � t and subsequently (n − 1)/r or more
queries to form the complement of t with respect to q. Consequently, no inference is
possible if less than (n − 1)/r + 1 queries are answered. This bound is not improved
(increased) by restricting users to MDR queries, because for almost any MDR query the
complement of a tuple can always be formed. Overlap size control is infeasible because
it is a stateful method. Moreover, it depends on the restriction of small queries, which is
ineffective as described above.

Audit Expert. Chin gives a necessary and sufficient condition for determining safe
arbitrary queries in Audit Expert [10]. By treating tuples and queries as a set system, the
queries are safe iff the incidence matrix of the set system contains one or more unit row
vectors in its reduced row echelon form (RREF). The elementary row transformation used
to obtain the RREF of an m by n matrix has the complexity O(m2n). Using this condition
online (after queries arrive) may incur unacceptable delay in answering queries because
m and n can be very large in OLAP systems. Moreover, it is a stateful method because
it requires the entire history of queries. A better way to use the condition is to determine
the compromisability of queries off-line [5]. However, although this condition certainly
applies to MDR queries, it is not efficient because it does not take into consideration the
inherent redundancy among MDR queries. In Section 5 we further investigate this issue
in detail.

4.2 Finding Maximal Safe Subsets of Unsafe MDR Queries

When a set of queries is not safe, it is desired to find its maximal safe subset. In [10]
it has been shown that finding the maximal safe subset of unsafe arbitrary queries (the
MQ problem) or sum-two queries (the RMQ problem) is NP-hard. A natural question
is whether restricting users to MDR queries makes the problem easier. Unfortunately,
this is not the case. We show that this problem remains NP-hard even when restricted
to MDR queries (the MDQ problem). The result is based on the intuition that given any
core C0 and any set of sum-two queries S0 ⊆ Qt(C0), we can find another core C1
and a set of MDR queries S1 ⊆ Qd(C1), such that the maximal safe subset of S1 gives
the maximal safe subset of S0 in polynomial time. Consequently, MDQ problem is also
NP-hard.

Theorem 1. The MDQ problem is NP-hard.

Restricted MDQ Problem. Knowing that the MDQ problem is NP-hard, is it possible to
reduce the complexity with further restrictions? We consider data cubes, a special class
of MDR queries originally defined in [18]. We illustrate some of the concepts of data
cubes in Example 2. The following Corollary 1 shows that the MDQ problem remains
NP-hard even when it is restricted to those special MDR queries.

Example 2. In Table 3, the two 1-star cuboids are {q�((1, 1), (1, 4)), q�((2, 1), (2, 4))}
and {q�((1, 1), (2, 1)), q�((1, 2), (2, 2)), q�((1, 3), (2, 3)), q�((1, 4), (2, 4))}. The only
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Table 4. An Example Showing Qe Not Equivalent to Qe ∩ Qt using the same C in Table 3.

Qe q�((1, 1), (1, 2)), q�((1, 2), (1, 3)), q�((2, 2), (2, 3)), q�((2, 3), (2, 4))
q�((1, 2), (2, 2)), q�((1, 3), (2, 3)), q�((1, 2), (2, 3)), q�((1, 1), (2, 4))

Qe ∩ Qt Qe \ {q�((1, 2), (2, 3))} ∪ {q�((1, 1), (2, 4))}
q�((1, 1), (2, 4)) �d Qe ∩ Qt

2-star cuboid is a singleton set {q�((1, 1), (2, 4))}. The data cube is the union of the
three cuboids, which also includes all skeleton queries.

Corollary 1. The problem MDQ remains NP-hard under the restriction that the given
set of MDR queries must be: 1. a set of skeleton queries; 2. a union of some cuboids; or
3. a data cube.

5 Compromisability of Even MDR Queries

This section investigates the compromisability of even MDR queries (that is, MDR
queries involving even number of tuples). First, in Section 5.1 we show that the set of
even MDR queries is equivalent to a subset of sum-two queries (that is, sets of two
tuples). Based on this equivalence, the compromisability of even MDR queries can be
efficiently determined. In Section 5.2 we show that answering any odd MDR query
in addition to even MDR queries leads to compromises, and any odd MDR query is
different from the union of a few even MDR queries by only one tuple. We also show
that the compromisability of arbitrary queries can be efficiently determined given that
the even MDR queries are safe.

5.1 Equivalence between MDR Queries and Sum-Two Queries

Denote the set of all even MDR queries as Qe. To efficiently determine the compromis-
ability of the even MDR queries Qe, we show that there exists a subset Qdt of sum-two
queries Qt, such that Qdt ≡d Qe. Then we can determine whether Qe is safe by check-
ing if Qdt is safe. Intuitively, determining the compromisability of Qdt is easier because
by reducing Qe to Qdt we have removed most redundant queries.

Two natural but untrue conjectures are Qe ≡d Qt and Qe ≡d Qe ∩ Qt. To see why
Qe ≡d Qt is untrue, consider the counter-example with the one-dimensional core C =
{1, 2, 3}. We have that q2(1, 3) ∈ Qt is not derivable from Qe = {q�(1, 2), q�(2, 3)}.
Example 3 gives a counter-example to Qe ≡d Qe ∩ Qt.

Example 3. Table 4 shows Qe �d Qe ∩ Qt because q�((1, 1), (2, 4)) ∈ Qe is not
derivable from Qe ∩ Qt.

From Example 3 we see that Qe �d Qe ∩ Qt because of even queries such as
q�((1, 1), (2, 4)). Such an even query is the union of odd queries like q�((1, 1), (1, 3))
and q�((2, 2), (2, 4)). Intuitively, suppose that from Qe ∩ Qt we can derive each odd
query up to the last tuple. Then we pair the adjacent last tuples of all the odd queries
by adding other sum-two queries to Qe ∩ Qt. Hence, we can derive the even query
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with these additional sum-two queries. Conversely, these additional sum-two queries
can be derived from Qe by reversing this process. We demonstrate this in Example 4
and generalize the result in Theorem 2.

Example 4. In Example 3, we can let Qdt = Qe ∩ Qt ∪ {q2((1, 3), (2, 4))}. Conse-
quently, we derive q�((1, 1), (2, 4)) as the union of q2((1, 1), (1, 2)), q2((2, 2), (2, 3))
and q2((1, 3), (2, 4)). Conversely, q2((1, 3), (2, 4) can be derived as q�((1, 1), (2, 4)) \
(q2((1, 1), (1, 2)) ∪ q2((2, 2), (2, 3))). Hence, now we have Qe ≡d Qdt.

Theorem 2. For any core C, there exists Qdt ⊆ Qt such that Qe ≡d Qdt holds.

The proof of Theorem 2 [30] includes a procedure that constructs Qdt by calling a
subroutine Sub QDT for each even MDR query q�(u0, v0). Sub QDT adopts a divide-
and-conquer approach in pairing the tuples in q�(u0, v0). Intuitively, we view each MDR
query as an axis-parallel box. At the first stage, Sub QDT recursively divides the current
j-dimensional box into (j − 1)-dimensional boxes, until single tuples are returned as
zero-dimensional boxes. Then at the second stage, suppose the current box q�(u, v) is
j-dimensional; Sub QDT pairs every two tuples returned by the (j − 1)-dimensional
boxes (that q�(u, v) has been divided into). If q�(u, v) contains even number of tuples,
then all of them can be properly paired and null is returned to the (j + 1)-dimensional
box. Otherwise, the returned tuple t from the last (j − 1)-dimensional box cannot be
paired and is returned by q�(u, v).

Graph Representation and Complexity Analysis. The time complexity of building Qdt

using Sub QDT is O(mn), where m =| Qe | and n =| C |. Because | Qdt |≤| Qt |≤(|C|
2

)
and m = O(

(|C|
2

)
), we have | Qdt |= O(m). Hence, no more storage is required

by Qdt than by Qe.
For any S ⊆ Qdt, we use G(C, S) for the undirected simple graph having C as

the vertex set, S as the edge set, and each edge q2(t1, t2) incident the vertices t1 and
t2. We call G(C,Qdt) the QDT Graph. It has been shown in [7] that a set of sum-two
queries is safe iff the corresponding graph is a bipartite graph (that is, a graph with no
cycle containing an odd number of edges). This can easily be decided with a breadth-
first search (BFS) on G(C,Qdt), taking time O(n+ | Qdt |) = O(m + n). Hence, the
complexity of determining the compromisability of Qe is dominated by the construction
of Qdt, which is O(mn). Notice that from Section 4 we know that directly applying the
condition of Audit Expert [10] has the complexity of O(m2n). Therefore, our solution
is more efficient than Audit Expert with respect to MDR queries.

Example 5. Example 3 has the cycle composed of q2((1, 3), (2, 3)), q2((2, 3), (2, 4)),
and q2((1, 3), (2, 4)) in Gdt. Hence, Gdt is not a bipartite graph and Qdt (and hence Qe)
is not safe.

5.2 Beyond Even MDR Queries

Characterizing the QDT Graph. We give some properties of the QDT graph in Lemma 1
that are useful for the rest of this section. The first property shown in Lemma 1 is
straightforward. The second property is based on the intuition that if any two tuples t1,
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t2 in the core are not close enough (i.e., q�(t1, t2) /∈ Qdt), then we can find another tuple
t3 ∈ q�(t1, t2), such that q�(t1, t2) ∈ Qdt and t3 is closer to t1 than t2. If q�(t1, t3) /∈
Qdt, we repeat this process. This process can be repeated less than | q�(t1, t2) | times,
and upon termination we have a tuple that is close enough to t1. The third claim is a
natural extension of the first two.

Lemma 1. 1. Qe ∩ Qt ⊆ Qdt.
2. For any t1, t2 ∈ C satisfying that | q�(t1, t2) |> 2, there exists t3 ∈ q�(t1, t2) such

that q�(t1, t3) ∈ Qdt.
3. G(C,Qdt) is connected.

Properties of Qdt. Although we have shown that Qdt ≡d Qe, Qdt may not be the
smallest or the largest subset of Qt that is equivalent to Qe. The smallest subset can be
obtained by removing all of the cycles containing even number of edges from G(C,Qdt).
If Qe is safe, we then have a spanning tree of G(C,Qdt), which corresponds to a set of
linearly independent row vectors in the incidence matrix. On the other hand, we are more
interested in the maximal subset of Qt that is equivalent to Qe. According to Lemma 2,
a safe Qe essentially allows users to sum any two tuples from different color classes
of G(C,Qdt), and to subtract any two tuples of the same color. The maximal subset of
Qt equivalent to Qe is hence the complete bipartite graph with the same bipartition of
G(C,Qdt).

Lemma 2. Given that Qe is safe, let (C1, C2) be the bipartition of G(C,Qdt) and
Q�

dt = {q2(u, v) : u ∈ C1, v ∈ C2}. We have that

1. Q�
dt ≡d Qdt.

2. For any S ⊆ Qt, if S ≡d Qdt then S ⊆ Q�
dt.

3. For any t1, t2 ∈ C1 ( or t1, t2 ∈ C2 ), there exists r ∈ R
|Qdt| such that M(t1) −

M(t2) = r · M(Qdt).

Odd MDR Queries. Now that we can determine the compromisability of Qe, we would
like to know if anything else can be answered safely. First, we consider odd MDR queries
that form the complement of Qe with respect to all MDR queries Qd. Intuitively, feeding
any odd MDR query q�(u0, v0) into Sub QDT as the input gives us a single tuple t. Sup-
pose q�(u0, v0) is a j-dimensional box. It can be divided into two j-dimensional boxes
excluding t, together with a (j − 1)-dimensional box containing t. We can recursively
divide the (j − 1)-dimensional box in the same way. Hence, q�(u0, v0) is the union of
a few disjointed even MDR queries together with a singleton set {t}. This is formally
stated in Corollary 2.

Corollary 2. Given d ∈ R
k, F = F(d), C ⊆ F , and any q�(u, v) ∈ Qd \Qe satisfying

| {i : u[i] �= v[i]} |= j, there exists q�(ui, vi) ∈ Qe for all 1 ≤ i ≤ 2j − 1,
such that | q�(u, v) \ ⋃2j−1

i=1 q�(ui, vi) |= 1 and q�(ui, vi) ∩ q�(ul, vl) = φ for all
1 ≤ i < l ≤ 2j − 1.

Example 6. In Table 4, using q�((1, 1), (2, 3)) as the input of Sub QDT gives the out-
put (1, 3). q�((1, 1), (2, 3)) can be divided into q�((1, 1), (1, 3)) and q�((2, 2), (2, 3)).
q�((1, 1), (1, 3)) can be further divided into q�((1, 1), (1, 2)) and {(1, 3)}. Hence, we
have q�((1, 1), (2, 3)) = q�((1, 1), (1, 2)) ∪ q�((2, 2), (2, 3)) ∪ {(1, 3)}
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Corollary 2 has two immediate consequences. First, no odd MDR query is safe in
addition to Qe. Equivalently, any subset of Qd with Qe as its proper subset is unsafe.
Second, any odd MDR query is different from the union of a few number of even MDR
queries by only one tuple. This difference is negligible because most users of MDR
queries are interested in patterns and trends instead of individual values.

Arbitrary Queries. We know the implication of Qe in terms of sum-two queries from
Lemma 2. Hence, we can easily decide which arbitrary queries can be answered in
addition to a safe Qe. Corollary 3 shows that any arbitrary query can be answered iff it
contains the same number of tuples from the two color classes of G(C,Qdt). This can
be decided in linear time in the size of the query by counting the tuples it contains. The
compromisability of odd MDR queries hence becomes a special case of Corollary 3,
because no odd MDR query can satisfy this condition.

Corollary 3. Given that Qe is safe, for any q ⊆ C, q �d Qe iff | q ∩ C1 |=| q ∩ C2 |,
where (C1, C2) is the bipartition of G(C,Qdt).

6 Unsafe Even MDR Queries

In this section we consider the situations where even MDR queries are unsafe. We show
the equivalence between subsets of even MDR queries and sum-two queries, and give a
sufficient condition for the safe subsets.

We have seen in Section 4.2 that finding maximal safe subsets of queries is infeasible
even for queries of restricted form, such as sum-two queries and data cubes. Hence, we
turn to large but not necessarily maximal safe subsets that can be found efficiently.
Recall that in Section 5 we were able to efficiently determine the compromisability of
Qe because of Qe ≡d Qdt. If we could establish the equivalence between their subsets,
we would be able to extend the results in Section 5 to those subsets. However, equivalence
does not hold for arbitrary subsets of Qe or Qdt, as shown in Example 7.

Example 7. Consider Qdt of Example 4. Let Sdt = Qdt \ {q2((1, 1), (1, 2))}. Suppose
Sdt ≡d Se for some Se ⊆ Qe. Because q�((1, 3), (2, 4)) �d Se, Se must contain
q�((1, 1), (1, 2)), but then q�((1, 1), (1, 2)) �d Sdt, a contradiction. Hence, Sdt is not
equivalent to any subset of Qe. Similarly, Qe \ {q�((1, 1), (1, 2))} is not equivalent to
any subset of Qdt.

Intuitively, any MDR query can be viewed as a sub-core. The equivalence given in
Theorem 2 must also hold for this sub-core as the following. The even MDR queries
defined in the sub-core are equivalent to the sum-two queries added to Qdt by Sub QDT
with those even MDR queries as its inputs. This result can be extended to any subset of
the core, as long as the subset can be represented as the union of some sub-cores. Given
any S ⊆ Qe, if we delete each q�(u, v) ∈ Qe \ S from the core then the result must be
the union of some sub-cores. Similarly, given any S ⊆ Qdt, for each q2(u, v) ∈ Qdt \S,
if we delete q�(u, v) from the core then the result is the union of some sub-cores. In
this way, the equivalence between subsets of Qe and subsets of Qdt can always be
established. This is formalized in Proposition 1.
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Proposition 1. 1. Given any S ⊆ Qe, let Se = S \ {q�(u, v) : ∃q�(u0, v0) ∈ Qe \
S, q�(u, v) ∩ q�(u0, v0) �= φ} and Sdt = {q2(u, v) : ∃q�(u0, v0) ∈ Se, q

2(u, v) ∈
Qdt due to q�(u0, v0)}. Then Se ≡d Sdt.

2. Given any S ⊆ Qdt, let Se = Qe \ {q�(u, v) : ∃(u0, v0), q2(u0, v0) ∈ S ∧
q�(u, v) ∩ q�(u0, v0) �= φ}, and Sdt = {q2(u, v) : ∃q�(u0, v0) ∈ Se, q

2(u, v) ∈
Qdt due to q�(u0, v0)}. Then Sdt ≡d Se.

Proposition 1 guarantees the equivalence at the cost of smaller subsets. In some
situations, we are satisfied with the weaker result, such as Sdt  Se for some Se ⊆ Qe.
Because then if Sdt is safe, then Se must also be safe, although the converse is not always
true. The result in Proposition 2 is similar to Corollary 3 but gives only the sufficient
condition. In Proposition 2, Se can be found by examining each query in Qe against the
bipartition (C1, C2), taking time O(mn), where m =| Qe | and n =| C |.
Proposition 2. For any Sdt ⊆ Qdt, let (C1, C2) be the bipartition of G(C, Sdt). Then
Sdt  Se holds, where Se ⊆ Qe satisfies that for any q�(u, v) ∈ Se, | q�(u, v)∩C1 |=|
q�(u, v) ∩ C2 |=| q�(u, v) | /2 holds.

By Proposition 2 we can efficiently find a safe subset Se of Qe if a safe subset Sdt

of Qdt is given. The ideal choice of Sdt should maximize | Se |. This is equivalent to
computing the combinatorial discrepancy of the set system formed by C and Qe [3]. The
alternative approach is to maximize | Sdt |, which is equivalent to finding the maximal
bipartite subgraph of G(C,Qdt).

Instead of those solutions that may incur high complexity, we can apply a simple
procedure given in [16]. It takes the graph G(C,Qdt) as the input and outputs a bipartite
subgraph. It starts from an empty vertex set and empty edge set and processes one vertex
at each step. The unprocessed vertex is colored blue if at least half of the processed
vertices to which it connects are red. It is colored red, otherwise. Any edge in the
original graph is included in the output bipartite subgraph if it connects two vertices in
different colors. The procedure terminates with a bipartite graph G(C,Qds) satisfying
that | Qds |≥| Qdt | /2. The procedure runs in O(n2) = O(m), where n =| C | and
m =| Qe |. Our ongoing work will address the effectiveness of this procedure through
empirical results.

7 Discussion

A novel three-tier inference control model was proposed for OLAP systems in [29]. The
results given in Sections 5 and 6 fit in this model perfectly. In this section, we briefly
justify this claim but leave out more details due to space limitations.

The Three-Tier Inference Control Model of [29]. The objectives of the three-tier in-
ference control model are to minimize the performance penalty of inference control
methods and to make inference control less vulnerable to undetected external knowl-
edge. This is achieved by introducing a new tier, aggregation tier A, to the traditional
two-tier view (i.e., data tier D and query tier Q) of inference control. The three tiers are
related by RAD ⊆ A × D, RQA ⊆ Q × A, and RQD = RAD ◦ RQA. The aggregation
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tier A satisfies three conditions. First, | A | is comparable to | D |. Second, there exists
partition P on A such that the composition of RAD and the equivalence relation decided
by P gives a partition on D. Finally, inferences are eliminated in the aggregation tier A.

The three-tier model gains its advantages through its three properties. Because | A |
is relatively small (suppose | Q |>>| D |), controlling inferences of A is easier than
that of Q because of the smaller input to inference control methods. Because of the
second property of A, inference control can be localized to the RAD-related blocks
of A and D, which further reduces the complexity. Moreover, any consequences of
undetected external knowledge in some blocks are confined to these blocks, making
inference control more robust. Finally, as the most expensive task of three-tier inference
control, the construction of A can be processed off-line (i.e., before any query arrives).
Because decomposing queries into pre-computed aggregations is a built-in capability in
most OLAP systems, the online performance overhead of three-tier inference control is
almost negligible.

Applicability of Our Results. Partitions of data sets based on the dimension hierarchies
naturally compose the data tier. Each block in the partition corresponds to a core. The
safe Qdt (or its safe subsets Sdt if it is unsafe) composes each block of the aggregation
tier. The query tier includes any arbitrary query derivable from the aggregation tier. If
we characterize Qe using the row vectors in M(Qe), then the query tier is the linear
space they span. The relations RAD and RQA are both the derivability relation �d given
in Definition 3, and RQD = RAD ◦ RQA is a subset of �d, because �d is transitive.

In Section 5 we showed that | Qdt |= O(n2), where n =| C |, satisfying the first
condition of the three tier model. Because Qdt is defined separately on each core, the
aggregation tier has a natural partition corresponding to the partition of the data tier,
satisfying the second condition. The last condition is satisfied because we use the safe
subsets of Qdt when it is unsafe. Hence by integrating our results on the basis of the
three tier model, we inherit all the advantages including negligible online performance
overhead, and the robustness in the face of undetected external knowledge (that is, the
damage caused by undetected external knowledge is confined to blocks of the partition
of data tier and aggregation tier).

Moreover, our results provide better usability to OLAP systems than the cardinality-
based approach in [29] does. Firstly, the cardinality-based conditions become invalid
when MDR queries other than those contained in the data cube (i.e., skeleton queries)
are answered. In this paper we allow any MDR queries if only they are safe. The MDR
queries generalize data cubes and various data cube operations, such as slicing, dicing,
roll up and drill down. Our answers to even MDR queries are precise, and the answered
even MDR queries closely approximate the restricted odd ones. Secondly, when a data
cube is unsafe, it is simply denied in [29]. However, in this paper we are able to give
partial answers to an unsafe set of even MDR queries, implying better usability. Our
methods for computing the partial answers are also efficient. Thirdly, we use necessary
and sufficient conditions to determine safe even MDR queries, while the cardinality-
based conditions are only sufficient. Therefore, we can provide more answers to users
without privacy breaches than the methods of [29] do.
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8 Conclusion and Future Direction

In this paper we have shown the infeasibility of applying several existing restrictions to
MDR queries. We then proved the equivalence between the even MDR queries and a
special set of sum-two queries. On the basis of this equivalence we are able to efficiently
determine the compromisability of even MDR queries. We showed that the restricted
odd MDR queries are closely approximated by the answered even ones. We showed that
safe arbitrary queries can be efficiently determined. We can also maintain this equiva-
lence when even MDR queries are unsafe. Our on-going work implements the proposed
algorithms in order to explore their fine tunings. Another future direction is to investigate
the aggregation operators other than SUM.
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