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The use of portable X-ray stress analyzers, which utilize an area detector along

with the newly adopted ‘cos�’ or full-ring fitting method, has recently attracted

increasing interest. In laboratory conditions, these measurements are fast,

convenient and precise because they employ a single-exposure technique that

does not require sample rotation. In addition, the effects of grain size and

orientation can be evaluated from the Debye ring recorded on the area detector

prior to data analysis. The accuracy of the measured stress, however, has been

questioned because in most cases just a single reflection is analyzed and the

sample-to-detector distances are relatively short. This article presents a

comprehensive analysis of the uncertainty associated with a state-of-the-art

commercial portable X-ray device. Annealed ferrite reference powders were

used to quantify the instrument precision, and the accuracy of the stress

measurement was tested by in situ tensile loading on 1018 carbon steel and 6061

aluminium alloy bar samples. The results show that the precision and accuracy

are sensitive to the instrument (or sample) tilt angle ( 0) as well as to the

selected hkl reflection of the sample. The instrument, sample and data analysis

methods all affect the overall uncertainty, and each contribution is described for

this specific portable X-ray system. Finally, on the basis of the conclusions

reached, desirable measurement/analysis protocols for accurate stress assess-

ments are also presented.

1. Introduction

X-ray diffraction techniques have been used to determine the

near-surface stress state of crystalline materials for nearly a

century, and significant advances have been made in both

hardware technologies and analysis methods (Noyan &

Cohen, 1987). The former includes high-resolution detectors,

modern optical devices and associated electronics. The latter

corresponds to the advanced grain interaction models

(Kroner, 1958; Hashin & Shtrikman, 1962; Dölle, 1979), as

well as to the integration of finite element simulations (Chen

& Kovacevic, 2003; Clausen, Lee et al., 2003). High precision

and accuracy of the measured stress must be balanced with

other important criteria, such as measurement speed and

portability for industrial applications. Formerly, small devices

with portable films provided less reliable results compared to a

laboratory diffractometer, but advances in the reliability of

portable equipment have opened the door to in situ and in-line

measurements, which are of great industrial interest.

The idea of miniaturization of the X-ray system itself is not

new at all. Early reports of portable devices from the 1960s

described residual stress measurement in aircraft parts using

back-reflection photographic film techniques (Bolstad, 1967;

Homicz, 1967). Later generations of portable devices (James

& Cohen, 1978a; Ruud et al., 1984; Araki, 1989; Brauss et al.,

1996; Monin et al., 2003; Farrell, 2010) utilized position
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sensitive detectors (PSDs) to minimize or completely remove

detector rotation because non-digitized film reading is labor-

ious (Monin et al., 2000) and any motion of sample or detector

can introduce significant errors due to the short sample-to-

detector distance. For example, the double exposure tech-

nique is ten times more sensitive to the displacement error

than a single exposure (Ruud et al., 1984). Two-dimensional

image plates, also known as storage phosphors, were devel-

oped in the 1980s, first for diagnostic radiography (Sonoda et

al., 1983) and later for X-ray diffraction (Miyahara et al., 1986;

Amemiya & Miyahara, 1988; Yoshioka & Ohya, 1992). This

laser-stimulated luminescence technique replaced the old films

and even one-dimensional PSDs in portable X-ray systems.

Other types of area detectors, such as two-dimensional PSDs

(multi-wire PSDs) and charge coupled devices (CCDs), also

competed with the image plate. Detailed descriptions of the

advantages and disadvantages of each detector (Eathough et

al., 1999) and a performance comparison between image

plates and CCDs (Kiss et al., 2002) can be found elsewhere.

Another critical component in the success of new portable

devices utilizing area detectors is the development of stress

determination methods that take full advantage of what has

been termed ‘two-dimensional’ diffraction: cos� (Taira et al.,

1978; Taira & Tanaka, 1979), XRD2 (He, 2011) and full-ring

fitting methods (Kampfe et al., 2000),1 all of which make use of

the contour of the Debye ring. Regardless of detector type, the

sin2 method was ubiquitous until the 1980s; since the 1990s,

two-dimensional methods have become more available along

with high-resolution area detectors.

Currently, there are many competing efforts developing

high-resolution portable X-ray devices2 for industrial appli-

cations. Initially these were targeted for the steel industry

(Ganesh et al., 2013; Farrell, 2010), but

applications are expanding alongside the

shrinking scale of functional materials.

Despite the obvious benefits of a

portable device, there have been no

objective evaluations of the uncertainty

budget of advanced, commercial,

portable X-ray units from third parties

without conflict of interest. Furthermore,

there has been no agreement among

experts about the most efficient, precise

and accurate stress determination

methods. For these reasons, we chose

one of the state-of-the-art portable X-ray

devices equipped with an image plate

and carried out a series of systematic

tests on both precision and accuracy of

the stress measurement.

A schematic of the portable device

used in this study is displayed in Fig. 1(a),

and a typical Fe 211 powder pattern is shown in Fig. 1(b). We

previously reported that the strain precision of this portable

machine is about 9 microstrain (m") with ferrite reference

powders (Ling & Lee, 2015), and that in essence the sin2 and

cos� methods are theoretically identical (Ramirez-Rico et al.,

2016) and yield statistically indistinguishable experimental

results (Ramirez-Rico et al., 2016; Ling & Lee, 2015). The

mathematical equivalency between sin2 and cos� was also

shown very recently (Miyazaki & Sasaki, 2016). Stress

measurement with an image plate and the cos�method is now

known to be fast (90 s for steel), convenient (no center of

rotation alignment) and precise (2 MPa repeatability in

ferritic steel), in a well controlled environment. However,

measured stress values often differ from the known applied

ones, and only a narrow range of measurement conditions

have been tested. Thus it is necessary to investigate

measurement accuracy in more relaxed environments that

resemble field or production line conditions.

In this article, we report comprehensive uncertainty

analyses of a portable X-ray device, including the measure-

ment parameter dependency of both stress precision (x4.1)

and accuracy (x4.2), as well as the effect of the choice of a

particular reflection (x4.3). Uncertainties from each error

source are discussed in x5.

2. Stress determination methods

Diffraction-based stress determination is an indirect conver-

sion process from a strain, ", to a stress, �, tensor via a

constitutive law such as

�ij ¼ Cijkl"kl; ð1Þ

where Cijkl are the components of the elastic stiffness tensor. If

a material is elastically isotropic, equation (1) can be simpli-

fied to
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Figure 1
(a) A schematic diagram of the portable X-ray device used in this study. The detector (shaded in
blue) has a diameter of 60 mm with a 6 mm hole at the center for beam penetration. (b) A typical
diffraction pattern of Fe 211 viewed from the top. Data used for the sin2 and cos� methods are
marked with hollow circles and dashed lines, respectively.

1 XRD2 and the full-ring fitting method are basically the same, but only part of
the ring is used in the XRD2 system.
2
m-X360 (Pulstec), SmartSite RS (Rigaku), mXRD (Proto), Xstress 3000

(Stressteck), MAX (TEC), Xsolo (Inel) etc. are currently available portable X-
ray devices for stress measurements.
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with two independent parameters, Young’s modulus E and

Poisson’s ratio �. Here �ij ¼ 0 if i 6¼ j or �ij ¼ 1 if i ¼ j. The

interplanar spacing dhkl is used as a built-in strain gauge and

calculated from the diffraction peak position in the laboratory

coordinate system ( 0, ’0); corresponding strains are trans-

formed into the sample coordinates ( , ’) before stress

conversion. Starting from the basic formula of equation (2),

the next two sub-sections briefly describe the equations used

in the sin2 and cos� methods.

2.1. The sin2w method

The strain measured along the scattering vector at angles

( , ’) from the z and x axes can be written in terms of the

strain component "ij in the sample coordinate system as

" ’ ¼
d ’ � d0

d0
¼ "11 cos

2 ’þ "12 sin 2’þ "22 sin
2 ’� "33

� �

� sin2  þ "33 ð3Þ

by assuming a bi-axial plane stress condition without steep

stress gradients in the near-surface region. Here d ’ is the

interplanar spacing at  and ’, and d0 is the unstressed

interplanar spacing. If the material’s elastic behavior is

isotropic and homogeneous, equation (3) can be expressed in

terms of stress via equation (2), as follows:

d ’ � d0

d0
¼

1þ �

E
�’ sin

2  �
�

E
�11 þ �22ð Þ; ð4Þ

where �’ ¼ �11 cos
2 ’þ �12 sin 2’þ �22 sin

2 ’.

If the in-plane stress is not dependent on angle ’, the

equation can be further simplified as

�11 ’ ¼ 0ð Þ ¼
E

1þ �

@" 

@ sin2  

� �

; ð5Þ

which is the well known sin2 equation. The bi-axial in-plane

stress can then be determined from the slope of a d versus

sin 2 plot. If the d versus sin2 plot is linear, only two

measurements at  = 0 and  , the so-called ‘two-tilt’ method,

are required, as expressed in equation (6) with ’ = 0:

�11 ’ ¼ 0ð Þ ¼
E

1þ �

1

sin2  

cot �

2
2�0 � 2� 
� �

¼ K�2�; ð6Þ

where the stress constant

K ¼
E

1þ �

1

sin2 

cot �

2
: ð6aÞ

� is the Bragg angle, which is about (�0 + � )/2, where �0 and � 
are the diffracting angles at  = 0 and  , respectively. This

two-tilt sin2 method using an area detector is very useful

because the displacement error due to sample rotation is

eliminated.

2.2. The cosa method

The two-dimensional cos�method was first proposed in the

late 1970s (Taira et al., 1978; Taira & Tanaka, 1979) using

photographic film. It was applied to the image plate in the

early 1990s (Yoshioka & Ohya, 1992), and has been further

developed for advanced use since the late 1990s (Sasaki et al.,

1997; Sasaki & Kobayashi, 2009; Sasaki et al., 2014). Suppose

that a diffraction ring forms on the image plate through which

the incident beam passes with an angle of  0 and ’0 from the z

and x axes, as shown in Fig. 1. The strain "� projected along a

direction with angle � can be expressed as the following, under

the same assumptions as in the sin2 method:

"� ¼ �11
1

E

� �

n21 � � n22 þ n23
� �� �

þ �22
1

E

� �

n22 � � n21 þ n23
� �� �

þ �12
2 1þ �ð Þ

E

� 	

n1n2ð Þ; ð7Þ

where n1, n2, n3 are the directional cosines of the normal of the

diffracting plane with respect to the axes in the sample coor-

dinates and depend on �, �,  0 and ’0. Substituting ��, �þ �

and �� � for � in equation (7), we can then obtain the

following relations:

a1 ’0ð Þ ¼ 1
2 ð"� � "�þ�Þ þ ð"�� � "���Þ
� �

; ð8Þ

a2 ’0ð Þ ¼ 1
2 ð"� � "�þ�Þ � ð"�� � "���Þ
� �

: ð9Þ

Expressing equations (8) and (9) in terms of stress after re-

expressing the directional cosines leads to the final relation-

ships for this method:

�11 ’0 ¼ 0ð Þ ¼ �
E

ð1þ �Þ

1

sin 2�

1

sin 2 0

@a1

@ cos �

� �

; ð10Þ

�12 ’0 ¼ 0ð Þ ¼
E

2ð1þ �Þ

1

sin 2�

1

sin 0

@a2

@ sin �

� �

; ð11Þ

where � is defined in Fig. 1. For a given  0 and �, we can get

the in-plane normal stress from the slope of the a1 versus cos �

plot when ’0 ¼ 0 from equation (10).

There are other two-dimensional methods such as XRD2 or

full-ring fitting. However, only cos� is chosen in this study as a

representative of two-dimensional methods because the

fundamental equation of the XRD2 method is basically iden-

tical to equation (7), and it measures only part of the Debye

ring (Miyazaki & Sasaki, 2016), while the cos� and full-ring

methods use all of the information. We have also shown

experimentally that, when using the same dataset, there was

no difference between the cos� and full-ring fitting methods

(Ramirez-Rico et al., 2016).

In summary, equations (5) and (10) are the basic equations

for the sin2 and cos� analysis in isotropic, homogeneous and

bi-axial stress conditions. For anisotropic, heterogeneous or

multi-axial stress cases, these equations have to be modified as

reported previously by Noyan & Cohen (1987) and Dölle

(1979) for the sin2 method and by Sasaki and co-workers

(Sasaki et al., 2014; Sasaki & Kobayashi, 2009) for the cos�

method.

research papers

J. Appl. Cryst. (2017). 50, 131–144 Seung-Yub Lee et al. � Precision and accuracy of stress measurement 133



3. Experiment and data analysis

3.1. Samples

Three samples were tested: (1) Fe

reference powders (E: 224 GPa, �:

0.28) provided by the manufacturer

of the portable X-ray device, (2) solid

bars of 1018 mild carbon steel

(E: 203 GPa, �: 0.28) and (3) solid

bars of 6061 aluminium alloy

(E: 69 GPa, �: 0.33) purchased from

the McMaster–Carr supply company.

The Fe reference powders were

annealed to remove any pre-existing

defects and residual stress. With

average grain size > 1 mm, size or

strain broadening effects were not

expected in the diffraction patterns of

these powders. Measurements of the

reference powders were therefore

used to characterize the intrinsic instrument precision of the

portable X-ray device. The solid bar samples of Fe and Al,

both with dimensions 0.25 � 0.25 � 2400 (100 = 25.4 mm), were

loaded in tension for accuracy testing. Since the Fe is the main

testing sample, we measured the microstructure of the carbon

steel bar by optical microscopy (ZEISS Axio Scope) and

electron backscatter diffraction (EBSD) (JEOL 5600

equipped with HKL Nordlys and Channel 5 software; Oxford

Instruments, Abingdon, Oxfordshire, UK), as shown in Fig. 2.

These measurements clearly display elongated grains along

the vertical (Z) direction. X-ray diffraction from 20 to 110� in

2� with a Cu source (D500 diffractometer) probing both the

top cross section (XY plane) and the side wall (XZ plane)

revealed that some (110) texture was developed in the Z

direction, similar to wire extrusion, while grains parallel to the

side wall (XZ plane) are distributed quite isotropically. The

110 peak intensity ratio [I110/(I110 + I200 + I211 + I220)] is 0.74,

0.66 and 0.63 for the top cross section, side wall and JCPDS

reference, respectively. The EBSD analysis from the top cross

section also shows a larger population of (110) grains than

seen in the side walls.

3.2. In situ diffraction measurements in tensile loading

The 1018 mild carbon steel and 6061 Al alloy bar samples

were placed in an Instron 5984 Universal Testing Machine for

tensile loading up to 300 and 200 MPa, respectively. Experi-

ments were carried out under load control to keep the elastic

stress constant during diffraction measurements, and samples

were held by pneumatic grips as shown in Fig. 3. A miniature

portable X-ray apparatus was mounted next to the sample

(sample-to-detector distance 30–60 mm) with various tilt

angles ( 0 in the range 5–48
�). The load was increased in 25 or

50 MPa steps. At each load we performed diffraction

measurements for about 90 s for Fe and 120 s for Al. The

specifications of the portable X-ray unit are the following:

tube voltage (30 kV), current (1 mA), source (Cr K� with 	

filter), X-ray energy (
 = 2.29 Å, E = 5.4 keV), collimator

(1 mm diameter), beam size (2 mm diameter), sensor unit

weight (5 kg), power supply weight (6 kg), energy consump-

tion (80 W in operation, 30 W in standby mode). The specific

model and company information about this portable device is

not disclosed here for objective evaluation.

3.3. Measurement parameters

Instrumental parameters which influence the precision and

accuracy of the stress measurement include beam size and

divergence, use of a K	 filter, sample-to-detector distance,

choice of tilt angle  0, detector resolution, peak fitting
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Figure 2
Optical (a), (b) and EBSD (c), (d) images for the 1018 carbon steel sample from the top cross section
(a), (c) and side surface (b), (d), which show elongated grains in the vertical direction. The measured
average grain size is about 15–20 mm.

Figure 3
(a) Experimental setup for the in situ tensile loading test with a 240 0 long
rectangular bar. (b) Schematic illustration with diffraction geometry. The
portable device was tilted to probe various diffraction vectors. Note that
2� = 2� � 2�,  =  0 � �.



function, scanning time etc. Among these parameters, the most

important are sample tilt angle ( 0) and sample-to-detector

distance (abbreviated as ‘SD’ hereafter).

Fig. 4 shows the one-dimensional diffraction profiles inte-

grated from the Debye rings of Fe reference powders. If the

displacement error is autocorrected by SD adjustment so that

the peak centers are shifted to the position expected from

Bragg’s law, there is no noticeable difference due to sample tilt

angle ( 0), as shown in Fig. 4(a). However, the 2� range and

intensity are directly influenced by the SD. The use of large

SDs results in a narrower 2� range and thus in higher reso-

lution, but at the cost of sacrificing intensity. Meanwhile, as the

SD becomes smaller, the peak intensity increases with

increasing 2� coverage. For example, for a given detector

configuration (29.7 mm outer radius with 3 mm inner radius,

50 mm pitch, 534 radial pixels), a 60 mm SD covers 23� in 2�

resulting in 0.04� resolution, whereas coverage doubles when

the SD is reduced to 20 mm at the cost of increasing the

resolution to 0.08�. In general, there is a trade-off between

intensity and resolution in the chosen sample-to-detector

distance. This effect is somewhat mitigated because, as seen in

Fig. 4(b), the peak-to-background ratio remains about the

same. Thus it is better to keep the SD large as long as the

reflection peak of interest falls within the range covered by the

image plate.

3.4. Instrument resolution and beam center calibration

Before addressing questions of precision and accuracy

under field measurement conditions, the intrinsic instrument
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Figure 4
Fe 211 powder diffraction patterns obtained at � = 0, with various (a)  0 at SD = 35 mm and (b) SD at  0 = 35�. The intensity and 2� range are strongly
dependent on SD.

Figure 5
(a) Peak center position versus � angle (blue solid line) and calibration curve (red dashed line) resulting from the 25 mm beam center offset. (b)
Calibrated peak center plot obtained by adding the two curves from (a). This corrected profile is used for the stress calculations expressed in
equation (10).



resolution, i.e. the best attainable precision in laboratory

conditions, and raw data calibration procedure must be

established.

The spatial resolution of each detector pixel is determined

by the pitch of the laser scan, which can be adjusted from 20 to

100 mm; a default value of 50 mm was used throughout all the

measurements in this study. For a given detector size (59.4 mm

diameter with 6 mm diameter hole in the center for beam

penetration and collimator installation), 50 mm radial pitch

and 0.72� angular step in a spiral reading generates 534 data

points in 2� and 500 data values at each 2� in terms of the �

angle.

We performed preliminary tests with annealed Fe reference

powders at one of the recommended settings: 35�  0, 38 mm

SD. A total of 80 measurements were repeated over the course

of 48 h with multiple cycles, turning the apparatus on/off, but

without moving any part of the sample or machine for the best

true instrument precision. In order to quantify every source of

uncertainty, all data analyses were done fully manually in the

following steps: (1) Raw intensity versus 2� data were

exported for 500 � angles. (2) Peak center positions in 2� were

found via pseudo-Voigt peak fitting for 40 000 datasets

(80 scans � 500 angles). (3) Residual stresses were calculated

via the sin2 and cos�methods for five selected datasets, both

with and without beam center correction using equations (5)

and (10), and then compared with cos� stress values obtained

from the instrument’s own analysis software.

Fig. 5(a) shows the averaged peak center from 80

measurements versus azimuthal angle, �, as a solid blue line.

Error bars (� one standard deviation, about 0.005�) are

displayed only in a few places, but they were fairly consistent

for all � angles. The blue curve with 0.025� amplitude in 2�

indicates that the beam center is offset by 25 mm from the

exact center point, which is half of the pixel resolution. Owing

to the difficulty of the X-ray beam alignment and the offset

being less than the pitch resolution, this device has the internal

calibration curve shown as a red dashed line in Fig. 5(a).

Adding those two curves gives the corrected final peak posi-

tions shown in Fig. 5(b). Since these calibration curves change

according to the SD, the measurement error in sample height

(�SD) introduces error in the stress measurement. The typical

way to calculate the SD is to spread a mixture of reference Fe

powders in vacuum grease on the sample and let the machine

calculate the SD from the Fe 211 peak. Afterwards, the grease

is wiped off, exposing the sample surface for measurement.

Since the wavelength and Fe 211 Bragg angle are known, the

accurate SD can be calculated and users can employ this value

for their actual samples. The precision in SD measurement is

less than 10 mm, so the stress error associated with SD

uncertainty is negligible.

During the 50 s period of data reading and analysis after the

40 s beam exposure, the portable machine goes through fitting

and calibration processes, and then provides an in-plane

residual stress of 0 � 2 MPa, which is identical to that

provided by our manual cos� analysis. However, if the cali-

bration step is missed, i.e. the blue line in Fig. 5(a) is used, the

stress from the cos� method is 35 � 2 MPa. In the sin2 

method,3 the measured stresses are �2 � 2 MPa for non-

calibrated data (Fig. 5a, blue) and 0� 2 MPa for the calibrated

data (Fig. 5b), which proves that the sin2 method is not

sensitive to the calibration process because it probes

 -dependent strain at a fixed �, while the cos� method uses

�-dependent strain at a fixed  (Table 1). However, the sin2 

method requires samples to be at the exact center of rotation

for an accurate measurement, which is challenging and time

consuming for such a small portable X-ray device. One can use

the ‘two-tilt’ sin2 method to avoid the sample rotation issue

by using only two points at � = 0 and 180� from the Debye

ring, but its accuracy is also sensitive to the calibration process,

just as in the cos�method, when non-calibrated data are used.

Uncertainty arises at each analysis step and possible error

sources are summarized in Table 2. The overall uncertainty is a

combination of the contributions related to (1) diffraction

peak fitting error (Type 1), (2) the repeatability of the peak

center calculation (Type 2), and (3) linear fitting of equation

(10) or (5) for stress determination in the cos� (Type 3) or

sin2 (Type 4) methods, respectively. As shown in Table 1,

without sample heterogeneity or displacement errors, the

overall stress error can be as good as 2 MPa for ferritic steel.

Types 5–7 in Table 2 are listed as bounds of maximum errors.

Note that these uncertainties are measured at a fixed  0 and

SD, and the precision was obtained at the best static labora-

tory conditions, but those parameters are not often achievable

in field measurements. Therefore, the effects of  0 and SD on

the precision and accuracy need to be measured for practical

applications.
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Table 1
Measured stress from the sin2 or cos�method from different data types.

The error (�2 MPa) is the standard deviation of the five measurements. Scans
were done at 35�  0 and 38 mm SD.

Data type sin2 cos�

Non-calibrated data (Fig. 5a, blue solid line) �2 � 2 MPa 35 � 2 MPa
Calibrated data (Fig. 5b, black solid line) 0 � 2 MPa 0 � 2 MPa

Table 2
List of uncertainty types and values.

Measurement precision can be represented by the Type 3 error, which is about
2 MPa in the case of Fe. All stress values calculated in x3.4 are based on the
reference powder modulus, E = 224 GPa.

Type Uncertainty
�2�
(�)

�d/d
(m")

�

(MPa)

1 Diffraction peak fitting error (�2�, Fig. 4) 0.003 5 1
2 Average standard deviation from all � angles

(Fig. 5b)
0.005 9 2

3 cos� fitting error [equation (10)] NA NA 2
4 sin2 fitting error [equation (5)] NA NA 4
5 Maximum deviation among � angles (Fig. 5b) 0.015 28 6
6 Detector spatial resolution (50 mm) 0.05 90 20
7 FWHM of the peak (Fig. 4) 2.3 �4000 NA

3 For the sin2 method, six  0 counterclockwise rotations (0, 5, 10, 15, 20, 25
�)

were made in laboratory coordinates, which corresponds to the six  angles
(11.8, 16.8, 21.8, 26.8, 31.8, 36.8�) in sample coordinates at � = 180�.



4. Results

4.1. Precision test with ferrite reference powders

The dependence of the precision on the choice of

measurement parameters ( 0 and SD) was investigated using

annealed ferrite reference powders. The sample tilt ( 0) angle

varied from 5 to 60� for each sample-to-detector distance

(SD), which itself ranged from 20 to 60 mm. For the statistical

analysis, this whole process was repeated five times (for a total

of 540 measurements) at different sample positions. Since

equivalency between cos� and sin2 was shown in x3.4 and by

other authors (Ling & Lee, 2015; Ramirez-Rico et al., 2016;

Miyazaki & Sasaki, 2016) under a homogeneous bi-axial stress

state, we used stress values calculated with the instrument

software by the cos� method. Reference powders were

expected to exhibit no stress irrespective of the chosen value

for the aforementioned parameters.

The averaged stress values versus tilt angles ( 0) are plotted

in Fig. 6, showing that there is a proper range of sample tilt

angle for precise and accurate measurements: 20 �  0 � 50�.

Outside that range, measurements become imprecise and

inaccurate. At lower tilt angles,  0 � 15�, the measured

stresses strongly depend on SD, while monotonic decreases

are observed at  0 	 55�. This is consistent with our previous

simulation results (Ramirez-Rico et al., 2016) in that orienta-

tion error,� 0, is more significant at lower  0, and that beam

defocusing becomes important at higher  0. The inset of Fig. 6

shows that for this particular apparatus an SD of 35 mm

results in good accuracy regardless of tilt angle. The same data

as in Fig. 6 are plotted in Fig. 7, as a function of SD for given

 0 angles. The calculated stress tends to increase with

increasing SD, and its effect becomes large at lower tilt angles.

Fig. 8 displays one standard deviation from five measure-

ments at each measurement condition ( 0 and SD) as a

representative parameter quantifying precision. At inter-

mediate ranges (20 �  0 � 50�, 20 � SD � 60 mm), the mean

stress is 3 MPa; the precision is about 4 MPa for five different

spots and 3 MPa for five continuous scans at one spot. Fig. 8

also illustrates that the sample-to-detector distance is not a

critical parameter unless  0 is too low or high. More errors at

very low tilt angles are inevitable because below  0 = 11.8�4

we lose the independent information volume that the Debye

ring captures for cos� stress calculation. The wide beam

spread at high  0 angle also causes errors in both precision

and accuracy. In general, these undesirable measurement

conditions should be avoided, although in field conditions this

might not be possible. For such cases, it is necessary to know

the uncertainty budgets caused by measurement parameters

as shown in Figs. 6, 7 and 8.

4.2. Accuracy test with solid samples under in situ tensile

loading

Obtaining the true stress state is a challenging task for both

diffraction-based techniques and destructive mechanical
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Figure 7
Measured stress values versus SD. The SD effect is minor around
intermediate tilt angles (20 �  0 � 50�), but becomes significant at lower
 0.

Figure 6
Measured stress values versus  0 angles. Measured stresses deviate from
zero considerably at  0 � 15� and  0 	 55�.

Figure 8
Contour plot of standard deviation (precision) out of five measurements
at each  0 and SD. The precision error is less sensitive to SD around
intermediate tilt angles (20 �  0 � 50�), while  0 shows a wider variation
in all SD ranges.

4  =  0 � �, � = 11.8� for Fe 211, so the  information becomes redundant at
 0 � 11.8�.



methods; thus they are often used together as complementary

tools. The best way to evaluate measurement accuracy is to

compare measurements with known applied stresses. Two

rectangular solid bars (1018 steel and 6061 aluminium) were

loaded under tensile stress using the apparatus and metho-

dology described in xx3.1 and 3.2; a tensile stress was applied

at several tilt angles ( 0 = 12, 25, 35 and 45�) in 50 or 25 MPa

steps. Fig. 9 shows raw two-dimensional diffraction profiles

and the Debye ring distortion from each sample at various  0.

The carbon steel shows no preferred orientation, at least in the

211 reflections within the diffracting volume, and the peak

center is very stable throughout all � angles. However, the
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Figure 9
Normalized two-dimensional diffraction patterns of (a) mild carbon steel 1018 and (b) aluminium 6061 alloy at zero applied stress. The Debye ring moves
outside as  0 increases owing to the corresponding SD increase. The carbon steel shows a homogeneous grain distribution, while the aluminium alloy is
textured. The left column displays how much the Debye ring is distorted by the peak center positions (polar scale from �2000 to 2000 m"). The sample-
to-detector distances are 34, 34, 50 mm for steel and 41, 41, 52 mm for aluminium.

Figure 10
Measured versus applied stress from (a) the 1018 carbon steel 211 peak and (b) the 6061 aluminium alloy 222 peak. For steel, both sin2 and cos� show
identical results for a given  0, while aluminium does not show reliable results. Initial residual stresses were offset to zero. The steel data at  0 = 12� are
plotted instead of at  0 = 25�, because the data at 25� are nearly the same as those at 35�.



aluminium 222 intensity is weak and inhomogeneous. The

Debye ring is also distorted as peak centers fluctuate around

the ring. Therefore, steel samples are expected to show more

reliable results than aluminium. Also note that the SD was

rather large (about 50 mm) for  0 = 45�, because the minimum

sample-to-detector distance increases with increasing tilt angle

owing to the fact that the sample is very long and interferes

with the instrument at high tilt angle (see Fig. 3).

Measured stresses from both the cos� and the two-tilt sin2 

methods are plotted against applied stress in Fig. 10. As a

measure of accuracy, the slope (ratio of measured over applied

stress) was calculated for each set of tilt angle conditions and

noted in Fig. 10. The steel sample shows that both analysis

methods yield similar results and there is a clear  0 depen-

dency in terms of accuracy. For example, measurement was

most accurate and precise at  0 = 45�. As for the aluminium

sample,  0 dependency can be inferred, but cos� and sin2 

generate quite different results, neither of which is accurate or

precise for the tested angles.

Knowing that the accuracy depends on the tilt angle and

that the steel sample is much more reliable than the alumi-

nium sample, a series of new in situ tensile loading experi-

ments (0, 100, 200, 300 MPa) were performed with a 2400 long

steel bar sample for a  0-dependent accuracy test. A total of

ten  0 angles were tested from 5 to 48�  0 with 5� intervals as

 0 = 0� does not give a cos� stress and 48� is the maximum tilt

angle to capture the 211 peak for a given sample geometry.

This set of measurements was repeated five times (4 steps �

10 0� 5 = 200 measurements). Since the two-tilt sin2 results

shown in Fig. 10(a) are very similar to the cos� results as

expected, cos� values reported by the apparatus software

were used throughout.

The ratios of measured over applied stress are plotted in

Fig. 11 for all five measurements and the average stresses are

listed in Table 3 along with standard deviations. As in the

previous precision analysis, the measurements are quite

repeatable at 20 �  0 � 48�, but the accuracy changes from 70

to 100% of the actual stress values. In other words, the

conditions for the best precision ( 0 = 35�, with both Fe

powders and the solid bar) and accuracy ( 0 = 19 or 45�) are

different. This result does not mean that the machine cali-

bration is perfect at 45� or offset by 30% at 35� because there

may be other factors affecting the accuracy, which are

discussed in the next section. The measured/applied stress

ratios at each value of  0 are summarized in Table 4.
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Table 3
Applied and measured cos� stresses (MPa) with carbon steel at each tilt angle ( 0).

Average values and error bars were obtained from five repeated measurements. Note that average values (accuracy) can be different if the internal calibration
profile changes, while error bars (precision) are more sensitive to measurement conditions. For the accuracy evaluation, the measured/applied stress ratio, as shown
in Table 4, is the better way because the true residual stress state at zero load is unknown. The best precision is achieved at  0 = 35�.

Measured stress (MPa) at each tilt angle ( 0)

Applied stress (MPa) 5� 10� 15� 20� 25� 30� 35� 40� 45� 48�

0 67 (9) 30 (11) 27 (12) 25 (9) 20 (10) 1 (13) �19 (8) �50 (15) �98 (26) �138 (22)
100 236 (23) 173 (14) 143 (8) 123 (12) 98 (8) 70 (13) 54 (7) 39 (15) 5 (21) �38 (23)
200 403 (37) 323 (16) 258 (6) 218 (12) 170 (10) 138 (13) 127 (7) 125 (15) 102 (21) 65 (23)
300 558 (68) 463 (28) 372 (7) 311 (9) 254 (30) 205 (9) 198 (6) 208 (17) 198 (22) 166 (23)

Figure 11
 0 angle effect on the ratio of measured stress (cos�) over applied stress
for the 1018 carbon steel sample. A ratio of 1 indicates accurate stress
measurement. Each ratio (slope) was determined from the four tensile
loading steps (0, 100, 200, 300 MPa) and is summarized in Table 4.

Figure 12
SD effect on the ratio of measured stress (cos�) versus applied stress for
the 1018 carbon steel sample. A ratio of 1 indicates accurate stress
measurement. The accuracy of stress measurements is not sensitive to the
SD except for the low  0 angle regions where the measured stress
increases with increasing SD.



In order to check any SD effect, data from Fig. 11 are shown

in Fig. 12 as a function of SD for each tilt angle. Fig. 12 indi-

cates that the accuracy is very sensitive to the tilt angle ( 0),

but not to the SD, except at very low angles. Such low  0 angle

values are not pertinent in general because, as we have

previously shown, they should be avoided.

The errors in Table 3 are much larger than the precisions

obtained by testing the reference powder because of sampling

statistics: the beam spot moves to another heterogeneous

region whenever the tilt angle ( 0) changes. For example, for

the long sample, the beam spots move by 10 and 30 mm when

the tilt angle changes from the default setting (35�) to a higher

angle (45 and 55�). This also makes the circular beam shape

(2 mm diameter at 35�) elongated by 15 and 45% in the major

axis (2 � 2.3 mm at 45� and 2 � 2.9 mm at 55�, respectively).

However, if the sample is small enough to fit under the

detector (Fig. 1a), the beam center can be maintained on the

original spot via sample translation. In such cases, the sample

heterogeneity effect due to tilting is not significant. Thus, the

long steel solid bar is not a good sample for the instrument

precision test, just as the reference powder is not suitable for

accuracy quantification.

4.3. hkl dependency on stress measurement

In addition to the measurement parameters, the choice of

diffracting planes (hkl) and texture also affect stress precision

and accuracy. Often, few choices are available for hkl because

the Q space is limited in this kind of back-reflection portable

device, but depending on the phases, multiple peaks can

sometimes be captured with a single exposure if the sample is

brought close enough to the detector. While only the 211 peak

was visible for steel samples within an acceptable SD range, in

the case of aluminium both the 222 and 311 peaks were

measured simultaneously using an SD of 22 mm. A lower tilt

angle (20�) was chosen for the smaller SDs because the

minimum SD increases with increasing  0 in this kind of long

sample geometry, as depicted in Fig. 3. With the Cr target and

detector size used here, some face-centered cubic (f.c.c.)

materials with large lattice parameters such as Al, Ag, Au etc.

can be measured in this manner.

Fig. 13 illustrates hkl-dependent stress values from the

aluminium 222 and 311 peaks. The 311 reflection provides a

smaller error than the 222 reflection, probably owing to the

higher intensity and more uniform texture of 311. The

measured/applied stress ratios are 2.1 � 0.2 and 1.5 � 0.1 for

the 222 and 311 reflections, respectively, while the Fe 211

reflection shows reasonably accurate results (0.95 � 0.01 in

Fig. 11) at 20�  0. The result for the Al 222 peak is consistent

with the increasing trend of the stress with decreasing  0

found in Fig. 10(b), but the overall trend in  0-dependent

accuracy is quite different from that for Fe, as shown in Fig. 11.

Stresses calculated using the (222) planes are about 40%

higher than when using the 311 reflection, which is unexpected

because the anisotropy ratio of Al is only 1.2. The correct

selection of hkl reflections for accurate stress determination is

not simple (Clausen, Leffers & Lorentzen, 2003) and aniso-

tropy correction is a crucial component in stress analysis,

which is discussed in the x5.

5. Discussion

In X-ray diffraction techniques, information comes only from

the discrete sets of grains satisfying Bragg’s condition, and

strains from those lattice planes are used to estimate a bulk

macrostress state. In addition to this selective nature of

diffraction methods, elastic anisotropy, deformation history,

texture, pseudo-macrostress etc. all affect the uncertainties of

the measured stress values (James & Cohen, 1978b). Since all

the equations derived above are based on the assumption that

the material’s elastic response is isotropic and homogeneous

with bi-axial plane stress near the surface region, measured

stresses using those equations have no guarantee of being

precise or accurate. A comprehensive review of such problems

and suggested solutions is given in the literature (James &

Cohen, 1978b; Dölle, 1979; Noyan & Cohen, 1987) for the

traditional diffractometer.
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Figure 13
Measured versus applied stress from 6061 aluminium alloy 222 and 311
peaks at 20�  0 and 22 mm SD. The stresses of the 222 peaks are about
40% higher than those of the 311 peaks. The 311 peak provides more
reliable stress measurements than 222.

Table 4
Measured/applied stress ratios and fitting errors with carbon steel for the set of  0 angles.

The cos� stresses are based on Young’s modulus of 203 GPa, which is measured from our own tensile testing.

 0 5� 10� 15� 20� 25� 30� 35� 40� 45� 48�

Measured/applied 1.64 (0.21) 1.45 (0.08) 1.15 (0.04) 0.95 (0.01) 0.77 (0.07) 0.68 (0.02) 0.72 (0.01) 0.86 (0.03) 0.99 (0.04) 1.01 (0.01)



In this section, each source of error in this particular

portable device with a two-dimensional detector is discussed.

Since bi-axial plane stress is a reasonable assumption when

using a low-energy X-ray source (such as Cr K�), unless there

is a steep stress gradient within 25 mm5 or so (James, 1977), the

sample-related uncertainty comes from elastic anisotropy and

the inhomogeneity associated with texture and plastic defor-

mation. Effects of sampling and intensity (counting) statistics

are also important and partially demonstrated in the case of

aluminium (Fig. 9 and Fig. 10), but they are out of the scope of

this article. Recent studies on how they scale with decreasing

grain sizes can be found in the literature (Öztürk et al., 2014,

2015).

5.1. Uncertainty from elastic anisotropy

At the macroscopic scale, the mechanical response of

polycrystalline materials is often assumed to be isotropic

owing to the random orientation of grains. When preferred

orientation is present, however, the anisotropic nature of

individual grains invalidates this assumption. Even if no

texture exists, elastic incompatibility among grains subject to

the continuous boundary introduces so-called interaction

strain at the microscopic scale. Thus, the average strain

components, h"iji, in the diffracting volume are the sum of (1)

the homogeneous elastic strain, "0ij, that would be observed

under macro residual stress or external load, �0, (2) the

average grain interaction strain, h"iji
in, proportional to "0ij, and

(3) the average residual elastic strain, h"iji
r, that constrains the

incompatibility owing to the inhomogeneous distribution of

plastic flow, which is generally independent of external load

within the elastic regime (Chidambarrao et al., 1997; Noyan &

Nguyen, 1989). In other words, the measured stress in the

diffracting volume is the sum of (1) residual or applied

macrostress, (2) microstress due to elastic incompatibility, and

(3) microstress due to differential plastic deformation (Noyan

& Cohen, 1987).

The diffraction elastic constant, DEC (or X-ray elastic

constant, XEC), needs to be employed for accurate correla-

tion between the average local strain and the macrostress (�0)

state since the average strain measured by diffraction, h"iji, is

not the same as the homogeneous strain, "0ij, in general, as

expressed in equation (12):

h"iji ¼ "0ij þ h"iji
in þ h"iji

r: ð12Þ

The DEC can be calculated from single-crystal stiffness data

(Simmons & Wang, 1971) by using various grain interaction

models, or it can be determined experimentally. If the lattice-

plane-dependent DECs [S2=2ðhklÞ ¼ ð1þ �hklÞ=Ehkl and

S1ðhklÞ ¼ ��hkl=Ehkl] are found, equation (4) can be rewritten

as

d ’ � d0

d0

� 	

hkl

¼
S2

2
�’ sin

2  þ S1 �11 þ �22ð Þ

� 	

hkl

: ð13Þ

Our main interest is how much error is introduced by the

choice of reflection (Fe 211 and Al 222, 311) when using

equations (5) and (10) due to the elastic anisotropy. This can

be checked easily by comparing bi-axial moduli, ð1þ �Þ=E,

with theoretically calculated DECs, S2=2ðhklÞ. However,

experimentally measured DECs are often necessary because

the DEC depends on the entire sample history and metallur-

gical state (Marion & Cohen, 1976).

Insight on this difference can be gained by using spallation

neutron diffraction (ND), since it provides longitudinal ( 0 =

90�) and transverse ( 0 = 0�) strain simultaneously and is a

convenient way of finding experimental DECs for all

measured reflections.6 In situ loading ND data on body-

centered cubic (b.c.c.) ferritic steel (Daymond & Priesmeyer,

2002) and f.c.c. aluminium (Clausen et al., 1998) have been

reported. The Ehkl and measured stresses for each reflection

were calculated from those references and are listed in Tables 5

and 6. Among the anisotropic theoretical models, only the

Kroner model is shown as it is known to best match experi-

mental data (Macherauch & Wolfstieg, 1977). Experimental

DECs from ND measurements cannot be directly applied to

our study, but it is informative to see differences between

multiple reflections which are not usually accessible to X-ray

techniques.

The differences between the isotropic and Kroner models

for all Fe 211, Al 311 and Al 222 reflections were less than or

equal to 5%; the Fe 200 and 310 peaks should not be used
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Table 5
Effect of theoretical and experimental diffraction elastic constant from in

situ neutron diffraction measurement of b.c.c. ferritic steel (Daymond &
Priesmeyer, 2002).

The modulus unit is in GPa and Emacro = 211 GPa for the isotropic model.

B.c.c. ferrite reflections 110 200 211 310

Ehkl Kroner model 216 170 216 184
ND experiment (Daymond

& Priesmeyer, 2002)
226 170 216 185

�measured=�applied Isotropic model ½ð1þ �Þ=E
 0.94 1.24 0.98 1.14
Kroner Model ðS2=2Þ 0.96 1.00 1.00 0.99

Table 6
Effect of theoretical and experimental diffraction elastic constants from in

situ neutron diffraction measurement of f.c.c. aluminium (Clausen et al.,
1998).

The modulus unit is in GPa and Emacro = 70 GPa for the isotropic model.

F.c.c. aluminium reflections 111 200 220 311

Ehkl Kroner model 73 68 72 70
ND experiment (Clausen

et al., 1998)
61 77 65 72

�measured=�applied Isotropic model ½ð1þ �Þ=E
 1.15 0.91 1.07 0.97
Kroner model ðS2=2Þ 1.20 0.88 1.10 0.97

5 The 1/e penetration depths for steel and aluminium are 12 and 25 mm,
respectively, for 5.41 keV (Cr K�).

6 Ehklð�app="k;hklÞ and �hklð"?;hkl="k;hklÞ can be measured directly from two
orthogonal strains, which is equivalent to the two-tilt method with  0 = 90�.
However, any nonlinearity in d versus sin2 cannot be captured in this
manner.



without the DEC. ND data also show that Fe 211 and Al 311

are actually a good choice because the measured stresses

match well with applied (known) ones, within 3%.7 The same

result for Fe 211 was confirmed by another recent set of ND

data (Shrestha et al., 2015). Interestingly, much higher stresses

in Al 222 than in Al 311 are observed using both X-rays (43%,

Fig. 13) and neutrons (23%, Table 6) (Clausen et al., 1998).

Although it is hard to draw a solid conclusion from the weak

222 intensity, this might be related to texture heterogeneity as

illustrated in Fig. 9, because elastic anisotropy alone can only

account for 5% of the stress. This is not surprising, as differ-

ences of 25–40% between theoretical and experimental values

are often quoted in the literature (Marion & Cohen, 1976).

In summary, if diffraction elastic constants are not used, Fe

211, Al 311 and Al 222 can cause about 5% error from elastic

anisotropy. Al 222 appears to be more sensitive to the sample

heterogeneity than other peaks, on top of having less intensity.

The grain interaction strain, h"iji
in, cannot be explained solely

by elastic incompatibility in a randomly oriented grain

ensemble, since it should change with the surroundings of the

diffracting grains in the presence of preferred orientation.

5.2. Uncertainty from pseudo-macrostress

Plastic deformation introduces inhomogeneous partitioning

of internal strains on the macro and/or micro scale (Noyan &

Cohen, 1987). Especially when axisymmetric plastic defor-

mation such as uniaxial tension, rolling or drawing takes place,

macroscopic equilibrium is not satisfied owing to the devel-

opment of pseudo-macrostress (Cullity, 1976). In such a case,

the stress measured from the diffraction technique can be

biased from micro residual strain, h"iji
r 6¼ 0, even if interaction

strains, h"iji
in, are taken care of by the DEC as expressed in

equation (12). This is a problem for researchers interested

only in macro residual stress ð�0Þ to evaluate engineering

performance, such as fatigue life prediction. Thus, it is

important to know the deformation history of the specimen

under investigation.

It is unfortunate that the detailed processing history of our

tested samples is not known. However, on the basis of EBSD

(Fig. 2) and the XRD pattern revealing a very well known

(110) texture along the vertical direction, we can speculate

that plastic deformation such as drawing had taken place in

our steel bar sample during the manufacturing process, leading

to a pseudo-macrostress (PM stress).8 Many researchers have

shown that this fictitious stress is a typical phenomenon in

plain carbon steel. PM stress is proportional to the amount of

plastic deformation, and linearly increases up to 0.5% carbon

content (Taira et al., 1974). Fe 211 shows lower stress values

than Fe 310 owing to the texture development, even when

DECs are used (Dolle & Hauk, 1977; Taira et al., 1974). Our

independent X-ray measurement comparing measured

stresses between 1018 carbon steel (C: 0.14–0.20 wt%) and

1010 carbon steel (C: 0.08–0.13 wt%) reveals that 1018 steel

with more carbon content shows 5–25% higher stress values

than 1010 steel at 25 �  0 � 45�, which may indicate the

presence of PM stresses. Since we only know our macro

applied stress, �0, stresses measured with X-rays should not be

accurate for drawn carbon steel materials. The exact quanti-

fication of such an error is a difficult task.

It can be argued that the slope (measured over applied

stress) depicted in Fig. 11 should not be affected because

errors caused by PM stress or reflection dependency are

independent of external load within the elastic regime, only

causing stress offset. However, this may not be true if the

micro residual strain, h"iji
r, is affected during loading owing to

the relaxation or reconfiguration of residual stress by local

plastic deformation.

In summary, a part of the overall error displayed in Fig. 11

comes from the presence of pseudo-macrostress in our tested

sample. These types of sample dependency should not be

neglected despite the difficulty in quantifying them.

5.3. Uncertainty from instrument calibration

In addition to the sample effect, the instrument itself can

have a significant effect on the overall uncertainty. Optical

hardware components for the beam divergence, K	 filtering,

alignment, software control for the peak fitting and beam

center calibration are the factors determining measurement

accuracy. It has been found that using a K	 filter for the Cr

source is not an absolute requirement for high-resolution

scans for a given beam size (2 mm in diameter) and short SDs

(25–45 mm), which led to a 2.3� FWHM (2�) for the ideal

sample. The current hardware configuration and detector

resolution seem good enough to provide precise measure-

ment, but the beam center calibration can be improved as the

measured stress has a strong dependency on the sample tilt

angle ( 0), as shown in Fig. 11. As of now, correction for the

SD dependency is implemented in the calibration process, but

correction for the tilt angle ( 0) is not.

5.4. Uncertainty from the measurement environment

Factors affecting measurement accuracy have been

discussed so far. Motion influencing the preset SD or  0 is the

major source of error in precision, but it is not consistent for

each experiment. For example, in our previous field

measurement with a steel tube sample, the measured stress

precision was about �20 MPa (single standard deviation) at

the applied load of 200 MPa between 35 and 45�  0, i.e. about

10% (Ramirez-Rico et al., 2016). In this in situ loading

experiment with flat surface and relatively static conditions,

however, the stress precision is about �6 MPa (without

sampling issues) at the same applied load within 20 �  0 �

48�, i.e. about 3%. If sampled at different locations, this

precision increases to �13 MPa for the same conditions.

Therefore, it is advisable to perform multiple measurements

for a given set of experimental conditions to identify external

and/or sampling uncertainties. Note that the precision from
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7 This is observed in quasi-homogeneous materials without considerable
texture, so the number is not invariant.
8 The linearity of a1 versus cos� in equation (10), similar to d versus sin2 in
equation (5), was examined in all the data used in Table 3, none of which
showed an oscillatory behavior.



the reference powders under the most static conditions was

2 MPa for steel.

6. Recommended procedure for accurate stress
measurement with a portable X-ray machine

The above discussion allows us to propose a set of recom-

mendations for successful measurements using a setup such as

the one described here. The device-specific numbers are listed,

but the basic protocol can be applied to any portable

measurement system, regardless of detector type (image plate,

CCD or semiconductor) or detector geometry (point detector

rotation, one-dimensional linear PSD or two-dimensional).

(1) The multi-tilt sin2 method can be used with a small

portable device as long as a sample is placed exactly at the

center of rotation. However, the alignment process is time

consuming, so it is not recommended if measurement speed

and sample throughput are important (i.e. in a production line

or manufacturing setting).

(2) The two-tilt sin2 method with a single exposure (at � =

0 and 180�, for example) is suggested if a sample is quasi-

homogeneous, i.e. no oscillation of d versus sin2 is expected.

Since no sample tilt is required, no alignment is necessary,

which means that measurement is fast without much dis-

placement error. This method yields the same results as the

cos� method.

(3) The cos� or full-ring fitting method is preferred in the

case of a small device with a two-dimensional detector because

it is fast and insensitive to displacement errors, and because it

utilizes a larger information volume than the two-tilt sin2 

method. However, the linearity of a1 versus cos� needs to be

checked, and the measurement accuracy is highly dependent

on the beam center calibration procedure. If the beam center

is not properly calibrated, the multi-tilt sin2 method should

be considered despite its alignment difficulties, because it is

controlled by the user, whereas beam center calibration is not,

at least for this specific device.

(4) Regardless of the analysis method, the diffraction elastic

constant and deformation history of the sample have to be

considered to account for the elastic anisotropy and hetero-

geneity effects.

(5) For this specific device, 30� SD� 50 mm and 25� 0�

45� are generally recommended. The best practice would be to

create a map like Fig. 11 from the known stress values to

account for the combined effect of factors such as DEC,

pseudo-macrostress and other measurement parameters on

the choice of the one single variable  0: for example, the best

accuracy happens at  0 = 45� for our 1018 carbon steel. If only

relative values are needed for the in-line quality control, the

most precise conditions  0 = 35� and SD around 35–40 mm are

recommended. Note that an accuracy calibration chart like

Fig. 11 is not invariant and is subject to change by a new

instrument calibration or sample conditions.

(6) The precision needs to be identified for given

measurement conditions by repeating measurements at least

five times, as it is affected by the external environment. If

sampling statistics are needed, the measurement spot should

be varied at each measurement.

7. Conclusions

Owing to the growing interest in portable X-ray stress

analyzers utilizing area detectors, the precision and accuracy

of stress measurements have been rigorously tested by para-

meterizing the sample-to-detector distance (SD) and instru-

ment tilt angle against the sample normal ( 0). The intrinsic

instrument precision was measured in ferrite reference

powders, while 1018 carbon steel bar samples were used for

accuracy tests in situ under tensile loading.

The measurement precision can be as good as 2 MPa (for Fe

powders) in a very controlled environment, whereas preci-

sions of 13 and 6 MPa (for the steel solid bar) were obtained

for in situ loading experiments at 200 MPa, depending on

whether sampling statistics were or were not accounted for,

respectively. In field conditions with vibrational background

noise, the precision was about 20 MPa. Consequently, we

recommend performing multiple measurements at the same

and different sample locations to quantify uncertainties arising

from external sources and sample heterogeneity.

Accuracy is determined by many factors, such as instru-

mental parameters (beam center alignment and calibration),

measurement parameters (SD and  0), sample conditions

(deformation history and texture) and physical properties

(elastic and plastic anisotropy). In this specific device, tilt

angle ( 0) turned out to be the most sensitive parameter

affecting stress accuracy and precision, probably associated

with beam center determination, which is typically not

customizable by users. The appropriate ranges of SD and  0

were found for the accurate stress assessment from the 1018

steel bar sample. From the practical point of view, it would be

best to create a material-specific accuracy calibration chart as

a function of a single parameter ( 0) owing to the complexity

of the individual factor corrections by applying the diffraction

elastic constant or subtracting pseudo-macrostress. However,

if relative values are important or sufficient, measurement can

be done with the suggested settings,  0 = 35� and SD around

35–40 mm, where the best precision is found.

The portable X-ray machine using an image plate is an

efficient stress measurement tool for quasi isotropic and

homogeneous materials when the linearity of the strain

component versus cos� (or sin2 ) is valid. However, for

materials with significant elastic anisotropy and heterogeneity

which possess microstress and/or pseudo-macrostress, the

simple stress models included in the manufacturer’s software

for rapid analysis cannot be used and more advanced math-

ematical treatments or calibration are required.
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