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PERSPECTIVE OPEN

Precision antimicrobial therapeutics: the path of least

resistance?
Caitlin N. Spaulding1,2,3, Roger D. Klein2,3, Henry L. Schreiber IV2,3, James W. Janetka3,4 and Scott J. Hultgren2,3

The emergence of drug-resistant pathogens has led to a decline in the efficacy of traditional antimicrobial therapy. The rise in

resistance has been driven by widespread use, and in some cases misuse, of antibacterial agents in treating a variety of infections. A

growing body of research has begun to elucidate the harmful effects of broad-spectrum antibiotic therapy on the beneficial host

microbiota. To combat these threats, increasing effort is being directed toward the development of precision antimicrobial

therapeutics that target key virulence determinants of specific pathogens while leaving the remainder of the host microbiota

undisturbed. This includes the recent development of small molecules termed “mannosides” that specifically target uropathogenic

E. coli (UPEC). Mannosides are glycomimetics of the natural mannosylated host receptor for type 1 pili, extracellular appendages

that promotes UPEC colonization in the intestine. Type 1 pili are also critical for colonization and infection in the bladder. In both

cases, mannosides act as molecular decoys which potently prevent bacteria from binding to host tissues. In mice, oral treatment

with mannosides simultaneously clears active bladder infection and removes intestinal UPEC while leaving the gut microbiota

structure relatively unchanged. Similar treatment strategies successfully target other pathogens, like adherent-invasive E. coli (AIEC),

an organism associated with Crohn’s disease (CD), in mouse models. While not without its challenges, antibiotic-sparing therapeutic

approaches hold great promise in a variety of disease systems, including UTI, CD, otitis media (OM), and others. In this perspective

we highlight the benefits, progress, and roadblocks to the development of precision antimicrobial therapeutics.

npj Biofilms and Microbiomes  (2018) 4:4 ; doi:10.1038/s41522-018-0048-3

INTRODUCTION

Antibiotics are considered the standard of care for the treatment
of most bacterial infections caused by drug-susceptible organisms.
However, the worldwide spread of drug-resistant bacterial
pathogens has greatly limited the repertoire of antibiotics
available to effectively treat patients. As a result, clinicians are
becoming increasingly reliant on last-line antimicrobial agents to
treat a growing number of common bacterial infections. The
efficacy of these agents has also begun to decline in the face of
rapidly evolving resistant bacterial populations. Additionally, a
growing number of studies are finding that alterations to the
community structure of the host commensal microbiota following
treatment with traditional antibiotics can have negative effects on
long-term host health, especially when administered during
childhood.
A recent review on antimicrobial resistance led by the British

government has suggested that, without a rapid expansion of our
antimicrobial arsenal, “superbugs” resistant to existing antibiotics
could kill more than 10 million people a year by 2050.1 Further,
research from the World Bank suggests that the dramatic increase
in antibiotic-resistant infections could have dire consequences on
the world economy with an estimated $100 trillion being spent to
combat these infections by 2050.2 Together, these findings
highlight the antibiotic resistance crisis we currently face and
underscore the need to develop treatments that can potentiate or
replace broad-spectrum antibiotic therapy in patients with

bacterial infections. To address this emerging crisis, it is essential
that novel treatments be developed to spare existing broad-
spectrum antibiotics and selectively target and remove an
infecting pathogen while leaving the community structure of
the surrounding microbiota unchanged. These new therapeutics,
hitherto referred to as precision antimicrobials, include both anti-
virulence compounds that inhibit bacterial pathogenesis and
persistence, as well as new compounds that are bactericidal or
bacteriostatic to a minimal number of bacterial pathogens.
In this perspective, we explore the differences between broad-

spectrum antibiotics and precision antimicrobial therapies and
highlight the benefits and challenges of developing precision
therapeutics. Further, we highlight a series of potential applica-
tions for these precision antimicrobials.

THE MUTUALISTIC SYMBIOTIC RELATIONSHIP BETWEEN HOST
AND MICROBIOTA

All mammals harbor complex and dynamic populations of
microorganisms (known as the microbiota), which are made up
of bacteria, archea, fungi, viruses, and protozoa3 and colonize
mucosal surfaces, such as those found in the nose, mouth, airways,
gut, and urogenital tract, as well as non-mucosal surfaces, like the
skin. However, the intestine holds the largest collection of
microbes, with a total of ~1014 bacterial cells. The collection of
bacterial genomes in the microbiota contains >5 million genes,
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outnumbering the number of human genes by orders of
magnitude.4

Humans and their associated microbial communities have co-
evolved, as a recent study shows that over the last 15 million years
intestinal bacteria have co-speciated with hominids.5 This study
examined two highly conserved clades of intestinal bacteria,
Bacteroidaceae and Bifodobacteriaceae, in humans, chimpanzees,
and gorillas, and found that the estimated time of divergence
between microbial communities in hominid species occurred
around the same time as the presumed hominid speciation
event.5 This work suggests that different evolutionary pressures
faced by humans and apes likely shaped both host physiology and
their associated microbial communities. Thus, the human micro-
biota has influenced and been influenced by the evolution of
humans based on critical mutualistic symbiotic relationships. For
example, microbial communities benefit from the abundance of
nutrients and space available within the host and thus have
evolved strategies to maintain their association with the host. In
return, these organisms play essential roles in host development
and health. During early life, host–microbiota interactions
influence the development of the host immune system and have
been implicated in muscle, adipose tissue, and bone growth.6 The
microbiota provides additional benefits throughout the lifetime of
the host, including the synthesis of vitamins that promote host
health and the liberation of otherwise inaccessible nutrients from
the host diet.3 Further, by sequestering available nutrients and
occupying space within the host, the residing microbiota
promotes colonization resistance and thus discourages coloniza-
tion and subsequent infection by pathogenic organisms.
While the interactions between the host and microbiota are

generally mutualistic, disruption of this relationship can occur,
leading to a state of dysbiosis. During this period of imbalance,
species that typically dominate the community become under-
represented while low-abundance species that were restricted in
growth are enabled to expand their population to fill the void.
Dysbiosis can occur when a pathogenic organism infiltrates a
community and seizes space and nutrients from commensal
organisms. In healthy individuals, the host immune system, by
mechanism(s) that are under investigation by a number of groups,
tolerates the presence of a commensal microbiota.7,8 During
periods of infection or dysbiosis, the immune system attempts to
restore balance by removing the pathogen and restoring the
community structure through inflammation and secretion of
antimicrobial peptides among other responses. Yet, in some cases,
an over-exuberant or continuous immune response further
exacerbates the dysbiotic condition, generating a vicious cycle
that results in a protracted imbalance in the gut microbiota.
Dysbioses, particularly those that last for extended periods of time,
are associated with a number of human diseases and infection,
including inflammatory bowel disease (IBD), urinary tract infec-
tions (UTI), otitis media (OM), sinusitis, conjunctivitis, and acne.

THE CONSEQUENCES OF ANTIBIOTIC EXPOSURE

While it is undeniable that antibiotic therapy is an invaluable
clinical tool, an increasing number of studies have demonstrated
that perturbations to the gut microbiota by oral broad-spectrum
antibiotic treatment results in alterations to the functions of the
microbiota in ways that are ultimately detrimental to host health.
For example, disrupting the gut microbiota with broad-spectrum
antibiotics during childhood may alter the development of a
child’s immune system as well as the growth of adipose, muscle,
and bone tissues.6 Broad-spectrum antibiotic exposure also
increases the spread and uptake of bacterial genetic elements,
including plasmids encoding antibiotic resistance genes, thus
contributing to the development and spread of antibiotic
resistance while selecting for the growth of bacteria that are
resistant to the antibiotic being consumed.9 Further, by altering

the community structure of the microbiota, broad-spectrum
antibiotics also disrupt colonization resistance, opening space
for pathogens to colonize or for typically low-abundance
organisms present in the community to bloom and cause
infection within the gut and/or at extra-intestinal sites which
can result in long-lasting dysbiosis.
The bloom of normally restricted organisms is observed after

treatment of mice with a single oral dose of the broad-spectrum
antibiotic streptomycin, which produces high levels of intestinal
inflammation and enhances colonization by E. coli species.10–12

The increased fitness of E. coli may be due to several factors, such
as disruption of colonization resistance and alterations in the
generation of cellular energy. Previous work has found that
nitrate, released into the gut lumen as a byproduct of the
streptomycin-induced intestinal inflammatory response, can be
used by E. coli as a terminal electron acceptor for anaerobic
respiration, a process not available to many strict anaerobes
present in the gut that lack the necessary nitrate/nitrite reductase
enzymes.10,13–15 High levels of intestinal inflammation have also
been linked to increases in E. coli colonization of the gut of
patients with IBD. IBD represents a subset of syndromes that are
characterized by constitutively high levels of intestinal inflamma-
tion. Biopsy specimens from patients with Crohn’s disease (CD)
and Ulcerative Colitis, two IBD syndromes, revealed that these
patients have a 3–4 log increase in the levels of Enterobacter-
iaceae in their intestines compared to healthy controls.16 The
enhanced fitness of E. coli during intestinal inflammation may also
increase patients’ chances of having bladder infection as several
clinical studies have found that IBD patients have a significantly
increased risk of recurrent UTI (rUTI) with >80% of patients having
rUTI.17,18

Therefore, even when used to target susceptible pathogens,
treatment with broad-spectrum antibiotics that affect a larger
proportion of a community may be detrimental to host health.
Therefore, the need to develop highly targeted, precision
therapeutics that can specifically kill or eliminate antibiotic-
resistant pathogens while producing minimal changes to the
community structure of the microbiota has gained increased
urgency.

DEVELOPING PRECISION TREATMENTS FOR UTIS

Uropathogenic E. coli (UPEC) are normal components of the gut
microbiota; however, when shed in the feces UPEC can colonize
peri-urethral or vaginal tissue before ascending through the
urethra and accessing the bladder, causing UTI.19–21 Although
stochastic in nature, the frequency of UPEC shedding in feces and
subsequent migration to the bladder is thought to be related to
the gastrointestinal UPEC burden. Thus, a bloom in E. coli levels
during periods of intestinal dysbiosis result in greater levels of
UPEC shedding into feces and a concomitant increase in the rate
of UPEC transmission to the bladder.17,18 The standard of care for
individuals with UTI is antibiotic therapy. However, the observa-
tion that 20–40% of women will have one or more recurrences
within months of her initial UTI despite appropriate antibiotic
therapy suggests that broad-spectrum antibiotics have limited
long-term efficacy for UTI treatment.22 This problem is com-
pounded by the rising incidence of antibiotic-resistant uropatho-
gens; the prevalence of UPEC strains resistant to fluoroquinolones,
a so-called “last-line” antibiotic for UTI treatment, has reached up
to 70% in countries such as India, China, and Vietnam and up to
50% in some European countries.23 The resultant reliance on
carbepenems to treat an increasing number of patients with drug-
resistant UTI has, in turn, driven the development and expansion
of carbapenem-resistant Enterobacteriaceae (CRE). Increased
incidence of CRE is particularly concerning as several reports
have associated these infections with up to 50% mortality.24,25 The
identification of a UTI caused by a CRE strain that is also resistant
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to colistin, a drug of last resort for treating CRE resistance isolates,
in a woman from the United States emphasizes the urgent and
alarming nature of the antibiotic resistance crisis we currently
face.23,26–28 The drug resistance index (DRI) is a composite
measure that combines the ability of antibiotics to treat infections
with the extent of their use in clinical practice. The DRI provides an
aggregate trend measure of the effectiveness of available drugs.
The index for UTIs shows the number of infections facing
treatment difficulties has been increasing since the mid-2000s
due to the rapid spread of resistance among UPEC, underscoring
the need to develop new therapeutics geared toward the
emerging threat of drug-resistant Gram-negative organisms.29,30

A critical stage of UPEC pathogenesis is colonization of host
tissue. To accomplish this, UPEC express chaperone usher pathway
(CUP) pili. Single UPEC strains can carry between 5 and 16 distinct
CUP pilus operons, many of which are known to aid UPEC strains
in their colonization of many different host habitats, including the
gut, vagina, urethra, bladder, and kidneys.31 The carriage of these
gene clusters is not uniform, as some CUP pili are carried by
almost every E. coli strain while others are carried only by a
minority of strains. The expression of CUP pili is tightly regulated,
resulting in the expression of only one pilus type at a time.32 CUP
pili are tipped with adhesins that mediate UPEC tropism by
binding distinct ligand(s) with stereochemical specificity. Adhesins
are two-domain proteins made up of an N-terminal lectin domain,
which is responsible for recognition and attachment to specific
ligands, and a C-terminal pilin domain that connects the adhesin
to the bulk of the pilus.33 The availability of the ligands bound by
adhesins is vital to infection and the presence of these ligands
differs between body sites/habitats. Multiple pilus types have
been shown to promote UPEC colonization of the urinary tract.
In mice, type 1 pili tipped with the FimH adhesin mediate acute

bladder colonization by binding to mannosylated proteins
expressed on the surface of bladder epithelial cells.34 A complete
fim operon encoding the necessary components of the type 1
pilus is carried by approximately 75% of E. coli and is further
enriched in UPEC strains.27 FimH-mediated binding to the bladder
can lead to UPEC invasion into luminal bladder epithelial cells
where they replicate to high levels while protected from many
host defenses, thus promoting ongoing infection. Clinical studies
have implicated type 1 pili as a critical colonization factor during
UTI in women.35,36 CUP pili also promote UPEC colonization in the
gut reservoir. A recent study found that type 1 and F17-like pili
promote the establishment and/or maintenance of the UPEC
intestinal reservoir in a streptomycin-treated mouse model of
intestinal colonization.12 Interestingly, the purified lectin domains
of the type 1 and F17-like adhesins (FimH and UclD, respectively)
were shown to bind to distinct micro-habitats within the colonic
crypt. FimH bound to the more differentiated cells in the upper
crypts and in the surface epithelial cuffs that line the intestinal
lumen. In contrast, UclD bound the lower, less differentiated cells
of the crypts.12 Strikingly, phylogenetic analysis of F17-like pili
suggest that this system was acquired from another species of
gut-colonizing bacteria, suggesting that UPEC acquired the system
to enhance colonization of a habitat within the gut that is separate
from type 1 pili.12 However, studies examining the localization of
whole bacteria expressing type 1 or F17-like pili within the mouse
gut are required to determine if UPEC bind within the crypts
during intestinal colonization in vivo.
The established importance of type 1 pili during infection of the

bladder and colonization of the gut served as an impetus for the
development of anti-adhesive compounds that target the adhesin
FimH. These compounds, called mannosides, are small molecule
glycomimetics of the natural host receptor for FimH that display
orders of magnitude higher binding affinity, specifically blocking
the ability of UPEC to adhere to and colonize the host tissue.37

Orally bioavailable mannosides are capable of treating and/or
preventing UTI and catheter-associated UTI (CAUTI) in relevant

mouse models.38–40 Further, these compounds can target and
reduce the UPEC intestinal reservoir while simultaneously treating
an active bladder infection.12 Strikingly, a 16S rRNA study found
that oral treatment with mannosides has minimal effects on the
overall structure of the gut microbiota, suggesting that manno-
sides can selectively extirpate UPEC from the gut.12

For some patients, the frequency and severity of rUTIs
necessitate long-term prophylactic antibiotic treatment, greatly
affecting their quality of life.41 Further, withdrawal of the broad-
spectrum antibiotic therapy often results in additional UTIs,
potentially due to the increase in intestinal UPEC caused by
antibiotic-mediated intestinal inflammation. This creates a vicious
cycle in which broad-spectrum antibiotic therapy can successfully
target and clear UPEC from the bladder but oral antibiotic
exposure may actually promote a bloom of intestinal UPEC, which
can seed rUTI (Fig. 1a, c). Introducing mannoside treatment alone
or in tandem with antibiotic therapy may help to break this cycle
and allow for clearance of UPEC from the gut and bladder (Fig. 1a,
b).

PRECISION TREATMENTS FOR INTESTINAL INFECTIONS

A precision antimicrobial therapy has also been shown to reduce
intestinal colonization by adherent-invasive E. coli (AIEC) in a
mouse model of CD. Biopsy studies in humans with CD have
found that high levels of intestinal inflammation and/or bacterial
dysbiosis cause some patients to express abnormally high levels of
CEACAM6, a homotypic adhesion molecule, on their ileal
epithelium.42–45 CEACAM6 is highly mannosylated and serves as
a receptor AIEC expressing type 1 pili, resulting in an overgrowth
of AIEC. While the role of AIEC in the initiation of CD is
controversial, it is accepted that the increased abundance of this
bacterium serves to promote the constitutive, overexuberant
inflammatory response associated with the disease. A recent study
found that oral mannoside therapy is capable of targeting and
reducing ileal colonization by AIEC in a transgenic mouse model.46

This finding suggests that mannoside treatment may help to
reduce the severity of disease in CD patients that are colonized by
AIEC. This therapeutic rationale is currently being tested in a Phase
I clinical trial with the oral, non-bioavailable FimH antagonist
EB8018 to treat CD (ClinicalTrials.gov, NCT02998190).
Clostridium difficile (C. diff.) is another example of an opportu-

nistic infection that is typically triggered by the use of broad-
spectrum antibiotics and destruction of the normal gut micro-
biota. C. diff. infections are the leading cause of hospital-acquired
diarrhea and can be highly recurrent, resulting in increased
exposure to antibiotics. This has led to a large number of
antibiotic-resistant isolates worldwide. In fact, more than 500,000
cases are diagnosed each year in the US alone. Antivirulence
strategies targeting these infections include monoclonal anti-
bodies and small molecular inhibitors targeting critical C. diff.
virulence factors, like toxin A (TcdA) and toxin B (TcdB).47–50 The
action of these proteases results in the release of its glucosyl-
transferase domain, which irreversibly glucosylates the RhoA
family of GTPases, ultimately leading to apoptosis of infected host
cells in the gut. The recently identified small molecule inhibitors
have shown good efficacy in both in vitro and in vivo studies.

PRECISION TREATMENT FOR RESPIRATORY INFECTIONS

Streptococcus pneumoniae and Nontypeable Haemophilus influen-
zae (NTHi) are commensal residents of the human nasopharynx.51

However, like UPEC, both organisms are capable of migrating to
body sites outside of the nasopharynx and causing infection.
During periods of dysbiosis, as occurs during antibiotic exposure,
S. pneumoniae and NTHi can infect the normally sterile middle ear,
causing OM. OM is one of the most common childhood diseases,
affecting 75% of children under the age of 3.52 After accessing the
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middle ear, these bacteria form dense biofilm communities that
shield the enclosed bacteria from immune cells and antibiotic
treatment.51 Because of these challenges, bacterial OM is often
chronic and recurrent.
Developing precision antimicrobials that target S. pneumoniae

and NTHi species in the middle ear and/or the nasopharynx may
enhance treatment efficacy. However, targeting these organisms
at the site of infection with small molecules may be limited by the
ability of the compounds to penetrate biofilms. Yet, treating
patients with precision antimicrobials may permit clinicians to
reduce the population of these organisms in the host reservoir
and thus prevent the re-seeding of the middle ear from this
reservoir. Identifying genes that promote the establishment and/
or maintenance of S. pneumoniae and NTHi in the respiratory tract
microbiota could potentially identify targets against which small

molecule antagonists could be developed. Interestingly, NTHi and
S. pneumoniae are also associated with other mucosal infections,
including sinusitis and conjunctivitis, suggesting that developing
treatments to target these organisms in the host reservoir may
help to treat and/or prevent a number of infections.
A significant pathogen in the development of pneumonia is the

Gram-negative bacterium Pseudomonas aeruginosa. Cystic fibrosis
patients are particularly vulnerable to acquiring a lung infection of
this type. The global prevalence of multidrug-resistant P.
aeruginosa is quickly rising, increasing the urgency for the
development of alternative treatment strategies. While P. aerugi-
nosa infections are more prevalent in immunocompromised
individuals, this organism is also a common cause of skin and
soft tissue infections in patients with burns or serious wounds. It is
also known to regularly colonize medical devices such as

Fig. 1 Potential effects of oral mannoside and antibiotic treatment on the intestinal UPEC population. a Intestinal UPEC reach the bladder and
can cause UTI after being shed in the feces. b Oral mannoside treatment targets and reduces the UPEC intestinal population and
simultaneously treats and clears UTI in the bladder with minimal effects on the overall structure/diversity of the gut microbiota. c Conversely,
oral treatment with clinically relevant broad-spectrum antibiotics, like ciprofloxacin, can treat and clear UTI but reduces the overall abundance
and diversity of the gut microbiota. The resulting intestinal inflammation caused by antibiotic treatment may promote intestinal E. coli
colonization (including UPEC) and thus can lead to increase UPEC fecal shedding, promoting recurrent UTI
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catheters, and is a frequent cause of CAUTI. Multiple diverse
therapeutic strategies have been proposed and pursued which
target P. aeruginosa, including novel antibiotics and antimicrobials
targeting key bacterial virulence factors.53 These bacteria, like
UPEC, encode adhesins for host–cell recognition and pathogen-
esis, the most important of which are LecA (PA-IL) and LecB (PA-
IIL). However, unlike FimH, these lectins are not associated with
pili, but are secreted and soluble proteins. LecA and LecB function
as homotetramers and are known to recognize glycoproteins
bearing D-galactose and L-fucose or D-mannose epitopes,
respectively. They are also both necessary for adhesion and
biofilm formation. Both multi-valent and monomeric LecA and
LecB glycoside-based galactoside and mannoside antagonists
have been rationally designed using similar strategies to those
utilized for the development of FimH mannosides. To date, several
groups have identified and demonstrated efficacy for promising
glycomimetic compounds targeting LecA/B.54,55 The company
GlycoMimetics has reported the discovery of a dual LecA/B
antagonist, GM-1051 which is in preclinical testing to treat and
prevent P. aeruginosa infection in 2009,54 but no additional
information has been published since that time.

PRECISION TREATMENT FOR SKIN INFECTIONS

The role of Propionibacterium acnes in adolescent acne vulgaris
has been established for several decades. Depending on the
clinical severity of acne, treatment often includes topical and/or
oral administration of broad-spectrum antibiotics, typically tetra-
cycline derivatives. Unfortunately, resistance to these antibiotics is
beginning to emerge.56 However, recent work has demonstrated
that natural products from Staphylococcus epidermidis, such as
succinic acid, can effectively inhibit the growth of P. acnes.56

Gaining a better understanding of the molecular mechanism by
which products like succinic acid inhibit P. acnes growth may
provide the basis of naturally based small molecules that more
effectively target this organism and prevent infection from
occurring.
Perhaps the most widely studied skin infection is caused by

Staphylococcus aureus, and more specifically, methicillin-resistant
S. aureus (MRSA). Nasopharynx colonization rates of S. aureus are
over 20% in the general European population, with rates of over
90% in patients with atopic dermatitis and other skin conditions.57

When perturbation of mechanical barriers or immunological
barriers occur, these colonizing populations can lead to skin
infections, abscess formation, respiratory infections, and, in severe
cases, sepsis. Indeed, invasive MRSA infections are associated with
a mortality rate of approximately 20%.58 Recently, investigators
discovered a natural compound produced by the commensal
strain Staphylococcus lugdunensis that is able to selectively remove
S. aureus from the nasopharynx.59 This effect is mediated by a
molecule termed lugdunin, a cyclic bactericidal peptide that may
function to selectively inhibit bacterial metabolism but whose
precise mechanism of action remains unknown.59 A number of
other promising small molecule inhibitors have been uncovered
that attenuate S. aureus pathogenesis by inhibiting processes such
as bacterial iron-sulfur cluster assembly, RnpA-mediated RNA
degradation, lipoteichoic acid synthesis, and sortase activity.60–63

These studies provide additional examples of small molecule
inhibitors that selectively target bacterial species in a specific
niche. While the development of these treatments remains in its
infancy, other conditions such as atopic dermatitis and psoriasis,
which are also associated with changes in the skin microbiome,
may be amenable to probiotic or small molecule-based treatment
approaches.

CHALLENGES OF DEVELOPING PRECISION THERAPEUTICS

While precision antimicrobial therapeutics hold great promise to
help combat the antibiotic resistance crisis and spare existing
broad-spectrum antibiotics, a great deal of work will be required
to better understand the role and efficacy of these types of
precision therapeutics, including their ability to target and reduce
specific pathogens in humans. Furthermore, in addition to the
traditional hurdles facing the development of novel pharmaceu-
ticals such as toxicity, bioavailability, and manufacturing scal-
ability, the development of precision antibacterial agents faces its
own unique set of challenges.
Development of traditional antibiotics is predicated on the

targeting of core bacterial processes that are shared among all
strains in a group of bacterial species while avoiding cross-
reactivity with host cellular processes. The core processes targeted
by broad-spectrum antibiotics are often mediated by genes that
are highly conserved between bacterial species, such as the gyrA
gene, which encodes a target of the fluoroquinolone ciprofloxacin.
In contrast, precision antimicrobials are designed to target
processes occurring in only a defined subset of pathogens
without affecting either the host or beneficial bacteria within
the microbiota. Thus, precision antimicrobials must be tailor-made
to target each bacterial pathogen within its specific host niche.
Extensive knowledge of the various stages of the pathogen
lifecycle is required to design therapeutics that will disrupt a
critical pathway necessary for the persistence and/or virulence of
the pathogen. UPEC represent a good example of this challenge.
Despite decades of research, a clear genetic definition of UPEC
remains elusive and a recent study showed that there is not a
single set of genes in UPEC that are both necessary and sufficient
for bladder colonization.64 UPEC are genetically diverse and vary
significantly in their carriage of putative urovirulence factors.64

Thus, a drug that targets a factor present in only a fraction of UPEC
strains causing UTI would limit its usefulness. However, an

Uropathogenic E. coli
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Fig. 2 Precision therapeutics target a specific organism while
leaving the remainder a microbiota community untouched. Artist
rendering of how mannoside treatment (compound from prescrip-
tion bottle) selectively extirpates UPEC from the gut microbiota
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integrated analysis using multiple measures of pathogenesis,
distinct mouse models of infection, in vitro measures of virulence
gene function, comparative genomics and transcriptomics
revealed that activity of type 1 pili was one of the best predictors
of pathogenesis in mouse models.64 This analysis shows that
targets of precision antimicrobials can be identified even in
genetically diverse pathogens through an integrated, multi-
disciplinary approach.
Additionally, UPEC can persist within host reservoirs outside of

the bladder, such as the gut, to seed multiple recurrent
infections.12 Fortunately, orally bioavailable mannoside FimH
antagonists have been shown to be able to reduce the gut
reservoir while simultaneously treating a bladder infection. This
exemplifies how taking into consideration the pathogen’s lifestyle
in both its site of infection as well as in other reservoirs within the
host may provide additional therapeutic value to a precision-
based medicine by potentially reducing the risk of recurrences.
Although targets of precision antimicrobial therapeutics can be

developed through academic research, the development and
deployment of these precision antimicrobial therapies requires the
engagement of the pharmaceutical industry and the strengthen-
ing of collaborative efforts between these two spheres.

CONCLUSIONS

Broad-spectrum antibiotics are invaluable tools for the treatment
and prevention of disease; however, the rise of antibiotic-resistant
pathogens has made treating individuals with single and
multidrug-resistant infections challenging. Further, the increasing
number of studies finding that antibiotic-mediated disruption of
the microbiota may be detrimental to the host suggests that
treating individuals with antibiotics, particularly broad-spectrum
antibiotics, has some negative consequences. Therefore, develop-
ing precision or “ultra-narrow” spectrum antimicrobials, like
mannosides, that are designed to target a specific organism while
leaving the remaining microbial community untouched is needed
(Fig. 2). Developing therapies that target the host reservoir of
pathogens, rather than simply the site of infection, may help to
reduce disease burden and/or prevent recurrence.
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