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In this paper we report on the newest developments in precision calculations in supersymmetric theories. An important issue
related to this topic is the construction of a regularization scheme preserving simultaneously gauge invariance and supersymmetry.
In this context, we discuss in detail dimensional reduction in component �eld formalism as it is currently the preferred framework
employed in the literature. Furthermore, we set special emphasis on the application of multi-loop calculations to the analysis of
gauge coupling uni�cation, the prediction of the lightest Higgs bosonmass, and the computation of the hadronic Higgs production
and decay rates in supersymmetric models. Such precise theoretical calculations up to the fourth order in perturbation theory are
required in order to cope with the expected experimental accuracy on the one hand and to enable us to distinguish between the
predictions of the Standard Model and those of supersymmetric theories on the other hand.

1. Introduction

Today we know that the Standard Model (SM) of particle
physics [1–7], which is a renormalizable gauge theory for the
group SU(3)�×SU(2)�×U(1), is extremely successful at short

distances of the order of 10−16 cm. Up to now, all experiments
verify it without any conclusive hint towards new physics. On
the other hand, Einstein’s gravitational theory based on the
same concept of gauging the symmetries gives a very good
classical theory for long distances. However, the classical
theory of gravity could not be quantized due to its abundant
number of singularities. �ere seems to be a deep conict
between the classical theory of gravity and the quantum
�eld theory. �us, the question whether gauging is the only
organizing principle or there is a deeper connection between
space time and internal space symmetries arises naturally. In
a long series of “no-go theorems” amongwhich the Coleman-
Mandula theorem [8] is the most important one, it was
shown that the only possible symmetry group of a consistent
four-dimensional quantum �eld theory is the direct product
of the internal symmetry group and the Poincaré group.
Precisely, it states that internal symmetries cannot interact
nontrivially with space time symmetry. Surprisingly, there
is a unique way of combining nontrivially space time and
inner space symmetries, namely, supersymmetry (SUSY). It

was shown by Haag et al. [9] that weakening the assump-
tions of the Coleman-Mandula theorem by allowing both
commuting and anticommuting symmetry generators, there
is a nontrivial extension of the Poincaré algebra, namely,
the supersymmetry algebra. �e supersymmetry generators
transform bosonic particles into fermionic ones and vice
versa, but the commutator of two such transformations yields
a translation in space time. In case of four-dimensional space
time, the algebra generated by the SUSY generators will
contain the algebra of Einstein’s general relativity.

�e �rst attempts to construct physical models respecting
SUSY can be traced back in the early seventies to the works
by Golfand and Likhtman [10] and Volkov and Akulov
[11]. However, the �rst known example of a renormalizable
supersymmetric four-dimensional quantum �eld theory is
the Wess-Zumino model [12]. Within SUSY it is very natural
to extend the concept of space time to the concept of
superspace [13]. Alongwith the four-dimensionalMinkowski
space there are also two new “anticommuting” coordinates ��
and ��̇, that are labeled in Grassmann numbers rather than
real numbers: {��, ��} = 0, {��̇, � ̇�} = 0,

�2� = 0, �2�̇ = 0, with �, �, �̇, ̇� = 1, 2. (1)
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�e ordinary space dimensions correspond to bosonic
degrees of freedom, the anticommuting dimensions to
fermionic degrees of freedom. �e �elds are now func-

tions of the superspace variables (��, ��, ��̇) and they are
organized into supersymmetric multiplets in a natural way
[13]. Expanding the multiplets in Taylor series over the
Grassmannian variables, one obtains the components of the
super�eld as the coe�cients of the expansion. �ey are
ordinary functions of the space time coordinates and can be
identi�edwith the usual �elds. Furthermore, in the super�eld
notation the manifestly supersymmetric Lagrangians are
polynomials of the super�elds. In the same way, as the
ordinary action is the integral over the space time of the
Lagrangian density, in the supersymmetric case the action
may be expressed as an integral over the whole superspace.

As quantum �eld theories the supersymmetric theories
are less divergent as they would be in the absence of SUSY.
�ese properties can be traced back to the cancellation of
diagrams containing bosonic or fermionic particles, as, for
example, the cancellation of quadratic divergences present
in the radiative corrections to the Higgs boson mass. Even
more, it was shown [14–16] that there are parameters of
the theory that do not get any radiative corrections; that is
a very special feature in quantum �eld theories. �e most
important consequence for the particle phenomenology is
the fact that in a supersymmetric theory there should be an
equal number of bosons and fermions with equal masses.
In other words, for every SM particle there should exist a
supersymmetric partner with an equal mass. But in Nature
we do not observe such a situation. An elegant solution to
break SUSY in such a way that its renormalization properties
remain valid (in particular the nonrenormalization theorems
and the cancellation of quadratic divergences) is to introduce
the so-called so� terms [17]. In this way, the mass di�erence
between supersymmetric partners can become of the order of
SUSY breaking scale. Moreover, there will also be parameters
that receive only �nite radiative corrections of the order of
magnitude of SUSY breaking parameters. �is is the case of
theHiggsmasses andHiggs couplings. Accordingly, the SUSY
partners of the SMparticles should not be very heavy in order
to account for the smallness of the Higgs mass and couplings.
For example, requiring for consistency of the perturbation
theory that the radiative corrections to the Higgs boson mass
do not exceed the mass itself gives [18]	
2

ℎ ≈ �2
2
SUSY ≈ 
2

ℎ, (2)

where 
SUSY denotes the mass scale of SM superpartners.
�us, for
ℎ ≈ 100GeV and � ≈ 10−1 one obtains
SUSY ≈1000GeV. �is feature is one of the great achievements
of supersymmetric theories, namely, the solution to the
hierarchy problem in particle physics.

�e very old concept of the existence of an organizing
principle that allows the uni�cation of all interactions present
in Nature is nowadays embedded in the so-called Grand
Uni�ed �eories (GUT). �e predictions of such theories
can be even precisely tested with the help of the experiments
conducted at modern particle colliders. �e most prominent
example concerns, for sure, the prediction of gauge coupling

uni�cation. Once the gauge couplings for the electroweak
and strong interactions had been precisely measured at the
Large Electron-Proton Collider (LEP) [19], we could verify
this hypothesis with high precision. �e amazing result
of evolving the low-energy values of the gauge couplings
according to the SM predictions [20–22] is that uni�cation
is excluded by more than eight standard deviations. �is
means that uni�cation can be achieved only if new physics
occurs between the electroweak and the Planck scales. If one
considers that a supersymmetric theory describes the new
physics, one obtains that uni�cation at an energy scale of

about 1016 GeV can be realized if the typical supersymmetric

mass scale is of the order of 103 GeV. �is observation was
interpreted as �rst “evidence” for SUSY, especially because
the supersymmetric mass scale was in the same range as that
derived from the solution to the hierarchy problem.

Another virtue of SUSY is that it provides a candidate
for the cold dark matter. Nowadays, it is well established that
the visible matter amounts to only about 4% of the matter in
the Universe. A considerable fraction of the energy is made
up from the so-called dark matter. �e direct evidence for
the existence of dark matter is the at rotation curves of
spiral galaxies (see, e.g., [23] and references cited therein), the
gravitational lensing caused by invisible gravitating matter
in the sky [24, 25], and the formation of large structures
like clusters of galaxies. �e dark matter is classi�ed in
terms of the mass of the constituent particle(s) and its
(their) typical velocity: �e hot dark matter, consisting of
light relativistic particles and the cold one, made of massive
weakly interacting particles (WIMPs) [26]. �e hot dark
matter might consist of neutrinos; however, this hypothesis
cannot explain galaxy formation. For the cold dark matter,
there is obviously no candidate within the SM. Nevertheless,
SUSY provides an excellent candidate for WIMP, namely, the
neutralino as the lightest supersymmetric particle.

�ese three fundamental predictions of SUSY make it
one of the preferred candidates for physics beyond the SM.
�is explains the enormous e�orts devoted to searches for
SUSY in particle physics experiments at accelerators, in the
deep sky with the help of telescopes, and with the help of
underground facilities, that last already for four decades. �e
exclusion bounds on the supersymmetric mass spectrum are
in general model dependent. In the case of the constrained
MSSM (CMSSM), the current status is as follows: if one
combines the excluded regions from the direct searches at
the LHC [27], the stringent lower bound on the mass of the
pseudoscalar Higgs from XENON100 [28], the constraints
from the relic density from WMAP [29], and those from
muon anomalous magnetic moment [30], one can set a
lower limit on the WIMP mass of 230GeV and on strongly
interacting supersymmetric particles of about 1300GeV. If in
addition, the mass of the lightest Higgs boson of 125GeV in
agreement with the recentmeasurement at the LHC [31, 32] is
imposed; one can exclude strongly interacting superpartners
below 2TeV. Nevertheless, such exclusion bounds concern
the gluinos andmainly the �rst two generation of squarks. On
the other hand, for the third generations of squarks, masses
of the order of few hundred GeV are still allowed.
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In this context, the question whether low-energy SUSY
is still a valid candidate for physics beyond the SM arises
naturally. Despite the slight tension that appears in particular
models, as, for example, the constrained MSSM, (the con-
strainedMSSMmodel is based on the universality hypothesis
and is described by a set of �ve free parameters de�ning the
mass scale for the Higgs potential and the scalar and fermion
masses) the supersymmetric parameter space is large enough
to accommodate all the experimental data known at present.
However, the main prediction of low-energy SUSY, that is,
the existence of supersymmetric particles at the TeV scale,
is falsi�able at the LHC at the full energy run of 14 TeV. If
no supersymmetric particle will be found at the TeV scale,
we have to give up the main arguments in favor of SUSY,
namely, the gauge coupling uni�cation and the solution to the
hierarchy problem.

To draw such powerful conclusions, one de�nitely needs
an accurate comparison of the experimental data with the
theory predictions based on SUSY models. �ere are various
possibilities to perform such comparisons; one of them is
high precision analyses, that requires precision data both
at the experimental and theoretical level. On the theory
side, the observables for which precise theoretical predictions
up to the next-to-next-to leading order in perturbation
theory are required are the electroweak precision observables
(EWPO) [33], the muon anomalous magnetic moment [34],
the lightest Higgs boson mass [33], the decay rate for the
rare decay of a bottom quark into a strange quark and a

photon Γ(� → �	�) [35], and, of course, the production
and decay rates of the Higgs boson at hadron colliders [36].
Details about the various topics can be found in the excellent
review articles cited above. In this paper we report on the
newest developments in precision calculations within SUSY
models and set special emphasis on the recent calculations at
the three-loop order involving several di�erent mass scales.
�e latter constitute in many cases essential ingredients for
the state of the art analyses of the experimental data taken
currently at the LHC.

�is paper is organized as follows. In the next section
we briey review the main results concerning the renor-
malizability of supersymmetric theories that can be derived
from their holomorphic properties. In Sections 3 and 4 we
describe the regularization method based on dimensional
reduction applied to nonsupersymmetric and supersymmet-
ric theories up to the fourth order in perturbation theory.
In the second part of the paper we present the phenomeno-
logical applications of such precision calculations. Namely,
in Section 5 we concentrate on computation of the three-
loop gauge beta functions within the SM that allows us to
predict the gauge couplings at high energies with very high
accuracy. Furthermore, in Section 6 we report on the gauge
coupling uni�cationwithin SUSYmodels taking into account
the most precise theoretical predictions and experimental
measurements. Section 7 is devoted to the computation of the
lightest Higgs boson mass within SUSY models with three-
loop accuracy. In Section 8, the hadronic Higgs production
and decay in SUSY models are reviewed and the required
computations up to the third order in perturbation theory

are presented. Finally, we draw our conclusions and present
our perspective on precision calculations in SUSY models
in Section 9. In the Appendix A we give details about the
computation of the group invariants required in multiloop
calculations. Appendix B contains the main renormalization
constants needed for three-loop calculations in supersym-
metric quantum chromodynamics (SUSY-QCD) within the
modi�ed minimal subtraction, that has been employed for
the computations reviewed in Sections 7 and 8.

2. Holomorphy and Exact Beta Functions in
Supersymmetric Theories

In the last decades, enormous progress has been made
in understanding the dynamics of supersymmetric gauge
theories. For many models even exact renormalization group
equations (RGEs) for the gauge couplings have been derived.
However, the connections between the exact results and those
obtained in perturbation theory are still not completely eluci-
dated. Shifman and Vainshtein [37] were the �rst to propose
a solution to this puzzle. �ey based their argumentation on
the di�erence between the quantities involved in the exact
beta functions derived within theWilsonian renormalization
approach and those adopted in the common perturbative
framework. A di�erent derivation of the exact beta functions
was presented in [38], where only the Wilsonian renormal-
ization approach was used but the authors distinguished
between the holomorphic and canonical normalization of the
gauge kinetic term in the bare Lagrangian.

Within the Wilsonian framework [39] any �eld theory is
de�ned by the fundamental Lagrangian, the bare couplings,
and the cuto� parameter. Varying the cuto� parameter and
the bare couplings in a concerted way so that the low-energy
physics remains �xed, one �nds the dependence of the bare
couplings on the cuto� parameter which is encoded in the
Wilsonian renormalization group equations (WRGEs). �e
transition from a fundamental Lagrangian to an e�ective
Lagrangian involves integrating out the high momentum
modes of the quantum �elds (i.e., degrees of freedom with
momenta between some large cuto� scale Λ and some
renormalization scale �). �e coe�cients of the resulting
operators play the role of renormalized couplings and we will
call them Wilsonian e�ective couplings. �e virtue of this
approach is the lack of any infrared e�ects, since none of the
calculations involves infrared divergences.

Let us consider as an example supersymmetric electrody-
namics (SQED). �e vector super�eld in the Wess-Zumino
gauge has the following Grassmannian expansion:

�(�, �, �) = − ����V� (�) + ����� (�)
− ����� (�) + 12����� (�) , (3)

where the physical degrees of freedom correspond to the
vector gauge �eld V� and the Majorana spinor �eld �, known
also as gaugino �eld. �e �eld � is an auxiliary �eld without
any physical meaning and can be eliminated with the help of
equations of motion for the physical �elds.



4 Advances in High Energy Physics

�e Lagrangian of the model at an energy scale � can be
written as follows:

� = 14�2 (�) ∫ d4�d2�W�
W�

+ 14� (�)∫ d4�d2� ( !
 + "!−
") , (4)

where the super�eld strength tensor is de�ned through the
following relation:

W� = 18�2���
= ��� (�) − ��� (�) − ���#�� (�) + �2$��̇��̇ (�) , (5)

with #�] = $�V] − $]V�. (6)

Here � and � are the supercovariant derivatives. �e super-

�elds  (�, �, �) and "(�, �, �) are chiral matter super�elds
with charges 1 and −1, respectively. �(�) stands for the gauge
coupling and �(�) denotes the super�eld renormalization
constant.

�emaximal value of � is equal toΛ, the ultraviolet cuto�
parameter. At this point the Lagrangian (4) is just the original

SQED Lagrangian and the coe�cients 1/�2(Λ) and �(Λ) are
bare parameters.

Because the momentum integrals are performed in % = 4
dimension and the regularization is introduced through the
cuto� parameter, the Wilsonian renormalization procedure
preserves SUSY.�us, if one calculates theWilsonian e�ective
Lagrangian, it is manifestly supersymmetric. As a conse-
quence, the resulting e�ective superpotential (the part of the
Lagrangian density that does not contain any derivative)must
be a holomorphic function of the couplings [14–16]. �is
constraint restricts the running of the Wilsonian couplings
to just the one-loop order.

For example, let us assume that we integrate out the
matter super�elds passing to the low-energy limit of the
theory. �e low-energy e�ective coupling at the low-energy� is given through the following relation:&�� (�) = &��,0 (Λ) − 2'0 ln Λ� , (7)

where ��(�) denotes the renormalized or theWilsonian low-
energy e�ective coupling constant and ��,0(Λ) is the cuto�-
dependent bare coupling constant. '0 is the coe�cient of the
one-loop beta function of the underlying theory, where the
beta function is de�ned through

� (�) = �2 d

d�2
�& = −(�&)2∑

�≥0
(�&)�'�,

with � = �24& .
(8)

Let us emphasize that (7) is exact at all orders. �e two-
and higher-loop RGEs involve at least ln(ln(��,0)) which is

a nonholomorphic function of the bare coupling and thus
cannot contribute to (7). In [37], it was proved through a
direct calculation using the supergraphsmethod that the two-
loop contributions to the running of the e�ective coupling
vanish. �e generalization of this assertion to higher loops is
based on the extension of the nonrenormalization theorem
for #-terms in supersymmetric theories [14–16].

As mentioned above, one has to distinguish between the
holomorphic Wilsonian gauge couplings and the physically
measurable momentum-dependent e�ective gauge couplings
present in the one-particle irreducible generating functional.
Unlike the Wilsonian couplings, the physical couplings do
not depend on the ultraviolet cuto� scale but on momenta
of the particles involved. �e dependence of the physical
couplings on the overall momentum scale is governed by the
Gell-Mann-Lowequations [40], which have di�erent physical
meaning as the WRGEs and have di�erent �-functions [41,
42] beyond one loop. Going from the e�ective Lagrangian
in the Wilsonian approach to the classical e�ective actionΓ means to integrate out all of the degrees of freedom
down to zeromomentum, that will generate nonholomorphic
corrections. Γ is o�en interpreted as a sort of e�ective
Lagrangian, but in general it does not have the form of a
supersymmetric Lagrangian with holomorphic coe�cients.

�e connection between the Wilsonian gauge coupling�� and a physical gauge coupling �ph was derived in the so-
called Novikov-Shifman-Vainshtein-Zakharov renormaliza-
tion scheme (NSVZ) [37]. �is scheme requires a manifestly
supersymmetric regularization procedure. In addition, the
de�nition of the physical couplings is close to that in the
momentum subtraction scheme (MOM). �e conversion
relation reads &�� (�) = &�ph (�) +  (6) ln� (�) , (9)

where �(�) is the renormalization constant of the matter
super�eld and the coe�cient  (6) is the Dynkin index of
the representation 6 of the matter super�eld. �e factor�(�) is related to the mass renormalization constants of the
matter super�eld through the nonrenormalization theorems,
provided SUSY is preserved. However, in general the �
factors are not restricted by any holomorphic constraints and
thus are not known analytically. �ey have to be computed
order by order in perturbation theory. Combining (9) and (7)
we get&�ph (�) = &�ph (Λ) −  (6) ln(� (�)� (Λ)) − 2'0 ln Λ� . (10)

Using (8) we obtain for the beta function of the physical
coupling in the NSVZ scheme the following relation:

�NSVZ
SQED (�ph) = (�ph& )2 12 (6) (1 − �) , (11)

where we have speci�ed the value of the coe�cient '0 for
the SQED case and the super�eld anomalous dimension is
de�ned through

� = −�d ln� (�)
d� . (12)
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Because (7) is exact at all orders, also the relation between
the beta function of �ph and the anomalous dimension
of the matter super�elds � is valid at all orders. Let us
remark, however, that this relation holds only in the NSVZ
scheme. Unfortunately, it is highly nontrivial to ful�ll the
requirements of the NSVZ scheme in practice.

In supersymmetric nonabelian models with several mat-
ter supermultiplets, (9) becomes&�� (�) = &�ph (�) + 12: (;) ln�ph (�)

+∑

 (6) ln� (�) , (13)

where :(;) is the quadratic Casimir operator of the adjoint
representation and (6) is the Dynkin index of the represen-
tation 6 of the matter �eld �. �e second term stands for the
gaugino contribution, while the third one for contributions
generated by the matter super�elds. A simple calculation
provides us with the exact relation between the gauge beta
function and the anomalous dimension of the matter super-
�elds:

�NSVZ = −(�ph2& )2 3: (;) − 2∑  (6) (1 − �)1 − : (;) �ph/ (2&) . (14)

From (14) it is easy to see that for the derivation of the �-
loop beta functions in theNSVZ scheme one needs thematter
anomalous dimensions � at the (� − 1)-loop order. As will
be shown below this feature was intensively exploited in the
literature.

In the case of SUSY-Yang-Mills theories the matter
super�elds are absent, so  (6) = 0, and an exact formula
for the gauge coupling beta function can be derived:

�NSVZ = −(�ph2& )2 3: (;)1 − : (;) �ph/ (2&) . (15)

Similar relations can also be derived for models with so�ly
broken SUSY.�e line of reasoning is as follows: the powerful
supergraph method is also applicable for models with so�ly
broken SUSY by using the “spurion” external �eld method
[17, 43]. Perhaps, one of the most prominent example is the
relation that can be established between the gauginomass>�̃
and the gauge beta function. In the presence of the SUSY
breaking gaugino mass term, the coe�cient of the gauge
kinetic term in the Wilsonian action becomes

( 1�2)
�
A→ (1 − 2>2

�̃�2�2 )
�
, (16)

where � is the Grassmann variable.
Using the same arguments based on holomorphy, it was

shown [44, 45] that a renormalization group invariant (RGI)
relation for the gaugino mass can be derived within NSVZ
scheme: >�̃�� (�) = RGI. (17)

Moreover, it was shown with the help of the spurion formal-
ism that the renormalization constants of so�ly broken SUSY
gauge theory can be related to the renormalization constants
of the underlying exact supersymmetricmodel [46–48]. Even
more, the connecting formulas are valid at all orders in
perturbation theory.�e only necessary assumption for their
derivation is the existence of a gauge and SUSY invariant
regularization scheme. �us, such relations are valid only in
NSVZ-like regularization schemes.

At this point, a few remarks are in order to comment on
the results discussed above. �e authors of [56] state that in% = 4 dimensions the only known regularization to conserve
SUSY is the Pauli-Villars scheme for matter super�elds and
the higher derivative scheme for the gauge super�elds. Tech-
nically this construction is rather complicated and hardly
applicable tomultiloop computations. In [43], an attempt was
made to apply the “supersymmetric dimensional regulariza-
tion” or “regularization by dimensional reduction” (DRED)
[57] within the supergraph formalism. However, as pointed
out by Siegel himself [58], this scheme is mathematically
inconsistent in its original formulation and a consistent
formulation will break supersymmetry in higher orders of
perturbation theory. A similar situation occurs also for the
application of DRED in component �eld formalism [59, 60]
(A detailed analysis of this issue will be done in the next
section). �us, the exact formulas of the NSVZ scheme are
not valid, in general, for calculations based on DRED since
they do not involve a regularization scheme supersymmetric
at all orders. For particle phenomenology, it means that
the powerful predictions of (14) cannot be tested through
experiments, since the beta functions are scheme dependent
beyond two loops.

�e breakthrough regarding this situation was obtained
in [61–65], where it is stated that if the NSVZ scheme
exists it can be perturbatively related to schemes based
on DRED. Such arguments follow from the equivalence of
di�erent renormalization schemes in perturbation theory
[66]. Precisely, the computation of the three-loop mass
anomalous dimension for the chiral matter super�eld in a
general nonabelian supersymmetric theory and of the three-
loop gauge beta function in the abelian case allowed the
derivation of the three- and four-loop gauge beta function for
a general supersymmetric theory. Remarkably enough, the
derivation (up to a numerical coe�cient) of the four-loop
gauge beta function was based on a three-loop calculation
and theoretical considerations about special relations valid
in D = 2 supersymmetric theories and one-loop �nite
supersymmetric theories.

Let us mention at this point also the calculation of the
three-loop gauge beta function for supersymmetric Yang-
Mills (SYM) theories of [67]. For this calculation, DRED was
employed in component �eld formalism rather than super-
�eld formalism, and hence a manifestly not supersymmetric
gauge was used. �e computations of [64, 65, 67] coincide as
a consequence of gauge invariance of the gauge beta function.

Moreover, the authors of [61, 62] noticed that the dif-
ferential operators relating the beta functions for so� SUSY
breaking parameters to the beta functions of the gauge and
Yukawa couplings are form invariant under change of scheme
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(i.e., from NSVZ to DRED scheme). �us, similar relations
for the so� SUSY breaking parameter valid to all orders
of perturbation theory hold also in a DRED-like scheme
(Actually, the scheme. proposed by the authors of [61, 62]
is the so-called DRED�, for which beta functions of SUSY
breaking parameters do not depend on the unphysical E-
scalar mass parameter. For more details about the DRED�

scheme see Section 3.)
In the next sectionwewill discuss in detail the application

of DRED in component �eld formalism and give some exam-
ple of important calculations that can be done within this
approach. Nevertheless, already now we want to mention the
coincidence of all results obtained with DRED in component
�eld formalism and those derived via DRED in supergraphs
formalism.

3. Dimensional Reduction in the Component
Field Formalism

�eprecision ofmany present or forthcoming experiments in
particle physics requires inevitably higher order perturbative
calculations in the SM or its extensions like the Minimal
Supersymmetric Standard Model (MSSM). Regularization
of the divergent loop diagrams arising in the higher order
calculations is commonly performed employingDimensional
Regularization (DREG) or its variants, due to its nice feature
to respect gauge invariance. Higher order calculations within
the SMpredominantly useDREG in its original form [68, 69],
while for calculations within supersymmetric theories DRED
as de�ned in [57] is commonly employed. It is not a priori
known whether SUSY as a symmetry of a given Lagrangian is
still a symmetry of the full quantum theory in any particular
case. Nevertheless, a detailed formal renormalization pro-
gram has been pursued in [70] including a proof that SUSY
is not anomalous. If the regularized theory does not respect
SUSY, the �nite amplitude will not satisfy theWard identities
required by SUSY, giving rise to an apparent anomaly. If SUSY
is not anomalous, it is possible to restore the invariance by
introducing �nite counterterms.

In practice, the choice of regularization scheme is of
considerable signi�cance for the extraction of physical pre-
dictions. �is is the case for the NSVZ scheme we alluded
in the previous section, that rarely found direct practical
applicability. It rather provides important checks for results
predicted within DRED. In this section we discuss in detail
the application of DRED in the component �eld formalism
and its application to practical calculations.

3.1. Framework. DRED consists of continuing the number of
space dimensions from 4 to %, where% is less than 4, but keep-
ing the dimension of all the �elds �xed. In component �eld
language, this means that the vector bosons and fermions
preserve their four-dimensional character. Furthermore, it
is assumed that all �elds depend on % rather than 4 space
time coordinates, so that the derivatives $� and momentaF� become %-dimensional. It is the four-dimensional nature
of the �elds that is supposed to restore the supersymmetric
Ward-Takahashi [71, 72] or Slavnov-Taylor [73] identities,

while the %-dimensional space time coordinates cure, as in
DREG, the singularities of the loop integrals.

However, potential inconsistencies ofDRED, arising from
the use of purely four-dimensional relations between the
Levi-Civita tensor and the metric tensor, have been pointed
out by Siegel himself [58]. Even more, inconsistencies of
DRED arising without the direct use of Levi-Civita tensors
have been revealed in [60]. �e authors have correlated
them with the impossibility of decomposing the �nite four-
dimensional space into a direct sum of in�nite-dimensional
spaces.�e solution proposed by the same authors is to intro-
duce a formal space, called quasi-four-dimensional space
(G4), with “noninteger valued” vector and spinor indices
(thus, the two types of indices range over an in�nite set of
values), obeying certain algebraic identities inspired from
the properties of the four-dimensionalMinkowski space.�e
existence of such a space was demonstrated by construction
[74] starting from similar arguments as those used to prove
the existence of the formal %-dimensional space of DREG
[75]. In this way the consistency of the calculation rules is
guaranteed. By construction, G4 is represented as the direct
sum of two in�nite-dimensional spaces:G� which is formally%-dimensional and is identical with the one of DREG andG2� which is formally 2E = 4 − %-dimensional. (One needs
to perform twice the construction of H-dimensional integrals
and metric tensors for H = % and H = 2E. �e %-dimensional
integral is themomentum integral inDRED, while 2E integral
is involved only in the de�nition of the 2E-dimensionalmetric
tensor.)

G4 = G� ⊕ G2�. (18)

According to the properties of the three formal spaces at handG4, G�, G2� one can derive the following relations for the
corresponding metric tensors ��], �̂�], ��] [59, 74]:

��] = �̂�] + ��], ��� = 4, �̂�� = %,
��� = 2E, ��]�̂�

]
= �̂��,

��]��
]
= ���, �̂�]��

]
= 0.

(19)

Furthermore, any quasi-four-dimensional vector can be
decomposed with the help of the projectors �̂�], ��]:

K� = K̂� + K�, K̂� = �̂�]K
]
, K� = ��]K

]
. (20)

Imposing the Dirac algebra for the �-matrices de�ned in G4{��, �]} = 2��]
1, (21)

we can derive similar commutation relations for the compo-
nents in G� and G2�:{�̂�, �̂]} = 2�̂�]

1, {��, �]} = 2��]
1,

{��, �̂]} = 0. (22)

�ese relations together with the trace condition

Tr 1 = 4 (23)
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are su�cient for computing Feynman diagrams. Equa-
tion (23) is particularly useful in supersymmetric theories,
because it ensures that the numbers of degrees of freedom for
fermions and bosons are equal.

For practical computations, it is useful to note that the
fermion traces that contain both types of �-matrices can be
factored out as follows:

Tr (�̂�1 ⋅ ⋅ ⋅ �̂���]1 ⋅ ⋅ ⋅ �]�)
= 14 Tr (�̂�1 ⋅ ⋅ ⋅ �̂��)Tr (�]1 ⋅ ⋅ ⋅ �]�) . (24)

�is relation can be derived from (23), (22), and the algebra of
Dirac matrices in % dimensions. �us, the Dirac algebra can
be performed separately in % and in 4 − % = 2E dimensions.

Once we introduced “noninteger valued” spinor indices,
we need in�nite-dimensional �-matrices to represent the
Dirac algebra. �us, the Fierz identities valid in the genuine
four-dimensional space do not hold anymore in G4. �eir
use was identi�ed with one of the sources of DRED incon-
sistencies. Moreover, withinG4 the invariance of the original
Lagrangian under SUSY transformations might be broken.
�is feature can be directly correlated with the lack of Fierz
identities that would ensure the cancellation of Lagrangian
variation under SUSY transformations in the genuine four-
dimensional space. However, it has been shown [60, 74] that
such inconsistencies become active only in the higher orders
of perturbation theory, when, for example, traces over at
least ten �-matrices and antisymmetrization over �ve indices
are involved. �us, DRED also breaks SUSY, but starting
from higher orders of perturbation theory.�is explains, why
one- and even two-loop calculations of QCD corrections
within DRED [76–80] based on genuine four-dimensional
Dirac algebra and even Fierz rearrangement provided correct
results. Even the supersymmetric character of DRED at
low orders has been exploited in the context of QCD with
massless quarks in [78]. However, beyond the one-loop level
the distinction between��] resulting from contractions of the
quasi-four-dimensional vector �elds and �̂�] resulting from
momentum integrals is di�cult to follow. It turned out [81]
that for higher order computations it is useful to decompose
the quasi-four-dimensional vector �elds according to (20). As
we shall see in the next section, in the case of gauge theories
the %-dimensional components behave as vectors under the
gauge transformations whereas the 2E components as scalars,
usually called O-scalars.

Representing the underlying space of DRED G4 as a
formal in�nite-dimensional space renders the extension of�5 as subtle as in DREG. �e consistent procedure proposed
by ’t Hoo�-Veltman (HV) [69] for de�ning �5 as in four

dimensions �5 = ��0�1�2�3 has in the context of SUSY
theories two drawbacks.On the one hand, it is the fact that the
mathematically consistent treatment of �5 in DREG requires% > 4, whereas for DRED % < 4 is needed. However, it
has been shown up to two loops [82, 83] that the Adler-
Bardeen theorem [84] could still be satis�ed in DRED with
HV scheme, if relations like

�̂�5�̂ = (% − 8) �5, (25)

which follow in % > 4 are assumed to hold also for % < 4. On
the other hand, the use of a not anticommuting �5 leads to the
breakdown of symmetries, for example, chiral symmetry of
the SM or supersymmetry in case of theMSSM already at the
one-loop level. �ese “spurious anomalies” would spoil the
renormalizability and they have to be cured by introducing
appropriate counterterms to restore Ward-Takahashi and
Slavnov-Taylor identities order by order in perturbation
theory (see [85]). �is approach was successfully applied for
SM predictions within DREG up to three-loops [86, 87].
However, for the MSSM it becomes much more involved due
to the complexity introduced by supersymmetric conditions
and it rarely has been employed in practice [83].

�e implementation of �5 in DRED commonly used in
practice is inspired by the naive scheme (NS) of DREG.
Namely, it is treated rather like a formal object which is not
well de�ned mathematically but anticommutes with all �-
matrices

{�̂�, �̃5} = {�̂�, �̃5} = 0, (�̃5)2 = 1. (26)

Nevertheless, one has to correct the false result that arises
from (26), that the trace of �5 and four or more �-matrices
vanishes. Paying attention that now two types of �-matrices
occur, the additional constraints read

Tr (Γ�Γ�Γ�Γ��̃5) = 4� Õ���� + O (E) ,
with Γ� = �̂� or ��. (27)

�e tensor Õ���� has some similarities with the four-
dimensional Levi-Civita tensor: (i) it is completely antisym-
metric in all indices; (ii) when contracted with a second one
of its kind gives the following result:

Õ����Õ��������
= [;�

�� ;�
�� ;�

�� ;�
��] ,

;�] = �̂�] or ��],
(28)

depending on the nature ofDiracmatrices Γ� in (27).Here the
square brackets denote complete antisymmetrization. When

taking the limit % → 4, Õ���� converts into the four-
dimensional Levi-Civita tensor and (27) and (28) ensure that
the correct four-dimensional results are reproduced.�is last
constraint is needed in order to correctly compute fermion
triangle diagrams containing an axial vector current, that is,
to cope with the Adler-Bardeen-Jackiw anomaly [88–90].

At this point a comment on (27) is in order. When we
combine it with the cyclic property of traces, it necessarily
follows that other traces are not well de�ned in % ̸= 4 dimen-
sions. It turns out that there is an unavoidable ambiguity of
orderO(%−4)when �xing the trace condition in (27). Even if
one does not use the cyclic property of the trace, an ambiguity
in the distribution of the anomaly between the vector and the
axial vector currents shows up [82]. �e occurrence of the
ambiguity is a characteristic of the extension of �5 away from% = 4 dimensions. ’t Hoo� and Veltman have pointed out
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in their original paper [69] that an ambiguity related to the
location of �5 shows up in HV scheme, too.

�e use of an anticommuting �5 in % ̸= 4 dimensions was
applied for the �rst time to the evaluation of fermion traces
with an even number of �5’s in [91], and a few years later
extended also to odd �5 fermion traces in [92]. �e method
(formore details see [93] and references cited therein) proved
to be e�ective for SM calculations involving chiral fermions
up to two-loop order [94–97]. �e consistency of this �5
prescription has been veri�ed even in three-loop QCD-
electroweak calculations [98, 99]. Within DRED, it has been
successfully employed in MSSM calculations at the two- and
three-loop order [100–103]. However, let us mention at this
point that for these calculations at most the �nite parts of
two-loop and the divergent parts of three-loop diagrams are
required. For the calculation of �nite parts of three-loop
diagrams containing two fermion triangle subdiagrams, the
HV scheme has to be applied as the naive scheme does not
provide correct results.

�rough the consistent formulation of DRED we gain a
regularization scheme which proves to be supersymmetric
only in the lower orders of perturbation theory. Due to the
violation of Fierz identities, SUSY invariance will be broken
at higher orders. �e �rst consequence of SUSY breaking
is that the all-order relations between di�erent anomalous
dimensions valid in the NSVZ scheme do not hold in DRED.
However, although DRED consistently formulated is not a
supersymmetric scheme at all orders, it provides so far the
best option for computations within SUSY theories.

3.2. Minimal Subtraction Schemes MS and DR. �e common
renormalization schemes used for multiloop calculations
are the minimal subtraction (MS), momentum subtraction
and on-shell schemes. Minimal subtraction, scheme has the
advantage of involving the simplest computations, but it is
nonphysical in the sense that it does not take into account
mass threshold e�ects for heavy particles. Nevertheless, it
is the main scheme used in renormalization group (RG)
analyses relating the predictions of a given theory at di�erent
energy scales. �e other two options are computationally
muchmore involved but indispensable for the determination
of the parameters of a theory from the quantities measured
experimentally. We focus in this section on the minimal
subtraction methods.

Minimal subtraction scheme with DREG as regulator

[104] or the modi�ed MS scheme [105] and its variant for
DRED—the DR scheme—are in particular well suited for
higher order calculations in perturbation theory. �e advan-
tage of these schemes is that all ultraviolet (UV) counterterms
are polynomial both in external momenta and masses [106,
107].�is allows for setting to zero certain masses or external
momenta, provided no spurious infrared divergences are
introduced. �is simpli�es substantially the calculations of
the Feynman integrals. It has been shown [108] by means of
the infrared rearrangement (IRR) procedure [108–110] that

the renormalization constants within the MS scheme can
be reduced to the calculation of only massless propagator
diagrams. �is method was used for the �rst three-loop

calculation of the QCD �-function [111], applying it to each
individual diagram. But the most e�ective approach is its
use in combination with multiplicative renormalization.�is
amounts in general to solve recursively the equation

�� = 1 − V� [Γ� (F2)��] , (29)

where V�[Y(E)] stands for the singular part of the Laurent

expansion of Y(E) in E around E = 0. Γ�(F2) denotes
the renormalized Green function with only one external

momentum F2 kept nonzero.�� denotes the renormalization
constant associated with the Green function Γ�. In this case,
the renormalization of Γ� through (Z + 1)-loop order requires
the renormalization of the Lagrangian parameters like cou-
plings,masses, gauge parameters,mixing angles, and so forth.
up to Z-loop order. �e method was successfully applied to
the three-loop calculations of anomalous dimensions within

MS or DR schemes [49, 86, 101–103, 112–114] using the
package MINCER [115] written in FORM [116], which computes
analytically massless propagator diagrams up to three loops.

Apart from that, a second method was proposed in [117],
which has been used for the calculation of the three- and even
four-loop anomalous dimensions of QCD [118–121] and the
beta function of the quartic coupling of the Higgs boson in
the SM [114, 122, 123]. It deals with the IRR by introducing an
arti�cial mass for all propagators. Expanding in all particles
masses and external momenta, one can reduce the evaluation
of the Feynman integrals to massive tadpoles. �e analytic
evaluation of the massive tadpoles up to three-loop order can
be obtained with the help of the package MATAD [124].

A third method was introduced for the evaluation of
the renormalization constants for the quark mass [118] and
the vector [125] and quark scalar current correlators [126]
through four loops. It is based on global IRR properties and
amounts essentially to set to zero the external momentum
and let an arbitrary subset of the internal lines to be massive.
A�er nontrivial manipulations, the four-loop integrals can be
reduced to three-loopmassless, two-point integrals, and one-
loop massive vacuum integrals.

�e three-loop accuracy for the anomalous dimensions
of theories involving not only vector but also Yukawa
and quartic scalar interactions (e.g., the SM [49, 114]) was
achieved only very recently. Remarkably, for supersymmetric
and so�ly broken supersymmetric theories like the MSSM
the three-loop anomalous dimensions were computed long
before [63, 64, 127]. �eir derivations used intensively the
exact relations established between the various anomalous
dimensions in the NSVZ scheme (for more details see
Section 2) as well as the observation that the NSVZ scheme
and DRED can be perturbatively connected.

3.3.DREDApplied toNonsupersymmetric�eories. Although
DREDwas originally proposed as a candidate for an invariant
regularization in supersymmetric theories, it proved to be
useful also in nonsupersymmetric theories. Its use in SM
calculations up to three-loop orders was motivated either by
the possibility to apply four-dimensional algebra and even
Fierz rearrangements [77, 80] (the mathematical inconsis-
tencies alluded to above do not occur at the two-loop level
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in this calculations), or by the possibility to easily convert
a nonsupersymmetric gauge theory into a SUSY-Yang-Mills
theory and use nontrivialWard identities as checks of compli-
cated calculations [78, 98, 128]. Apart from the computational
advantages, DRED applied to nonsupersymmetric theories,
in particular to QCD, provides us with a powerful tool to
verify its consistency up to three-loop order via the connec-
tion that can be established with DREG (DRED and DREG
are also perturbatively connected). Finally, it is motivated by
the MSSM, as a so�ly broken supersymmetric theory or by
various models derived from the MSSM which feature lower
symmetries (e.g., the intermediate energy theory obtained by
integrating out the squarks and sleptons). DRED applied to
e�ective �eld theories, such that QCD extended to include
theHiggs-topYukawa coupling, was useful for the calculation
of the production rate for the Higgs boson in gluon-fusion
channel within MSSM [54, 129].

In the following, we consider a nonabelian gauge theory
with H� Dirac fermions \� transforming according to a
representation 6 of the gauge group G. For the moment we
do not take into account any genuine scalar �eld.

�e Lagrangian density (in terms of bare �elds) reads

L� = − 14#2
�] − 12 (1 − ^)($�_�

� )2
+ $�`� ($�`� − �Y���`�_�

�) + � ��∑
�=1
\���\�, (30)

where the �eld strength tensor is de�ned through

#�
�] = $�_�

]
− $

]
_�

� + �Y���_�
�_�

]
,

�� = $� − �� (6�)_�
�

(31)

is the covariant derivative. _� is the gauge �eld, `� is the

Fadeev-Popov-ghost �eld, Y��� are the structure constants of
the gauge groupG, ^ is the gauge parameter, and� is the gauge
coupling.

For the case when the theory admits a gauge invariant
fermion mass term we will have �� → �� + ��

� , where��
� = −>�\�\�. (32)

DRED amounts to imposing that all �eld variables depend
only on a subset of the total number of space timedimensions;
in this case % out of 4 where % = 4 − 2E. We can then make
the decomposition

_�
� (��) = _̂�

� (��) +_�
� (��) , (33)

where

_̂�
� = �̂�]_],�, _�

� = ��]_],�, �̂�� = %. (34)

It is then easy to show that [130]

�� = ��
� + ��

�, (35)

where

��
� = − 14#̂2

�] − 12 (1 − ^)($�_̂�)2
+ $�`� ($�`� − �Y���`�_̂�

�) + ��∑
�=1
�\��̂��̂�\�, (36)

��
� = 12(�̂�_]

)2 − ��∑
�=1
�\���6�\�_�

�

− 14�2Y���Y���_�
�_�

]
_�,�_�,],

(37)

where #̂�] and �̂� denote the projection of the �eld strength
and covariant derivative given in (31) onto G�, obtained
with the help of the operator �̂�]. Conventional dimensional
regularization (DREG) amounts to using (36) and discarding
(37).

Note that under the gauge transformations

	_̂�
� = $�Λ� + �Y���_̂�

�Λ�, (38a)

	_�
� = �Y���_�

�Λ�, (38b)

	\� = ��(6�)��\�Λ� (38c)

each term in (37) is separately invariant.�e_� �elds behave
exactly like scalar �elds and are hence known as O-scalars.
�ere is therefore no reason to expect the \\_ vertex to

renormalize in the sameway as the\\_̂ vertex (except in the
case of supersymmetric theories). �e couplings associated

with the \\_ vertex or with the quartic O-scalar interaction
are called evanescent couplings. �ey were �rst described in
[131] and later independently discovered by vanDammeand ’t

Hoo� [132].�e vertices _̂__ and _̂_̂__, on the other
hand, are renormalized in the same way as _̂_̂_̂, ::_̂,
and so forth because of the gauge invariance [133]. �us

we can conclude that _̂ is the gauge particle, while _
acts as matter �eld transforming according to the adjoint
representation. In order to avoid confusion, we denote in the
following the gauge particles with ;�

� and the O-scalars withO��:
_̂�

� A→ ;�
�, _�

� A→ O��. (39)

Since O-scalars are present only on internal lines we could,
in fact, choose the wave function renormalization of O�
and ;� to be the same. However, such a renormalization
prescription will break unitarity [132].�e crucial point is the
correct renormalization of subdivergences, which requires
that vertices involving O-scalars renormalize in a di�erentway
as their gauge counterparts.�us, to renormalize the O-scalars
one has to treat them as new �elds present in the theory.

For the renormalization of the theory we distinguish
two new types of couplings: a Yukawa like coupling ��
associated with the vertex \\O and a set of F quartic cou-
plings �� associated with vertices containing four O-scalars.
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�e number F is given by the number of independent

rank four tensors c���� which are nonvanishing when
symmetrized with respect to (d') and (`%) interchange. We
address the issue of the quartic vertex renormalization in
more detail in the next section.

�e renormalization constants for the couplings, masses,
and �elds and vertices are de�ned as

�0 = �����, �0
� = ������, √�0

� = �����√��,
1 − ^0 = (1 − ^) �3, >0

� = >���� ,
>0

 = > � 
�, \0 = √�2\, ;0,�

� = √�3;�
�,

O0,�� = √� 
3O��, `0,� = √�̃3`�,

Γ0!!" = �1Γ!!", Γ0!! = � 
1Γ!! ,

Γ0��" = �̃1Γ��", Γ0  " = �  "
1 Γ  ",Γ0  "" = �  ""

1 Γ  "", Γ0"""" = �4"
1 Γ"""",Γ0    = �4 

1 Γ    ,
(40)

where � is the renormalization scale and the bare quantities
are marked by the superscript “0.” Γ�gh(i) stands for one-
particle irreducible Green functions involving the external
particles �, g, h, (i). Equation (36) takes under renormal-
ization the usual expression in terms of renormalized param-
eters as in DREG scheme. �e renormalized Lagrangians ��

is the new term that distinguishes DRED from DREG and it
is given by

�� = 12�  ($�O�])2 + �  "�Y���$�O�];�,�O�,]
+ �  ""�2Y���Y���;�

�O�];�,�O�,]
− �!! ��\6���\O��
− 14 #∑

�=1
�����c����

� O��O�]O�,�O�,].
(41)

Strictly speaking, (41) should also have a mass term for
the O-scalars; but since this mass term does not a�ect
renormalization of the couplings and fermionmasseswe omit
it here. We discuss this issue in more detail in Section 3.3.5.

�e charge renormalization constants are obtained from
the Slavnov-Taylor identities. For example, if one computes
the D-point Green function with external �elds j1, . . . , j�
and denotes its coupling constant by �, one obtains

�� = �$1 ⋅⋅⋅$�√�$1 ⋅ ⋅ ⋅ �$�

, (42)

where the �$� are the wave function renormalization con-
stants for the j, �$1 ⋅⋅⋅$� is the corresponding vertex renor-
malization constant, and �� the charge renormalization.

Within the minimal subtraction scheme, one is free to
choose anymasses and external momenta, as long as infrared
divergences are avoided. One can set all masses to zero, as
well as one of the two independent external momenta in
three-point functions. In this case, one arrives at three-loop
integralswith one nonvanishing externalmomentum kwhich
can be calculated with the help of MINCER. One can also
calculate the three-point functions setting a common mass> to all particles and expanding the Feynman integrals in the

limit>2/k2 ≪ 1with the help of asymptotic expansions [117].
�is approach is much more tedious, but possible infrared
singularities would manifest in ln>2/k2 terms. If such terms
are absent in the �nal expression, the limit > → 0 can be
taken and the result should coincide with the one obtained
with the massless setup (for a comprehensive overview about
the multiloop techniques within DREG see the review article
[134]).

Precisely, the charge renormalization of the gauge cou-
pling can be derived from the ghost-gauge boson, fermion-
gauge boson, O-scalar-gauge boson vertices, or the gauge
boson self-interaction

�� = �̃1�̃3√�3
= �1�2√�3

= �  "
1� 

3√�3
= etc. (43)

as a consequence of gauge invariance.
Similarly, for the charge renormalization constants of the

evanescent couplings, the following relations hold:

�� = � 
1�2√� 

3
, ��� = �4 

1(� 
3)2 . (44)

In general, �� ̸= �� even at one-loop order. However, in
supersymmetric theories �� = �� should hold at all orders
because of SUSY. �is can be understood following the same
line of reasoning as for the derivation of the equality of
the charge renormalization constants for the interactions
involving gluons and those involving gluinos.

3.3.1.�e O-Scalar Self-Couplings. Let us discuss the structure
of the quartic O-scalar couplings for an arbitrary gauge group.
�ese interactions are invariant under the symmetry G ⊗o(2E), where only G is gauged. �e number of independent
quartic O-scalar couplings is given by the number of indepen-

dent rank H = 4 tensorsc���� invariant with respect to (d, ')
and (`, %) exchange, because of the o(2E) invariance. It has
been shown that for G = SU(D), SO(D), SP(D) withD ≥ 4
there are four such tensors [135]. For the case D = 3 only
three independent tensors can be built [136], while forD = 2
their number reduces to two [133]. �e answer to the general
question concerning rank H tensors is not yet known. For the
explicit construction of the set of tensors c���� we consider
�rst the SU(D) group and then generalize the results for the
other two groups.

A natural choice for a basis for rank H = 4 tensors
when D ≥ 4 is given by [137]. (An alternative way to
de�ne a basis which has the virtue of being immediately
generalizable to any group [136] is in terms of traces of
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products of the generators in the de�ning representation, thus

Tr( � � � �), Tr( � �)Tr( � �), etc.) one has
V1 = 	��	��, V4 = %���%���, V7 = %���Y���,
V2 = 	��	��, V5 = %���%���, V8 = %���Y���,
V3 = 	��	��, V6 = %���%���, V9 = %���Y���.

(45)

Here %��� stands for the completely symmetric rank H = 3
tensors.�e dimension of the basis reduces to 8 in the case of
SU(3). �is is achieved via the relation [137, 138]

V4 + V5 + V6 = 13 (V1 + V2 + V3) (46)

which is not valid forD ≥ 4.
To describe the O-scalar quartic interactions one needs

to construct rank H = 4 tensors invariant with respect to
exchange of pairs of indices. �us, one has to take linear
combinations of the basis tensors and symmetrize them with
respect to the pair of indices (d') and (`%). A possible choice
forD ≥ 4 is given by

c1 = 12V1, c2 = 12 (V2 + V3) ,
c3 = 12V4, c4 = 12 (V5 + V6) . (47)

Note that the absence of a % − Y type term from (47) follows
from the identity [137]

V8 + V9 = −Y���%���. (48)

However, for practical purposes a basis constructed with

the help of the structure constants Y��� and avoiding the
use of the %-tensors is more suited. For example, it would
allow to explore more easily the supersymmetric case and
to generalize to other groups. It is natural to consider the
alternative choice [113, 131]

c1 = 12 (Y���Y��� + Y���Y���) ,
c2 = 	��	�� + 	��	�� + 	��	��,
c3 = 12 (	��	�� + 	��	��) − 	��	��,
c4 = 12 (Y���Y���Y��ℎY�ℎ� + Y���Y���Y��ℎY�ℎ�) .

(49)

Let us introduce the coupling constants

�	 = �24& , �� = �2
�4& , q� = ��4& . (50)

�en we can write the last term in (41)

4∑
�=1
�����c����

� = 4& 4∑
�=1
�&�q�c����

� = 4& 4∑
�=1
�'�r�c����

� ,
(51)

where r� denote the quartic O-scalar couplings in the basisc����
. �e renormalization constants �', �&, and so forth

have been computed through one loop in the DR scheme
for a general gauge group in [131, 135] and in [113] for SU(3).
�e calculation performed in [113] has employed the method
of [117] to introduce an arti�cial mass for all propagators
in order to avoid spurious infrared divergences. For the
calculation of the results in terms of group invariants the
package color [139] has been used. For completeness, we
reproduce here the one-loop results for the couplings r�:
�'1 = 1 + 1E

× [−�DR
	& :(

32 + r1& :(
12 + r2& :(2

− r3& 72 − r2& r4r1:( − r3& r4r1:(
12 + r4&

× :4
( (−61 + 7D() + 48�4 (vv) (D( − 1) /D(36:2

( (D( − 3)
+ ��&  � − ��& ��r1
× ((4:( (2 + D()�4 (6v)w2 (6)

+ 5:3
( (7:( − 2:))D(

−16 (2 + D()�4 (vv))
×(2 (25:4

(D(−12�4 (vv) (2+D()))−1)
×  �

− r4& r4r1
× ( (1) × (54:(D( (D( − 3)

× (25:4
(D(

−12�4 (vv) (2 + D() ) )−1)
× (−144�4(vv)2 (2 + D() (1 + 2D()

+ 216:2
(�4 (vvv)D( (2 + D() (D( − 3)− 12:4

(�4 (vv)D( (−191 − 56D( + D2
()

−25:8
(D2

( (4D( + 23)) ] ,



12 Advances in High Energy Physics

�'2 = 1 + 1E
× [−�DR

	& :(
32 − r1& :(

16 + r3& D( − 16
+ r4& :2

(
1312 + r2& 2 (8 + D()3

+ r3& (r1r2:(
16 + r4r2:2

(
16 − r3r2 (D( − 1)12 )

− r4& r4r2 29
× ((72�4(vv)2D(

− 90:2
(�4 (vvv)

+25:4
(�4 (vv))

×(25:4
(D( − 12�4 (vv) (2 + D())−1)

+ ��&
× ( � − ��r2 2

× ((5:2
(�4 (6v)w2 (6) +(:( − 6:))�4 (vv))

×(25:4
(D( − 12�4(vv) (2+D())−1)

× �)] ,
�'3 = 1 + 1E × [−�DR

	& :(
32 + r4& :2

(
512

+ r2& 2 (2 + D()3 + r3& −26 + 5D(12
+ r4& r4r3 7108 12�4 (vv) − 5:4

(D((D( − 3)D(

− r2& (r4r3:2
(
23 + r2r3 (2 + D()3 )

+ r1& ( − :(
56 − r2r3 2:(3

+r4r3 12�4 (vv) − 5:4
(D(9:(D( (D( − 3) )

+��&  �] ,

�'4 = 1 + 1E
× [−�DR

	& :(
32 − r1& :(

14 + r2& 8
− r3& 12 + �DR

	& �DR
	r4 34 − r1& r1r4 14 + r4&× ( − 1152�4 (vvv) (2 + D() + 5:2

(

× (125:4
(D( + 4�4(vv)(98 + D()))

× (48 (25:4
(D( − 12�4 (vv) (2 + D()))−1

+ ��&
× ( � + ��r4

× ((5:2
( (:( − 6:))D(

+12 (2 + D()�4 (6v)w2 (6) )
× (25:4

(D(−12�4(vv)(2+D())−1)
×  � )] ,

(52)

with the group invariants de�ned in Appendix A and the
abbreviation  � = w2(6)H�, where H� denotes the number
of active fermions. Let us notice at this point the presence
of negative power of couplings in the expressions of the
renormalization constants. �is results in beta functions that
are not proportional to the coupling itself. �is feature is
speci�c to scalar couplings and it implies that, even if we
set such a coupling to zero at a given scale, it will receive
nonvanishing radiative corrections due to the other couplings
present in the theory.

�e above results have been computed using an SU(D)
gauge group. However, they are parametrized in terms of
group invariants.�us they are also valid for other physically
interesting groups like SO(D) and SP(D). �e explicit values
of the group invariants for the three groups can be found in
Appendix A.

In the case of SU(3) group, the invariant c4 becomes a

linear combination ofc, � = 1, 2, 3, because of relation (46).
�e same is also true for the coupling r4 that can be expressed
in terms of the other three couplings.�us in this case one can
ignore r4.

Actually, the one- and two-loop renormalization con-
stants for totally symmetric quartic scalar couplings with
scalars in an arbitrary representation have been known for
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long time [140]. However, these results cannot be directly
applied to O-scalar self-interactions, due to their particular
symmetry with respect to exchange between pairs of indices.

3.3.2. �ree-Loop Renormalization Constants for a Non-
supersymmetric �eory. In this section we report on the
explicit computation of the charge ��, �� and mass �*

�,��
� renormalization constants to three-loop order within DR

scheme. �is requires the calculation of divergent parts of
logarithmically divergent integrals. One can exploit the fact
that such contributions are independent of the masses and
external momenta. Precisely, one sets all internal masses to
zero and keeps only one external momentum di�erent from
zero and then solve recursively (29). In practice, use of the
automated programs QGRAF [141], q2e and exp [142, 143] and
MINCER are essential due to the large number of diagrams that
occur.

�e analytical form of �DR
� up to two-loop order is

identical to the corresponding result in the MS scheme. �is
has been shown by an explicit calculation for the �rst time
in [81] and is a consequence of the minimal renormalization.
�e three- and four-loop results for a general theory have
been derived in [113, 135, 144]. For completeness we present
in the following the three-loop results:

�DR
� = 1 + �DR

	& 1E (−1124:( + 16 �) + (�DR
	& )2

× [ 1E2 (121384:2
( − 1148:( � + 124 2

�)
+1E (−1796:2

( + 548:( � + 116:) �)]
+ (�DR

	& )3

× [ 1E3 (−665527648 :3
( + 6052304:2

( �

− 55576:( 2
� + 5432 3

�)
+ 1E2 (20576912:3

( − 9793456:2
( � + 11288:) 2

�

− 1211152:(:) � + 55864:( 2
�)

+ 1E (− 311520736:3
( + 143910368:2

( �

+ 1933456:(:) � − 795184:( 2
�

− 1192:2
) � − 11864:) 2

�)]

+ (�DR
	& )2��& 1E ( 132:2

) �) + �DR
	& (��& )2 1E

× ( 196:(:) � − 148:2
) � − 196:) 2

�) .
(53)

�e one-loop result for �� can be found in [133]. For the
particular case of QCD, that is, G = SU(3) and r4 = 0,
the two-, three-, and four-loop results have been computed
in [113, 144]. �e two-, three-, and four-loop results for a
general theory have been derived in [135]. Because of the
complexity of the results, we reproduce below only the two-
loop contributions that are, however, enough for most of the
practical applications:

�� = 1 + �DR
	& 1E (−34:))

+ ��& 1E (−14:( + 12:) + 14 �) + (�DR
	& )2

× [ 1E2 (1132:(:) + 932:2
) − 18:) �)

+ 1E ( 7256:2
( − 55192:(:)

− 364:2
) − 132:( � + 548:) �)]

+ �DR
	& ��&

× [ 1E2 (38:(:) − 34:2
) − 38:) �)

+1E ( 332:2
( − 58:(:) + 1116:2

) + 532:) �)]
+ (��& )2 [ 1E2 ( 332:2

( − 38:(:) + 38:2
)

− 316:( � + 38:) � + 332 2
�)

+ 1E (− 332:2
( + 516:(:) − 14:2

)

+ 332:( � − 316:) �)]
+ ��& 1E [r1& ( 132:2

() + r2& ( 116:( − 38:))
+ r3& (− 116:()
+r4& ( 1192:3

( − 18�4 (6v) w2 (6))]
+ (r1& )2 1E (− 3256:2

() + (r2& )2 1E ( 332 (D( + 2))
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+ r1& r3& 1E ( 364:() + (r3& )2 1E (− 3128 (D( − 1))
+ r1& r4& 1E (− 1256:3

() + r2& r4& 1E ( 532:2
()

+ r3& r4& 1E ( 1128:2
()

+ (r4& )2 1E (− 13072:4
( + 132�4 (vv)) .

(54)

�e group invariants :(, :), w2(6),�4(��) occurring in the
above equations are de�ned in Appendix A and we used the
abbreviation  � = w2(6)H�.

�ere is also an indirect way to derive the three-loop

gauge beta function in the DR scheme starting from the

knowledge of the three-loop gauge beta function in the MS
scheme and the fact that the gauge couplings de�ned in the
two schemes can be perturbatively related to each other. �is
method will be discussed in more detail in the next section.
Let us mention, however, that using the expression for the

three-loop gauge beta function in theMS scheme�MS
	 and the

two-loop conversion relation of �	 given in (57) one obtains

exactly the same results for �DR
	 as given in (53). �is is a

powerful consistency check for the calculation reviewed in
this section. It is interesting tomention that the equality of the

two results can be obtain only if one keeps�DR
	 ̸= �� during the

calculation and renormalize them di�erently. �e identi�ca-

tion of �DR
	 and �� leads to inconsistent results. In case of �DR

	
the error is a �nite, gauge parameter independent term [128].
For quarkmass renormalization, this identi�cation (precisely
the identi�cation of the renormalization constants for the two
couplings) generates much more severe problems. Namely,

the renormalization constant for the quark mass �DR
� will

contain nonlocal terms at three-loop order and the mass
anomalous dimension will erroneously become divergent at
this loop order.

�e renormalization constant for the fermionmasses�DR
�

has been computed in [113] to three- and in [135, 144] even to
four-loop order.Whereas in [113, 135, 144] only the anomalous
dimensions were given we want to present the explicit three-
loop result for the renormalization constant, that reads

�DR
� = 1 + �DR

	& 1E (−34:)) + (�DR
	& )2

× [ 1E2 (1132:(:) + 932:2
) − 18:) �)

+1E (− 91192:(:) − 364:2
) + 548:) �)]

+ �DR
	& ��& ( 316 1E:2

))
+ (��& )2 1E ( 116:(:) − 18:2

) − 116:) �)

+ (�DR
	& )3

× [ 1E3 (−121576:2
(:) − 33128:(:2

) − 9128:3
)

+1172:(:) � + 332:2
) � − 136:) 2

�)
+ 1E2 (16133456:2

(:) + 295768:(:2
) + 9256:3

)

− 59216:(:) �− 29192:2
) �+ 5216:) 2

�)
+ 1E (−1025520736:2

(:) + 133768:(:2
) − 43128:3

)

+ ( 2812592 + 14�3):(:) �

+(2396 − 14�3):2
) � + 351296:) 2

�)]
+ (�DR

	& )2 ��&
× [ 1E2 (− 11192:(:2

) − 1564:3
) + 148:2

) �)
+ 1E ( 5256:2

(:) + 732:(:2
)

+ 964:3
) − 332:2

) �)]
+ �DR

	& (��& )2

× [ 1E2 (− 964:(:2
) + 932:3

) + 964:2
) �)

+ 1E (− 164:2
(:) + 732:(:2

) − 38:3
)

− 164:(:) � − 18:2
) �)]

+ (��& )3

× [ 1E2 (− 148:2
(:) + 112:(:2

) − 112:3
)

+ 124:(:) � − 112:2
) � − 148:) 2

�)
+ 1E ( 132:2

(:) − 18:(:2
) + 18:3

)

− 124:(:) � + 548:2
) � + 196:) 2

�)]
+ (��& )2 1E
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× [r1& (− 196:2
(:)) + r2& (− 148:(:) + 18:2

))
+ r3& ( 148:(:))
+r4& (− 1576:3

(:) + 112:)�4 (6v))]
+ ��& 1E
× [(r1& )2 ( 1256:2

(:))
+ (r2& )2 (− 132:) (D( + 2))
+ (r3& )2 ( 1128:) (D( − 1))
+ (r4& )2 ( 19216:4

(:) − 196:)�4 (vv))
+ r1& r3& (− 164:(:)) + r1& r4& ( 1768:3

(:))
+r2& r4& (− 596:2

(:)) + r3& r4& (− 1384:2
(:)) ] ,

(55)

where �(3) is Riemann’s zeta functionwith �(3) = 1.20206 . . ..
Again, the consistency of the above results can be proved

using the indirect method alluded above. To derive the three-

loop quark mass anomalous dimension in the DR scheme�DR
� , one needs the three-loop result for �MS

� and the two-loop
conversion relation for the quark mass as given in (58). Full
agreement has been found between the two methods [113],
that provides a further consistency check of the calculation.

3.3.3. �e General Four-Loop Order Results in the�6 Scheme.
�e direct way to compute the renormalization constants

in minimal subtraction schemes as MS or DR requires the
calculation of divergent parts of logarithmically divergent
integrals. Up to three loops there arewell establishedmethods
and automated programs exist to perform such calculations
(see, e.g., [115, 124]). Also at four-loop order a similar
approach is applicable. Nevertheless, it is technically much
more involved [118, 119, 121, 145, 146]. �ere is, however,
an indirect method discussed in [113, 128] to derive the
renormalization constants in the DR scheme starting from

theirMS expressions. It relies on the perturbative relation that
can be established between the couplings and masses de�ned
in the two schemes and takes into account that the four-
loop results in the MS scheme are known [118, 119, 121]. For
example, to derive the beta function for the gauge coupling to

four-loop order inDR scheme one needs the relation between

the gauge couplings de�ned in the MS and DR schemes up
to three-loop order. �e latter can be determined using the
following arguments.

To compute the relations between running parameters
de�ned in two di�erent renormalization schemes, one has to
relate them to physical observables which cannot depend on
the choice of scheme. For example, the relationship between

the strong coupling constant de�ned in the MS and DR
schemes can be obtained from the �-matrix amplitude of a
physical process involving the gauge coupling computed in
the two schemes. However, beyond one loop the computation
of the physical amplitudes becomes very much involved and
requires the computation of multiloop and multiscale on-
shell Feynman integrals that is a highly nontrivial task. Nev-
ertheless, one can avoid the use of on-shell kinematics intro-
ducing a physical renormalization scheme de�ned through
convenient kinematics, for which the renormalization con-
stants can be computed applying the “large-momentum” or
the “hard-mass” procedures. Up to three loops, there are
well established methods (for details see previous sections)
to compute the divergent as well as �nite pieces of the
Feynman integrals and automated programs exist to perform
such calculations. Once the renormalization constants in
the physical renormalization scheme are determined, one
uses the constraint that the e	ective gauge coupling constant
de�ned in such a scheme is unique and thus independent
of the regularization procedure. Furthermore, one relates the
running gauge couplings de�ned in the two regularization
schemes through the following relations:

�ph	 = (hph,+	 )2�+
	 , hph,+	 = �+

	�ph,+
	

, � ∈ {MS,DR}
�⇒ �DR

	 = (�ph,DR
	 �MS

	�ph,MS
	 �DR

	

)2 �MS
	 ,

(56)

where�MS/DR
	 are the charge renormalization constants using

minimal subtraction inDREG/DRED, as de�ned above. Note
that the various�	 in (56) dependondi�erently renormalized�	, so that the equations have to be used iteratively at
higher orders of perturbation theory. Working out these
considerations for the gauge coupling and for the fermion
mass up to the three-loop order, one obtains

�DR
	 = �MS

	
[[1 +

�MS
	& 112:( + (�MS

	& )2 1172:2
(

−�MS
	& ��& 18:) � + 	(3)�

]] ,
(57)
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>DR = >MS [[1 −
��& 14:) + (�MS

	& )2 11192:(:)

− �MS
	& ��& 132:) (3:( + 8:))

+(��& )2 132 [3:) +  �] + 	(3)�
]] ,

(58)

where we have suppressed the explicit dependence on the

renormalization scale �. 	(3)� and 	(3)� denote the three-loop
terms and they are obtained from the �nite parts of three-
loop diagrams (see [113] for details). �ey read [131, 135]

&3	(3)� = 196�MS
	 �2

� �

× [2:2
( − 3:(:) + 2:2

) − :( � + 7:) �]
− 1192(�MS

	 )2�� � (5:2
( + 60:(:) + 6:2

))
+ 19216�MS

	

× (36:3
(r21 − 576:(r22 − 144:2

(r1r3 − 72:(r23+ 12:4
(r1r4 − 480:3

(r2r4 − 24:3
(r3r4+:5

(r42 − 288:(D(r22 + 72:(D(r23)
− 196D(

�MS
	 r24:(�4 (vv)

+ 148(�MS
	 )2r4�4 (vv) + 14608(�MS

	 )2
× (−6:3

(r1 + 240:2
(r2 + 12:2

(r3 − :4
(r4)

+ 110368(�MS
	 )3

× [3049:3
( − 416:2

( � − 138:(:) �] ,
&3	(3)� = − 1384�3

�:)

× [−10:2
( + 14:(:) + 27:2

) − 7:( �

+ 39:) � − 10w2(6)2 2
� + 12:2

(�3
−36:(:)�3 + 24:2

)�3] − �2
�:)

× ( 1322 [(6:) − :() r2]
+ 116w2 (6)D(

�4 (6v) r4 + 1384�MS
	

× [47:2
( + 10:2

) − 3:( � − 19:) �

− 165:(:) + 144:2
)�3 − 48:( ��3

+48:) ��3 + 72:2
(�3 − 216:(:)�3] )

+ ��:)

× ( 112288× [−36:2
(:)r21 + 1728:)r22+ 144:(:)r1r3 + 72:)r32− 12:3

(:)r1r4 + 1440:2
(:)r2r4+ 24:2

(:)r3r4 − :4
(:)r42+864:)D(r22 − 72:)D(r32]

+ 13072(�MS
	 )2

× [2880:2
)�3 − 168:( � − 1544:(:)

− 52:2
) − 128:) � + 1440:2

(�3
−4320:(:)�3 − 79:2

(] )
+ 120736(�MS

	 )3:):( [4354:(+135:)+304 �]
+ 3128D(

�4 (vv) r24 .
(59)

Inserting (57) and (58) into the de�nition of the beta function
for the gauge coupling equation (8) and the mass anomalous
dimension equation (12), one can show that

�DR
	 = �2 d

d�2
�DR
	&

= �MS
	
$�DR

	$�MS
	

+ ��
$�DR

	$��
+∑

�
�'�

$�DR
	$r� ,

�DR
� = �2

>DR

d

d�2>DR

= �MS
�
$ ln>DR$ ln>MS

+ &�MS
	>DR

$>DR$�MS
	

+ &��>DR

$>DR$��

+∑
�

&�'�>DR

$>DR$r� ,
(60)

where the �rst equality is due to the de�nition of �DR
	 and �DR

�
and the second one is a consequence of the chain rule. Let us
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briey discuss the order in perturbation theory up to which

the individual building blocks are needed. Of course, the MS
quantities are needed to four-loop order; they can be found

in [118–121]. �e dependence of �DR
	 and >DR on �� starts at

two- and one-loop order [113], respectively.�us,�� is needed
up to the three-loop level (cf. (60)). On the other hand, both�DR
	 and >DR depend on r� starting from three loops and

consequently only the one-loop termof�'� enters in (60).�e

DR four-loop results were derived for QCD in [113] and for a
general theory in [131, 135]. �e explicit four-loop results are
too lengthy to be presented in this review and we refer to the
original papers for the explicit results. We discuss however
their supersymmetric limit in the next section.

3.3.4. �e Four-Loop Supersymmetric Case. An important
check of the complicated formulas derived in the previous
sections can be obtained by converting them to a supersym-
metric Yang-Mills theory. For this case, one has to replace the
fermions by the supersymmetric partner of the gauge bosons,
the so-called gauginos. Technically, this amounts to setting
the fermions in the adjoint representation of the gauge group.
In addition, closed fermion loops have to be multiplied by an
extra factor 1/2 in order to take into account the Majorana
character of the gauginos. Explicitly, for the derivation of the
three- and four-loop results one needs the replacements

:) A→ :(,w2 (6) A→ :(,
H� A→ 12 ,�4 (66) A→ �4 (vv) ,�4 (6v) A→ �4 (vv) ,�4 (6vv) A→ �4 (vvv) .

(61)

Furthermore, SUSY requires that the gauge coupling �	
equals the evanescent coupling�� to all orders of perturbation
theory, and therefore, the � functions are also equal �SYM� =�SYM	 . Moreover, SUSY also requires that the O-scalar quartic
interaction containing the structure constants is equal to the
gauge coupling to all orders of perturbation theory. In this
case, the other three quartic couplings have to vanish, so that
the decomposition equation (33) holds to all orders of per-
turbation theory. Indeed, using (52) one can easily derive the
corresponding one-loop beta functions for supersymmetric
theories and obtains�SYM'1 = �SYM� = �SYM	 , �SYM'2 = �SYM'3 = �SYM'4 = 0,

(62)

when the SUSY restrictionsr1 = �3 = �	, r2 = r3 = r4 = 0 (63)

are imposed. It is also interesting to notice that the terms
in the renormalization constants equations (52) that contain
negative power of couplings cancel out in the SUSY limit, so

that the limit r2 = r3 = r4 → 0 can be computed trivially.
�us, if relations (63) are imposed at the tree level, they will
not be spoiled by the renormalization at the one-loop order.
Checks of this statement at two- and three-loop orders are
available so far only for the evanescent coupling �� [113, 144].

Applying the substitutions given in (61) and (63) one can

obtain the four-loop results for the gauge beta function �SYM	
[113, 135] and compare it with the expression derived in [147]

�SYM	 = − (�	& )2 [34:( + 38:2
(
�	& + 2164:3

((�	& )2

+ 51128:4
((�	& )3] + O (�6

	 ) . (64)

�e method employed in [147] to obtain the four-loop result
was very indirect, in particular relying on the existence of

the NSVZ formula for �SYM	 [148, 149] (for more details
see Section 2). It is therefore a remarkable check on both
calculations that indeed precise agreement was obtained.

Turning now to the case of so�ly broken supersymmetry,
there exists an exact result relating �	 and �� [44, 61] within
the NSVZ scheme:

�SYM� = &�	
d

d�	
[�SYM	�	

] , (65)

that nevertheless holds in DR scheme too. Hence, it follows
that

�SYM� = − (�	& ) [34:( + 34:2
(
�	& + 6364:3

((�	& )2

+5132:4
((�	& )3] + O (�5

	 ) . (66)

Inserting (61) in (60), one can easily reproduce (66).
�e invariant �4(vvv) does not occur in either cal-

culation, and the dependence on �4(vv), D(, �3, �4, and�5 all cancels although they appear in individual terms. It
is tempting to speculate that this absence of higher order
invariants and transcendental numbers (other than &) is
related to the existence of the NSVZ scheme, in which the
gauge �-function for any simple gauge group is given (in the
supersymmetric case without matter �elds) by the expression
in (15), which is manifestly free of transcendental numbers to
all orders. It is natural to conjecture that the same property
holds in the DRED scheme, too.

3.3.5. O-Scalar Mass. Although there is in general no tree-
level term in the Lagrangian for themass of the O-scalars there
are loop-induced contributions to it that require the introduc-
tion of the corresponding counterterm. Let us introduce �rst
the renormalization constant for the O-scalar mass:

(>0
 )2 = ��	>2

 . (67)

�e relevant Feynman diagrams contributing to the O-scalar
propagator show quadratic divergences and therefore one
needs to consider only contributions from massive particles.
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(a) (b) (c)

(d) (e) (f)

Figure 1: One- and two-loop Feynman diagrams contributing to the O-scalar propagator. Dashed lines denote O-scalars, curly lines denote
the gauge bosons, and solid lines denote massive fermions with mass
�.

�us, in this case, only diagrams involving massive fermions
have to be taken into account, since they are the only particles
allowed by the gauge invariance to have nonzero masses.
Sample diagrams are shown in Figure 1.

It is advantageous in practice to renormalize > on shell
and require that the renormalized mass is zero to each order
in perturbation theory. In this scheme the O-scalar mass
completely decouples from the physical observables.

At the one-loop order there is only one relevant diagram
(cf. Figure 1(a)) which has to be evaluated for vanishing
external momentum. A closer look at the two-loop diagrams
shows that they develop infrared divergences in the limit> → 0 (cf., e.g., Figure 1(e)). �ey can be regulated by
introducing a small but nonvanishing mass for the O-scalars.
A�er the subsequent application of an asymptotic expansion

[150] in the limit k2 = >2
 ≪ 
2

� the infrared divergences

manifest themselves as ln(> ) terms. Furthermore, one-loop
diagrams like the ones in Figures 1(b) and 1(c) do not
vanish anymore and have to be taken into account as well.

Although they are proportional to >2
 , a�er renormalization

they induce two-loop contributions which are proportional

to
2
�, partly multiplied by ln(> ) terms. It is interesting to

note that in the sum of the genuine two-loop diagrams and
the counterterm contributions the limit> → 0 can be taken
which demonstrates the infrared �niteness of the on-shell
mass of the O-scalar. �e two-loop renormalization constant
within QCD has been computed in [151]. It is given by>2

 
2
�
(�OS

�	 − 1) = − ��& Hℎw2 (6)
× [2E + 2 + 2��

+E (2 + 16&2 + 2�� + �2
�)]

− (�DR
	& )2Hℎw2 (6) (34 1E + 14 + 32��):(

+ �DR
	& ��& Hℎw2 (6)

× { 1E2 (38:( + 32:))
+ 1E [78:(+ 32:)+(34:(+ 32:)) ��]
+ (158 + 116&2):( + (32 + 18&2):)

+ (74:( + 32:)) ��

+(34:( + 34:)) �2
�}

+ (��& )2Hℎw2 (6)
× { 1E2 (14:( − 12:) − 12 �)

+ 1E [12:) − 12 (1 + ��)  �] − 12:(

+ 52:) − (12 + 124&2) �

− (12:( − 2:) + 12 �) ��

−(14:( − 12:) + 14 �) �2
�}

+ ��& r1& Hℎ
× [ 316 1E2 + 1E ( 316 + 38��)

+ 316 + 132&2 + 38�� + 38�2
�]

− ��& r2& Hℎ
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× [54 1E2 + (5 + 52��) 1E
+252 + 524&2 + 10�� + 52�2

�]
− ��& r3& Hℎ
× [ 716 1E2 + ( 716 + 78��) 1E

+ 716 + 796&2 + 78�� + 78�2
�] ,

(68)

where �� = ln(�2/
2
�),  � = H�w2(6), where H� and Hℎ

denote the number of fermions and heavy fermions, respec-
tively. �e overall factor Hℎ in front of the one- and two-
loop corrections shows that the renormalization of> is only
inuenced by those diagrams which contain a closed heavy
fermion loop.

It is also possible to renormalize > so that >OS
 ̸= 0 or

adopt the DR scheme for it. In the latter case, the physical
observables will depend on > . In order to get rid of this
unphysical dependence, one has to introduce additional
�nite shi�s in the renormalization constants of the physical

parameters. �is new renormalization scheme is called DR
�

and it will be discussed in more detail in the next section.
Nevertheless, in context ofQCD, theDR

�
has rarely been used

[152].

4. Dimensional Reduction Applied to
SUSY-QCD at Three Loops

All the appealing features of supersymmetric theories have
to be con�rmed by an accurate comparison with the exper-
imental data like those measured in collider experiments
[31, 32, 153]. Such an ambitious task requires precision data
as well as precision calculations. But, precise predictions for
observables implies computations of higher order radiative
corrections. �us, it necessarily rises the question of con-
structing regularization and renormalization schemes that
are gauge and SUSY invariant. As discussed in the previous
sections, DRED scheme was proposed as a solution, although
it could violate SUSY at higher orders of perturbation theory.
Currently, it is believed that DRED preserves SUSY at three-
loop order as was explicitly checked in [101–103] and that
it breaks SUSY at four-loop order, taking into consideration
formal arguments [60, 74]. Nevertheless, renormalization by

combiningDREDwithminimal subtraction (theDRscheme)
or the on-shell scheme has become the preferred schemes in
higher order supersymmetric calculations [100, 129, 154–156].

4.1. Renormalization of the Gauge Coupling and Fermion
Masses at �ree Loops. As was already reviewed in Section 2,
for supersymmetric gauge theories one candevise a particular
renormalization scheme, the so-called NSVZ scheme [157],
where an all-order relation between the gauge � function
and the anomalous dimension of the chiral supermultiplet

is valid. So, in the absence of the matter supermultiplet,
that is, for SUSY-Yang-Mills theory, the � function is known
to all orders in the coupling constant. Applying the same
method based on the connection between the holomorphic
and the NSVZ schemes to so�ly broken SUSY gauge the-
ory, the authors of [44] derived the renormalization group
equation governing the running of the gaugino and sfermion
masses as functions of the gauge and Yukawa coupling �
functions, valid to all orders in perturbation theory. Actually,
all these calculations received important phenomenological
applications only a�er the authors of [64] found the three-

loop conversion formula between the NSVZ and DR. �is
allowed the derivation of three-loop order beta functions for
the parameters of the MSSM in the DR scheme [158, 159].

�e goal of this section is to report on another con�rma-
tion of the results for the anomalous dimensions of SUSY-
QCD parameters, that is based on a direct calculation of rele-
vant three-loop Feynman diagrams implementing the DRED
approach in the component �eld formalism. �e agreement
of the two independent and conceptually completely di�erent
calculations is a very important check of the two methods on
the one side, and on the other side it establishes the DRED
as a consistent framework for computations of radiative
corrections in supersymmetric theories.

�e renormalized Lagrangian of a supersymmetric the-
ory will obey SUSY constraints, only if the decomposition of
(33) holds at all orders of perturbation theory. �erefore, the
renormalized gluon and O-scalar coupling constants must be
equal, that is, their� functionsmust be the same. An all-order
proof of this statement is currently not available. However, it
was explicitly shown [103] that the coupling constant arising
from the vertices �``, ���, �kk, and �̃kk and that from the
vertices kkE, �̃�̃E, and �EE are equal through three loops.

Even more, in order to renormalize the quartic O-scalar
vertex, one has to take into account all possible color
structures for it and attribute to each one a separate coupling
constant (for details see Sections 3.3.1 and 3.3.4). For SUSY-
QCD, it has been explicitly checked [135] that at the one-
loop order only the � function associated with the usual color
structure of the four-gluon interaction, that is, Y���Y��� (Y���
denotes the structure constants of the gauge group), does not
vanish and it equals the one loop gauge � function. �us,
through one-loop, one can identify the coupling constant of
the corresponding O-scalar quartic interactionwith the strong
coupling constant and set to zero the other three quartic
couplings. �is order of accuracy is su�cient for the results
discussed here, as the O-scalar quartic interactions contribute
to the anomalous dimensions starting from the two-loop
order. A similar observation was made also in the previous
section when the SUSY-Yang-Mills theory was discussed at
four-loop accuracy. All these tests con�rm the consistency of
DRED with SUSY at next-to-next-to-next-to-leading order
(NNNLO) of perturbation theory.

For the calculation of renormalization constants within
supersymmetric theories one can apply the same methods
as the ones discussed in Section 3.3.2 in the context of non-
SUSY theories. Let us however mention at this point a
technical subtlety related to the implementation of �5 matrix.
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Figure 2: Sample diagram for the three-loop kkE vertex where a
nonvanishing trace with a single �5-matrix occurs. Solid lines are
quarks, dashed lines are squarks, slashed springy lines are gluinos,
and the external dashed line depicts an O-scalar. �e arrows on the
lines denote the charge ow.

Traces with a single �5 and at least four �-matrices do not
contribute to any of the two-point functions (for a detailed
discussion about this aspect see [160]).�ey do contribute for
some of the three-point functions though, in particular thekk̃�̃, the �̃�̃E, and the kkE vertex. An example diagram for the
latter vertex is shown in Figure 2. Such diagrams contribute

(among others) a color factor %����
) %����

( (for the notation,
see Appendix A), but they cancel against the same factors
from other sources in the �nal result for the renormalization
constants and the � functions. Precisely, the naive scheme
for the implementation of the �5 gives rise to incorrect
results. One has to supplement it with the relations given
in (27) and (28). �e �rst equation takes into account the
contributions arising in triangle diagrams containing Dirac
fermions, whereas the second one generalizes the contraction
properties of the pseudo-Levi-Civita tensors de�ned away
from % = 4 dimensions.

�e results for the three-loop renormalization constants
of the gauge coupling constant �	 are very compact and are
given by

�	 = 1 + �	4& 1E [−3:( + 2 �] + ( �	4&)2

× { 1E2 [9:2
( − 12:( � + 4 2

�]
+1E [−3:2

( + 2:( � + 4:) �] } + ( �	4&)3

× { 1E3 [−27:3
( + 54:2

( � − 36:( 2
� + 8 3

�]
+ 73E2 [9:3

( − 12:2
( � − 12:(:) �

+4:( 2
� + 8:) 2

�] + 13E× [−21:3
( + 20:2

( � + 52:(:) �

−16:2
) � − 4:( 2

� − 24:) 2
�] } ,

(69)

where we have introduced the notation  � = w2(6)H�,
with H� being the number of active fermions of the theory,
and the invariants :), :(, w2(6) are explicitly given in the
Appendix A.

�e case  � = 0 corresponds to SUSY-Yang-Mills theory
that has been treated in detail in Sections 2 and 3.3.4. Full
agreement has been found between the two methods up to
three-loop order.

�e three-loop renormalization constants for the gluino
mass read

���̃ = 1 + �	4& 1E [−3:( + 2 �] + ( �	4&)2

× { 1E2 [9:2
( − 12:( � + 4 2

�]
+2E [−3:2

( + 2:( � + 4:) �] } + ( �	4&)3

× { 1E3 [−27:3
( + 54:2

( � − 36:( 2
� + 8 3

�]
+ 4E2 (9:3

( − 12:2
( � − 12:(:) �

+4:( 2
� + 8:) 2

�) + 1E× (−21:3
( + 20:2

( � + 52:(:) �

−16:2
) � − 4:( 2

� − 24:) 2
�) } .

(70)

�e DR quark mass renormalization constant is also inde-
pendent of any mass parameter and is given by the following
formula:

��� = 1 − �	4& 1E 2:) + ( �	4&)2

× { 1E2 [3:(:) + 2:2
) − 2:) �]

+1E [−3:(:) + 2:2
) + 2:) �]}

+ ( �	4&)3

× { 1E3 [ − 6:2
(:) − 6:(:2

) − 43:3
)

+ (8:(:) + 4:2
))  � − 83:) 2

�]
× 1E2 [10:2

(:) + 2:(:2
) − 4:3

)

+(−323 :(:)− 203 :2
)) � + 83:) 2

�]
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× 1E [−4:2
(:) + 4:(:2

) − 163 :3
) + 83:) 2

�

+  � (:2
) (323 − 16� (3))

+:(:) (−43 + 16� (3))]} , (71)

where �(3) is Riemann’s zeta functionwith �(3) = 1.20206 . . ..
�e results of ((69), (71), (70)) are in agreement with [63, 64].
Using (69) and (70), it is an easy exercise to con�rm the
relation derived in [61] between the anomalous dimension
of gluino mass and the gauge � function that holds also in
DRED. �is result is similar to the NSVZ relation given in
(17) and holds to all orders in perturbation theory. It reads

��̃� = (H + 1) ��, (72)

where H denotes the number of loops.

4.2. Renormalization of the Squark Sector at �ree Loops. In
this section, we report on the renormalization of the squark
sector of SUSY-QCD up to three-loop order within the DR
scheme in the component �eld approach [161]. �ese results
are on the one side important for the phenomenological anal-
yses aiming to predict the squarkmasses at the TeV scale with
an accuracy of the order ofO (50GeV), that is required by the
precision achieved in the current experimental searches at the
LHC. On the other side, they have also genuine theoretical

signi�cance, since they provide an independent con�rmation
of the three-loop results obtained with the help of the NSVZ
scheme [47, 48, 158, 159].

�e calculations presented in this section are performed
in the framework of SUSY-QCD with H* = 5massless quarks
and a massive top quark (>:). �e scalar superpartners of
the latter has two mass eigenstates (>:̃1 and >:̃2) which may
have di�erent masses and thus a nonvanishing mixing angle
occurs. �e superpartners of the H* light quarks are assumed
to have degenerate masses (>*̃) and vanishingmixing angles.
A generalization to a nondegenerate spectrum is possible in
a straightforward way from the formalism for the top squark
sector which is discussed in detail in the following.

Unless stated otherwise all parameters in the following

derivation are DR quantities which depend on the renor-
malization scale �. For the sake of compactness the latter is
omitted. Bare quantities are marked by a superscript “(0)”.
To de�ne the framework, we start from the bare Lagrangian
containing the kinetic energy and the mass terms for the top
squarks:

L
(0)
:̃ = 12$�(K̃∗< , K̃∗))(0)$�(K̃<K̃))

(0)

− 12(K̃∗< , K̃∗))(0)(M2
:̃ )(0)(K̃<K̃))

(0), (73)

where K̃< and K̃) denote the interaction eigenstates. �e top
squark mass matrix is given by

M
2
:̃ = (>2

: +
2
> (12 − 23 sin2 ��) cos 2� +
2

@̃ >: (v : − �SUSY cot�)>: (v : − �SUSY cot�) >2
: + 23
2

> sin2 �� cos 2� +
2
Ã

)
≡ ( >2

:̃ >:�:>:�: >2
:̃�
)

(74)

with �: = v : − �SUSY cot�. v : is the so� SUSY breaking
trilinear coupling, and 
Ã and 
@̃ are the so� SUSY
breaking masses.

�e top squarkmass eigenstates are related to the interac-
tion eigenstates through the unitary transformation

(K̃1K̃2)
(0) =R

(0)†
:̃ (K̃<K̃))

(0). (75)

�e unitarymatrixR:̃ is de�ned through the diagonalization
relation for the mass matrixM2

:̃

(>2
:̃1 00 >2

:̃2
) = 6†

:̃M
2
:̃6:̃. (76)

�e eigenvalues are the masses of the eigenstates K̃1 and K̃2.
�ey read

>2
:̃1,2 = 12 [>2

:̃ + >2
:̃� ∓ √(>2

:̃
− >2

:̃�
)2 + 4>2

:�2
:] . (77)

�e unitary transformation can be parameterized by the
mixing angle

6:̃ = (cos �: − sin �:
sin �: cos �: ) , (78)

with

sin (2�:) = 2>: (v : − �SUSY cot�)>2
:̃1
− >2

:̃2

. (79)

�e renormalization constants connected to the top squark
are extracted from the top squark propagator. At tree level it is
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a diagonal 2×2matrix which receives non-diagonal entries at
loop-level. In order to be able to write down the renormalized
top squark propagator we de�ne the renormalization con-
stants as follows.�ewave function renormalization constant
is introduced through the relation

(K̃1K̃2)
(0) =Z

1/2
:̃ (K̃1K̃2) , with Z

1/2
:̃ = (�1/2

11 �1/2
12�1/2

21 �1/2
22
) , (80)

where it holdsZ1/2
:̃ = I + O(�	).

In case of SUSY-QCD, the matrixZ1/2
:̃ has a particularly

symmetric form. �is can be derived from the observation
that the le�- and right-handed components of the top squark
�elds have the same renormalization constant for their wave
functions within SUSY-QCD

(K̃<K̃))
(0) = �̃1/2

2 (K̃<K̃)) . (81)

Furthermore, if we introduce the renormalization constant
for the mixing angle via

�(0): = �: + 	�: (82)

and make use of (75), we obtain

Z
1/2
:̃ = �̃1/2

2 ( cos 	�: sin 	�:− sin 	�: cos 	�:) . (83)

When supersymmetric electroweak (SUSY-EW) corrections
are taken into account, (81) becomes

(K̃<K̃))
(0) = (�̃1/2

< 00 �̃1/2
)
)(K̃<K̃)) . (84)

�is assignment takes into account supersymmetric con-
straints [162, 163] and is su�cient to absorb all divergences.

As a consequence also the matrix Z
1/2
:̃ has a more compli-

cated structure and additional renormalization conditions are
required.

Furthermore, the mass matrix equation (74) has to be
renormalized. It can be parameterized as follows:

((>(0)
:̃1
)2 00 (>(0)

:̃2
)2) A→ (>2

11��11 >2
12��12>2

21��21 >2
22��22

) ≡M,
(85)

where we require that the o�-diagonal elements in the
renormalized mass matrix vanish. �is ensures that the
renormalized �elds are the true mass eigenstates. As a con-
sequence, the counterterm 	�: takes care of the divergences
in the self-energy contribution where a K̃1 transforms into a K̃2
or vice versa. �is can be seen in the explicit formulae given
below. �e diagonal elements of (85) can be identi�ed with
the renormalization constants of the masses:

(>(0)
:̃�
)2 = >2

���� = >2
:̃����̃�

. (86)

In order to formulate the renormalization conditions it is
convenient to consider the renormalized inverse top squark
propagator given by

�S−1 (F2) = F2(Z1/2
:̃ )†Z1/2

:̃ − (Z1/2
:̃ )† [M − Σ (F2)]Z1/2

:̃ ,
(87)

where

Σ (F2) = (Σ11 (F2) Σ12 (F2)Σ21 (F2) Σ22 (F2)) , (88)

stands for the matrix of the squark self-energies in the mass
eigenstate basis.

In the DR scheme the renormalization conditions read

S
−1
� (F2)�����pp = 0, (89)

where “pp” stands for the “pole part.”
In order to obtain explicit formulae for the evaluation

of the renormalization constants it is convenient to de�ne
perturbative expansions of the quantities entering equation
(89). Up to three-loop order we have

�B = 1 + (�	& ) 	�(1)
B + (�	& )2	�(2)

B

+ (�	& )3	�(3)
B + O (�4

	 ) ,
	�: = (�	& ) 	�(1): + (�	& )2	�(2): + (�	& )3	�(3): + O (�4

	 ) ,
Σ� = (�	& )Σ(1)

� + (�	& )2Σ(2)
� + (�	& )3Σ(3)

� + O (�4
	 ) ,

(90)

where �, � ∈ {1, 2}, and ¡ ∈ {2,>:̃1 , >:̃2}. Inserting these
equations into (87) one can solve (89) iteratively order by
order in �	. At one-loop order one gets{Σ(1)

 − >2
:̃� (	�̃(1)

2 + 	�(1)
��̃�
) + F2	�̃(1)

2 }������pp = 0,� = 1, 2,
{Σ(1)

12 − 	�(1): (>2
:̃1 − >2

:̃2)}�����pp = 0.
(91)

�e terms proportional to F2 in the �rst equation of (91) are
used to compute the wave function renormalization constant
which is independent of all occurring masses. �us they can
be set to zero and one obtains

	�̃(1)
2 = − 1F2Σ(1)

11 (F2)��������pp = − 1F2Σ(1)
22 (F2)��������pp. (92)

Once 	�̃(1)
2 is known (91) is used to obtain 	�(1)

��̃�
keeping the

mass dependence in Σ(1)
 (see below for more details). �e

second equation of (91) is used to obtain the renormalization
constant of the mixing angle via

	�(1): = Σ(1)
12>2

:̃1
− >2

:̃2

�����������pp. (93)
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Proceeding to two loops we obtain the equations

[Σ(2)
 + 	�̃(1)

2 Σ(1)
 − >2

:̃� (	�̃(2)
2 + 	�̃(1)

2 	�(1)
��̃�
+ 	�(2)

��̃�
)

+ 	�̃(2)
2 F2 + (−1)(+1)	�(1):

× (−2Σ(1)
12 + 	�(1): (>2

:̃1 − >2
:̃2)) ]������pp = 0,

� = 1, 2,
[−	�(2): (>2

:̃1 − >2
:̃2) − 	�(1): 	�̃(1)

2 (>2
:̃1 − >2

:̃2)
− 	�(1): 	�(1)

��̃1
>2

:̃1 + 	�(1): 	�(1)
��̃2
>2

:̃2 + 	�(1): Σ(1)
11

−	�(1): Σ(1)
22 + 	�̃(1)

2 Σ(1)
12 + Σ(2)

12 ]�����pp = 0,
(94)

which are solved for �̃(2)
2 , 	�(2)

��̃�
, and 	�(2): using the same

strategy as at one-loop level.
Similarly, at three-loop order we have

[(−1)+1 {(	�(1): )2
× (	�̃(1)

2 (>2
:̃1 − >2

:̃2) + 	�(1)
��̃1
>2

:̃1

−	�(1)
��̃2
>2

:̃2 − Σ(1)
11 + Σ(1)

22 )
+ 	�(1): (2	�(2): (>2

:̃1 − >2
:̃2)

−2	�̃(1)
2 Σ(1)

12 − 2Σ(2)
12 )

−2	�(2): Σ(1)
12 }

+ 	�̃(1)
2 (Σ(2)

 − 	�(2)
��̃�
>2

:̃�) − 	�̃(2)
2 	�(1)

��̃�
>2

:̃�

+ 	�̃(2)
2 Σ(1)

 − 	�̃(3)
2 >2

:̃� + 	�̃(3)
2 F2

−	�(3)
��̃�
>2

:̃� + Σ(3)
 ]������pp = 0, � = 1, 2,

[	�(1): (−	�̃(1)
2 	�(1)

��̃1
>2

:̃1 + 	�̃(1)
2 	�(1)

��̃2
>2

:̃2

+ 	�̃(1)
2 Σ(1)

11 − 	�̃(1)
2 Σ(1)

22 − 	�̃(2)
2 (>2

:̃1 − >2
:̃2)

−	�(2)
��̃1
>2

:̃1 + 	�(2)
��̃2
>2

:̃2 + Σ(2)
11 − Σ(2)

22 )
+ 	�(2): (−	�̃(1)

2 (>2
:̃1 − >2

:̃2) − 	�(1)
��̃1
>2

:̃1

+	�(1)
��̃2
>2

:̃2 + Σ(1)
11 − Σ(1)

22 )
− 	�(3): (>2

:̃1 − >2
:̃2) + 	�̃(1)

2 Σ(2)
12 + 	�̃(2)

2 Σ(1)
12

+ Σ(3)
12 + 23 (	�(1): )3 (>2

:̃1 − >2
:̃2)

−2(	�(1): )2Σ(1)
12 ]������pp = 0. (95)

Sample diagrams contributing to Σ11 up to three loops can be
found in Figure 3; the contributions to Σ12, and Σ22 look very
similar. Once the quantities Σ11, Σ12 and Σ22 are known to
three-loop order it is possible to extract the renormalization
constants for the squark wave function and mass and the
mixing angle from (95).

As compared to the corresponding self-energy contri-
butions for fermions or gauge bosons, which a�er proper
projection only lead to logarithmically divergent integrals,
the quantities in the above equations have mass dimension
two. As a consequence the renormalization constants of
the squark masses and the mixing angles depend on the
occurring masses, even in a minimal subtraction scheme like

DR. At three-loop order an exact evaluation of the corre-
sponding integrals is not possible. It is nevertheless possible
to reconstruct the complete dependence on the occurring
masses using repeated asymptotic expansions and in addition
some knowledge about the structure of the �nal result. �us,
one has to keep during the calculation nonvanishing squark,
gluino, and the top quark masses and chose convenient
hierarchies between them. For the asymptotic expansion (see,
e.g., [150]) one can use exp [142, 143]. As a result only
one-scale integrals up to three loops appear which can be
evaluated with the packages MINCER [115] and MATAD [124].

A�er the calculation of the bare self-energies one has to

renormalize all occurring parameters in the DR scheme. For
the three-loop calculation one needs the counterterms for �	,>:, >�̃, >:̃� , �:, and >� to two-loop order and the one for>*̃ to one-loop approximation. Furthermore, also the QCD
gauge parameter has to be renormalized to two loops since
it appears in the results for the wave function anomalous
dimensions.

At this point some comments on the treatment of theE-scalar mass, >�, are in order. In practice there are two
renormalization schemes for >� which are frequently used,

the DR and on-shell scheme. In the latter one requires that
the renormalizedmass vanishes in each order in perturbation
theory whereas in the DR prescription only the pole parts

are subtracted by the renormalization constant. In the DR
scheme it is important to keep>� di�erent fromzero since the
renormalization group equations for the squark masses and>� are coupled. Anonvanishing E-scalarmass in intermediate
steps is also required for the computation of the anomalous

dimensions in the DR
�
scheme [164] (see below) which was

constructed in order to disentangle the running of >� from
the one of the squark parameters.

In the following, we present only the results derived
in the scheme where the E-scalar mass is renormalized in
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Figure 3: Sample diagrams contributing to Σ11 at one, two, and three loops. �e symbols K, K̃, �, �̃, and E denote top quarks, top squarks,
gluons, gluinos, and E-scalars, respectively.
DR scheme. �e two-loop results for the renormalization
constants of the top squark mass>:̃1 read
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��̃1
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(96)

where we have introduced the abbreviations  D = HDw2(6),
with Z = Y, k, K and �̀: = cos(H�:) and ¤�: = sin(H�:). H*
denotes the number of light quark avors and takes in this
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case the value H* = 5. H: = 1 has been introduced for conve-
nience and it holds H� = H* +H:. Furthermore> denotes the

DR renormalized O-scalar mass. �e corresponding results
for >:̃2 can be derived from (96) by interchanging >:̃1 and>:̃2 and changing the sign of �:.

Finally, for the mixing angle we have

(>2
:̃1 − >2

:̃2) 	�(1): = :) 2̀:(>�̃>: − ¤2: (>2
:̃1 − >2

:̃2)4 ) 1E ,
(>2

:̃1 − >2
:̃2) 	�(2):

= {{{:2
) 2̀: [[(¤22: − `22:)(

>�̃>:2 − ¤2: (>2
:̃1 − >2

:̃2)16 )
−2¤2:>2

�̃>2
:>2

:̃1
− >2

:̃2
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+ :):( 2̀: [[

−3>�̃>:4 + 3¤2: (>2
:̃1 − >2
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(97)

�e three-loop results are also available in electronic form
[161], but they are too lengthy to be explicitly given in this
review.

In the case of degenerate squark masses, one can take
naively the limit>:̃2 → >:̃1 in (96). Furthermore one has to

nullify themixing angle.�e quantities 	�(1,2): are not de�ned
in the mass-degenerate case which is reected by the fact that
the limit>:̃2 → >:̃1 does not exist in (97).

For completeness let us also provide the three-loop result
for mass-degenerate squarks which is given by
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where we have used the above mentioned abbreviations  D =HDw2(6), with Z = Y, k, K. �e terms that do not involve  : can
be obtained from ���̃1

by setting >:̃2 = >:̃1 , >: = 0, and�: = 0.
As mentioned before, the E-scalar mass needs to be

renormalized at two loops within the DR scheme, in order to
obtain the three-loop renormalization constants for squark
masses and mixing angles. �e corresponding renormaliza-
tion constant is given by

��	 = 1 + �	& 1E
× {−34 :( + 12 �

+ [−:(2 >2
�̃

+2 *>2
*̃ +  : (>2
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}

+ (�	& )2
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× { 1E2 [ 916:2
( − 34:( � + 14 2

�

+ (3:2
( − 2:( � − 2:) �4 >2

�̃

− 3:( * − 2 � *4 >2
*̃ − 3:( : − 2 � :8

× (>2
:̃1 + >2

:̃2 − 2>2
: )) 1>2

 
]

× 1E [ − 38:2
( + 14:( �

+ (−5:2
(−2:( �−4:) �8 >2

�̃ +:( *2 >2
*̃

+:( :4 (>2
:̃1+>2

:̃2−2>2
: )) 1>2

 
]} .
(99)

Let us detail at this point on the choice of scheme.When com-
puting the anomalous dimensions for the physical param-
eters, one has to consider the combined set of di�erential
equations of all DR parameters appearing in the correspond-
ing renormalization constants.�is concerns in particular the
unphysical E-scalar mass whichmeans that although>� is set
to zero at one scale it is di�erent from zero once this scale
is changed. A way out from this situation is to renormalize
the E-scalar mass on shell and set the renormalized mass
 
to zero. However, this scheme might become quite involved
in practice, because of the on-shell two-loop diagrams that
have to be computed. Alternatively one could shi� the squark
masses by a �nite term which is chosen such that the E-
scalar decouples from the system of di�erential equations.

�e resulting renormalization scheme is called DR
�
scheme

and has been suggested in [164]. For this calculation the �nite
shi� is needed up to two loops and is given by [152, 164]

>2
�̃ A→ >2

�̃ − �	& 12:E>2
� + (�	& )2

× :E>2
� (14 � (H* + H:) + 14:E − 38:() , (100)

where Y = K or Y = k.
At the end of this section we want to discuss briey

the numerical impact of the higher order corrections on the
squark masses. If one chooses the SUSY mass parameters of
the order of O (1TeV), one observes a moderate shi� of a
few GeV when going from one to two loops. A�er switching
on the three-loop terms, however, the squark masses are
decreased by about 40GeV which is approximately an order
ofmagnitude larger than the two-loop corrections. Neverthe-
less it corresponds to a shi� in themasses of about 3%which is
a reasonable amount for a three-loop SUSY-QCD term. Our
observation coincides with the �ndings of [158, 159] where

also relatively large three-loop corrections for the squarks
have been identi�ed.

5. The SM Gauge Beta Functions to
Three Loops

In this section we report on the recent calculation of the
three-loop gauge beta functions of the SM. In contrast to
the supersymmetric theories, the SM beta functions to three
loops have been computed only last year. At this point, it
becomes probably clear the importance of all-order relations
for the anomalous dimensions of supersymmetric theories
valid in special regularization schemes. In the absence of
SUSY and its holomorphic properties, one has to derive the
anomalous dimension from a pure diagrammatic computa-
tion, which at the three-loop level becomes computationally
quite involved.

�e SM beta functions are important tools that allow us
to relate theory predictions for various parameters at di�erent
energy scales. An important example in this respect is the
inspection of the gauge coupling uni�cation at high energies,
for which precise experimental data of the couplings at the
electroweak scale combined with accurate calculations of the
RGEs yields precise predictions.

�e computation of the beta functions of gauge theories
has a long history. �e one-loop beta functions in gauge
theories along with the discovery of asymptotic freedom have
been presented in [6, 7, 165]. �e computation of the corre-
sponding two-loop corrections followed a few years later in a
series of papers. Namely, for gauge theories without fermions
the results were computed in [166, 167], with those for gauge
theories with fermions neglecting Yukawa couplings in [168–
170] and considering also Yukawa couplings in [171].�e two-
loop gauge coupling beta functions in an arbitrary quantum
�eld theory have been considered in [172–175]. At the three-
loop order, the �rst computed contributions to the gauge
beta functions were those induced through the scalar self-
interactions in [122, 123]. An important contribution to the
�eld was the computation of the three-loop beta function
in QCD [111, 112]. Yukawa contributions to it have been
obtained in [176]. �e generalization of these results to a
general quantum �eld theory based on a single gauge group
has been achieved in [101, 102]. For QCD, even the four-loop
corrections are known from [119, 121]. In the following we
concentrate on the calculation of the beta functions for the
three gauge couplings of the SM up to three loops in the MS
scheme. �ey have been computed for the �rst time in [49]
and con�rmed by an independent calculation in [177].

Let us in a �rst step �x the notation. We denote the three
gauge couplings by �1, �2, and �3 and adopt a SU(5)-like
normalization.�ey are related to the quantities usually used
in the SM by the all-order relations

�1 = 53 �QED

cos2�� ,�2 = �QED

sin2�� ,�3 = �	,
(101)
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where�QED is the �ne structure constant, �� theweakmixing
angle, and �	 the strong coupling.

�e SM Yukawa interactions are described by (see, e.g.,
Chapter 11 of [178])

LYukawa

= −G<
 �A

� Ec⋆q)
� − G<

 �G
� c%)

� − �<
 �<

�cZ)� + h.c., (102)

where �A,G,< are complex 3 × 3 matrices, �, � are generation
labels, c denotes the Higgs �eld, and E is the 2 × 2
antisymmetric tensor. G<, �< are the le�-handed quark and

lepton doublets; and q), %), Z) are the right-handed up-
and down-type quark and lepton singlets, respectively. �e

physicalmass eigenstates are obtained by diagonalizing�A,G,<

by six unitary matrices �A,G,<
<,) as follows:

�̃�
diag

= ��
< ����†

) , Y = ",�, �. (103)

As a result the charged-current _± couples to the physical
quark states with couplings parametrized by the Cabibbo-

Kobayashi-Maskawa (CKM) matrix �CKM ≡ �A
< �G†

< . We
furthermore introduce the notation

 ̂ = 14&�A�A†, �̂ = 14&�G�G†, �̂ = 14&�<�<†.
(104)

Of course, only traces over products of Yukawa matrices can
occur because they arise from closed fermion loops. Using
(103) and (104) it is straightforward to see that only traces of

diagonal matrices have to be taken except for tr ̂�̂ which is
given by

tr ̂�̂ = tr[[(
�& 0 00 �� 00 0 �:

)�CKM(�� 0 00 �	 00 0 ��

)�†
CKM

]] .
(105)

�e Yukawa couplings are related to the SM parameters via
the tree-level relations

�H = �QED>2
H2sin2��
2
�
, with � = K, ', ¯, `, ¤, . . . , (106)

where >H and 
� are the fermion and _ boson mass,
respectively.

We denote the Higgs boson self-coupling by �̂, where the
Lagrange density contains the following term:

L = ⋅ ⋅ ⋅ − (4&�̂) (c†c)2 + ⋅ ⋅ ⋅ (107)

describing the quartic Higgs boson self-interaction.
�e beta functions are obtained by calculating the

renormalization constants relating bare and renormalized
couplings via the relation

�bare = �2���� ({��} , E) �. (108)

Taking into account that �bare does not depend on � and
taking into account that��� may depend on all couplings lead
to the following formula:

� = −[[E
�& + ����

7∑
�=1,� ̸= 

$���$��
��]](1 +

����

$���$�
)−1,

(109)

where � = 1, 2 or 3. We furthermore set �4 = �:, �5 = ��,�6 = �J, and �7 = �̂ and neglect the rest of Yukawa couplings.
�e �rst term in the �rst factor of (109) originates

from the term �2� in (108) and vanishes in four space time
dimensions. �e second term in the �rst factor contains the
beta functions of the remaining six couplings of the SM.
Note that (for the gauge couplings) the one-loop term of��� only contains �, whereas at two loops all couplings are

present except �̂. �e latter appears for the �rst time at three-
loop level. As a consequence, it is necessary to know �� for� = 4, 5, 6 to one-loop order and only the E-dependent term
for �7, namely, �7 = −E�7/&. From the second term in
the �rst factor and the second factor of (109) one can read
o� that three-loop corrections to ��� are required for the
computation of � to the same loop order.

In the MS scheme the beta functions are mass indepen-
dent. �is allows us to use the SM in the unbroken phase
as a framework for our calculation. In principle each vertex
containing the coupling � = √4&� can be used in order
to determine the corresponding renormalization constant
via the relation (42). In order to compute the individual
renormalization constants entering equation (42) one can
proceed as outlined in the previous sections.

A second method that can be used to get an independent
result for the renormalization constants of the gauge cou-
plings is a calculation in the background �eld gauge (BFG)
[179, 180].�e basic idea of the BFG is the splitting of all gauge
�elds in a “quantum” and a “classical” part where in practical
calculations the latter only occurs as external particle.

�eBFGhas the advantage thatWard identities guarantee
that renormalization constants for gauge couplings can be
obtained from the exclusive knowledge of the corresponding
wave function renormalization constant. �us we have the
following formula:

��� = 1�(� ,wf
, (110)

wherev denotes the gauge boson corresponding to the gauge
coupling �.

In the BFG calculation it is advisable to adopt Landau
gauge in order to avoid the renormalization of the gauge
parameters ^. However, it is not possible to choose Landau
gauge from the very beginning since some Feynman rules for
vertices involving a background gauge boson contain terms
proportional to 1/^ where ^ = 0 corresponds to Landau
gauge. To circumvent this problem one has to evaluate the
bare integrals for arbitrary gauge parameters. In the �nal
result all inverse powers of ^ cancel and thus the limit ^ = 0
can be taken at the bare level.
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An important issue in the present calculation is the
treatment of �5 within dimensional regularization. Nontrivial
contributions may arise if in the course of the calculation
two fermion traces occur where both of them contain an
odd number of �5-matrices and four or more �-matrices. It
is straightforward to see that the three-point Green functions
that are required for this computation contain at most
one-loop triangle subdiagrams (three-point Green functions
involving external fermion lines are not considered here).
�is could potentially lead to contributions where a careful
treatment of �5 is required. However, all these contributions
vanish identically due to anomaly cancellations in the SM
(see, e.g., [181]). �is can also be checked by an explicit
calculation using the seminaive regularization prescription
for �5 as discussed in Section 3.1. Due to theO(E) ambiguity of
(27), this approach can be directly applied only to diagrams
that contain at most simple poles in E. Otherwise, �nite
counterterms have to be introduced in order to restore
Ward identities [86]. However, the diagrams contributing to
this calculation that contain one-loop triangle subdiagrams
have at most simple poles in E. �is explains why one
obtains correct results for the three-loop beta functions even
without implementing the ’t Hoo�-Veltman scheme for the
regularization of �5.

From the technical point of view, all themethods and pro-
grams discussed in the previous section can also be applied in
this computation.�emain di�culty of this calculation is the
enormous number of diagrams (of about a million diagrams)
that contribute to the individual renormalization factors. In
order to handle such an enormous amount of diagrams in
a reasonable wall-clock time, one needs to parallelize the
calculation.

We are now in the position to present the results for the
beta functions of the gauge couplings which are given by

�1 = �2
1(4&)2 {25 + 16H"3 } + �2

1(4&)3
× {18�125 + 18�25 − 34tr ̂5 − 2tr�̂

−6K°�̂ + H" [76�115 + 12�25 + 176�315 ]}
+ �2

1(4&)4
× {489�2

12000 + 783�1�2200 + 3401�2
280

+ 54�1�̂25 + 18�2�̂5 − 36�̂25 − 2827�1tr ̂200
− 471�2tr ̂8 − 116�3tr ̂5 − 1267�1tr�̂200
− 1311�2tr�̂40 − 68�3tr�̂5 − 2529�1tr�̂200

− 1629�2tr�̂40 + 183tr�̂220 + 51(tr�̂)210
+ 157tr�̂tr�̂5 + 261tr�̂220 + 99(tr�̂)210
+ 3tr ̂�̂2 + 339tr ̂220 + 177tr ̂tr�̂5
+ 199tr ̂tr�̂5 + 303(tr ̂)210
+ H" [−232�2

175 − 7�1�225 + 166�2
215

−548�1�3225 − 4�2�35 + 1100�2
39 ]

+H2" [−836�2
1135 − 44�2

215 − 1936�2
3135 ]} ,

�2 = �2
2(4&)2 {−863 + 16H"3 } + �2

2(4&)3
× {6�15 − 518�23 − 6tr ̂ − 6tr�̂ − 2tr�̂

+H" [4�15 + 196�23 + 16�3]} + �2
2(4&)4

× {163�2
1400 + 561�1�240 − 667111�2

2432
+ 6�1�̂5 + 6�2�̂ − 12�̂2 − 593�1tr ̂40
− 729�2tr ̂8 − 28�3tr ̂ − 533�1tr�̂40
− 729�2tr�̂8 − 28�3tr�̂ − 51�1tr�̂8
− 243�2tr�̂8 + 57tr�̂24 + 45(tr�̂)22
+ 15tr�̂tr�̂ + 19tr�̂24 + 5(tr�̂)22 + 27tr ̂�̂2
+ 57tr ̂24 + 45tr ̂ tr �̂ + 15 tr  ̂ tr �̂ + 45(tr �̂)22
+ H" [−28�2

115 + 13�1�25 + 25648�2
227

−4�1�315 + 52�2�3 + 500�2
33 ]
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+H2" [−44�2
145 − 1660�2

227 − 176�2
39 ]} ,

�3 = �2
3(4&)2 {−44 + 16H"3 } + �2

3(4&)3
× { − 408�3 − 8tr ̂ − 8tr�̂

+H" [22�115 + 6�2 + 304�33 ]}
+ �2

3(4&)4
× {−5714�2

3 − 101�1tr ̂10 − 93�2tr ̂2
− 160�3tr ̂ − 89�1tr�̂10 − 93�2tr�̂2
− 160�3tr�̂ + 18tr�̂2 + 42(tr�̂)2
+ 14tr�̂tr�̂ − 12tr ̂�̂ + 18tr ̂2

+ 84tr ̂tr�̂ + 14tr ̂tr�̂ + 42(tr ̂)2
+ H" [−13�2

130 − �1�210 + 241�2
26

+308�1�345 + 28�2�3 + 20132�2
39 ]

+H2" [−242�2
1135 − 22�2

23 − 2600�2
327 ]} .

(111)

In the above formulas H" denotes the number of fermion
generations. It is obtained by labeling the closed quark and
lepton loops present in the diagrams.

Let us �nally briey discuss the numerical impact of
the new three-loop corrections. In Figure 4 from [49] we
reproduce the running of �1 and �2 from � = 
>
to the energy scales where these two couplings become
equal. �e dotted and dashed lines correspond to one- and
two-loop running, respectively. One observes a signi�cant
change of the curves, which is in particular much bigger
than the experimental uncertainty indicated by the dashed
band. �us in case only one- and two-loop perturbative
corrections are included the theory uncertainty is much
bigger than the experimental one. �is changes with the
inclusion of the three-loop terms. �e results are shown as
solid lines which are closed to the corresponding dashed
curves. �e e�ect is small, however, still of the order of the
experimental uncertainty, in particular for �2. �e three-
loop e�ects on �3 predictions are, as expected, much smaller
than the experimental uncertainty. For this reason, the strong
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Figure 4: �e running of the electroweak gauge couplings in the
SM from [49]. �e lines with positive slope correspond to �1, the
lines with negative slope to �2. �e dotted, dashed, and solid lines
correspond to one-, two-, and three-loop precision, respectively.
�e bands around the three-loop curves visualize the experimental
uncertainty.

coupling was not displayed in Figure 4. Let us briey point
out that the energy scale at which the electroweak couplings

meet each other is of about 1013 GeV. Coupling uni�cation
at such a low-energy scale would imply a too rapid proton
decay, in contrast to the experimental results.�us, even from
this partial analysis, we can conclude that the statement that
gauge coupling uni�cation cannot be achieved within the
SM remains valid even a�er the inclusion of the three-loop
radiative corrections. More details about this topic can be
found in the next section.

6. Gauge Coupling Unification in
Supersymmetric Models

An appealing hint in favor of supersymmetry is the apparent

uni�cation of gauge couplings at a scale of about 1016 GeV
[20–22]. Gauge coupling uni�cation is highly sensitive to the
heavy particle mass spectrum. �is property allows us to
probe uni�cation through precision measurements of low-
energy parameters like the gauge couplings at the electroweak
scale and the supersymmetric mass spectrum. �e current
precision of the experimental data for the relevant input
parameters [178, 182] and the substantial progress on the
theory side [50, 103, 127, 158, 159, 183] require renormalization
group analyses even at three-loop accuracy. Within this
method, one needs H-loop RGEs and (H − 1)-loop threshold
corrections to achieve H-loop precision. We have discussed
in detail the derivation of RGEs in the previous sections.
�e �rst part of this section is devoted to the calculation
of threshold corrections. As an example, the determination
of the two-loop SUSY-QCD threshold corrections for the
strong coupling �	 and the bottom-quark mass >� will be
presented. In the second part of this section, we outline
the phenomenological analysis of gauge coupling uni�cation
within the minimal SUSY SU(5) model.
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6.1. E	ective Field �eory Approach: Decoupling Coe�cients.
As already stated above, the underlying motivation for the
running analysis is to relate physical parameters measured
at the electroweak scale with the Lagrange parameters at the
GUT scale. �e running parameters are most conveniently
de�ned in mass-independent renormalization schemes such

as MS for the SM parameters and DR for the MSSM
parameters.�ese schemes have the advantage that the gauge
beta functions aremass independent and their computation is
much easier than in physical mass dependent schemes. How-
ever, quantum corrections to low-energy processes contain
logarithmically enhanced contributions from heavy particles
withmassesmuch greater than the energy-scale of the process
under consideration. In other words in such “unphysical”
renormalization schemes the Appelquist-Carazzone decou-
pling theorem [184] does not hold in its naive form. An
elegant approach to get rid of this unwanted behavior in the

MS orDR scheme is to formulate an e�ective theory (ET) (for
more details see [134, 185]) integrating out all heavy particles.
�e parameters of the ET must be modi�ed (“rescaled”) in
order to take into account the e�ects of the heavy �elds. �e
ET parameters are related to the parameters of the full theory
by the so-called matching or decoupling relations.

�ey have been computed in QCD including corrections
up to the four-loop order for the strong coupling [186, 187]
and three-loop order for quark masses [185]. In the MSSM
the two-loop SUSY-QCD [50, 183, 188] and SUSY-EW [189–
191] expressions are known. Very recently, even the three-
loop SUSY-QCD corrections to decoupling coe�cient of the
strong coupling were computed [192].

In the following, we concentrate on the calculation of
the decoupling coe�cients for the strong coupling and the
bottom-quark mass within SUSY-QCD. �ey are the most
interesting quantities from the phenomenological point of
view because they are on the one hand the main ingredients
for the study of the gauge and Yukawa coupling uni�cation.
On the other hand they are the quantities that receive
the largest radiative corrections, for which next-to-next-to-
leading-order corrections are essential for high precision
predictions.

6.1.1. Framework. We consider SUSY-QCD with H� active
quark and H	 = H� active squark avors and H�̃ = 1 gluinos.
Furthermore, we assume that HD = 5 quarks are light (among
which the bottom quark) and that the top quark and all
squarks and the gluino are heavy. Integrating out the heavy
�elds from the full SUSY-QCD Lagrangian, we obtain the
Lagrange density corresponding to the e�ective QCD with HD
light quarks plus nonrenormalizable interactions. �e latter
are suppressed by negative powers of the heavy masses and
will be neglected here.�e e�ective Lagrangian can bewritten
as follows:

Leff (�0
	 , >0

*, ^0; k0, ;0,�
� , `0,�; �0 )

=L
QCD (�0�

	 , >0�
* , ^0�; k0�, ;0�,�

� , `0�,�) , (112)

where k, ;�
�, `� denote the light-quark, the gluon, and the

ghost �elds, respectively,>* stands for the light quarkmasses,

^ is the gauge parameter, and �	 = √4&�	 is the strong

coupling. �e index 0 marks bare quantities and L
QCD is

the usual QCD Lagrangian from which all heavy �elds have
been discarded. As a result the �elds, masses, and couplings
associated with light particles have to be rescaled. �ey are
labeled by a prime in (112) and are related to the original
parameters through decoupling relations:

�0�
	 = �0��0

	 , >0�
* = �0�>0

*, ^0� − 1 = �03 (^0 − 1) ,
k0� = √�02k0, ;0�,�

� = √�03;0,�
� , `0�,� = √�̃03`0,�.

(113)

Since the decoupling coe�cients are universal quantities,
they are independent of the momenta carried by the incom-
ing and outgoing particles. �e authors of [185] showed that

the bare decoupling coe�cients �0�, �02 , �03 , �̃03 can be derived
from the quark, the gluon, and the ghost propagators, all
evaluated at vanishing external momenta, via the relations

�(0)3 = 1 + Π0,ℎ (0) ,
�(0)2 = 1 + Σ0,ℎ

V
(0) ,

�(0)� = 1 − Σ0,ℎ
	 (0)1 + Σ0,ℎ
V
(0) .

(114)

�e superscript ℎ indicates that in the framework of DREG or
DRED only diagrams containing at least one heavy particle
inside the loops contribute and that only the hard regions
in the asymptotic expansion of the diagrams are taken into
account.

In Figure 5 are shown sample Feynman diagrams con-
tributing to the decoupling coe�cients for the strong cou-
pling (a) and the bottom-quark mass (b).

For the computation of �� one has to consider in addition
one vertex involving the strong coupling. A convenient choice
is the relation

�0� = �̃01�̃03√�03 , (115)

where �̃01 denotes the decoupling constant for the ghost-gluon
vertex.

�e �nite decoupling coe�cients are obtained upon the
renormalization of the bare parameters. �ey are given by

�� = ����
�
�0�, �� = ����

�
�0�, (116)

where ��
� and ��

� correspond to the renormalization con-

stants in the e�ective theory, and �� and �� denote the
same quantities in the full theory. Since we are interested
in the two-loop results for �, � = �, >, the corresponding
renormalization constants for SUSY-QCD and QCD have to
be implemented with the same accuracy. Analytical results
for the latter up to the three-loop order can be found in
the previous sections and the references cited therein, for
example, [134, 193, 194].
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Figure 5: Sample diagrams contributing to �3, �̃3, �̃1, and �� with gluons (�), ghosts (`), bottom/top quarks ('/K), bottom/top squarks ('̃/K̃),
and gluinos (�̃).
6.1.2. Renormalization Scheme. Apart from the renormaliza-
tion constants of the external �elds, also the renormalization
of the input parameters is required. However, for the renor-
malization of the gluino and squark masses and the squark
mixing angle we choose the on-shell scheme. �is scheme
allows us to use directly the physical parameters in the
running analyses making the implementation very simple.
�e explicit formulae at the one-loop order can be found in
[195, 196].�e two-loop counterterms are known analytically
only for speci�c mass hierarchies [156] and numerically for
arbitrary masses [197].

For the computation of the decoupling coe�cient for the

bottom-quark mass at order O(�2
	 ) one needs to renormalize

in addition the bottom-quarkmass and the trilinear couplingv� as well as the E-scalar mass. As the bottom-quark mass is
neglected with respect to heavy particle masses, an explicit
dependence of the radiative corrections on >� can occur
only through bottom Yukawa coupling. In order to avoid

the occurrence of large logarithms of the form �2
	 log(�2/>2

�)
with � ≃ 
̃, one has to renormalize the bottom Yukawa

coupling in the DR scheme. In this way, the large logarithms
are absorbed into the running mass and the higher order
corrections are maintained small.

�e renormalization prescription for the trilinear cou-
pling v� is �xed by the tree-level relation

sin 2�� = 2>� (v� − � tan�)>2
�̃1
− >2

�̃2

. (117)

�e parameters � and tan� do not acquire O(�	) corrections
to the one-loop level. Generically, the counterterm forv� can
be expressed as

	v� = (2 cos 2��	�� + sin 2�� 	>2
�̃1
− 	>2

�̃2>2
�̃1
− >2

�̃2

− sin 2�� 	>�>�
)

× >2
�̃1
− >2

�̃22>�
, (118)

where 	>� and 	>2
�̃1,2

are the counterterms corresponding

to bottom-quark and squark masses, respectively. Due to the
use of di�erent renormalization prescriptions for the bottom-
quark and squarkmasses andmixing angle, the parameterv�
is renormalized in amixed scheme.

Finally, the last parameter to be renormalized is the E-
scalar mass. In so�ly broken SUSY theories, as it is the case of
MSSMor SUSY-QCD, they get a radiatively inducedmass. As
already discussed in the previous sections, there are di�erent
approaches in the literature to perform the renormalization
in such a case. To obtain decoupling coe�cients independent
of the unphysical parameter>�, one has tomodify the bottom
squark masses by �nite quantities [152, 164] according to the
relation (100). Such �nite shi�s have to be performed for both
renormalization schemes for squark masses DR and on shell.

6.1.3. Analytical Results. �e exact one-loop results for the
decoupling coe�cients of the strong coupling constant �	 and
bottom-quark mass �� can be found in [50, 188, 195]. We list
them below up to order O(E):
�	 = 1 + �(SQCD)

	 &
× [ − 16:(� �̃ − 16� : −∑

*
∑
=1,2

124� *̃�

− E(:(12 (�2
�̃ + � (2)) + 112 (�2

: + � (2))
− 148∑* ∑

=1,2
(�2

*̃� + � (2)))] ,
(119)
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��� = 1 + �(SQCD)
	 & :E

× ∑
=1,2

{{{{{−
(1 + � �̃�)4 >2

�̃�(>2
�̃�
− >2

�̃)
+ (3 + 2� �̃�)>4

�̃�
− (3 + 2� �̃)>4

�̃

16(>2
�̃�
− >2

�̃)2

− (−1) ��>�̃>2
�̃1
− >2

�̃2

>2
�̃�
� �̃� − >2

�̃� �̃2 (>2
�̃�
− >2

�̃)
+ E[[[−

>2
�̃�
(2 + � �̃� (2 + � �̃�) + � (2))8 (>2

�̃�
− >2

�̃)
+ ( (>4

�̃�
(7+2� �̃� (3 + � �̃�)+2� (2))

− >4
�̃ (7 + 2� �̃ (3 + � �̃)

+2� (2) ) )
×(32(>2

�̃�
− >2

�̃)2)−1)
+ ((−1) ��>�̃>2

�̃1
− >2

�̃2

× (>2
�̃� �̃ (2 + � �̃)
−>2

�̃�
� �̃� (2 + � �̃�))

×(4 (>2
�̃�
− >2

�̃))−1)]]]
}}}}} ,
(120)

where �(2) is Riemann’s zeta function with �(2) = &2/6. In
the above equations we have adopted the abbreviations

�  = ln
�2>2


, � ∈ {K, �̃, k̃1,2, '̃1,2} ,

�� = v� − �SUSY tan�. (121)

�(SQCD)
	 denotes the strong coupling constant in SUSY-QCD.
�e presence of the terms proportional to the parameter�� is a manifestation of the supersymmetry breaking. �ey

are generated by the Yukawa interaction between le�- and
right-handed bottom squarks and the CP-neutral Higgs
�elds. �eir contribution to the decoupling coe�cient of the
bottom-quark mass can be related through the low-energy

theorem [198] to the decay rate of the Higgs boson to ''

pairs. To one-loop order, the �� term of (120) coincides
with the SUSY-QCD corrections to the decay rate j →'' [199]. To higher orders, the relation between the two
parameters becomesmore involved (for details see Section 8).
�ese Yukawa-coupling-induced contributions attracted a
lot of attention due to the fact that they are the dominant
corrections for large values of tan�. �ey may in general
become comparable with the tree-level bottom-quark mass.
�us, they need to be resumed even at the two-loop level.

�e analytical two-loop results for the decoupling coe�-
cients are too lengthy to be displayed here. �ey are available
in [50] together with their expressions for some phenomeno-
logicallymotivatedmass hierarchies.�e dominant two-loop
contributions to ��� , that is, the terms enhanced by tan�,
have been con�rmed by the independent computation of
[190, 191]. Also the dominant SUSY-QCD-EW corrections to��� at the two-loop order have been computed in [190, 191].

6.1.4. Numerical Analysis. In this section we discuss briey
the numerical impact of the two-loop decoupling coe�cients
derived above on the prediction of the strong coupling
constant at the GUT scale. As already pointed out, the
scale �dec at which the decoupling of the heavy particles
is performed is not �xed by the theory. �e dependence
of physical observables on this unphysical parameter is a
measure of the theoretical uncertainty le� over. At �xed order
perturbation theory, it is expected that the relations between
the running parameters evaluated at high-energy scale and
their low-energy values become less sensitive to the choice of�dec, once higher order radiative corrections are considered.

In [200] a consistent method for the calculation of the
energy evolution of physical parameters was proposed. For

example, one derives the SM values �(5)
	 (�dec) and at the

heavy scale �dec from the H-loop SMRGEs. Here �dec denotes
the energy scale at which the heavy particles are supposed
to become active, that is, the scale where the matching
between the SM and the MSSM is performed. Before the
matching procedure, one has to perform also the change of

regularization scheme from MS to DR. For consistency, theH-loop running parameters have to be foldedwith (H−1)-loop
conversion and decoupling relations. �e latter are known in
SUSY-QCD up to two-loop order [201] and within MSSM to
one-loop order [202]. Above the decoupling scale, the energy
dependence of the running parameters is governed by the H-
loop MSSM RGEs.

�e dependence of �	(�GUT) on the decoupling scale is
displayed in Figure 6 from [50].�e dotted, dashed, and solid
lines denote the one-, two-, and three-loop running, where
the corresponding exact results for the decoupling coe�-
cients have been implemented. One can see the improved sta-
bility of the three-loop results with respect to the decoupling-
scale variation. �e uncertainty induced by the current
experimental accuracy on �	(
>), 	�	 = 0.001 [203], is
indicated by the hatched band.

In order to get an idea of the e�ects induced by the SUSY
mass parameters on �	(�GUT), two di�erent mass spectra
are shown. As reference was chosen the so-called Snowmass
Point SPS1a� scenario [204] for which rather low SUSY mass
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Figure 6: �	(�GUT) as a function of �dec from [50]. Dotted, dashed,
and solid lines denote the one-, two-, and three-loop contributions,
respectively, obtained using for the input parameters their values for
the SPS1d� benchmark point. �e dash-dotted line shows the three-
loop running corresponding to the SPS2 point.

parameters are required: >�̃ = 607.1GeV, >:̃1 = 366.5GeV,>:̃2 = 585.5GeV, >�̃1 = 506.3GeV, >�̃2 = 545.7GeV,vDR
: (1TeV) = −565.1GeV, vDR

� (1TeV) = −943.4GeV, � =396.0GeV, and tan� = 10.0. In addition the dash-dotted
line shows the three-loop results when the SUSY parameters
corresponding to the SPS2 [205] scenario are adopted. �eir
explicit values are >�̃ = 784.4GeV, >:̃1 = 1003.9GeV,>:̃2 = 1307.4GeV, >�̃1 = 1296.6GeV, >�̃2 = 1520.1GeV, and
tan� = 10.0. One clearly notices the great impact of the SUSY
mass pattern on the predicted value of the strong coupling at
high energies. Accordingly, for precision studies concerning
gauge coupling uni�cation the explicit mass pattern of heavy
particles must be taken into account.

At this point, a comment on the chosen mass spectrum is
in order.�e nature of this plot is rather academic and aims to
quantify themass dependence of the strong coupling constant
at high energies. �e two mass spectra are already excluded
by the direct searches at the LHC.Nevertheless, one can easily
estimate that for heavier SUSY particles 
SUSY > 1.5TeV
the value of �	(�GUT) decreases below the value 0.398. Its
implication on the quality of the uni�cation will be discussed
in the next section.

6.2. Gauge Coupling Unication in the Minimal SUSY SU(5)
Model. �e gauge coupling uni�cation might be predicted,
even under the assumption of a minimal particle con-
tent of the underlying GUT like in the so-called minimal
SUSY SU(5) model [206, 207]. �is is the most predictive
model among the currently known candidates for SUSY
GUTs. However, immediately a�er its formulation it has
been noticed that new dimension-�ve operators may cause
rapid proton decay. Together with the requirement of gauge
coupling uni�cation this aspect was used to even rule out

the SUSY SU(5) model [208, 209]. However, subsequent
careful analyses have shown that the proton decay rate for
the dominant channel F → V+

] can be suppressed either
by sfermion mixing [210] or by taking into account higher
dimensional operators induced at the Planck scale [211–213].

In the following, we review the latest analysis on the
gauge coupling uni�cation in the renormalizable version
of minimal SUSY SU(5). �is model is not the best moti-
vated phenomenologically, but it requires the most severe
constraints on the GUT parameters. More precisely, we
outline the constraints on the mass of the color triplet Higgs
K� and the grand uni�cation scale (see below the exact
de�nition of
K� and
")
" taking into account the latest
experimental data for the weak scale parameters and the
most precise theoretical predictions currently available. �e
two parameters are predicted in the “bottom-up” approach,
taking into account threshold corrections generated by the
superpartners of the SM particles as well as those due to
the superheavy SUSY-GUT particles. In addition, the gauge
coupling constants of the SM at the electroweak scale and the
MSSM mass spectrum are required as input parameters. �e
predicted values for the two parameters have to be compared
with the constraints derived from the nonobservation of
proton decay.

For completeness, we present below our notation in the
framework ofminimal SUSY SU(5).�e superpotential of the
model [206] is given by

W = 
1 Tr (Σ2) + �1 Tr (Σ3) + �2HΣH +
2HH

+ √2��
�Ψj�c + 14��

&ΨΨ�c, (122)

where Ψ and j (� = 1, 2, 3 is a generation index) are matter
multiplets in the 10- and 5-dimensional representation of
SU(5). �eir decomposition with respect to the SM gauge
group SU(3) × SU(2) × U(1) reads

5 = (3, 1, −13) ⊕ (1, 2, +12) ,
10 = (3, 1, −23) ⊕ (3, 2, 16) ⊕ (1, 1, 1) .

(123)

�e �eld c (c) is realized in the 5 (5) representation. �e
gauge group SU(5) is broken to the SM gauge group if the
adjoint Higgs boson Σ ≡ Φ� � (d = 1, . . . , 24) living in the
24 representation gets the vacuum expectation value ⟨Σ⟩ =�/(2√30) × diag(−2, −2, −2, 3, 3), with � = −4√30
1/(3�1)
(here, we parametrize as usual the 24 representation like a5×5matrix). Its decomposition with respect to the SM gauge
group reads

24 = (1, 1, 0) ⊕ (1, 3, 0) ⊕ (8, 1, 0) ⊕ (3, 2, −56) ⊕ (3, 2, 56) .
(124)

Choosing ⟨c⟩ = ⟨c⟩ ≪ � and in addition imposing the

(tree-level-) �ne-tuning condition
2 = −√3�2�/√40, the
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isodoublets in c and c remain massless. Furthermore, one
gets the following superheavy mass spectrum:


2
+ = 512�2�2, 
2

K� = 524�2
2�2,


2
Σ ≡ 
2

(8,1) = 
2
(1,3) = 25
2

(1,1) = 1532�2
1�2, (125)

where the indices in round brackets refer to the SU(3) and
SU(2) quantum numbers. Here 
Σ denotes the mass of the
color octet part of the adjoint Higgs boson Σ and
K� stands

for the mass of the color triplets ofc andc.
+ is the mass
of the gauge bosons and � is the gauge coupling.�e equality
2

(8,1) = 
2
(1,3) holds only if one neglects operators that are

suppressed by 1/
Pl as we do here.
In the study of the energy evolution of the gauge couplings

up to scales of the order O (1016)GeV, one has to apply the
e�ective �eld theory (EFT) approach twice: once at an energy
scale comparable with the SUSY particle masses and once at
the GUT scale. In practice, this translates into the following
steps.

(1) Running within the SM from � = 
> to the SUSY
scale �SUSY .

In this step, the three-loop beta function of QCD [111, 112]
and up to three-loop RGEs in the electroweak sector [49, 114]
are necessary in order to obtain the values of the gauge
couplings at �SUSY ≈ 1TeV. At this point we want to stress
once again that the value of �SUSY is a free parameter. Let
us mention that the top quark threshold e�ects are taken
into account in the determination of the input parameters
(for details see next section) and the running analysis is
performed in SM with six active quark avors.

(2) SUSY threshold corrections.
In order to still cure the naturalness problem of the

SM, the SUSY mass spectrum has to be at most in the
TeV range. �us, for energies of this order of magnitude, it
is expected that the SUSY particles become active and the
proper matching between the SM and the MSSM has to be
performed. �e one-loop decoupling relations for �1 and�2 [214] and the Yukawa couplings [195] are known since
long time. �e SUSY-QCD decoupling e�ects for �3 and>� are known to three- and two-loop order, respectively, as
discussed in the previous section. A fully consistent approach
would require two-loop threshold corrections not only in
the strong but also in the electroweak sector. �ey are not
yet available, nevertheless it is expected that their numerical
impact is relatively small.

At this stage also the change of renormalization scheme

from MS to DR has to be taken into account. To establish
the conversion relations between the running parameters
in the two schemes, one can use the method discussed in
Section 3.3.3, where such relations have been derived in the
context of nonsupersymmetric theories (for more details
see [201]). �e conversion relations that are of interest for
the numerical analysis discussed in this section are those
involving the gauge couplings and the quark masses of the
third generation, as only their Yukawa couplings give sizable

e�ects. �ey are known up to the two-loop order in SUSY-
QCD [201]. For the convenience of the reader we cite them
below

�MS
	 = �DR

	
[[1−

�DR
	& :(3 +(�DR

	& )2(−119 :2
( + 2 �:))]] ,

(126)

>MS
* = >DR

*
[[1 +

�DR
	& :)

+(�DR
	& )2 ( 712:(:)+ 74:2

) − 12 �:))]] ,
(127)

where the group invariants are de�ned as in Appendix A and � = w2(6)H�, with H� being the number of active fermions.
(3) Running within the MSSM from �SUSY to the high-

energy scale �GUT.
In this step the three-loop RGEs of the MSSM [103, 127]

are required to evolve the gauge and Yukawa couplings from�SUSY to some very high scale of the order of 1016 GeV, that
we denote �GUT. At this energy scale it is expected that SUSY-
GUT particles become active.

(4) SUSY-GUT threshold e�ects.
At the energy scale �GUT, threshold corrections induced

by the nondegenerate SUSY-GUT spectrum have to be taken
into account. �e one-loop formulas of the decoupling
coe�cients for a general gauge group have been known for
a long time [215–217].�e speci�cation to the minimal SUSY
SU(5) reads [218, 219]

��1 (�) = 1 + �SU(5) (�)4& (−25��K� + 10��+) ,
��2 (�) = 1 + �SU(5) (�)4& (−2��Σ + 6��+) ,
��3 (�) = 1 + �SU(5) (�)4& (−��K� − 3��Σ + 4��+) ,

(128)

where ��H = ln(�2/
2
H) and for simplicity we keep from the

list of arguments of the coe�cients ��� only the decoupling

scale. �SU(5)(�)/4& is the gauge coupling constant of the
uni�ed theory, that is, of the SUSY SU(5) model.

A suitable linear combination of the three equations
above leads to the following two relations:

4&(− 1�1 (�) + 3 1�2 (�) − 2 1�3 (�)) = −125 ��K� ,
4&(5 1�1 (�) − 3 1�2 (�) − 2 1�3 (�))

= −24 (��+ + 12��Σ) ,
(129)
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where �SU(5) has been eliminated. �ese equations allow
the prediction of the colored triplet Higgs boson mass 
K�
from the knowledge of the MSSM gauge couplings at the
energy scale � = �GUT. It is furthermore common to

de�ne a new mass parameter
" = 3√
2
+
Σ, the so-called

grand uni�ed mass scale. It can also be determined from the
knowledge of the MSSM gauge couplings at �GUT through
(129). �ese observations makes it quite easy to test the
minimal SUSY SU(5) model once the required experimental
data are available in combination with a high-order analysis.

(5) Running from �GUT to the Planck scale
Pl.
�e last sequence of this approach consists in the running

within the SUSY-SU(5) model. �e three-loop RGEs for the
gauge [64], and the one-loop formulas for the Yukawa, and
Higgs self-couplings [220] are available in the literature. In
addition, the perturbativity constraints (i.e., all couplings of
the theory are smaller than unity) have to be imposed.

6.2.1. Input Parameters. As can be inferred from the discus-
sion above, to constrain the GUT parameters one needs in
addition to the precise running analysis also precise input
parameters. Explicitly, one needs the values of weak mixing

angle in the MS scheme [221], the QED coupling constant
at zero-momentum transfer, and its hadronic contribution
[222] in order to obtain its counterpart at the �-boson scale,
and the strong coupling constant [182]. (We adopt the central
value from [182]; however, we use it as our default choice for
the uncertainty 0.0020 instead of 0.0007.) �eir numerical
values and uncertainties are

sin2ΘMS = 0.23119 ± 0.00014,
� = 1137.036 ,Δ�(5)

had = 0.02761 ± 0.00015,�	 (
>) = 0.1184 ± 0.0020.
(130)

To determine the value of � in the MS scheme, it is necessary

to take into account the hadronicΔ�(5)
had

, leptonic Δ�(5)
lep

[223],

and top quarkΔ�(5)
top [224] contributions to the on-shell value.

In addition, the conversion formula to the MS scheme has to
be taken into account. �us, one obtains

�MS (
>)
= �1 − Δ�(5)

lep
− Δ�(5)

had
− Δ�(5)

top − (Δ�(5),MS − Δ�(5),OS)
= 1127.960 ± 0.021 .

(131)

For supersymmetric particle masses of order O (1TeV) it is
appropriate to take into account top quark threshold e�ects
in a separate step. For convenience, we choose the scale at
which we decouple the top quark to be �dec = 
>. �e

corresponding threshold corrections are available from [221,
225, 226] and give the following contributions:

�(6),MS (
>) = 1(128.129 ± 0.021) ,
sin2Θ(6),MS (
>) = 0.23138 ± 0.00014,�(6)

	 (
>) = 0.1173 ± 0.0020.
(132)

Even more, the supersymmetric particles can induce sizeable
e�ects in the extraction of the weakmixing angle from exper-
imental data. Such e�ects are by construction suppressed by
the square of the supersymmetric mass scale [214, 227]. For
a typical supersymmetric mass scale ≥ 1 TeV such corrections
can lead to shi�s in
K� of the order of ≤10%.

6.2.2. Numerical Analysis. For illustration of the numerical
e�ects we adopt the mSUGRA [228] scenario for the SUSY
breaking mechanism with the following initial parameters:>0 = >1/2 = −v0 = 1000GeV,

tan� = 3, � > 0 (133)

and generate with the help of the code SOFTSUSY [229]
the supersymmetric mass spectrum. �is results in squark
masses of the order of 2 TeV, thus beyond the above exclusion
bounds currently established by direct searches at the LHC.

In Figure 7 from we visualize the running (and decou-
pling) of the gauge couplings where the parameters of (133)

together with �SUSY = 1000GeV and �GUT = 1016 GeV have

been adopted. In addition we have chosen
Σ = 1 ⋅ 1015 GeV
which leads via (129) to
K� = 1.7 ⋅ 1015 GeV and
+ = 4.6 ⋅1016 GeV.One can clearly see the discontinuities at thematch-
ing scales and the change of the slopes when passing them.

In Figure 7(b) the region around � = 1016 GeV is enlarged
which allows for a closer look at the uni�cation region.
�e bands indicate 1� uncertainties of � at the electroweak
scale (cf. (132)). In Figure 7(b) we furthermore perform the
decoupling of the superheavy masses for two di�erent values
of �GUT. One observes quite di�erent threshold corrections

leading to a nice agreement of �SU(5) above 1016 GeV. Figure 7
stresses again that the uncertainty of �	 is the most important
one for the constraints that one can set on GUTmodels from
low-energy data. Furthermore, it illustrates the size of the
GUT threshold corrections and emphasizes the importance
of precision calculations.

In the following, we discuss the dependence of
K� and
" on various parameters entering our analysis. We start
with varying the supersymmetric mass spectrum and use
(129) in order to extract both
K� and
". �e decoupling

scales are �xed to �SUSY = 1000GeV and �GUT = 1016 GeV,
respectively, which ensures that the three-loop e�ect is rather
small. In Figure 8 the parameter >1/2 is varied up to 4 TeV.
�e solid and dashed lines correspond to 
K� and 
",
respectively, which show a substantial variation. On the other
hand, >0, tan�, and v0 have only a minor inuence on the
GUT masses and thus we refrain from explicitly showing the
dependence.
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An interesting aspect from the phenomenological point
of view is the study of the e�ects of the experimental
uncertainties of � (c.f. (130)) on the prediction of 
K� and
". For this, we �x the SUSY spectrum as before (see (133))
and set �SUSY = 
> which has o�en been common practice
in similar analyses (see, e.g., [209]). Taking into account

correlated errors and performing a Ã2 analysis lead to ellipses
in the
K�-
" plane. In Figure 9 from the results for the two-
(dashed lines) and three-loop (continuous lines) analyses are
shown. �e two concentric ellipses correspond to 68% and
90% con�dence level, respectively, where only parametric
uncertainties from (132) have been taken into account. Let us,
however, stress that an optimistic uncertainty of 	�	 = 0.0010
has been adopted for this plot. As expected, the uncertainty
of �	 induces the largest contributions to the uncertainties
on 
K� and 
". In particular, it essentially determines the
semimajor axis of the ellipses. �e three-loop corrections
induce a signi�cant shi� to higher masses of about an order
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Figure 9: Ellipses in the
K� -
" plane obtained from the uncer-
tainties of the gauge coupling sat the electroweak scale. �e input
parameters of (130) have been used whereas 	�	 = 0.0010 has been
chosen. Dashed and solid lines correspond to the two- and three-
loop analysis, respectively.

of magnitude for 
K� . In the same time 
" increases by

about 2 ⋅ 1015 GeV. �is demonstrates the importance of the
precision calculations in such type of analyses. As has been
discussed in the original paper [51] they are also essential in
order to remove the dependence on �SUSY . In fact, choosing�SUSY close to the supersymmetric mass scale leads to small
three-loop e�ects, since the two-loop ellipses are essentially
shi�ed on top of the three-loop ones.

At this point a discussion about the additional constraint
on the Higgs triplet mass
Kc

that can be derived from the
nonobservation of the proton decay is in order. �e latest
upper bound on the proton decay rate for the channel F →V+

] [230] is Γexp = 4.35 × 10−34/g . In order to translate it
into a lower bound for the Higgs triplet mass, one needs an
additional assumption about the Yukawa couplings that enter
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the expression of the decay rate Γ(F → V+
]). As pointed

out in [211] this is because down quark and lepton Yukawa
couplings fail to unify within the minimal renormalizable
SUSY SU(5) model and so a completely consistent treatment
is not possible. �erefore one could either choose (�*D is the
Yukawa coupling of the quark and lepton doublets to the
Higgs color triplet; �&� is the corresponding coupling for
the up and down quark singlets) (i) �*D = �&� = �� or
(ii) �*D = �&� = ��, which leads to completely di�erent
phenomenological consequences. Both choices are equally
justi�ed once higher dimensional operators are included.
Since these operators further weaken the bounds presented
below, we refrain from including these bounds into the
analysis presented here. For the case (i) and supersymmetric
particle masses around 1 TeV the lower bound for the Higgs
tripletmass can be read o� fromFigure 2 of [211] and amounts

to 
K� ≥ 1.05 × 1017 GeV whereas for the second choice it

becomes
K� ≥ 5.25×1015 GeV. Fromour phenomenological
analysis presented above it turns out that within the minimal
SUSY SU(5) model the upper bound for 
K� is of about1016 GeV.�us, the substantial increase of about one order of
magnitude for the upper bound on
K� induced by the three-
loop order running analysis attenuates the tension between
the theoretical predictions made under the assumption (i)
and the experimental data. �e choice (ii) for the Yukawa
couplings clearly shows that the minimal SUSY SU(5) model
cannot be ruled out by the current experimental data on
proton decay rates.More experimental information about the
SUSY mass spectrum and proton decay rates is required in
order to be able to draw a �rm conclusion.

7. The Mass of the Lightest Higgs
Boson in the MSSM

7.1. Higgs Boson Mass in the SM. Spontaneous symmetry
breaking was introduced into the particle physics in the
seminal papers [231–233] and the existence of the Higgs
boson was postulated by Higgs in 1964 in [234]. �e next
important step was the incorporation of the spontaneous
symmetry breaking into the uni�ed model of the weak
and electromagnetic interactions [2, 3]. �e breakthrough of
these ideas came with the proof of the renormalizability of
spontaneously broken gauge theories by’ t Hoo� andVeltman
[69, 235].

�e direct Higgs boson searches performed at LEP 1

in �0 → c + YY and at LEP 2 in !+!− → �0 + c
channels provided us with a lower bound on its mass of
ℎ > 114.4GeV at the 95% CL [236]. In parallel to the
direct searches, the high precision electroweak data obtained
at LEP allowed us to estimate the possible mass range of the

Higgs boson within the SM, namely,
ℎ = 96+31−21 GeV [237].
Moreover, the CDF andD0 experiments at the Tevatron [238]
excluded the range of Higgs masses 156 < 
ℎ < 177GeV as
well as lower masses in the range already excluded by LEP.
Only very recently, the existence of the Higgs boson could
have been experimentally con�rmed by the ATLAS and CMS
collaborations at the LHC [31, 32]. Its mass is around 125-
126GeV. Currently, dedicated analysis is performed in order
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Figure 10: �e Higgs boson mass as a function of the scale Λ up to
which the SM may remain valid was obtained from perturbativity
(solid dark blue line) and the stability of the electroweak vacuum
(shaded regions). �e �gure is taken from [52].

to establish if the observed boson is just the one predicted by
the SM or hints towards new physics.

�e Higgs boson mass itself is a fundamental parameter
of the SM. Together with the top quark mass and the strong
coupling constant, it plays a crucial role in determining the
stability bounds for the SM electroweak vacuum. �e usual
way to present this interplay is to display the allowed domains
for
ℎ as a function of Λ, the scale up to which the SM may
remain valid. If 
ℎ is too large, the RGEs of the SM drive
the Higgs self-coupling into the nonperturbative regime at
some scale Λ < 
Planck . �is is shown as the upper pair
bold lines in Figure 10 that is taken from [52]. In this case
new physics at a scale Λ will be required in order to prevent
the Higgs self-coupling to blow up. On the other hand if
ℎ is too small, the RGEs drive the Higgs self-coupling to a
negative value. In this case the Higgs potential can develop
an instability at high �eld values > Λ, unless there is new
physics at some scale < Λ that prevents the occurrence of
an additional minimum in the potential. �is is shown as
light shaded bands in Figure 10. Between the blow-up and the
stability regions, there is a range of intermediate values of
ℎ
for which the SM can survive up to the Planck scale. Taking
into account the current theoretical and experimental errors
on
ℎ,
:, and �	, stability up to the Planck scale cannot be
yet excluded [53].

Nevertheless, as shown in Figure 11 from [53] and con-
�rmed by [239], the range of 
ℎ as revealed by the present
searches at the LHC lies right at the edge between electroweak
stability and instability regions. �e possibility that the SM
potential becomes unstable at large �eld values, below the
Planck scale, does not contradict any experimental obser-
vation, provided its lifetime is longer than the age of the
Universe. Indeed, the authors of [240] found that for 
ℎ =
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Figure 11: Measured value of the top mass and preferred range
of >ℎ as revealed by the present searches at the LHC, compared
to the regions corresponding to absolute stability, metastability,
and instability of the SM vacuum [53]. �e three boundaries lines
correspond to �	(
>) = 0.1184 ± 0.0007, and the grading of the
colors indicates the size of the theoretical errors.�e dotted contour
lines show the instability scaleΛ in GeV assuming �	(
>) = 0.1184.
125GeV, the instability scale lies around 1011±1 GeV. In this
case, tunneling through quantum uctuations is slow enough
to ensure at least metastability of the electroweak vacuum.

It is also interesting to note that the SM extrapolation of

the Higgs parameters (the mass parameter >2 and quartic
coupling �) corresponds to near vanishing � and its beta
function at the Planck scale. �e coupling � = 0 is the
critical value for the electroweak stability. Moreover, the

coe�cient >2 of the Higgs bilinear in the scalar potential is
also approximately zero (at the Planck scale). �is is again a

critical value that separates the symmetric phase (>2 > 0)
from the broken phase (>2 < 0). At present, we do not know
if this is just a numerical coincidence or the consequence of
an underlying symmetry.

�ere are di�erent interpretations in the literature for
the near criticality of the SM parameters. For instance,

SUSY implies that >2 = 0. If SUSY is so�ly broken, >2

would remain near zero, solving the hierarchy problem.
Nevertheless, the analysis performed in [240] shows that
the usual low-scale SUSY scenario can accommodate a
Higgs mass around 125GeV only for extreme values of the
parameters, for example, large tan�, heavy stops, or maximal
stop mixing. Other explanations of the near criticality can be
given via interpreting the Higgs as a Goldstone boson (com-
posite Higgs modes) or as a consequence of transplanckian
dynamics (like in multiverse models). In the following we
concentrate on the SUSY explanation.

7.2. Higgs Boson Mass in the MSSM. A natural possibility to
counterbalance the e�ects of the top quark on the evolution of
the Higgs self-coupling was found within SUSY models, via
the opposite e�ects induced by the top quark superpartners.
�emass of the Higgs boson within SUSYmodels is linked to
the magnitude of its self-coupling, which in turn is �xed by
SUSY in terms of the electroweak gauge couplings. Compared
to the SM, the MSSM Higgs sector is described by two
additional parameters, usually chosen to be the pseudoscalar
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Figure 12: Comparison of complete and approximate one- and two-
loop corrections to the Higgs boson mass for SPS2 scenario. �e
solid (full result) and dashed lines (>4

: approximation) represent
the results in the on-shell scheme where the black and gray curves
correspond to the one- and two-loop results, respectively. For
comparison, the two-loop DR results are shown as dash-dotted (full
result) and dotted (>4

: approximation) curves.

mass
( and the ratio of the vacuum expectation values of
the two Higgs doublets, tan� = V2/V1. �e masses of the
other Higgs bosons are then �xed by SUSY constraints. In
particular, the mass of the light CP-even Higgs boson, 
ℎ,
is bounded from above. At tree level, this constraint reads
ℎ < 
>. Radiative corrections to the Higgs pole mass
raise this bound substantially to values that were inaccessible
at LEP [241–243]. �e dominant radiative corrections are
given by the contribution ∼ �:>2

: ∼ >4
: coming from top-

and top squark loops (>: is the top quark mass and √�: is
proportional to the top Yukawa coupling). For illustration,

complete and approximate (i.e., only contributions ∼>4
: )

one- and two-loop corrections to the lightest Higgs boson
mass are shown in Figure 12 from [156]. In this �gure, the

mass di�erenceΔ
ℎ = 
−loop
ℎ −
tree

ℎ is shown as a function
of the parameter >1/2 in the scenario SPS2 [244, 245]. �e
small di�erences between the solid (full result) and dashed
(>4

: approximation) lines demonstrate that the leading term∼>4
: approximates the full result to a high accuracy. �is

motivates the computation of higher order corrections taking

into account only the contributions that scale like ∼>4
: .

From the one-loop corrections to the Higgs pole masses,
that are known without any approximations [195, 246–248],
one can show that a second approximation is appropriate.
�e bulk of the numerical e�ects can be obtained in the so-
called e�ective-potential approach, for which the external
momentum of the Higgs propagator is set to zero. Most of
the relevant two-loop corrections have been evaluated in this
approach (for reviews, see, e.g., [154, 249]). In addition, two-
loop corrections including even CP-violating couplings and
improvements from renormalization group considerations
have been computed in [154, 249, 250]. In particular CP
violating phases can lead to a shi� of a fewGeV in
ℎ; see, for
example, [251, 252]. In [253] a large class of subdominant two-
loop corrections to the lightest Higgs boson mass have been
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considered. Furthermore, leading logarithmic corrections at
three-loop order have been computed in [254]. �e �rst
complete three-loop calculation of the leading quartic top
quark mass terms within supersymmetric QCD has been
performed in [156, 255].

�ere are by now three computer programs publicly
available which include most of the higher order corrections.
FeynHiggs has been available already since 1998 [250, 256,
257] and has been continuously improved since then [258].
In particular, it contains all numerically important two-loop
corrections and accepts both real and complex MSSM input
parameters. �e second program, CPSuperH [259, 260], is
based on a renormalization group improved calculation and
allows for explicit CP violation. Both programs compute the
masses as well as the decay widths of the neutral and charged
Higgs bosons. �e third program, H3m [261], contains all
currently available three-loop results. Furthermore, H3m con-
stitutes an interface to FeynHiggs [262] and various SUSY
spectrum generators, which allows for precise predictions of
ℎ on the basis of realistic SUSY scenarios.

7.2.1. Calculation of O(�:�2
	 ) Corrections in the MSSM. In

this section we focus on details of the calculation of the
lightest Higgs boson mass to three-loop accuracy in SUSY-
QCD. It was the �rst calculation of an observable at this order
of accuracy in the framework of SUSY-QCD and it raised
technical di�culties speci�c to higher order calculations.

At tree level, the mass matrix of the neutral, CP-even
Higgs bosons ℎ,c has the following form:

M
2
K,tree = sin 2�2

× (
2
>cot� +
2

( tan� −
2
> −
2

(−
2
> −
2

( 
2
> tan� +
2

(cot�) .
(134)

�e diagonalization of M2
K,tree gives the tree-level result for
ℎ and
K and leads to the well-known bound
ℎ < 
>

which is approached in the limit tan� → ∞.

�e mass matrix M
2
K is obtained from the quadratic

terms in the Higgs boson potential constructed from the
�elds j1 and j2. �ey are related to the physical Higgs mass
eigenstates via the mixing angle �

(cℎ) = ( cos� sin�− sin� cos�)(j1j2
) . (135)

As usual, ℎ stands for the lightest Higgs boson. �e mixing
angle � is determined at the leading order through

tan 2� = tan 2�
2
( +
2

>
2
( −
2

>
, −&2 < � < 0, (136)

where
> is themass of the� boson and tan� = V2/V1. Sincej1 does not couple directly to top quarks, it is convenient
to perform the calculations of the Feynman diagrams in the(j1, j2) basis.

Including higher order corrections, one obtains theHiggs
boson mass matrix

M
2
K =M

2
K,tree − ( Σ̂$1 Σ̂$1$2Σ̂$1$2 Σ̂$2

) , (137)

which again gives the physical Higgs boson masses upon

diagonalization. �e renormalized quantities Σ̂$1 , Σ̂$2 , andΣ̂$1$2 are obtained from the self-energies of the �elds j1, j2,
andv, evaluated at zero external momentum, as well as from
tadpole contributions of j1 and j2 (see, e.g., [154]). One has

Σ̂$1 = Σ$1 − Σ(sin
2�

+ !2
� sin �� K$1 cos� (1 + sin2�)
− !2
� sin �� K$2cos2� sin�,Σ̂$2 = Σ$2 − Σ(cos

2�
− !2
� sin �� K$1sin2� cos�
+ !2
� sin �� K$2 sin� (1 + cos2�) ,

Σ̂$1$2 = Σ$1$2 + Σ( sin� cos�
+ !2
� sin �� K$1sin3�
+ !2
� sin �� K$2cos3�.

(138)

In this equation, �� is the weak mixing angle, Σ( denotes the
self-energy of the pseudoscalar Higgs boson, and K$� denotes
the tadpole contributions of the �eld j. Typical diagrams to
the individual contributions can be found in Figure 13.

Considering themany di�erentmass parameters entering
the formula for the Higgs boson mass an exact calculation of
the three-loop corrections is currently not feasible. However,
it is possible to apply expansion techniques [150] for various
limits which allow to cover a large part of the supersymmetric
parameter space. A�er the application of the asymptotic
expansion the resulting integrals have to be reduced to an
independent set of master integrals. For the case of the
Higgs mass corrections there will be only three-loop tadpole
integrals that can be handled with the program MATAD
[124].

A technical subtlety arises when calculating diagrams like
those shown in Figure 14. If both the external momentum
and the O-scalar mass are set to zero from the beginning,
an infrared divergence occurs and cancels the ultraviolet
divergence of the integral. In e�ect, the diagram will be
of order (% − 4) due to the O-scalar algebra. In order to
avoid this, one can keep the external momentum k nonzero,
though much smaller than all other scales. �e ultraviolet
polemultiplied by the algebraic factor of (%−4) then produces
a �nite contribution, while the infrared divergence leads to a
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Figure 14: Sample diagram contributing a �nite term to Σ$1 , Σ$2 ,
and so forth when the infrared divergence are regulated through a
small external momentum or a �nite O-scalar mass.

contribution (% − 4) ln(k2) that vanishes as % → 4. Instead
of the requirement k ̸= 0 one could also introduce a nonzero
mass for the O-scalars in order to regulate the infrared
divergences. In the �nal result one observes that the regulator
is multiplied by an additional factor (% − 4) leading to a �nite
result for 
 → 0. Alternatively, one can allow a nonzeroO-scalar mass and shi� the squark mass counterterms so that
all
 dependent contributions in the �nal result cancel out

(this renormalization scheme is equivalent to theDR
�
scheme

discussed in Section 4.2; however it is not identical). All these
renormalization prescriptions lead to identical results for the
corrections to the Higgs boson mass
ℎ, that is a nontrivial
check of the calculation.

Concerning the renormalization, it is well known that the
perturbative series can exhibit a bad convergence behavior
in case it is parametrized in terms of the on-shell quark
masses (for a typical example we refer to the electroweak Æ
parameter; using the on-shell top quark mass the four-loop
corrections [263–265] are larger by a factor 50 as compared

to the MS scheme) which is due to intrinsically large contri-
butions related to the infrared behavior of the theory.�us, it
is tempting to reparametrize the results for the Higgs boson

mass in terms of the top quark mass renormalized in the DR
scheme. Moreover, the two-loop renormalization constants
for the masses of the SUSY particles and the top squark
mixing angle, that are required for this calculation, are much

more complicated in the on-shell scheme as compared to the
DR ones. �us, it is preferable to adopt the DR scheme also
for these parameters. �e renormalization constants for the
gluino and O-scalar masses are needed only at the one-loop
order. For them, both schemes are accessible. Nevertheless,
the O-scalar mass renormalized in the on-shell scheme might
be better suited for this type of calculations. In this case, it can
be set equal to zero in the three-loop diagrams, which makes
the calculation less involved. An extensive discussion about
the calculation of the two-loop renormalization constants
required in this computation as well as explicit formulae can
be found in Section 4. In the remainder of this section we will
refer to this renormalization scheme as DR scheme although

it contains a mixture of on-shell and DR parameters in order
to distinguish between it and the genuine on-shell scheme.

At this point a comment concerning the minimal DR
renormalization constants for the masses of the top squarks
is in order. Due to diagrams involving heavy squarks k̃, for
example, Figure 15(a), the squaredHiggs bosonmass receives

contributions which are proportional to >2
*̃ and thus can

lead to unnatural large corrections. For this reason the on-
shell scheme for these contributions is better suited, because
it avoids the potentially large terms ∼>2

*̃ from the three-

loop diagrams. �e renormalization of the mixing angle
is free of such enhanced contributions and can be done
in the pure DR scheme. A similar behavior is observed
when the gluino is much heavier than the top squarks [130,
266]. In this case, the two- and three-loop corrections to
the Higgs masses contain terms proportional to >�̃ and>2

�̃. �ese contributions are canceled when the masses are

renormalized in the on-shell scheme by the �nite parts of
the relevant counterterms. �us, in order to avoid unnatural
large radiative corrections to the Higgs mass for scenarios
with heavy gluinos a modi�ed nonminimal renormalization
scheme for the top squark masses is required. �e additional
�nite shi�s of top squark masses are chosen such that
they cancel the power-like behavior of the gluino contribu-
tions. Again, the renormalization of the mixing angle will
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Figure 16: Renormalization scheme dependence of
ℎ as a function
of>1/2 adopting SPS2. Dotted, dashed, and solid curves correspond

to one-, two-, and three-loop results. �e DR (on-shell) results
correspond to the lower (upper) curves. �e three-loop curves
obtained in the two renormalization schemes lay on top of each
other.

not be modi�ed as compared to the genuine DR scheme.
�e relevant �nite shi�s for commonly adopted scenarios are
explicitly given in Appendix B.

As an illustration of the renormalization scheme issue,
we show in Figure 16 from [156] the renormalization scheme
dependence of 
ℎ as a function of the parameter >1/2 for
the SPS2 scenario. In the le� panel of Figure 16 the upper
dotted, dashed, and solid curves correspond to the one-, two-,
and three-loop prediction of 
ℎ in the on-shell scheme
whereas the corresponding lower three curves are obtained

in the DR scheme. In the on-shell scheme one observes
large positive one-loop corrections which get reduced by 10
to 20GeV a�er including the two-loop terms. �e three-
loop corrections amount to several hundred MeV. �ey are
positive or negative depending on the value of >1/2. �e

situation is completely di�erent for DR mass parameters: the
one-loop corrections are signi�cantly smaller and lead to
values of
ℎ which are already of the order of the two- and
three-loop on-shell prediction. �e two-loop term leads to a
small shi� of the order of −1 GeV and the three-loop term
to a positive shi� of about the same order of magnitude. �e
�nal prediction for
ℎ is very close to the one obtained a�er
incorporating three-loop on-shell results. (�ere are regions

in the parameter space where the two-loop corrections are
accidentally small in theDR scheme leading to relatively large
three-loop terms.Nevertheless the overall size of the two- and
three-loop corrections is small).

�e three-loop results have in general very long expres-
sions. However, for simplifying assumptions about the super-
symmetric mass spectrum, like for example the natural
SUSY, for which the superpartners of the �rst and second
generations of quarks are much heavier than the gluino
and third generations of squarks, that is, >*̃ ≫ >:̃1 ≈>:̃2 ≈ >�̃, the analytical expressions for the dominant
contributions have a quite compact form. Let usmention that
in general, for the case of quasi-degenerate masses a naive
Taylor expansion in the mass di�erences is su�cient, while
for large mass ratios an asymptotic expansion is necessary.
For illustration, we give below the three-loop results for the
two-point functions contributing to the Higgs boson mass,
where for the renormalization of the stop quark masses the
modi�ed DR scheme as given in (B.1) was adopted. One has

Σ̂$1 = ;E>4
:√2&2cos2� ( �	4&)2 v2

:>2
SUSY

× [ − 3499 + 329 ��: + 329 �2
�: + (569 + 649 ��:)� :N

+329 �2
:N + 943 � (3) + O(>4

SUSY>4
*̃
)] ,

Σ̂$12 = ;E>4
:√2&2 cos� sin�

× [ �	4& v :>SUSY

(−2 − 4��: − 2� :N) + ( �	4&)2

× { v2
:>2

SUSY

× (3499 − 329 ��: − 329 �2
�:

+ (−569 − 649 ��:) � :N

−329 �2
:N − 943 � (3))
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+ v :>SUSY>2
*̃

× (40 − 1609 � :*̃ − 403 �2
:*̃

+� :N (1609 + 403 � :*̃) − 803 � (2))
+ v :>SUSY

× (−41627 − 36427 ��:

− 1003 �2
�: − 3049 �2

:N + 2009 � :*̃ − 20�2
:*̃

+ � :N (−62827 − 4009 ��: + 803 � :*̃)
−40� (2) + 1063 � (3))}

+O(>4
SUSY>4

*̃
)] ,

Σ̂$2 = ;E>4
:√2&2sin2�

× [32� :N + �	4&
× (4 + (4 + 16��:) � :N + 4�2

:N

+ v :>SUSY

(4 + 8��: + 4� :N))
+ ( �	4&)2

× {27649 − 11627 ��: − 1363 �2
�:

+ (−6449 + 1643 ��:) �2
:N

+ 24�3
:N + 4003 � :*̃ − 2003 �2

:*̃ − 203 �3
:*̃

− 120� (2) − 80� :*̃� (2) + 83� (3)− (221627 + 6449 ��: − 3283 �2
�: − 40� :*̃

−20�2
:*̃ − 40� (2) + 16� (3) ) � :N

+ >2
SUSY>2

*̃

× (42356225 + 8�2
:N − 212845 � :*̃ − 1763 �2

:*̃

+(392845 + 1523 � :*̃) � :N − 4003 � (2))
+ v :>SUSY>2

*̃

× (−80 + � :N (−3209 − 803 � :*̃)
+3209 � :*̃ + 803 �2

:*̃ + 1603 � (2))
+ v :>SUSY

× (83227 + 72827 ��: + 2003 �2
�: + 6089 �2

:N

+ � :N (125627 + 8009 ��: − 1603 � :*̃)
− 4009 � :*̃ + 40�2

:*̃

+80� (2) − 2123 � (3))
+ v2

:>2
SUSY

× (−3499 + 329 ��: + 329 �2
�:

+ (569 + 649 ��:)� :N + 329 �2
:N

+943 � (3))} + O(>4
SUSY>4

*̃
)] ,

(139)

with>: = >:(��),>SUSY = >SUSY(��) = >:̃1(��) = >:̃2(��) =>�̃(��), ��: = ln(�2
�/>2

: ), � :N = ln(>2
: />2

SUSY), and � :*̃ =
ln(>2

: />2
*̃), where �� is the renormalization scale.

7.2.2. Phenomenological Analysis. In order to quantify the
phenomenological signi�cance of the three-loop contribu-
tions, it is interesting to investigate the dependence of
ℎ on
SUSY parameters. In the following, we adopt the “modi�ed>max

ℎ ” scenario as de�ned in [54]. �e relevant MSSM
parameters for our analysis are the top squark masses >:̃1 =370GeV and>:̃2 = 1045GeV, the gluinomass>�̃ = 860GeV,
the squark mass scale >*̃ = 1042GeV, the top trilinear
coupling v : = 1500GeV, and the mass of the pseudoscalar
Higgs
( = 1000GeV.

In Figure 17 from [54] is shown the comparison between
the two- (dashed line) and three-loop (full line) predictions
for the Higgs bosonmass as a function of tan� parameter. As
can be read from the plot, the genuine three-loop corrections
amount to around 2GeV for the given mass spectrum,
independently of the value of tan�. Let us remind the reader
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Figure 17:�e lightHiggs bosonmass as a function of tan� to three-
loop accuracy from [54].

that the experimental accuracy on
ℎ expected at the LHC
is almost an order of magnitude smaller. It is also worth
mentioning that the three-loop corrections are positive and
increase the predicted value for 
ℎ beyond 125GeV. For
increasing gluino and third generation squark masses, the
light Higgs boson mass becomes larger and values well above
120GeV can be reached.

We can infer from the above analysis that for a precise
comparison with the experimental data expected from the
LHC experiments, the three-loop corrections are indispens-
able. Moreover, the MSSM predictions can easily accommo-
date a light Higgs boson mass in the range 125 < 
ℎ <127GeV as observed in the current experiments at the LHC.

8. Hadronic Higgs Production and Decay in
Susy Models

A�er the discovery of the new scalar particle with the mass
around 125GeV the most important question to be answered
is whether it is indeed the Higgs boson predicted by the SM
or it has another origin. To obtain the answer one has to study
in detail the interaction properties of this new scalar with
the SM particles. �is task requires the comparison of the
theory predictions for the production cross sections and the
decay rates of the newly discovered scalar particle with the
experimental data. In most of the cases, a precision of the
theory predictions at the percent level is required in order
to cope with the experimental accuracy. �is implies that
radiative corrections even at next-to-next to leading order
(NNLO) have to be taken into account.

In the current section we concentrate on the radiative
corrections up to NNLO to the hadronic Higgs production
and decays within the MSSM. It turns out that in most
of the cases only the NNLO SUSY-QCD corrections have
to be taken into account. If available in the literature, also
the NNLO top-Yukawa corrections, expected to be the next
dominant contributions, will be discussed. As the exact

analytic calculations are not always feasible, several theoret-
ical methods employing phenomenologically well-motivated
simplifying assumptions will be presented.

8.1. E	ective Field �eory Formalism. In this section we want
to derive the e�ective �eld theory formalism (EFT) following
themethod of operator product expansion (OPE) introduced
by Wilson [267] (for a pedagogical overview of the method
see also [75]). �e main idea is again to disentangle the
long and short distance physics from each other. Precisely,
the long distance physics is described by local operators
constructed from light degrees of freedom O, whereas the
e�ects of the heavy degrees of freedom are absorbed into
coe�cient functions of the operators. For QCD the relevant
local operators have dimension four. �eir renormalization
and the issue of operator mixing under renormalization have
been studied in detail in the literature [268–270]. For all
processes studied in this section, the low-energy e�ective
theory is QCD with �ve active avors supplemented with
a light Higgs boson. For completeness, we briey review
the main results concerning the renormalization of the local
dimension four operators below.

In the following we assume for simplicity that the funda-
mental theory is described by the SUSY-QCDparticle content
together with the two Higgs doublets of the MSSM, j, with� = 1, 2. �e corresponding interactions are described by the
following Lagrangian:

L =LQCD +LSQCD + ∑
=1,2

L*$� + ∑
=1,2

L*̃$� , (140)

where

L*$� = − 6∑
*=1

>*

V

�$�
* kkj,

L*̃$� = − 6∑
*=1

∑
�,B=1,2

>*

V

�$�
*̃;B�k̃⋆B k̃�j.

(141)

LQCD+LSQCD denotes the supersymmetric extension of the
full QCD Lagrangian with six quark avors. �e couplings�$�
* and �$�

*̃;B� are de�ned in Table 1, where V = √V21 + V
2
2, with

V, � = 1, 2, is obtained from the vacuum expectation values
of the two Higgs doublets of the MSSM. �e �elds k̃, with� = 1, 2, denote as before the squark mass eigenstates, while�* stands for the mixing angle de�ned through

sin 2�* = 2>*�*>2
*̃1 − >2

*̃2
,

�* = v* − �SUSY {tan�, for down − type quarks,
cot�, for up − type quarks,

(142)

where v* is the trilinear coupling and �SUSY the Higgs-
Higgsino bilinear coupling.

We assume further the mass of the lightest Higgs bosonℎ to be much smaller than the mass of the top quark and
of the SUSY particles, as well as all the other Higgs bosons.
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Table 1: Yukawa coupling coe�cients for up and down type quark
and squark, where �* = sin 2�* and:* = cos 2�*, and �� = sin� and:� = cos�.
Y �$1

* �$1
*̃;11 �$1

*̃;12 = �$1
*̃;21 �$1

*̃;22

up 0 −��*/�� −�:*/�� ��*/��
down 1/:� (2>* + v*�*)/:� v*:*/:� (2>* − v*�*)/:�Y �$2

* �$2
*̃;11 �$2

*̃;12 = �$2
*̃;21 �$2

*̃;22

up 1/�� (2>* + v*�*)/�� v*:*/�� (2>* − v*�*)/��
down 0 −��*/:� −�:*/:� ��*/:�

In this case, the physical phenomena at low energies can be
described by an e�ective theory containing �ve quark avors
and the light Higgs

L A→L
eff
P +L

(5)
QCD, (143)

whereL(5)
QCD denotes the Lagrangian of QCDwith �ve active

avors.
At leading order in the heavy masses, the e�ective

Lagrangian L
eff
P can be written as a linear combination

of three physical, gauge independent operators [185, 270]
constructed from the light degrees of freedom

L
eff
P = −ℎ(0)

V
(0) [:0

1O
0
1 +∑

*
(:0

2*O
0
2* + :0

3*O
0
3*)] , (144)

where the coe�cient functions :, � = 1, 2k, 3k, parametrize
the e�ects of the heavy particles on the low-energy phe-
nomena. �e superscript 0 labels bare quantities. �e three
operators are de�ned as

O
0
1 = (;0,�,�

�,] )2,
O

0
2* = >0,�

* k0,�k0,�,
O

0
3* = k0,� (���0,� − >0,�

* ) k0,�,
(145)

where ;0,�,�
�,] and �0,�

� are the gluon �eld strength tensor and

the covariant derivative, respectively. �e primes label the
quantities in the e�ective theory. �e relations between the
parameters and �elds in the full and e�ective theories have
been derived in Section 6.1.�e explicit formulae can be read
o� from (113). �e operator O3* vanishes by the fermionic
equation of motion and it will not contribute to physical
observables. �us, the last term in (144) might be omitted,

once the coe�cients :0
1, :0

2* are determined.

For convenience of the reader we reproduce the results
for the renormalization constants of the operatorsO0

1 andO
0
2*

that are of interest

O1 = �11O
0
1 + �12O

0
2*, O2* = �22O

0
2*, (146)

where

�11 = (1 − &��
	

� (��
	)E )−1,

�12 = −4�� (��
	)E (1 − &��

	

� (��
	)E )−1,

�22 = 1,
:1 = �−1

11:0
1, :2* = :0

2* − �12�11
:0

1.

(147)

In the above equations the beta function and quark mass
anomalous dimension �� refer to QCD with HD = 5 active

avors evaluated in the MS scheme. �ey are needed up to
three-loop order and have been given explicitly in Section 3.

�e renormalized coe�cient functions and operators are
�nite but not renormalization group (RG) invariant. In [271],
a rede�nition of the coe�cient functions and operators was
introduced so that they are separately renormalization group
invariant. �e RG invariant operators are de�ned as follows:

O� = − 2&�(5)
0
(&�(5)

2�(5)
	

O1 − 2�(5)� ∑
*
O2*) ,

O* = O2*,
(148)

where the superscript (5) marks that there are �ve active
quarks to be considered in the formulas for the beta function
and the mass anomalous dimension ��. Accordingly, the
associated coe�cient functions are given by

:� = −�(5)
	 �(5)

0&2�(5) :1,
:* = 4�(5)

	 �(5)�&�(5) :1 + :2*.
(149)

�is procedure allows us to choose independent renormaliza-
tion scales for coe�cient functions and operators. In practice,
one chooses � ≈ 
ℎ for the renormalization scale of the

operators and � ≈ 
̃ (where 
̃ denotes an averaged mass
for the heavy supersymmetric particles) for the coe�cient
functions.�us, (148) is to be evaluated at a low-scale� ≈ 
ℎ,
whereas (149) is to be utilized at a high scale � ≈ 
̃.

For the computation of the Higgs production and decay
rates, it is however more convenient to reexpress the e�ective
Lagrangian in terms of the operators O1 and O2*. However
now, one keeps the separation of the scales for operators and
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coe�cient functions as given in (148) and (149). �e new
coe�cient functions read [271]

:1 (
̃,
ℎ) = ��
	 (
̃) �(5) (��

	 (
ℎ))��
	 (
ℎ) �(5) (��

	 (
̃)):1 (
̃)
= − &2�(5) (��

	 (
ℎ))[��
	 (
ℎ)]2�(5)

0
:� (
̃) ,

:2 (
̃,
ℎ) = 4��
	 (
̃)&�(5) (��

	 (
̃))
× [�(5)� (��

	 (
̃)) − �(5)� (��
	 (
ℎ))] :1 (
̃)

+ :2* (
̃) .
(150)

�e explicit computation of the coe�cient functions will be
discussed in detail in the next section.

8.2. Computation of the Coe�cient Functions :1 and :2*.
To calculate the coe�cient functions one has to consider
appropriate Green functions in the full and the e�ective
theory and relate them via the decoupling relations. For
example, the amputated Green function involving the kk pair
and the zero-momentum insertion of the operator Oℎ which
mediates the couplings to the light Higgs boson ℎ contains
both coe�cient functions :2* and :3*

Γ0**Oℎ (F, −F)
= �2 ∫ d�dg!#(H−Q)⟨ k0 (�) k0 (g)Oℎ (0)⟩1PI

= −�(0)2 ∫ d�dg!#(H−Q)
× ⟨ k�,0 (�) k�,0 (g) (:2*O2* + :3*O3*)⟩1PI,

(151)

where F is the outgoingmomentum of the quark and we label
the quantities in the e�ective theory with a prime.

Upon decomposition of the Green function Γ0**Oℎ into its
scalar and vector components and taking the limit F → 0,
one obtains for the coe�cient function :2* the following
expression:

:0
2* = Γ0,ℎ**Oℎ;	 (0, 0)1 − Σ0,ℎ

	 (0) + Γ
0,ℎ
**Oℎ;V (0, 0)1 + Σ0,ℎ

V
(0) . (152)

�e quantities Σ0,ℎ
V
(0) and Σ0,ℎ

	 (0) have been de�ned in (114).
�e superscript ℎ in the above equation marks that only the
hard parts of the Green functions survive when one sets the
external momenta to zero F2 = F2

ℎ = 0.
From the technical point of view, to separate the vector

and scalar contributions to the vertex Green function Γ**Oℎ
one has to perform a naive Taylor expansion up to linear

order in the external momenta carried by quarks. A�er the
projection on vector and scalar parts, the external momenta
can be set to zero. Nevertheless, the light Higgsmass approxi-

mation
2
ℎ = F2

ℎ ≈ 0 can be applied from the very beginning,
which implies that the quark momenta can be chosen to be
equal. As a consequence, vertex diagrams are reduced to two-
point functionswith vanishing externalmomenta, that can be
further mapped to vacuum integrals.

Similarly, one can compute the coe�cient function:1 via
the Green function formed by the coupling of the operators
Oℎ to two gluons

	��Γ0,�]""Oℎ (F1, F2)
= �2 ∫ d�dg!(#1⋅H+#2⋅Q)⟨ ;0,�,� (�) ;0,�,] (g)Oℎ (0)⟩1PI

= 	�� (−��]F1 ⋅ F2 + F]1F�
2 ) Γ0""Oℎ (F1, F2) ,

(153)

where F1 and F2 denote the outgoing momenta of the gluons
with the color indices d and '. As it was shown in [124, 271]
the coe�cient :1 is given by the following relation:

:0
1 = − 14 1�03 Γ0""Oℎ (0, 0)
= − 14 1Π0,ℎ (0)
× (��]F1 ⋅ F2 − F1,]F2,� − F1,�F2,](% − 2) (F1 ⋅ F2)2

×Γ0,�]""Oℎ (F1, F2) )����������#21=#22=0,
(154)

where % denotes as usual the number of space time dimen-

sions in dimensional regularization scheme and Π0,ℎ(0) has
been de�ned in (114). Let us mention at this point that
the projector given in (154) projects out the coe�cient of
the term proportional to ��] in (153). To explicitly verify

the transversality of the Green function Γ0,�]""Oℎ(F1, F2), one
needs to compute also the coe�cient of the Lorentz structure
proportional toF]1F�

2 using a second projector (for the explicit
formula see, e.g., [129]).

In (154), one has to keep F1 ̸= 0 and F2 ̸= 0 until the
projection is applied. When only heavy particles are running
in the loops, a naive Taylor expansion to the linear order in
the two external momenta is required. A�er the expansion,

the factor (F1 ⋅ F2)2 in the denominator cancels and the
two external momenta can be set to zero. In this way the
vertex topologies implied in (154) are reduced to vacuum
integrals. Nevertheless, when light particles are present in
the loops, for example, bottom quarks, a naive Taylor expan-
sion is not enough and one has to perform an asymptotic
expansion. In this case the resulting Feynman integrals can
be decomposed into massive vacuum integrals and vertex

integrals with external momenta satisfying F2
1 = F2

2 = 0 and
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2F1 ⋅ F2 = 
2
ℎ and light quark masses present in the loops.

Up to now, the light quark mass e�ects have been evaluated
at NLO in [272, 273], which requires the computation of two-
loop massive vacuum integrals and 1-loop vertex integrals.

As explained above the computation of the coe�cient
functions :1 and :2* involves vacuum integrals with several
mass scales. Up to two-loop order such integrals are known
exactly [274]. However, the three-loop multiscale integrals
are not known and the computation of the coe�cient :1 at
NNLO can be performed only for speci�c mass hierarchies
between the SUSY particles, that requires application of the
asymptotic expansion method (for details see [54, 156]).

In SM, the coe�cient functions :1 and :2* are known
up to the third order in perturbation theory. �e �rst order
QCD corrections to :1 have been computed in [275–277],
while the same order contribution to :2* vanishes in the SM.
�e second order QCD corrections to the coe�cients :1 and:2 can be found in [271]. �e leading Yukawa corrections
to the coe�cient functions have been evaluated in [176]. For
the coe�cient function:1 the fourth order QCD corrections
have been computed recently [186, 187]. Using the low-energy
theorem, the authors of [278] computed even the ��h order
QCD corrections to the coe�cient :1 up to contributions
originating in the HD-dependent part of the �ve-loop QCD
beta function, that are currently not known.

In the MSSM, the coe�cient functions :1 and :2* are
known at the NNLO. �e NLO corrections to :1 have been
computed within SUSY-QCD for the �rst time in [196, 279]
and con�rmed analytically [280] and numerically [281] (see
also [282]). In [283, 284] the squark loop contributions to
Higgs boson production in the MSSM have been computed
without assuming any mass hierarchy. In SUSY models
with large values of tan�, the radiative corrections due to
the bottom sector can become large and they have been
computed analytically at NLO in [272, 273] and con�rmed
numerically in [281]. For the coe�cient function :2* the
NLO SUSY-QCD and top Yukawa corrections are known
analytically since quite some time [199].�e dominant (tan�
enhanced) NNLO SUSY-QCD and top Yukawa corrections
to :2� have been computed in [190, 191]. �e SUSY-QCD
contributions have been con�rmed analytically in [285].

For completeness, we display here the one-loop order
coe�cients :1 and :2� providing also O(E) terms that are
necessary for the higher order calculations:

:1 = − �	3&
× {+ sin�

cos�
× [ 
2

: �SUSY�:4>2
:̃1
>2

:̃2
tan�

−E
:�SUSY sin 2�:8 tan� (��:̃1>2
:̃1

− ��:̃2>2
:̃2

)]
− cos�
sin�

× [4>2
:̃1>2

:̃2 + >2
:̃1
2

: + >2
:̃2
2

: − v :
2
:�:4>2

:̃1
>2

:̃2

+ Ev :
: sin 2�:8 (��:̃1>2
:̃1

− ��:̃2>2
:̃2

)
+E
2

:4 (4��:
2
:
+ ��:̃1>2

:̃1

+ ��:̃2>2
:̃2

)]} , (155)

:2� = − sin�
cos�

×((1+ �	2&:Ev�>�̃

× [#1(>2
�̃1
, >2

�̃2
, >2

�̃)+E#2 (>2
�̃1
, >2

�̃2
, >2

�̃)] )
× (1 + �	2&:E��>�̃

× [#1 (>2
�̃1
, >2

�̃2
, >2

�̃)
+E#2 (>2

�̃1
, >2

�̃2
, >2

�̃)] )−1)
+ cos�
sin�

× ( �	2&:E (−�SUSY tan�)>�̃

× [#1 (>2
�̃1
, >2

�̃2
, >2

�̃)+E#2 (>2
�̃1
, >2

�̃2
, >2

�̃)] )
× (1 + �	2&:E��>�̃

×[#1 (>2
�̃1
, >2

�̃2
, >2

�̃)+E#2 (>2
�̃1
, >2

�̃2
, >2

�̃)])−1,
(156)

where the functions #1 and #2 are de�ned through

#1 (�, g, h) = −�g ln (g/�) + gh ln (h/g) + h� ln�h(� − g) (g − h) (h − �) ,
#2 (�, g, h) = 1(� − g) (g − h) (h − �)

× [�g ln g� (1 + 12 ln �2√�g)
+ gh ln hg (1 + 12 ln �2√gh)
+h� ln�h(1 + 12 ln �2√�h)] .

(157)

�e corresponding expression for up-type quarks can be
easily obtained by replacing sin� with cos� and sin� with
cos� and vice versa.
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�e approach outlined above has the advantage that it

simpli�es signi�cantly the calculation, once the limit 
2
ℎ =F2

ℎ ≈ 0 is applied. �e validity of this approximation
has been proved within the SM at the NNLO [286, 287]
(for the SM, it is known as the in�nite top quark mass
approximation). Since the SUSY particle masses are expected
to be considerably heavier than the top quarkmass, we expect
that this approximation holds in the MSSM even with higher
accuracy.

A second possibility to compute the coe�cient functions
is to relate them via the low-energy theorem (LET) to
vacuum polarization and quark self-energy corrections. �is
approach resides heavily on the fact that themomenta carried
by the Higgs boson can be set to zero. In this case, it was
shown (within the SM) that the amplitude of a process
containing (D + 1) external particles, from which one is
a Higgs boson with vanishing momenta, can be computed
from the amplitude withD external particles, obtained in the
absence of the Higgs external leg [288–293]:

lim
#ℎ→0

Γℎ,(1 ,(2,...,(� (Fℎ, F(1 , F(1 , . . . , Ê(�)
= $$VΓ(1 ,(2,...,(� (F(1 , F(1 , . . . , Ê(�) , (158)

where V denotes the vacuum expectation value (VEV) of the
theory. Beyond tree level, all kinematic parameters must be
considered as bare quantities. For certain special theories
and renormalization schemes the above equation holds even
for renormalized parameters (for details see [294]). Within
QCD all-order formulae relating the coe�cient functions of
dimension four operators with the decoupling coe�cients for
the strong coupling and the quark masses have been derived
[185]. Within the MSSM, (158) has to be generalized to the
case where two Higgs �elds acquire VEVs. Nevertheless,
it has been proved [192, 280, 285] that within SUSY-QCD
the coe�cient functions :1 and :2* can be derived up to

NNLO from the decoupling coe�cients �	 and ��� through
the following relations:

:0
1 = (− sin��̂0

$1 + cos��̂0
$2) ln �0	 ≡ �̂0

ℎ ln �0	 ,
:0

2* = (− sin��̂0
$1 + cos��̂0

$2) ln �0�� ≡ �̂0
ℎ ln �0�� . (159)

As usual, the superscript 0 labels bare quantities. �e oper-

ators �̂0
$� , with � = 1, 2, contain the derivatives with

respect to the two VEVs of the MSSM. �ey have been
derived using the �eld dependent de�nitions of quark and
squark masses and mixing angles in [280]. However, for the
computation of the coe�cient function:1 at the NNLO, also
the dependence of the O-scalar mass on the VEVs through
the loop inducedHiggs-O-scalar coupling has to be taken into
account [192]. As can be understood from equations (21) and
(22) in [280] the dominant contributions to the di�erential
operators originate from the pure SUSY-QCD terms. For
exempli�cation and to �x the normalization, we reproduce
here the terms corresponding to the third generation quarks
keeping only the linear terms in bottom quark masses (please

note the sign di�erence in the de�nition of parameter �SUSY

between [280] and [192, 285]):

�̂$1 = 1
cos� (>�v�F� + >�G�)
− 1
sin�>:�SUSY sin 2�:F:,

�̂$2 = 1
cos� (−>��SUSYF�)
+ 1
sin� (>:v : sin 2�:F: + 2>2

:G:) ,
with F� = 2>2

�̃1
− >2

�̃2

(1 − sin22��) $$ sin 2�� ,
G� = $$>�

,
F: = $$>2

:̃1

− $$>2
:̃2

+ 2>2
:̃1
− >2

:̃2

(1 − sin22�:)
sin 2�: $$ sin 2�: ,

G: = $$>2
:̃1

+ $$>2
:̃2

+ $$>2
:
.

(160)

On the right hand side of the above equations, all parameters
are the bare ones. We omitted the superscript “0” to avoid
clumsy notation. For large values of tan� the dominant
contributions to the coe�cient functions, that is, the terms
proportional to �SUSY tan�, are generated through the term

containing the derivative F� in �̂$2 . Taking into account

the parametric dependence of the quark self-energy Σ0,ℎ

on masses and mixing angles, one can easily derive these

contributions from the terms proportional to sin 2�� in Σ0,ℎ
	 .

In this section we study the phenomenological applica-
tions of the computations discussed above. We concentrate
on the calculation within the MSSM of the total decay rate
into hadrons Γ(ℎ → hadrons), that is composed of the
partial decay widths into quarks Γ(ℎ → kk) and gluonsΓ(ℎ → ��). Although, the channel Γ(ℎ → '') gives
the dominant contributions to the total Higgs decay rate,
it was not used among the Higgs discovery channels at the
LHC, due to its huge background. Nevertheless, it has a big
impact on all branching ratios and is an important channel
for the identi�cation of the Higgs properties. Precisely, the

uncertainties on the partial decay width Γ(ℎ → '') translate
into signi�cant systematic errors for all the other nonleading
branching ratios. For illustration we show in Figure 18 from
[55] the branching ratios of the Higgs boson in the SM at the
LO. For precise analysis they have to be complemented by
genuine SM radiative corrections together with corrections
due to the supersymmetric particles, that can be embedded
in the decoupling coe�cients as discussed in the previous
section.
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Figure 18: Higgs boson branching ratios in the SM at the LO from
[55].

Starting from the e�ective Lagrangian (144) one can
derive the following formula for the total decay width into
hadrons:Γ (ℎ A→ hadrons)

= (1 + 	&)2 {∑
*
Γ(0)**

× [(1 + Δ 22)C2
2 + Δ 12C1C2]

+Γ(0)�� (1 + Δ 11)C2
1} ,

(161)

where the coe�cient functionsC1 andC2 have been de�ned
in (150).

At the lowest order in perturbation theory, the �rst line
corresponds to Γ(ℎ → kk), whereas the second one stands
for Γ(ℎ → ��). At higher orders, however, the splitting of
(161) into the decay widths to fermions and gluons is not
straightforward anymore, due to the occurrence of diagrams
contributing to both channels.

�e LO expressions for the branching ratios are given by

Γ(0)** = D�;E
ℎ>2
*4&√2 (1 − 4>2

*
2
ℎ
)3/2,

Γ(0)�� = D�:E;E
3
ℎ&√2 ,

(162)

where ;E denotes the Fermi constant. As is well known
[207, 277, 295], the large logarithms of the type ln(
2

ℎ/>2
*)

can be resumed by taking >* in (162) to be the MS mass>MS
* (�) evaluated at the scale � = 
ℎ.

�e coe�cients Δ 11, Δ 12, Δ 22 describe the low-energy
physics. �erefore, they have to be computed in the e�ective
theory and are independent of the heavy masses. Using the
method of operators described in the previous section, they
can be related via the optical theorem to the absorptive parts
of the scalar correlators Π�B:

Δ �B = 1
ℎ
Im (Π�B)

= 1
ℎ
Im(�∫ d�!#H ⟨0 ����� [O� (�)OB (0)]�����0⟩�������#2=S2ℎ) ,�, ¡ = 1, 2,

(163)

where F is the momentum of the external Higgs boson.
�ey have been computed within SM up to three-loop order
(see [134] for a comprehensive review on this topic). For
the analysis discussed in this section, their one- and two-
loop QCD corrections are required. �e two-loop QCD
contributions to the coe�cients Δ 22 and Δ 11 are given by
[296, 297]. One has

Δ 22 = ��
	 (�)& (173 + 2 ln �2
2

ℎ
) + (��

	 (�)& )2

× [10801144 − 192 � (2) − 392 � (3)
+ 1063 ln

�2
2
ℎ
+ 194 ln2 �2
2

ℎ

− HD (6524 − 13� (2) − 23� (3)
+119 ln

�2
2
ℎ
+ 16 ln2 �2
2

ℎ
)] ,

(164)

Δ 11 = ��
	 (�)& [734 + 112 ln

�2
2
ℎ
− HD (76 + 13 ln �2
2

ℎ
)]

+ (��
	 (�)& )2

× [3763196 − 3638 � (2) − 4958 � (3)
+ 281716 ln

�2
2
ℎ
+ 36316 ln2 �2
2

ℎ

− HD (7189144 − 112 � (2) − 54� (3)
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+26312 ln
�2
2

ℎ
+ 114 ln2 �2
2

ℎ
) + H2D

×(127108 − 16� (2) + 712 ln �2
2
ℎ
+ 112 ln2 �2
2

ℎ
)] ,
(165)

with �(�) being the Riemann’s zeta function.
�e additional QCD correction Δ 12 is generated through

double-triangle topologies. It was �rst computed in [271] and
it reads

Δ 12 = ��
	 (�)& :E(−19 + 6� (2) − ln2 >2

*
2
ℎ
− 6 ln �2
2

ℎ
) .
(166)

�e universal corrections 	& of O(��
	�:), where �: =(�:/4&)2 = ;E
2

: /(8&2√2), with �: being the top-Yukawa
coupling, contain the contributions from the renormalization
of theHiggs wave function and the vacuum expectation value
[298]. It is given by

	& = �: [72 + ��
	 (�)& (193 − 2� (2) + 7 ln �2
2

:
) + O (�2

	 )] .
(167)

Now, we are in a position to interpret the phenomenological
signi�cance of (161). In the following section we concentrate
on the numerical e�ects of the radiative corrections to the
hadronic Higgs decay.

�e SM input parameters are the strong coupling constant
at the �-boson mass scale �	(
>) = 0.1184 [182], the top
quark pole mass 
: = 173.1GeV [178], and the running

bottom-quark mass in the MS scheme >�(>�) = 4.163GeV
[299]. For the supersymmetric parameters we adopted the
corresponding values of the “modi�ed >max

ℎ ” scenario as
described in Section 7.2.2 (for details see [54]).

In Figure 19 we focus on the decay channel ℎ → ''
and display the decay width as a function of the Higgs
boson mass 
ℎ. We chose in this case tan� = 50. �e
two-loop genuine QCD and electroweak corrections (i.e.,

computed in the e�ective theory) to the process ℎ → '',
as well as the two-loop SUSY-QCD corrections to the Higgs
boson mass, are depicted by the dotted line. More precisely,
they are derived from (161), where the coe�cient functions
C1 and C2 are set to their tree-level values. �e additional
SUSY-QCD vertex corrections parametrized through the
coe�cient functions C1 and C2 are represented at the one-
and two-loop order by the dashed and solid lines, respectively.
We also take into account the one-loop SUSY-EWcorrections
to the coe�cient function C2 and �x their renormalization
scale at �SEW = (>:̃1 + >:̃2 + �SUSY)/15, for which the two-
loop SUSY-EW corrections become negligible [190, 191]. �e
genuine two-loop corrections are negligible. Nevertheless,
they are essential tools for the proof of the convergence of the
perturbative expansion.

�e large one-loop SUSY-QCD radiative corrections toΓ(ℎ → '') have only a relatively small impact on the
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Figure 19: Γ(ℎ → '') for the “modi�ed>max
ℎ ” scenario as a function

of
ℎ. �e dotted line displays the two-loop QCD and electroweak
corrections together with two-loop corrections to the Higgs boson
propagator. �e dashed and solid lines depict in addition the one-
and two-loop SUSY-QCD vertex corrections, respectively.

branching ratio BR(ℎ → ''), but they can have a large
impact on BR(ℎ → ¯+¯−). For su�ciently large tan� and�SUSY , the measurement of BR(ℎ → ¯+¯−) can provide
information about the distinction between the SMandMSSM
predictions.

�e gluonic Higgs decay rate can be directly measured
only at !+!− colliders. At hadron colliders, they can be
measured only indirectly with rather bad accuracy of the
order of 20%. As it has been shown, the genuine SUSY-QCD
corrections to the gluonic Higgs decay are rather small [300].
For the experimental analysis relevant at the LHC they can be
neglected with respect to the standard quark contributions to
the hadronic decay rate. �e QCD corrections are known in
the SM up to the NNNLO [186, 187, 278] in the heavy-top-
mass limit (here, the mass of the Higgs boson is assumed to
be much smaller than the mass of the top quark). Even the
mixed QCD-electroweak corrections at the three-loop level
are known [176] in the same approximations. �e genuine
NLO SUSY-QCD corrections have been evaluated in [196,
280] and amount to about −5% from the QCD corrections
at NLO.

A much more interesting Higgs decay channel from the
perspective of the ongoing experiments conducted at the
LHC is the rare ℎ → �� channel. In this case the coupling
of the Higgs to photons is mediated by loops containing
electrically charged particles. If the masses of the particles
inside loops are generated through the Higgs mechanism, as
in the case of the SM, the couplings to the Higgs boson grow
with the masses, balancing the decrease due to rising loop
masses. If themasses of the particles are generated by di�erent
mechanisms, as is the case in SUSY, the e�ect of the heavy
particles on the ℎ�� coupling is in general small.

In SM with the Higgs boson mass of about 125GeV only
the top quark and the W boson e�ectively contribute and



50 Advances in High Energy Physics

b


1 
1

(a)

b

g


1 
1

(b)

b
b̃


1 
1

g̃

(c)

b


1
1

g

g

(d)

b

b
g

g


1 
1

(e)


2 
2

t

g̃, �

b̃, t̃

(f)


1 
1

b

g

g
b̃

(g)

b


1 
2

g

b̃
g̃

(h)


1 
2

b g b̃

g̃

(i)

Figure 20: One-, two-, and three-loop Feynman diagrams contributing to the Higgs boson propagator in SUSY-QCD. Dashed lines denote
Higgs bosons, whereas oriented dashed lines represent the squarks. For the other particles we use the same convention as before.

they interfere destructively.�e radiative corrections are well
under control. �e QCD contributions are known up to
NNLO [301] and the electroweak corrections to NLO [302–
304]. �e SUSY-QCD corrections to Γ(ℎ → ��) are known
with the same accuracy as in the case of Γ(ℎ → ��).�eNLO
corrections have been computed in [300, 305] and the NNLO
contributions can be found in [306]. Also for this channel, the
SUSY corrections are small as compared to the SM ones.

For an intermediate Higgs mass of about 125GeV it is
legitimate to investigate the quality of the approximation dis-
cussed in the previous section. For accurate results, one has to
take also into consideration in (144) operators of dimension
six and higher, that are suppressed at least by a factor
2

ℎ/
2
: .

However, the application of higher dimensional operators in
the context of SUSY is quite tedious. Amore familiar method
for this purpose is to use the optical theorem. Hereby, one
has to consider corrections to the Higgs boson self-energyΠℎ(k2). �e imaginary part of this quantity provides us with
the total decay rate of the Higgs boson

Γℎ = 1
ℎ
ImΠℎ (
2

ℎ) . (168)

According to the Cutkosky cutting rules, nonvanishing con-
tributions to the imaginary part of the Higgs boson self-
energy will provide only those diagrams, that can be cut
in such a way that all resulting �nal state particles can be
set simultaneously on their mass shell. Sample diagrams
contributing to the hadronic decay rate can be seen in
Figure 20.

�e imaginary parts originate from the �E-prescription
for on-shell propagators. In the results obtained using DRED

they are embedded in complex logarithms occurring in theE-expansion of the expression

( −�2k2 + �E)
� = 1 − E log(−k2 − �E�2 )

+ 12E2log2 (−k2 − �E�2 ) + O (E3) . (169)

A�er setting the external momenta on the Higgs mass shellk2 = 
2
ℎ, one obtains further

log(−k2 − �E�2 ) = log(
2
ℎ�2 ) − �&. (170)

�eanalytic calculation of the three-loopdiagrams contribut-
ing to Γℎ in SUSY-QCD is not yet possible. Nevertheless,
for �xed mass hierarchies between the occurring particles,
the method of asymptotic expansion can be successfully
applied. For illustration, we consider a degenerate SUSYmass
spectrum satisfying the following inequality with respect to
the SM particle masses:>* ≪ 
ℎ ≪ >: ≪ 
S ≡ >�̃ = >*̃. (171)

Similar to the computation of three-loop SUSY-QCD correc-
tions to the light Higgs bosons mass, also in this calculation
one has to make an additional Taylor expansion of bottom
squark propagator in bottom squark mass di�erences Δ �
de�ned like

Δ � = >2
�̃1
− >2

�̃2>2
�̃1

. (172)



Advances in High Energy Physics 51

�is procedure allows to correctly take into account the
contributions generated by the bottom squark mixing angle
renormalization.

In the following we consider the same renormalization
scheme as in Section 7.2.1. �e results for Γℎ including the

dominant mass corrections at o(�2
	 ) read [307]

Γℎ = Γ(0)** ( sin�
cos�)2

× {1 + 43 �	&
× [194 + 32��ℎ − 12��N

+ (−152 − 9��ℎ + 3��N) >2
�
2
ℎ

+ 512 >2
�
2
N
+ 115 >2

�
2
ℎ
4

N

− v� − �SUSY cot�
N

× (12 + 112 >2
�
2
N
+ 124 
2

ℎ
2
N
)]

+ (�	& )2

× [14093216 + 54118 ��ℎ + 4712�2
�ℎ − 55936 ��N

− 103 ��ℎ��N + 3536�2
�N − 119 ��:

− 13��ℎ��: + 16�2
�: − 976 � (3)

+ (107675 + 245��ℎ − 245��:) 
2
ℎ>2
:

+ (− 52988200 − 1420��ℎ + 1420��:) 
4
ℎ>4
:

+ ( 7108 + 19��N − 19��:) >2
:
2
N

+ ( 582116200 + 17135��ℎ − 17135��N) 
2
ℎ
2
N

+ (v� − �SUSYcot�)2
2
N

(19 + 154 
2
ℎ
2
N
)

+ v� − �SUSY cot�
N

× [ − 11918 − 43��ℎ − 118��N

+ (− 754 − 118��N + 118��:) >2
:
2
N

+(−6281 − 19��ℎ − 1216��N) 
2
ℎ
2
N
]

+ tan�
sin�

× [−289 − 23��ℎ + 23��: + 554 �:>2
:
2

N

+ (− 201124300 − 411620��ℎ + 411620��:) 
2
ℎ>2
:

+ (− 283074762800 − 4722680��ℎ

+ 4722680��:) 
4
ℎ>4
:

+ (−8554 − 13��ℎ + 13��N) >2
:
2
N

− 127 
2
ℎ
2
N
− 73240 
4

ℎ>2
:
2

N
]]}

+ Γ(0)�� (cos�sin�)2(�	& )2

× [ 1144 + 1144 >2
:
2
N
+ 78640 
2

ℎ>2
:
+ 717280 
2

ℎ
2
N

+ 1692073600 
4
ℎ>4
:
+ 124192 
4

ℎ>2
:
2

N
]

+ O(
4
ℎ
4
N
, 
4

:
4
N
, 
6

ℎ>6
:
) . (173)

For a light Higgs mass 
ℎ = 125GeV and SUSY masses
of about 1 TeV, tan� = 40, and SM parameters chosen as
in the previous sections, the mass corrections at NLO and
NNLO amount to below one percent from the dominant
contribution (i.e., computed in the EFT) at the corresponding
order in perturbation theory. �ey are beyond the reach of
the LHC accuracy, but they might be of phenomenological
interest at a future linear collider.

During the last years, a lot of e�ort has been devoted to
precise predictions for Higgs production at hadron colliders
(for reviews, see [36, 308–310]). �ey constituted basic
ingredients for the discovery of the new scalar particle at the
LHC. �e main production channel for the SM Higgs boson
at the LHC is the loop-induced gluon-fusion channel. For
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Figure 21: Higgs production cross sections at the LHC for √¤ =8TeV together with the uncertainties from the missing higher order
corrections and the parton density functions from [55].

illustration, we reproduce in Figure 21 from [55] the theo-
retical predictions for the main Higgs production channels
together with the uncertainties due to missing higher order
corrections and to the uncertainties on the parton density
functions (PDFs).

An important application of the Higgs discovery is
to constrain the parameters of theories predicting physics
beyond the SM. �is is also the case for SUSY theories.
Given the high sensitivity of the Higgs observables (its mass,
production cross sections, and decay rates) on the parameters
of the top sector in the MSSM, one can derive lower bounds
for top squark masses and set constraints for their mixing
angle. For this task one needs, among other ingredients,
precise predictions for the Higgs production cross section,
including even NNLO SUSY-QCD corrections. As discussed
in Section 8.2, exact analytic calculations at this order in
perturbation theory are not yet feasible. Instead one has to
use the EFT approach togetherwith themethod of asymptotic
expansions. In the SM, it was shown [286, 287, 311–314] that
the exact result for the hadronic cross section for intermediate
Higgs masses (
ℎ < 2>:) is approximated to better than 1%
level by the result derived with EFT approach, if the full top
mass dependence at LO is factored out.

Following the same reasoning for the case of the MSSM,
one can write the hadronic cross section � ≡ �(FF → ℎ+�)
as as a function of the hadronic center-of-mass energy √¤. It
reads [196]

� (h) = Æ0�0(−3&:� (�ℎ)`(0)1
)2

× [Σ(0) (h) + �	 (�	)& Σ(1) (h)
+(�	 (�	)& )2Σ(2) (h) + ⋅ ⋅ ⋅ ] .

(174)

�e exact LO contribution, denoted here by �0, is factored
out, as discussed above. �e higher order corrections are
computed within the EFT approach and the separation of
short and long distance contributions is explicit in (174). For a
better convergence of the perturbative expansion and to avoid
the occurrence of large logarithms, one makes use of scale
separation as discussed in Section 8.1. �us, the coe�cient

functions :� and `(0)1 that contain the radiative corrections
due to heavy particles are evaluated at a heavy scale of the

order of the SUSY particle masses �ℎ = O(
̃). �e partonic

cross sections Σ(�)(h) are computed at a low scale of the order
of theHiggsmass�	 = O(
ℎ).�e individual building blocks
in (174) are discussed below.

�e normalization coe�cient Æ0 is given by

Æ0 = ;E[�	 (�N)]2288&√2 , (175)

where the presence of the strong coupling evaluated at the
low-energy scale �	 is due to the use of renormalization group
invariant operators and coe�cient functions as given in (148)
and (150).�0 contains the exact dependence on all masses and
momenta at the LO. Its analytic expression is known for quite
long time. For convenience of the reader, we reproduce it
here, in the normalization of [54]:

�0 = ����������� 32 cos�sin�
× {v ( :̄)

+ ∑
=1,2

(−1)

× [ sin (2�:)2 (tan� + 1
tan�)

× >:�SUSY2>2
:̃�

+ >2
:8>2
:̃�

×(sin2(2�:) >2
:̃1 − >2

:̃2>2
:

− 4(−1))]
× ṽ (¯̃:�)} +O(
2

>>2
:̃�

)�����������
2,

(176)
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with

̄ = 4>2

2
ℎ
, v (¯) = ¯ [1 + (1 − ¯) Y (¯)] ,
ṽ (¯) = ¯ (1 − Ȳ (¯)) ,

Y (¯) = {{{{{{{
arcsin2 ( 1√¯) , ¯ ≥ 1,
−14(ln 1 + √1 − ¯1 − √1 − ¯ − �&)

2, ¯ < 1.
(177)

�e coe�cient `01 is de�ned through the one-loop relation

`01 = −3&�	
:(1−loop)

1 . (178)

Its SUSY-QCD part can be read o� directly from (155). �e

coe�cient `01 is factored out because it is already contained
in the LO contribution �0 as can be easily understood from
(176). Indeed, in the limit of light Higgs masses 
ℎ ≪>:, >:̃, >�̃ and neglecting mass suppressed contributions

of the order of O(
2
ℎ/>2

: ), O(
2
ℎ/>2

:̃ ), and O(
2
>/>2

:̃ ) the
LO contribution �0 takes the form (we adopt here the
normalization of [54])

�0 A→ �����`(0)1
�����2. (179)

�e coe�cient :� was de�ned in (149) and has to be
evaluated at the heavy scale. Let us point out that the factor−3&:�(�ℎ)/`01 expanded in the strong coupling �	(�ℎ) takes
the form

−3&:� (�ℎ)`01 = 1 + �	 (�ℎ)& `(1)� + (�	 (�ℎ)& )2`(2)� + ⋅ ⋅ ⋅ ,
(180)

where the coe�cients `()� , with � = 1, 2, are known, once the
coe�cient :1 is computed up to the NNLO.

Finally, Σ(�)(h) is de�ned through the convolution

Σ(�) (h)
= ∑

,�∈{**�} ∫
1

U
d�1

× ∫1

U/H1
d�2Y/# (�1) Y�/# (�2) Σ̂(�)

� ( h�1�2
) ,

h ≡ 
2
ℎ¤

(181)

of Y�/#(�), the density of parton � inside the proton, andΣ̂(�)
� (�), the partonic cross section expanded up to theHth order in �	(�	), and computed in the e�ective-theory

approach. At the LO, it reads

Σ̂(0)
� (�) = 	�	��	 (1 − �) . (182)
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Figure 22:�e cross section �SUSY-QCD
: (�	, �ℎ) as a function of tan �

using the parameters in to LO (bottom), NLO (middle), and NNLO
(top) from [54]. �e dotted line corresponds to the SM and the
dashed and solid lines to the MSSM.

�e NLO and NNLO contributions contain the real and
virtual corrections associated with the operator O1 and its
mixturewith the operatorO2. Since they are computedwithin
the e�ective theory, they can be taken over from the SM
computations reported in [275, 276, 286, 314].

Let us mention that there is also a third scale present
in (174), namely, the factorization scale �E embedded in the
PDFs. Usually it is chosen to be equal to the low-scale �	,
that is, �E = �	. �e choice of scales plays an important role
in precision calculations of the hadronic Higgs production
cross section, especially when particles much heavier than
the SM ones are present. We discuss in the next section the
phenomenological impact of the NNLO corrections.

For the numerical analysis we choose a supersymmetric
mass spectrum in the so-called “modi�ed >max

ℎ scenario” as
de�ned in [54]. It is a modi�cation of the original “>max

ℎ ”
scenario [315] such that one of the top squarks becomes light
and the other one remains heavy, at the TeV scale. At the same
time Higgs masses as large as 127GeV can be achieved.

For illustration, we reproduce in Figure 22 the results
of [54] that constitute the most precise prediction for the
hadronic cross section in the gluon fusion channel in the

framework of the MSSM. Here, �SUSY-QCD
: (�	, �ℎ) denotes

the dominant contribution originating from the top sector.
From bottom to top, the LO, NLO, and NNLO results are
depicted for 5 ≤ tan� ≤ 30 and choosing >:̃1 = 400GeV.
�e dotted lines represent the SM results. �e solid and the
dashed lines show the MSSM predictions for two di�erent
scale choices: �ℎ = 
: and �	 = 
ℎ/2 and �ℎ =�	 = 
ℎ/2, respectively. �e MSSM results are reduced by
a few percent as compared to the SM prediction. �is e�ect
increases when going from LO to NLO and �nally to NNLO
where a di�erence of about 5% is observed. �is behavior
is speci�c for supersymmetric mass spectra containing at
least one light squark of the third generation. For the case
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when all SUSY particles are heavy, at the TeV scale (the so-
called decoupling limit) the genuine SUSY-QCD corrections
to the production cross section become negligible. �e fact
that the di�erence between the SM and MSSM predictions
increases when higher order radiative corrections are taken
into account can be explained by the occurrence ofmany new
SUSY contributions.

As can be seen from the �gure, the e�ect of scale choice
is not negligible: the results for �ℎ = �	 are in general
a few percent above the ones with �ℎ ̸= �	. At NLO, the
scale dependence increases as compared to the LO case as a
consequence of the special organisation of the perturbative
series. Nevertheless, the scale dependence decreases when
going from NLO to NNLO as expected.

9. Conclusions

In this review we report on precision calculations in super-
symmetric theories. �ey are not only important ingredients
for the development of quantum �eld theories in general,
but they are also required by the current experimental
analyses searching for indirect manifestations of SUSY in
collider experiments at the TeV scale. �e latter topic is of
utmost importance for particle physics: the nonobservation
of any supersymmetric particle at the TeV scale renders
low-energy supersymmetric theories debatable. Obviously,
to prove or disprove a theory for which enormous e�orts
both at theoretical and experimental level have been devoted
over the last four decades is a very complex task. In this
review, we concentrate on the indirect searches for SUSY that
can be carried through precision tests of the gauge coupling
uni�cation hypothesis, the prediction of a light Higgs boson
mass, and the interaction properties of the Higgs boson with
the SM particles.

It turns out that the hypothesis of gauge coupling uni-
�cation even in the framework of minimal SUSY SU(5)
model cannot be falsi�ed with the help of currently available
experimental data. Let us mention that the contributions at
the three-loop order in perturbation theory are essential in
this analysis. �e conclusion drawn from precision calcula-
tions recon�rm earlier results derived from model building
arguments.

Furthermore, the theoretical prediction of the light Higgs
boson mass within SUSY with an accuracy comparable with
the one reached by the ongoing experimental analyses con-
ducted at the LHC is an important tool for constraining the
supersymmetric parameter space. For this purpose one needs
to calculate even three-loop Feynman integrals involving
many di�erent mass scales. At present, an exact analytic
computation is not feasible. Nevertheless, the method of
asymptotic expansion can be applied successfully also in
SUSY theories and provides us with precise results. Speci�-
cally, the lightest Higgs bosons mass within theMSSM can be
predicted at present with an accuracy of about 1 GeV for the
parameter space of phenomenological interest.

Moreover, a�er the recent discovery of the Higgs boson
at the LHC, the natural question is whether it has the
characteristics of the particle predicted by the SM or new

theories are required to describe it. To answer this question
from the perspective of supersymmetric theories, one needs
predictions of the hadronic Higgs production cross section
and its decay rates into SM particles with the same precision
as in the SM. To achieve such an accuracy, again multiloop
calculations up to the three-loop order are required.

Detailed analyses of the data taken or to be taken at
the LHC running at energies up to 14TeV are expected to
provide us with new insights into the particle physics and
hopefully with the answer to the question whether low-
energy supersymmetry is the right theory to describe the
phenomena at the TeV scale.

Appendices

A. Group Theory

We consider a gauge group G with generators 6� satisfying
the Lie algebra (useful sources for some of thematerial in this
section have included [119, 136, 139])[6�, 6�] = �Y���6�. (A.1)

We work throughout with a fermion representation con-
sisting of D� sets of Dirac fermions or 2D� sets of two-
component fermions, in irreducible representations with
identical Casimir invariants, using 6� to denote the genera-
tors in one such representation.�us 6�6� is proportional to
the unit matrix: 6�6� = :) ⋅ w. (A.2)

For the adjoint representation we have:(	�� = Y���Y���. (A.3)w2(6) is de�ned by

Tr [6�6�] = w2 (6) 	��. (A.4)

�us we have :)%) = w2 (6)D(, (A.5)

where D( is the number of generators and %) is the dimen-
sionality of the representation 6. Evidently w2(v) = :(. �e

fully symmetric tensors %����
) and %����

( are de�ned by

%����
) = 16 Tr [6(�6�6�6�)] ,
%����
( = 16 Tr [#(�#�#�#�)] , (A.6)

where (#�)�� = �Y���, (A.7)

6(�6�6�6�) = 6�6�6�6� + 6�6�6�6� + 6�6�6�6�

+ 6�6�6�6� + 6�6�6�6� + 6�6�6�6�,
(A.8)

(similar to #(�#�#�#�)).
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Table 2: SU(D) Group invariants (here 6 is the fundamental
representation).

Group SU(D):( 'D:) ' ((D2 − 1) /2D)w2 (v) 'Dw2 (6) '/2D( D2 − 1�4 (vv) ('4/24) (D2 + 36)D2�4 (6v) ('4/48)D(D2 + 6)�4 (66) ('4/96D2) (18 − 6D2 + D4)�4 (vvv) ('6/216)D2(324 + 135D2 + D4)�4 (6vv) ('6/432)D3(51 + D2)
�e additional tensor invariants occurring in the results

are de�ned as

�3 (66) = %���
( %���

(D(
,

�4 (vv) = %����
( %����

(D(
,

�4 (6v) = %����
) %����

(D(
,

�4 (vvv) = %����
( %����

( %����
(D(

,
�4 (6vv) = %����

) %����
( %����

(D(
.

(A.9)

In Tables 2, 3, and 4 we present results for the various tensor
invariants for the groups SU(D), SO(D), and Sp(D), when
the fermion representation 6 is the fundamental representa-
tion.

�e canonical choice of ' is ' = 1 for all groups, but
sometimes di�erent choices are more convenient [139].

B. Modification of the DR Scheme: MDR

In the following we provide analytic expressions for the �nite
shi�s introduced in the top squark mass counterterms as
compared to the DR scheme. According to the discussion
in Section 7, one can distinguish four cases for the mass
hierarchies.

Case 1. >*̃ ≫ >:̃� (� = 1, 2)
(>MDR

:̃�>:̃�
)2 = 1 − (�	)2:)D*w2 (6)

× (−12 + ��*̃ + � (2)) >2
*̃>2
:̃�

.
(B.1)

Table 3: SO(D) Group invariants (here 6 is the fundamental
representation).

Group SO(D):( '(D − 2):) ('/2) (D − 1)w2 (v) '(D − 2)w2 (6) 'D( (1/2)D(D − 1)�4 (vv) ('4/24) (D − 2)(−296 + 138D − 15D2 + D3)�4 (6v) ('4/24) (D − 2)(22 − 7D + D2)�4 (66) ('4/24) (4 − D + D2)�4 (vvv) ('6/432) (D − 2)(−29440 + 23272D − 7018D2 +971D3 − 47D4 + 2D5)�4 (6vv) ('6/432) (D−2)(2048−1582D+387D2−31D3+2D4)

Table 4: Sp(D) Group invariants (here 6 is the fundamental
representation).

Group Sp(D):( '(D + 2):) ('/4) (D + 1)w2 (v) '(D + 2)w2 (6) '/2D( (1/2)D(D + 1)�4 (vv) ('4/384) (D + 2)(296 + 138D + 15D2 + D3)�4 (6v) ('4/384) (D + 2)(22 + 7D + D2)�4 (66) ('4/384) (4 + D + D2)�4 (vvv) ('6/27648) (D + 2)(29440 + 23272D + 7018D2 +971D3 + 47D4 + 2D5)�4 (6vv) ('6/27648) (D + 2)(2048 + 1582D + 387D2+31D3 + 2D4)

�e label D* = 5 has been introduced for convenience and

for the logarithms the abbreviation ��*̃ = ln(�2/>2
*̃) has been

introduced.

Case 2. >:̃2 ≫ >:̃1

(>MDR
:̃1>:̃1

)2 = 1 − (�	)2:)w2 (6)
× (−14 + 12��:̃2 + 12� (2)) >

2
:̃2>2
:̃1

.
(B.2)

In this equation we have ��:̃2 = ln(�2/>2
:̃2).
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Case 3. >�̃ ≫ >:̃� , (� = 1, 2) and>*̃ ≫ >�̃

(>MDR
:̃�>:̃�

)2 = 1 + �	:) [1 + ���̃] >2
�̃>2
:̃�

+ (�	)2
× {:2

) [−114 − 32���̃ + � (2)] >2
�̃>2
:̃�

+ :(:) [218 + 72���̃

+98�2
��̃ − 14� (2)] >

2
�̃>2
:̃�+ :)D:w2 (6)

× [−(2 + 2���̃ + 34�2
��̃) >2

�̃>2
:̃�

+ (1 − 2� (2)) >�̃ (>�̃ − >:̃2)>2
:̃�

+(14 − 12��:̃2 − 12� (2)) >
2
:̃2>2
:̃�

]
+ :)D*w2 (6)
× [(−58 − 34���̃ − 54��*̃ − 32���̃��*̃

+34�2
�*̃ + 32� (2)) >

2
�̃>2
:̃�

+ (−4336 − 56� *̃�̃) >4
�̃>2

*̃>2
:̃�

+ (− 67288 − 724� *̃�̃) >6
�̃>4

*̃>2
:̃�

+(+12 − ��*̃ − � (2)) >2
*̃>2
:̃�

]} .
(B.3)

HereD: = 1, ���̃ = ln(�2/>2
�̃), and � *̃�̃ = ln(>2

*̃/>2
�̃).

Case 4. >�̃ ≫ >:̃1 and>*̃ ≈ >�̃

(>MDR
:̃�>:̃�

)2 = 1 + �	:) [1 + ���̃] >2
�̃>2
:̃�

+ (�	)2

× {:2
) [−114 − 32���̃ + � (2)] >2

�̃>2
:̃�

+ :(:) [218 + 72���̃

+ 98�2
��̃ − 14� (2)] >

2
�̃>2
:̃�+ :)D:w2 (6)

× [−(2 + 2���̃ + 34�2
��̃) >2

�̃>2
:̃�

+ (1 − 2� (2)) >�̃ (>�̃ − >:̃2)>2
:̃�

+(14 − 12��:̃2 − 12� (2)) >
2
:̃2>2
:̃�

]
+ :)D*w2 (6)
× [(−34���̃ − 54��*̃ − 32���̃��*̃

+34�2
�*̃ + 32� (2)) >

2
�̃>2
:̃�

− 4� (2) >�̃ (>�̃ − >:̃2)>2
:̃�

−(74 + ��*̃ + � (2)) >2
*̃>2
:̃�

]} .
(B.4)

All the masses on the right hand side of (B.1), (B.2), (B.3),

and (B.4) are DR masses. Let us also mention that the above
formulae are valid for the case 
 = 0. �e �nite shi�s
given for the Cases 3 and 4 can also be used for other mass
hierarchies like, for example, >*̃ ≫ >:̃2 ≈ >�̃ ≫ >:̃1 or>*̃ ≈ >:̃2 ≈ >�̃ ≫ >:̃1 .
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