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Abstract
The electric quadrupole moment and the magnetic moment of the 11Li halo nucleus have been

measured with more than an order of magnitude higher precision than before, |Q| = 33.3(5) mb

and µ = 3.6712(3)µN , revealing a 8.8(1.5)% increase of the quadrupole moment relative to that of
9Li. This result is compared to various models that aim at describing the halo properties. In the

shell model an increased quadrupole moment points to a significant occupation of the 1d orbits,

whereas in a simple halo picture this can be explained by relating the quadrupole moments of the

proton distribution to the charge radii. Advanced models so far fail to reproduce simultaneously

the trends observed in the radii and quadrupole moments of the lithium isotopes.

Submitted to Physical Review Letters

1



Since nuclear physicists could produce and investigate bound systems of nucleons in many

possible combinations, a wealth of isotopes with unexpected properties have been discovered.

For example, some neutron-rich isotopes of light elements, such as 11Li, were found to have

exceptionally large radii [1]. Upon discovery in 1985, this phenomenon was attributed to

either large deformation or to a long tail in the matter distribution [2]. Deformation was

soon excluded by the spin and magnetic moment of 11Li belonging to a spherical πp3/2 state

[3]. Considering the weak binding of the last two neutrons [4], one could conclude that

such a nuclear system consists of a core with two loosely bound neutrons around it [5].

This is the concept of ’halo’ nuclei which has been related to similar phenomena in atomic

and molecular physics [6], showing the universality of the concept. To fully unravel the

mechanisms leading to the existence of halo nuclei, many types of experiments have been

devoted to the investigation of their properties. An observable that gives information on

the nuclear charge deformation is the spectroscopic quadrupole moment. By comparing the

quadrupole moment of 11Li to that of 9Li, one can investigate how the two halo neutrons

modify the deformation of the core which contains the three protons. Already fifteen years

ago, a first attempt to do so giving Q(11Li)/Q(9Li) = 1.14(16), suggested just a slight

increase in agreement with the halo concept [7]. Unbiasedly, for a nucleus with a neutron

magic number of N = 8 one would expect a minimum value of the quadrupole such as for
13B [8]. If 11Li has a larger quadrupole moment than 9Li, it can not be considered as semi-

magic, and the two halo neutrons have to be responsible for an expansion or polarization

of the proton distribution in the core. The latter, in terms of the shell model, must be

understood by an excitation of halo neutrons to the 1d orbits, and a precise value of the 11Li

quadrupole moment may provide evidence for this. The effect of a more extended charge

distribution can be estimated on the basis of a recent laser spectroscopy measurement of the

charge radius [9]. The increase of the charge radius for 11Li, as well as other properties of Li

isotopes are well described by cluster models [10, 11] which also explain the large quadrupole

moment of 7Li [12]. For 11Li they predict a quadrupole moment over 30% larger than that

of 9Li. Again, this calls for a more precise measurement.

In this Letter, we report the measurement of the quadrupole moment of 11Li relative

to that of 9Li, intended to resolve a difference at the percent level. Improvements over

the first study were made to gain an order of magnitude in precision. These concern the

experimental method which is based on the nuclear magnetic resonance (NMR) technique.

Spin-polarized beams of β-decaying isotopes are implanted into a crystal with a non-cubic

lattice structure placed between the poles of an electromagnet. Due to the electric field

gradient Vzz in such a crystal, in combination with the static magnetic field B, the Zeeman

levels of the nuclear spin are shifted by the mI-dependent quadrupole interaction which

is proportional to the interaction constant νQ = eQVzz/h (as illustrated e.g. in [13] for
9Li) and thus to the nuclear quadrupole moment Q. The frequency νrf of an additionally

applied radio-frequency (rf) magnetic field is scanned over the resonances between adjacent

mI quantum states. Whenever νrf matches one of the transition frequencies, a reduction of
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the spin polarization shows up as a drop in the β-decay asymmetry [14]. The resonances

are equidistant and symmetric with respect to the Larmor frequency νL, with the spacing

given by ∆r = 6νQ/[4I(2I − 1)].

The resonance amplitude is enhanced by more than an order of magnitude by applying

all resonance frequencies simultaneously, thus mixing all mI states [7]. For nuclei with spin

I = 3/2, such as 9Li and 11Li, this involves the three correlated frequencies νL, νL + ∆ and

νL−∆. A spectrum is then measured as a function of the parameter ∆, with the resonance

value ∆r determining the quadrupole interaction frequency νQ. The signal enhancement

and the width, thus also the error on νQ, depend on the sufficiently precise knowledge of the

Larmor frequency, measured in a crystal with cubic lattice structure.

In the previous study of Arnold et al. [7] the resonance width, mainly determined by

variations of the electric field gradient over the implantation sites in the LiNbO3 crystal,

was of the same order as the splitting ∆r itself. Now, we have reduced this width by an order

of magnitude to less than 2 kHz [13], by using a metallic Zn crystal. This also means that

less rf power is needed to saturate the resonances. The known magnetic moment µ(11Li) =

3.6673(25)µN [3] corresponds to an uncertainty of 3.5 kHz on the Larmor frequency of about

5 MHz, but an accuracy much better than the expected line width is needed for a multiple-

rf resonance measurement. This is achieved by implanting into a Si crystal [13] where the

NMR line width is an order of magnitude smaller than in Au [15] or LiF [3].

The experiments have been performed at ISOLDE/ CERN. Beams of 9Li and 11Li were

produced by a 1.4 GeV proton beam (3× 1013 protons per pulse every 2.4 s) on a thin-foil

Ta [16] or a conventional UC2 target. With the short release times of both targets typical

production rates of a few 1000 ions/pulse were realized for the short-lived 11Li (T1/2 = 8.5(2)

ms). The experimental setup and the method of optically polarizing Li beams have been

described in detail in Borremans et al. [13], where we report results from our studies on the

resonance properties in different crystals for the less exotic isotopes 8Li and 9Li.

The results include the magnetic moment µ(9Li) = 3.43678(6)µN which was measured

relative to that of 8Li. Now we present a similarly accurate measurement for 11Li relative

to 9Li. Typical NMR resonances of both isotopes implanted in a Si crystal at room tem-

perature are shown in Fig. 1. Seven spectra on 9Li and three spectra on 11Li were recorded

in total, while the magnetic field of about 0.29 T was kept constant. During the measure-

ments, the magnetic field drifted by 0.005% at most, which is consistent with the scatter of

the 9Li resonance frequencies and gives an upper limit for a systematic difference between

the fields applied for both isotopes. The weighted means of the Larmor frequencies yield

g(9Li)/g(11Li) = 0.93615(6) and with the g factor of 9Li [13] we have g(11Li) = 2.44746(17).

With the spin I = 3/2 this gives the magnetic moment µ(11Li) = 3.6712(3)µN , improved

by an order of magnitude and meeting the requirement for a precise measurement of the

quadrupole moment.

The quadrupole moments of 8Li and 9Li have been reported from measurements in several

different crystals (see [13]). Although some of the values seem to be in poor agreement with
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FIG. 1: NMR resonances for 9Li and 11Li in a Si crystal.

one another, we found that for 8Li they become consistent [13], if they are evaluated with

respect to the same reference value Q(7Li) = −40.0(3) mb. From this we adopted a weighted

mean value of Q(8Li) = 31.4(2) mb. For 9Li, in order to remove a discrepancy between two

earlier measurements, we remeasured the quadrupole moment relative to that of 8Li. Two

implantation hosts, a metallic Zn crystal (hcp structure) and a LiTaO3 crystal (orthorhombic

structure) gave consistent results, leading to Q(9Li) = −30.6(2) mb [13].

With this precise value, and by measuring the quadrupole frequency of 11Li relative to

that of 9Li, we can now determine the 11Li quadrupole moment to a similar precision. Three

independent experimental runs were performed, during which the quadrupole splitting ∆r

was measured successively for 9Li and 11Li implanted in the Zn crystal. Typical multiple-

rf resonances are shown in Fig. 2. Each run started by measuring the Larmor frequency

of 9Li in Zn, which was then used to calculate the Larmor frequency of 11Li from the g-

factor ratio given above. These two values define the center frequencies of the multiple-rf

scans. The resonance values ∆r for 9Li and 11Li directly give the ratio of the quadrupole

moments. Results from the three runs are presented in Fig. 3, with the weighted mean of

|Q(11Li)/Q(9Li)| = 1.088(15). Thus the quadrupole moment of the halo nucleus, |Q(11Li)| =
33.3(5) mb, with a negative sign from theoretical considerations, is nearly 10% larger than

that of bare 9Li.

In Table I we summarize the experimental quadrupole and magnetic moments of the Li

isotopes, which are now all known to about 1% or better, thus allowing tests of various

nuclear models (Fig. 4). In the shell model it is known that some magic numbers which are

valid near stability, disappear in nuclei with extreme isospin due to the changing strength of

the spin-isospin dependent term in the residual nucleon-nucleon (NN) interaction [17]. In
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FIG. 2: Multiple-rf resonances for 9Li and 11Li in a Zn crystal.

light neutron-rich nuclei this leads to the disappearance of the N = 8 magic number when

protons are taken out of the πp3/2 orbital. A first experimental proof for this was found in

the positive parity of the 11Be ground state, shown to be dominated by ν2s1/2 [18, 19] and

not ν1p1/2 as expected for 7 neutrons. In 11Li this is manifest in the halo structure which

has about 45% of (2s1/2)
2 occupancy [20]. It is also reflected in the quadrupole moments,

but the increase from 9Li to 11Li can not be understood by an excitation of neutrons to the

spherical 2s orbit only. Comparing our result to large-scale shell model calculations may

provide a clue for some 1d occupancy of the halo neutrons. Suzuki et al. modified an effective

shell-model interaction in order to describe both stable and exotic nuclei in this p-sd region

assuming 4He as an inert core [21]. The calculated quadrupole moment of 11Li relative to

that of 9Li approaches the experimental value if the model space is extended from the p shell

FIG. 3: The ratio of the 11Li to 9Li quadrupole moment has been measured in three independent

runs. The weighted average with the error is presented as the dashed bar.
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FIG. 4: Quadrupole moments of the Li isotopes compared to values from different theoretical

models.

only (Qp = 28.2 mb) to include excitations into the sd shell (Qpsd = 32.5 mb), and effective

charges ep = 1.2e and en = 0.3e are used [22]. The halo wave function then has 50% of

(2s1/2)
2, 25% of (1p1/2)

2 and 25% of (1d5/2)
2 occupation probability. Advanced Quantum

Monte Carlo calculations, including additionally a three-nucleon potential [23], have been

successful in describing the moments of 7,8,9Li [24], but so far no results are available for
11Li.

More sophisticated models abandon the assumption of an inert core: all nucleons are

active in the no-core shell model (NCSM). Navratil et al. have performed such calculations,

using an effective interaction derived microscopically from a NN potential fitted to NN

scattering data [25], and they find good agreement with the ground state properties of

A = 7-11 nuclei. The model does not explain the charge radii, but it perfectly reproduces

the trend of experimental quadrupole moments of the Li isotopes. Only an overall scaling

factor is missing, which is explained by a limited model space and might be compensated

by using effective charges.

An alternative approach is to consider the Li nuclei made of α and triton clusters plus

TABLE I: Experimental dipole and quadrupole moments of Li isotopes from [13]. Results on 11Li

are from this work, with the sign of Q(11Li) assumed from theory.

isotope Iπ µ(µN ) Q(mb)
6Li 1+ 0.8220473(6) -0.806(6)
7Li 3/2− 3.256427(2) -40.0(3)
8Li 2+ 1.653560(18) +31.4(2)
9Li 3/2− 3.43678(6) -30.6(2)
11Li 3/2− 3.6712(3) (-)33.3(5)
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additional neutrons. In the microscopic cluster model by Varga et al. [12], various cluster

arrangements are combined to include all possible correlations between the clusters. In this

approach, the quadrupole moments are underestimated, except the one of 11Li which is

about 30% larger than that of 9Li [10]. This is surprising, because the model happened to

reproduce best the development of the charge radii [9].

The microscopic antisymmetrized molecular dynamics (AMD) approach [26] has been

rather successful in describing many features of light nuclei including their electromagnetic

moments. For the quadrupole moments it predicts an 8% increase from 9Li to 11Li, very

close to the experimental value. However, this agreement should not be overrated as long

as halo properties, in particular the large matter radius of 11Li, are not reproduced.

Finally, it is not clear to what extent the different theoretical approaches have included

the center-of-mass motion of the proton distribution introduced by the two halo neutrons.

Therefore we try to describe the observations assuming the very simple picture of a 9Li core

surrounded by two halo neutrons known to be in spherical orbits. From experiment [9] we

know that the rms charge radius 〈r2〉1/2 increases by 11(2)%, from 2.185(33) fm for 9Li to

2.423(34) fm for 11Li according to the most recent evaluation [27] , while we find that the

quadrupole moment increases by 8.8(1.5)%.

If the deformation of the charge distribution would be the same for 9Li and 11Li, one

should expect an increase of the quadrupole moment proportional to the mean square radius

〈r2〉. However, if we ascribe the increase of the radius to a recoil effect caused by the spherical

halo, the center-of-mass movement produces a spherical expansion of the (non-spherical)

charge distribution for which the quadrupole moment increases only with the square root

〈r2〉1/2. This can explain the striking analogy between the quadrupole moments and the rms

charge radii without any additional change of the 9Li-core structure caused by the presence

of the halo neutrons. In particular, the 11Li quadrupole moment seems to be unaffected by

quadrupole core polarization involving a substantial 1d component in the halo wave function.

We note that this intuitive relationship between the 11Li quadrupole moment and charge

radius is independent of correlations in the movement of the halo neutrons, although these

affect strongly the behavior of both quantities.

In conclusion, we have measured the quadrupole moment of the 11Li halo nucleus relative

to that of its 9Li core, with a precision improved by an order of magnitude, thus providing a

test of modern nuclear theories. While these theories have difficulties to reproduce simulta-

neously the charge radii and quadrupole moments of both isotopes, we found a relationship

between both quantities in a simple halo picture that is surprisingly well fulfilled.
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