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Abstract- Personalized medicine is a set of diagnostic, prognostic and therapeutic approaches in which 

medical interventions are carried out based on individual patient characteristics. As life expectancy increases 

in developed and developing countries, the incidence of diseases such as cancer goes up among people in the 

community. Cancer is a disease that the response to treatment varies from one person to another and also it is 

costly for individuals, families, and society. Among thyroid cancers, anaplastic thyroid carcinoma (ATC) is 

the most aggressive, lethal and unresponsive form of the disease. Unfortunately, current drugs are not 

targetable, and therefore they have restricted role in ATC treatment. Consequently, mortality of this cancer, 

despite advances in the field of diagnosis and treatment, is one of the most important challenges in medicine. 

Cellular, molecular and genetic evidences play an important role in finding more effective diagnostic and 

therapeutic approaches. Review of these evidences confirms the application of personalized medicine in 

cancer treatment including ATC. A growing body of evidence has elucidated that cellular and molecular 

mechanisms of cancer would pave the way for defining new biomarkers for targeted therapy, taking into 

account individual differences. It should be noted that this approach requires further progress in the fields of 

basic sciences, pharmacogenetics and drug design. An overview of the most important aspects in 

individualized anaplastic thyroid cancer treatment will be discussed in this review.  

© 2017 Tehran University of Medical Sciences. All rights reserved.  
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Introduction 
 

Personalized medicine is a set of diagnostic, 
prognostic and therapeutic approaches in which medical 
interventions are carried out based on individual patient 
characteristics (1). Although this branch of science is 
thousands of years old and dates back to the time of 
Hippocrates only in recent years, coinciding with the 
mapping of the human genome in 2003, has expanded in 
all medical fields (2,3). Actually, in this approach 
individuals’ genetic codes determine the treatment 

strategy. Completion of the Human Genome Project 
(HGP) revealed that about 99.9% of the human genome 
sequence is the same among people, but there is a 0.1% 
difference showed genetic variants that determine person's 
risk of disease, severity and how an individual's response 
to treatment (4,5). Therefore, due to genetic differences 
between people and without taking into account 
environmental factors, it is clear that one drug cannot 
have the same result for everyone (6). Thus to improve 
the quality of treatment and health care, people's genetic 
profile should be considered. With this approach, the term 
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of "Personalized Medicine" entered the science (7).  
 As life expectancy increases in developed and 

developing countries, the incidence of diseases such as 
cancer goes up among people in the community. One of 
the most important potential applications of personalized 
medicine is in the field of prevention and treatment of 
cancer (8). In general, cancer is a heterogeneous disease, 
and consequently, its incidence, metastasis and patients’ 
response to treatment are different (9). Anaplastic 
Thyroid Carcinoma (ATC) or Undifferentiated Thyroid 
Cancer (UTC) represents about 2-5% of cases and 
clinically appears as a mass with rapid growth. ATC can 
affect patients at any age group; however maximum 
incidence has been reported between 60 to 80 years of 
age. The disease occurs in women 3 times more than 
men (10). In half of the cases, ATC occurs following a 
long-term history of goiter, thyroid adenoma and 
papillary or follicular carcinoma (11). Among all thyroid 
neoplasms, the clinical course of ATC has the worst 
prognosis. A combination of surgery, chemotherapy, and 
radiotherapy are routinely applied for the treatment of 
the disease with a low rate of success (12,13). Since 
chemotherapy is not targetable, these compounds are not 
effective against ATC. Therefore, mortality of this 
cancer, despite advances in the field of diagnosis and 
treatment is one of the most important challenges in 
medicine (14). Targeted cancer drugs inhibit the growth 
and spread of tumor by interfering with the function of 
molecules with a role in cancer (15,16). This study aims 
at showing the molecular complexity of ATC and 
highlighting appropriate targeted therapies.  

This review is based on searches of PubMed, Google 
Scholar, ClinicalTrials.gov (17), MedChemExpress (18) 
and Selleckchem (19) databases using the terms 
"personalized medicine", "target therapy", "signaling 
pathway", "cancer stem cell", "pharmacogenetics" 
associated with the terms "thyroid cancers" and 
"anaplastic thyroid cancer" to identify relevant literature 
for the survey. While the search was restricted to articles 
published in English, we did not eliminate the results 
according to the time of their publication. Since ATC is 
a rare disease in populations, most previous researches 
were performed on cell line models, inevitably resulting 
in retrieving data mostly according to this type of 
experiment in the current review.  
 
Cellular and molecular heterogeneity of ATC 

The baseline threshold for genomic complexity in 
ATC is higher than other types of thyroid malignancies 
even when we ignore the alterations resulted from 
epigenetic changes and gene expression (20-22). Actually, 

the summarized genetic alterations in Table 1 and tissue-
specific gene expression in Table 2 vividly highlight the 
degree of genomic and transcriptomic heterogeneity. 
These aforementioned points are important because drug's 
effectiveness cannot be generalized to all patients. In 
personalized medicine, a person's genome is compared 
with the consensus reference genome to choose the most 
effective therapeutic strategy on the basis of obtained 
information. In this approach, the drug effectiveness is 
already predicted, and the most appropriate medication 
with the most effective dose is applied to the patients (23). 

Apart from genomic and transcriptomic alterations, it 
is critical to take into account the cellular nature of 
Cancer Stem Cells (CSCs) as the origin of ATC (36-38). 
While it is expected to have the same specific cancer 
stem cell gene pattern in these cells due to the stemness 
state we practically observe the heterogeneous pattern of 
cancer stem cell gene expression on the cells (Table 3). 
Hence, personalized medicine should be based on 
systemic inspection of data for the best results. 

 
Signaling pathway inhibitors and CSCs 

The majority of genetic alterations in ATC 
tumorigenesis act through two signaling pathways 
including PI3K/Akt/mTOR and RAF/MEK/ERK 
pathways. The function of these pathways is a common 
and important mechanism in the development and 
progression of cancer (41-43). It is now increasingly 
becoming clear that PI3K/Akt/mTOR signaling 
pathway is involved in thyroid tumorigenesis, 
particularly in ATC (44,45). This pathway is an 
important regulator of cell cycle progression, 
apoptosis, sodium/iodide symporter (NIS) expression 
and self-renewal. RAF/MEK/ERK signaling pathway 
is also involved in drug resistance, metastasis, 
angiogenesis, differentiation, apoptosis and cell cycle 
progression (35,46,47). The increase in genetic, 
cellular and molecular knowledge about the 
carcinogenesis process has introduced new drugs with 
the targeted-therapy application. These drugs are multi-
target and affect many cancer stem cell signaling 
pathways. In this way, the risk of adverse drug 
reactions (ADRs) and side effects is reduced. On the 
other hand, it can also be unique due to patient genetic 
variations (48). Therefore, one of the options for ATC 
therapy would be to use drugs that could be effective 
with respect to an individual's genetic profile (23,49-
51). For instance, knowing the underlying mechanisms 
of NIS could be beneficial for the immunotherapy of 
the disease. A number of available targeted drugs that 
act on PI3K/Akt/mTOR and RAF/MEK/ERK pathways 
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and also signaling pathways involved in CSCs are listed in Table 4. 
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Table 3. Phenotypic survey of CSC markers in anaplastic thyroid cancer cell 

lines 

  Cell line   CSC 
characteristics KTC-2 C643 ACT-1 SW1736 8505c 

t +   +  ABCG2 

  +    +    Oct-4 

+    +    -  ALDH 

  +    +    SOX2 

  -    -    Nestin 

+    +    -  CD13 

-    -    -  CD15 

+    +    +  CD44 

+    +    -  CD90 

-    +    -  CD17 

-  +  -  +  -  CD133 

+    +    +  CD166 

-    +    -  CD326 

-    +    +  
Tumor 
formation 

-    +    +  
Colony 
formation 

(39) (35, 40) (39) (35, 40) (39) References 
ABCG2: ATP-binding cassette sub-family G, Oct4: octamer-binding transcription factor 4, SOX2: 
SRY-box containing gene 2, ALDH: aldehyde dehydrogenase. 

 
 

Table 4. Summary of important signaling pathways inhibitors in ATC therapy* 

IC50 Target Compound PI3K/Akt/mTOR Pathway 

0.5 μM, 0.57 μM, 0.97 μM, respectively. PI3Kα/δ/β LY294002 PI3K inhibitor 
52 nM, 166 nM, 116 nM, 262 nM, respectively. p110 α/β/δ/γ BKM120  

39 nM, 36 nM, 23 nM, respectively. PI3Kα/δ/γ SAR245408  
5 nM, 27 nM, 7 nM, 14 nM, respectively. PI3Kα/β/δ/γ GDC-0980  

14 nM PI3Kα CH5132799   
2 nM, 10 nM respectively.  mTORC1/2 Torin 1 mTOR inhibitor 

10 nM mTORC1/2 KU-0063794  
 mTORC1/2 Palomid 529  

7 nM mTORC1/pS6K, mTORC2/P-AKT WYE-687  
9 nM mTORC1/pS6K, mTORC2/P-AKT WAY-600  

4 nM, 5 nM, 7 nM, 75 nM, 6 nM, respectively. p110α/γ/δ/β, mTOR (p70S6K) BEZ-235 Dual PI3K/mTOR inhibitor 
0.019 nM, 0.13 nM, 0.024 nM, 0.06 nM and 0.18 nM, 0.3 nM, 

respectively. 
P110α/β/γ/δ, mTORC1/2 GSK-2126458  

1.8 nM, 2.1 nM, 1.6 nM, 1.9 nM and 16 nM, respectively. PI3Kα/β/δ/γ,  mTOR PF-04691502  
0.4 nM, 5.4 nM and 1.6 nM, respectively. PI3Kα/γ, mTOR PKI-587  

2 nM, 7 nM, 16 nM, 14 nM and 3 nM, espectively. PI3Kα/β/γ/δ, mTOR PKI-402  
8 nM, 12 nM, 65 nM, respectively. Akt1/2/3 MK-2206 2HCl Akt inhibitor 

4.7 μM Akt Perifosine  
2 nM, 13 nM, 9 nM, respectively. Akt1/2/3 GSK690693  
5 nM, 18 nM, 8 nM, respectively. Akt1/2/3 GDC-0068  

32 nM, 17 nM, 47 nM and 85 nM, 20 nM, respectively. 
Akt1/2/3, p70S6K/PKA, AGC kinase 

family 
AT7867  

   RAF/MEK/ERK Pathway 
31 nM B-RAF (V600E) PLX4032 RAF inhibitor 

0.13 nM B-RAF GDC-0879  
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Continuance of Table 4. 

 

13 nM 
B-RAF (V600E),c-Raf-1(Y340D and 

Y341D), B-RAF 
PLX4720  

0.8 nM B-RAF (V600) Dabrafenib  
105 nM, 34 nM and 29 nM, respectively. B-RAF, B-RAF (V600E), C-RAF-1 AZ628  

0.92 nM, 1.8 nM, respectively. MEK1/2 trametinib MEK inhibitor 
17 nM MEK1/2 PD 184352  

0.005-2 μM MEK1/2 Pimasertib  
7 nM MEK 1/2 AZD8330  

 MEK1/2 PD318088  
4 nM and 1 nM, respectively. ERK1/2 SCH772984 ERK inhibitor 

   Stem Cell Pathways 
56 nM TGFβ receptor I LY2157299 TGFβ inhibitor 

14.3 nM TGFβ receptor I SB 525334  
38 nM and 300 nM, respectively. TGF-β receptor type I/II LY2109761  

 TGF-β production Pirfenidone  
18 nM ALK5, TGF-β receptor type I/II GW788388  
3 μM Wnt/β-catenin/TCF ICG-001 Wnt inhibitor 
27 nM Wnt secretion IWP-2  
180 nM Wnt pathway IWR-1  

 Wnt pathway KY02111  
74 pM Wnt3A Wnt-C59  
4 nM γ-secretase RO4929097 Noth inhibitor 

10.9 nM, 12.1 nM, 12.0 nM and 14.1 nM, respectively. γ-secretase, Aβ42, Aβ40, Aβ38 LY450139  
2.6 nM and 2.9 nM, respectively. γ-secretase, APPL YO-01027  

0.078 nM and 0.39 nM, respectively. γ-secretase LY-411575  
239 nM-249 nM β-secretase LY2811376  

3 nM hedgehog GDC-0449 Hedgehog inhibitor 
1.3 nM (mouse) and 2.5 nM (human), respectively. Smoothened, Hedgehog signaling LDE225  

 Smoothened, Hedgehog signaling LY2940680  

5.8 nM and 4.6 nM, respectively. Smoothened, Hedgehog signaling PF-5274857  

1.2 nM and 20 nM, respectively. Smoothened receptor, Smoothened agonist SANT-1  

* The sources of data are http://clinicaltrials.gov (17), http://medchemexpress.com (18) and http://selleckchem.com (19).  

 
 
The impact of anti-cancer drugs is measured based 

on the fact that all cancer cells are equally dangerous. 
Most of these drugs only target non-CSCs and 
consequently they merely shrink the size of the tumor 
while being of little benefits to patients in long-term 
(52). CSCs constitute approximately 0.1% of all 
tumor cells, have limited ability to reproduce and 
have little contribution to a tumor diameter. Even 
though, these cells have an important role in relapse 
and resistance to chemotherapy and radiotherapy (53). 
Pharmacogenetics is a new branch of science which 
examines the individuals’ potential response to 
different drugs and thus provides a fertile ground for 
answers to questions about people's different 
reactions to a variety of treatments (54,55). Hence, 
this knowledge can assist us in developing specific 
targets for ATC therapy. However, this knowledge 
suffers from the objection of putting less attention on 

the role of CSCs (56). Characteristics of CSCs 
originate from specific signaling pathways including 
Wnt, TGFβ, Notch and Hedgehog (57). It is thought 
that these cells could be potential targets for the anti-
cancer drug in ATC targeted therapy (58). Reaching 
this goal requires strategies for true identification and 
isolation of CSCs because specific markers for these 
cells have not been reported yet (39). Preclinical and 
pharmacokinetic data have shown that chemotherapy 
that targets both CSCs and cancer cells reduces the 
risk of drug resistance and relapse by decreasing the 
number of CSCs. 
 
Challenges 

Personalized medicine has been gradually 
becoming more common in medicine and seems to be 
one of the most important medical fields in the future. 
Nevertheless, its use potentially poses serious 
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challenges in data privacy for patients mainly due to 
revealing the patient’s susceptibilities to different 
types of diseases according to genome sequencing 
data (1). Hence, considering ethical concerns are 
highly crucial. The other concern is the high volume 
and validity of whole genome sequencing (WGS) as 
well as whole exome sequencing (WES) data which 
necessitate the use of upgraded software and 
appropriate infrastructures (6). Personalized medicine 
in cancer treatment as an efficient approach is based 
on individual patient characteristics. However, so far 
its clinical application is limited only to a few genes 
that due to the heterogeneous nature of cancer require 
further progress in the field (55). This problem would 
be more complicated when we consider the 
heterogeneity of ATC cell lines as the basis of our 
current knowledge from ATC (37). Also, in order to 
achieve more effective treatment strategies and 
prevent drug resistance and relapse, personalized 
medicine needs to progress so that it is able to 
identify CSCs for their effective targeting (59).  
 
Future prospects 

Personalized medicine has opened a new horizon 
for cancer treatment. However, for its practical 
application, we still need further progress in the field 
of basic sciences, pharmacogenetics and drug design. 
Researchers have been always looking for new ways 
for efficient diagnosis and treatment of cancer so as to 
reduce cost and side effects in patients. In recent 
years, methods of cancer therapy have been gradually 
changing from conventional therapy with toxic and 
nonspecific chemicals to smart and effective use of 
targeted therapy. The importance of personalized 
medicine in ATC therapy is related to its deep 
discrimination of disease nature. This allows 
oncologists to be aware of cancer’s molecular stage 
even before the onset of clinical symptoms, and, 
consequently, appropriate treatment can be applied. 
Actually, in individualized medicine, the treatment 
policy could be tailored according to a patient’s 
background information which in turn would result in 
reducing treatment cost, side effects, drug resistance 
and risk of failure. Personalized medicine can also be 
effective in the management of ATC patients and the 
prevention and early intervention, especially for high-
risk people (14,23,48). To pave the way for 
personalized medicine, human specimens are an 
invaluable source of data for biomodeling of 
diagnostic systems. Hence, the establishment of 
standardized biobanking would be the basis for 

facilitated data mining (10).  
 
Conclusion 
 

Various types of genetic variations cause a 
difference in human genomes between individuals. To 
appoint the best strategy for ATC treatment, 
personalized medicine uses different data types such 
as a patient’s genetics and clinical background to 
elucidate the molecular basis of the disease. This 
approach will inevitably reduce patients’ cost due to 
prescribing appropriate dose and ruling out ineffective 
medication options. In practice, it is compulsory to 
pay more attention to CSCs as the origin of ATC in 
pharmacogenetics studies in order to improve the 
quality of personalized medicine. Notably, the 
practical application of personalized medicine is still 
in its infancy and therefore performing well-designed 
randomized clinical trials will make a solid ground for 
its future expansion. Collectively, to achieve these 
goals, a widespread and systemic collaboration 
between biologists and clinicians is essential to 
ultimately create a breakthrough in targeted therapy 
and personalized medicine of ATC. 
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