
Subramanian et al. J Transl Med          (2020) 18:472  

https://doi.org/10.1186/s12967-020-02658-5

REVIEW

Precision medicine in the era of arti�cial 
intelligence: implications in chronic disease 
management
Murugan Subramanian1,2, Anne Wojtusciszyn3, Lucie Favre3, Sabri Boughorbel4, Jingxuan Shan2,5, 

Khaled B. Letaief6, Nelly Pitteloud3* and Lotfi Chouchane1,2,5* 

Abstract 

Aberrant metabolism is the root cause of several serious health issues, creating a huge burden to health and lead-

ing to diminished life expectancy. A dysregulated metabolism induces the secretion of several molecules which in 

turn trigger the inflammatory pathway. Inflammation is the natural reaction of the immune system to a variety of 

stimuli, such as pathogens, damaged cells, and harmful substances. Metabolically triggered inflammation, also called 

metaflammation or low-grade chronic inflammation, is the consequence of a synergic interaction between the host 

and the exposome—a combination of environmental drivers, including diet, lifestyle, pollutants and other factors 

throughout the life span of an individual. Various levels of chronic inflammation are associated with several lifestyle-

related diseases such as diabetes, obesity, metabolic associated fatty liver disease (MAFLD), cancers, cardiovascular dis-

orders (CVDs), autoimmune diseases, and chronic lung diseases. Chronic diseases are a growing concern worldwide, 

placing a heavy burden on individuals, families, governments, and health-care systems. New strategies are needed to 

empower communities worldwide to prevent and treat these diseases. Precision medicine provides a model for the 

next generation of lifestyle modification. This will capitalize on the dynamic interaction between an individual’s biol-

ogy, lifestyle, behavior, and environment. The aim of precision medicine is to design and improve diagnosis, thera-

peutics and prognostication through the use of large complex datasets that incorporate individual gene, function, 

and environmental variations. The implementation of high-performance computing (HPC) and artificial intelligence 

(AI) can predict risks with greater accuracy based on available multidimensional clinical and biological datasets. AI-

powered precision medicine provides clinicians with an opportunity to specifically tailor early interventions to each 

individual. In this article, we discuss the strengths and limitations of existing and evolving recent, data-driven tech-

nologies, such as AI, in preventing, treating and reversing lifestyle-related diseases.
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Introduction
�e average lifespan of humans has more than doubled in 

the last two hundred years, largely due to modern medi-

cine and public health initiatives. However, an extended 

lifespan is associated with increases in various types 

of diseases among which noncommunicable diseases 

(NCDs), also commonly referred to as chronic diseases. 

Recent evidence indicates that chronic inflammatory 
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diseases are the most significant cause of death world-

wide, with over 50% of all deaths due to inflammatory 

conditions. For this review, we collectively refer to the 

following as chronic diseases: type 2 diabetes, obesity, 

cardiovascular disease (CVD), metabolic associated fatty 

liver disease (MAFLD), cancer, chronic lung and kidney 

disease, autoimmune and neurodegenerative diseases [1]. 

Today, our genes function in a world that is completely 

different from the one they were designed for and mod-

ern humans are subjected to an environment that has 

changed tremendously over the past century. �e genetic 

predisposition to various diseases differs, from person 

to person and non-genetic factors pose high attributable 

risks, often assessed between 80 and 90% of the total risk 

[2, 3]. �e Global Burden of Disease (GBD) study, which 

measured the disease burden of behavioral, environmen-

tal and occupational, and metabolic risks or clusters of 

risks from 1990 to 2016 in 195 countries concluded that 

the modifiable risk factors lead to nearly 60% of deaths 

worldwide [4]. Lifestyle-associated chronic diseases tend 

to have two common characteristics: one is homeosta-

sis disturbance and the second is metaflammation or 

chronic metabolic inflammation. �erefore, the patho-

physiology of chronic diseases points to the physiological 

rationale that connects inflammation with homeostasis 

[5]. It is now widely recognized that pathogenesis of dis-

ease is often the result of interactions between various 

genetic and environmental factors. �e sum of environ-

mental exposures (non-genetic) from conception until 

old age, throughout the lifespan is known as the “expo-

some”. �e term "exposome" is used to demonstrate the 

complexity and extent of exposures to toxic substances, 

nutrition, psychosocial stressors and physical impacts 

and their associated biological responses. Exposomics is 

the study of the exposome, based on the use of internal 

and external assessment methods [3, 6].

Precision medicine is an emerging field in therapeu-

tics based on an understanding of the genetic make-up, 

personal lifestyle, gene, and surrounding environment 

of an individual. We can use precision medicine to cus-

tomize prevention and treatment strategies for an indi-

vidual by identifying the factors that predispose this 

individual to a specific disease and defining the under-

lying molecular mechanisms that induce the disorder. 

�e use of “OMICS” or “EXPOsOMICS” along with 

wearable sensors as measurement/assessment meth-

ods have the potential to generate large amounts of data 

(big-data), thus requiring new digital approaches and 

resources for analyzing, integrating, and interpreting 

the massive amounts of data [7, 8]. Artificial intelligence 

(AI): an emerging field in which computer algorithms 

are equipped to carry out tasks independently of human 

guidance. To create an efficient AI algorithm, computer 

systems are initially fed data that is usually organized, 

indicating each data point has an algorithm-recognizable 

label or annotation. After sufficient sets of data points 

and their labels are presented to the algorithm, output 

is evaluated to ensure accuracy. Such AI algorithms are 

capable of observing, analyzing vast data and identifying 

patterns with incredible efficiency [9]. Artificial Intelli-

gence that we consider in this context includes machine 

learning (ML), deep learning (DL), and artificial neural 

networks (ANN). When AI is combined with high per-

formance computing approaches, AI allows us to estab-

lish and predict disease risk based on individual’s data 

[10]. Translating such enormous data into clinical knowl-

edge is now in the hands of ML/AI platforms. Promising 

results in predicting disease risk with greater accuracy 

have been shown on these platforms [11–14]. As AI 

enters the world of precision medicine, it can help organ-

izations to capitalize on precision medicine in many ways 

and help deepen our knowledge of the origins and course 

of chronic diseases.

�is review article discusses the potential contribu-

tion of lifestyle factors and biological factors -genetic, 

epigenetics and the microbiome to the development and 

progression of chronic inflammation. We will also high-

light the recent findings on the implementation of ML/

AI algorithms in personalized medicine to better manage 

and prevent chronic diseases.

In�ammation—a natural response
In recent years, there has been a substantial improvement 

in our understanding of the inflammatory mechanism 

and its contribution to health and diseases. Inflammation 

is the natural response of the body to harmful pathogens 

and stimuli in an effort to eliminate threat and/or repair 

damaged tissue [5]. However, in the early 1990′s a dif-

ferent type of inflammation was associated with over-

weight and obesity was identified as a persistent and 

maladaptive inflammatory response that had significant 

variations compared to classical inflammation [15]. Such 

systemic inflammation characterized as ‘low-grade’ was 

associated with elevated levels of inflammatory media-

tors and increased immune cell infiltration in peripheral 

tissues without altering the primary function of the tis-

sue [16, 17]. Human exposome can be categorized into 

external and internal. An increasing number of inves-

tigations have been addressing the human exposome, 

and the external exposome factors were well described 

in the recent articles [3, 6]. �ese factors were classified 

into four categories: (1) Lifestyle factors, such as diet, 

physical activity, sleep, smoking and alcohol; (2) Physi-

cal and chemical factors, such as temperature, pollution, 

pesticides, food contaminants etc.; (3) Ecosystem fac-

tors, such as food systems, climate, global warming, built 
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environment, dense population etc.; (4) Social factors, 

such as socioeconomic status, stress, social networks, 

cultural standards etc. [3]. (Fig. 1). An example of envi-

ronmental chemicals inducing inflammation was shown 

in a recent study: chemicals such as linuron (an herbi-

cide used in agriculture) and methyl carbamate (a com-

pound used in the fabric, polymer, and pharmaceutical 

industries), were shown to enhance astrocyte inflamma-

tion and neurological inflammation [18]. Accumulating 

evidences linked air pollution to inflammation and to 

further number of chronic diseases [19–21]. Likewise, 

the built environment is linked to the dynamics of infec-

tious diseases such as SARS CoV2, especially in contact-

borne diseases (aerosols or droplets), and climate change 

to vector-borne diseases [22, 23]. �e internal exposome 

that includes, (1) molecules generated endogenously 

from metabolic reactions, such as oxidative stress and 

lipid peroxidation, (2) infections, (3) gut microbiome, 

Adverse health

 outcome and 

chronic disease risk

Lifestyle factors

Diet, physical activity, smoking

  alcohol use etc.,

Physical & Chemical factors

Social factors

Ecosystem factors

Temperature, pollutiion, pesticides, 

food contaminants etc.,

    Socioecnomic status, stress 

    Social networks etc.,
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 built environment etc.,

Lipid peroxidation

Oxidative stress
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Fig. 1 Exposome—internal factors and external environmental factors role in health and disease. The totality of exposure from conception 

throughout the life course leads to multiple physiological changes in every individual. Internal exposures such as lipid peroxidation, oxidative stress, 

DNA damage, alterations in gut microbiome, and inflammation collectively plays a major role in health and chronic diseases



Page 4 of 12Subramanian et al. J Transl Med          (2020) 18:472 

and (4) other natural reactions that affects DNA and pro-

teins within the body (Fig.  1). In addition, social stress, 

phycological stress, and socioeconomic status were all 

linked to inflammation and disease risk [24–26]. Over 

the past decades, extensive efforts have been made and 

continue to be made in pursuit of identifying the risk fac-

tors for chronic diseases [27–29]. �e etiology of chronic 

diseases has now been convincingly linked to systemic 

chronic inflammation (SCI). An overwhelming body of 

evidences and a recent critical review have highlighted 

the importance of SCI and its correlation with health and 

chronic diseases [30].

Lifestyle factors: chronic in�ammation axis
�e April 2002 issue of Science discussed “�e puzzle 

of complex diseases” where diet and lifestyle were iden-

tified to be important contributors for major chronic 

diseases [31, 32]. Since then, numerous landmark epi-

demiological and biological studies have recognized 

that lifestyle related choices and behaviors have contrib-

uted significantly to the incidence of chronic diseases. 

Several studies have linked being overweight and obese 

with increased risk of chronic diseases, cancers, includ-

ing breast cancer (in post-menopausal women), endome-

trium, esophagus, pancreas, liver, colorectum and kidney, 

and others [33, 34]. A principal lifestyle factor influenc-

ing the onset of such diseases is the diet and nutrition of 

each individual [35, 36]. Evidences from preclinical inves-

tigations as well as observational and interventional tri-

als indicated that Western-type diet (WD) is a key driver 

of chronic, low-grade metabolic inflammation [37, 38]. 

�e consumption of calorie-rich foods: highly processed, 

ultra-processed (formulations of many ingredients), in 

addition to sugar sweetened beverages, fructose-contain-

ing sugars, trans fats and saturated fats, salt, and other 

food additives have been proven to influence inflamma-

tion and lead to chronic diseases [39–43]. In addition, 

WD and other popular diets have been shown to alter 

intestinal microbiome, which in turn helps shape inte-

grated immune responses. Prolonged consumption of 

such diets leads to disruption of the gut-barrier integrity, 

allowing harmful secretion of microbial products that 

can cause inflammation [44–47]. A recent study indicated 

that the consumption of high-fat ketogenic diets can alter 

the microbiome and also reduce the number of intestinal 

pro-inflammatory �17 cells which are critical for act-

ing against infectious disease [46]. �e consumption of 

fructose-rich diet has emerged as a major contributor to 

dyslipidemia, NALFD, insulin resistance, and diabetes. A 

recent elegant study has revealed that intestinal micro-

biota plays a major role in converting the dietary fructose 

to acetate, which in turn activates the hepatic lipogenesis 

[48, 49]. Numerous other dietary factors have also been 

shown to induce inflammation and lead to SCI. �ese 

include the consumption of highly processed foods that 

lack essential vitamins and micronutrients and the defi-

ciencies in minerals such as calcium, phosphorus, zinc, 

and magnesium [50–54]. Noteworthy, the recent Lancet 

Commission report on the global syndemic investigated 

how the human-driven methods of food production, food 

supply, consumption and its consequences impacting the 

environment and climate change. In order to counter the 

global syndemic of obesity, undernutrition and climate 

change the commission is urging the governments to 

reconsider the food supply chains, and business models 

[55].

Other lifestyle variables such as physical inactivity, 

lack of sleep, and tobacco smoking, can also activate 

multiple immune-inflammatory pathways leading to 

chronic inflammatory conditions [56]. Inadequate physi-

cal activity is a leading risk factor for chronic diseases 

and mortality. Globally, the age-standardized prevalence 

of insufficient physical activity was 27.5% in 2016 [57]. 

In addition, over 80% of the world’s adolescents are not 

physically active enough. Several studies have linked 

insufficient physical activity with inflammatory condi-

tions; even moderate physical activity has demonstrated 

to possess anti-inflammatory effects, further reducing 

the risk of chronic diseases and improving age-related 

multi-morbidity by strengthening the immune function 

[58, 59]. Tobacco-related morbidity and mortality is sig-

nificant worldwide since smoking increases the risk of 

developing a number of serious inflammatory conditions 

[60]. It has been well established that the nicotine present 

in the tobacco stimulates neutrophils, with subsequent 

release of certain molecules that promote inflammation 

increasing in turn the risk of chronic diseases [61, 62]. 

Excessive alcohol use damages not only gut and liver 

functions, but also multi-organ interactions, contribut-

ing to chronic inflammation and eventually, increasing 

the risk of chronic liver diseases and certain cancers [63]. 

Accumulating evidence suggests that the pathogenesis of 

psychological disorders, such as depression and anxiety, 

are also associated with chronic stress and neuroinflam-

mation [64]. Given the clear linkage of lifestyle factors 

with chronic diseases, their prominence in preventing 

diseases cannot be over-emphasized.

Biological factors: genetics and epigenetics
During recent years, there has been tremendous inter-

est in the discovery of genes that are responsible for 

chronic diseases. Genetic variation consists of differ-

ences in the DNA sequences of individuals manifesting 

as single nucleotide polymorphisms (SNPs), insertions 

and deletions, and other structural variations. Genome-

wide association studies (GWAS) that include analyses of 
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genetic variants across several human genomes in order 

to detect associations between genotype and phenotype. 

�ese have facilitated a remarkable range of discoveries 

in the biology of chronic diseases [65]. Several studies 

have found new genetic loci and genes that predispose an 

individual to a number of chronic diseases, such as type 

1 and type 2 diabetes, coronary heart disease, obesity, 

asthma, cancer, bipolar disorder, depression, rheumatoid 

arthritis, Crohn’s disease, and hypertension [66–73]. In 

addition, a recent large-scale GWAS conducted among 

the Japanese population has identified 320 independent 

signals in 276 genetic loci for 27 diseases among which 25 

novel loci, including certain loci specific to, the Japanese 

population [74]. Due to the diversity in genetic make-up 

and associated disease variants across populations, data 

obtained from one population may not be applicable to 

other populations [75]. However, understanding the vari-

ants, genes and mechanisms involved in specific diseases 

unlocks the possibilities for innovative treatments, diag-

nostic approaches and the efficient prevention of dis-

eases. Candidate gene and GWAS studies have identified 

numerous SNPs-genetic susceptibility loci across human 

genome which explain only a fraction of the inter-indi-

vidual variation for chronic diseases. To date, however, it 

has not been shown that solely defined genetic influences 

contribute to a large proportion of chronic disease inci-

dence at population level.

Beyond lifestyle factors and genetic susceptibility, 

another powerful determinant of the health outcome is 

epigenetics. Epigenetic alterations have emerged as sur-

rogate markers for environmental exposure. Recently, 

epigenetic mechanisms have been increasingly recog-

nized as a critical link between environmental exposure 

and disease risk [76]. Evidence indicates that maternally 

regulated environmental modulation of gene expression 

in offspring and gene-environment interactions are sig-

nificant determinants of disease risk in later life [77, 78]. 

In addition, using a unique cohort of more than 700 pairs 

of monozygotic and dizygotic twins, it was demonstrated 

that both genetics and environment-inherited epigenetic 

signatures plays major role in regulating gene expression 

in the offspring [79, 80]. Moreover, changes in epigenet-

ics are the core mechanisms by which early nutritional 

conditions can increase later-life susceptibility to obe-

sity and other chronic diseases [81]. Maternal malnutri-

tion influences altered epigenetic regulation in genes that 

control the metabolism of lipids and carbohydrates and 

those involved in the neural networks of central appetite-

energy homeostasis [82]. �is suggests that early experi-

ence may lead to changes in the epigenome influencing 

metabolic and physiological pathways, possibly chang-

ing individual’s phenotypic development and thus hav-

ing critical effect on their health. As stated above, several 

studies have indicated that dietary components induces 

alterations in the genome and have linked SNPs interac-

tions with the consumption of particular food and die-

tary patterns [83–85]. Nutrients and other environmental 

factors, either directly or indirectly, can impact the levels 

and turnover of epigenetic signatures (DNA methylation, 

acetylation of histones) thereby regulating the expres-

sion of messenger RNAs and non-coding RNAs that have 

been implicated in multiple chronic diseases. In sum-

mary, epigenetic mechanisms have been shown to be 

associated with multiple lifestyle factors or environmen-

tal exposures, including overnutrition, undernutrition, 

physical activity, stress, pollutants, and obesity, which 

have in turn been linked to chronic diseases [86–89].

Gut microbiome
Multiple studies have discovered that the microbiome 

impacts almost every aspect of human health, and that 

the microbial composition, which differs from indi-

vidual to individual, can be a key component in diverse 

manifestations ranging from gaining weight to develop-

ing stress and depression [90]. Some studies on human 

or mice microbiome have indicated that this variability 

begins with variations in host genetics [91, 92]. Several 

other parallel studies have found that the environment 

is dominant over host genetics in the development of 

human intestinal microbiota [93, 94]. A recent study, 

which looked into factors that influence the intestinal 

microbiome composition across nine different primate 

species and four human communities subject to vari-

ous subsistence habit, identified environmental factors 

as the main driver of intestinal microbiome composi-

tion when compared to host species phylogenies [95]. In 

addition, the intestinal bacteria in four Himalayan pop-

ulations (�aru, Raute, Raji and the Chepang) differed 

according to their dietary lifestyles [96]. Such findings 

show that diet can dominate phylogenetic development 

of gut microbiome composition. Acute dietary changes 

(four days) was sufficient enough to bring about signifi-

cant alteration to the human gut microbiota composition 

[97]. In a recent study that investigated on Irish traveler’s 

intestinal microbiome shown that microbiota is consid-

erably different from that of a non-traveler settled popu-

lation. However, the non-travelers (settled) Irish contain 

microbiota similar to people lives in industrialized soci-

ety with a comparatively higher risk of chronic disease. 

Most travelers contain an ancient of microbiome that 

protects themselves from various chronic inflammatory 

conditions [98]. Moreover, microbiota-accessible carbo-

hydrates (MACs) serve as an energy source for gut bacte-

ria, resulting in the production of short chain fatty acids 

(SCFAs) which benefits the host. Further, these SCFAs 

including butyrate and propionate have multiple effects 
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on signaling pathways including energy homeostasis, 

carbohydrate and lipid metabolism, and inhibition of 

inflammatory signals [99, 100].

Moreover, evidence has shown that microbial coloni-

zation of the infant occurs at birth through the vaginal 

canal and also some by breastfeeding and skin-to-skin 

contact. Babies delivered by caesarean section lack some 

strains of gut bacteria [101]. Furthermore, environmental 

exposure early in life has a strong effect on a child’s intes-

tinal microbiome, and studies have linked environmental 

factors during infancy with a subsequent risk of develop-

ing allergies and asthma [102]

Precision medicine
In the last decade, strategies to advance precision medi-

cine have attracted considerable investment in develop-

ing new treatments, understanding more about disease 

mechanisms, and eventually preventing disease. Pre-

cision medicine focused on identifying the effective 

approaches and the tailored treatment based on an indi-

vidual’s genetic, environmental, and lifestyle factors. As 

explained above, we have undeniable evidence of human 

biological diversity in both health and disease, as shown 

by the findings of the Human Functional Genomics Pro-

ject (HFGP) focused on 500 healthy adult subjects [103]. 

A number of studies have illustrated this explicitly by 

analyzing immune cells (cytokine) as an endpoint, show-

ing that the cytokine types and levels vary depending 

on environmental factors (e.g., season driven), genetic 

history, and intestinal microbiome composition [104]. 

Furthermore, the latest study from the HFGP has shown 

that 11 different kinds of host factors together accounted 

for up to 67% of inter-individual variation in activated 

cytokine production in healthy subjects [105].

Overall, interpersonal variability in diet, lifestyle, sleep, 

stress, socioeconomic status, geography, early life expe-

riences and exercise habits combined with gut microbi-

ome, genetic background, metabolism, inflammatory 

status, are all critical factors in determining an individ-

ual’s heath and risk for disease (Fig.  2). In addition, the 

exposure of individual to environmental hazards is not 

constant and can change throughout their life, and also 

the effect of the exposures can vary depending on an 

individual’s life stage. Environment-wide association 

studies (EWAS) have been proposed to examine new 

environmental factors in disease risk [106]. �erefore, the 

need of every individual is complex and require in-depth 

assessment (deep phenotyping) before interventions can 

be confidently applied (Fig. 2).

Deep phenotyping and arti�cial intelligence
Precision oncology, AI can be used to develop a drug 

combination centered on a patient’s own biopsy and 

adopt N-of-1 medication recommendations [107]. Across 

multiple specializations, especially in radiology AI-based 

algorithms have already shown improvement in diagnos-

tic accuracy and performance [108–111]. �e US Food 

and Drug Administration (FDA) has licensed many AI 

Fig. 2 Deep phenotyping and artificial intelligence for health promotion and chronic disease prevention. Deep phenotyping provides an entire 

molecular profile of an individual’s physiological status. When longitudinally tested, the pathways can be tracked to identify the transformation 

from a health to a disease. Various omics technologies along with other physiological measurements will be used to molecularly characterize 

an individual’s risk for disease. Further implementation of a systems approach to the big-data analysis and integration will provide a platform for 

machine learning and artificial intelligence in clinical decision-making for early disease risk identification and prevention
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systems to promote medical imaging evaluation, includ-

ing the detection of abnormal lesions that may progress 

to cancer [112]. A recent work highlights how AI and the 

advancement of technologies together are empowering 

the aim of personalized and precision medicine [113].

Machine learning is a key for multi omics data integra-

tion and there are several aspects in which data types are 

combined and their relationships are explored [114]. One 

of the large prospective cohort studies the UK Biobank 

project has collected deep genetic and phenotypic data 

including biological measurements, lifestyle markers, 

blood and urine biomarkers, and brain imaging from 

500,000 individuals. �is project has provided research-

ers with opportunities to search for genetic associations 

with disease risk and has resulted in several publications 

[115]. In addition, a precision medicine screening study 

that introduced a platform of deep quantitative multi-

modal phenotyping including genomics, metagenomics, 

advanced imaging, metabolomics, clinical testing and 

family history, provided a comprehensive, predictive, 

and personalized assessment of individuals health and 

chronic disease risk [116].

Further to big data obtained from deep phenotyp-

ing, a recent study empowered its participants with an 

additional behavioral coach. �e Pioneer 100 wellness 

project (P100) was an initial effort to obtain and analyze 

large omics data sets to correlate molecular networks 

in 108 healthy individual. �is study performed whole 

genome sequencing, proteome, microbiome, metabo-

lome, recorded clinical data, daily physical activity, and 

sleep patterns for every three months over a nine months 

period. �e investigators established personal, dense, 

dynamic data clouds for each participant and carried 

out an integrated analysis of six different data types. Fur-

ther, these data-driven insights combined with behavio-

ral coaching significantly improved the wellness of the 

participants with regard to nutrition, inflammation, dia-

betes and CVDs [117]. A similar study performed deep 

longitudinal omics profiling along with wearable moni-

toring for 109 individuals who were at increased risk for 

diabetes. �ey utilized multi-omics including genome, 

transcriptome, immunome, metabolome, proteome, and 

gut microbiome measured for up to eight years (median, 

2.8  years). Such a deep analysis for this long period of 

time allowed the recognition of 67 clinically action-

able health outcomes, including the cardiovascular dis-

ease risk [118]. Furthermore, in order to understand the 

molecular changes of the ageing process and associated 

disease risk, a recent study performed longitudinal and 

deep multi-omics profiling from 106 healthy individuals 

aged between 29 to 75  years and analyzed how diverse 

types of ‘omics’ results combined with clinical markers, 

correlated with age. �is study identified various types 

of aging patterns called ’ageotypes,’ based on the types of 

molecular pathways that have evolved over time in a spe-

cific person. Such ageotypes provides new possibilities 

for the design of early diagnosis and treatment interven-

tions that may slow down the aging process depending 

on the particular biology of each individual [119].

Machine learning has been widely applied to the pre-

cision nutrition field to customize a personalized diet 

aimed to prevent or manage diet related diseases [120, 

121]. One landmark study has successfully used a preci-

sion nutrition approach and has created a personalized 

diet to predict blood glucose response by considering 

biochemical, anthropometrics, dietary intake, physical 

activity, and gut microbiota data in an integrated frame-

work. In this study, 800 healthy and prediabetic indi-

viduals were examined and their responses to the food 

were measured a total of 46,898 meals. �e investigators 

adopted an ML/AI algorithm that precisely predicted 

postprandial glycemic responses (PPGRs) to meals. �e 

ML/AI predictions were validated in an independent 

100-individual cohort. Finally, a blinded, randomized 

controlled intervention based on an algorithm predicted 

diet resulted in significantly lower PPGRs and consist-

ent changes in gut microbiota composition [122]. Recent 

independent similar studies using the personalized nutri-

tion strategy for PPGRs to diet was confirmed in healthy 

individuals in an American population [123, 124]. More-

over, ML/AI is transforming the electronic health record 

(EHR) field and over time EHRs powered with AI were 

shown to reveal more about diseases. �e ML/AI, tools 

applied to the health records of patients in EHRs and 

accurately predicted their probability of acquiring or 

developing chronic diseases [125].

AI medical assistants
�e management of chronic disease requires regular 

monitoring and recommendations. Virtual medical assis-

tants using AI have recently matured and are being used 

in various products. AI assistants for diabetes have been 

shown useful to control patient conditions. For example, 

Onduo is a company that provides a virtual coaching via 

text messages through a mobile app. It uses AI technol-

ogy for food recognition, glucose sensor and physical 

activities to provide recommendations. Other examples 

of startup companies are Virta, Wellpepper or Accolade. 

Another interesting solution is provided by DayTwo. It 

gives a personalized nutrition recommendation based on 

subject’s gut microbiome. �e suggested meals are cho-

sen among a large database of more than 100,000 foods 

to keep the glycemic range under control [123].

For cardiac diseases, AI has shown major progress in 

the diagnosis of atrial fibrillation. �e latter is a common 

problem represents a 20 to 30% lifetime risk. It can occur 
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without symptoms and increase the risk of stroke. Alive-

Cor developed a system based on deep learning, single-

lead ECG sensor and physical activity via accelerometer 

data [126]. �e system is integrated with a smart watch 

and it is capable of predicting the occurrence of atrial 

fibrillation every 5 s. AI has also contributed in improv-

ing diagnoses based on cardiovascular imaging such 

as in echocardiography, MRI or ultrasound imaging. A 

comparative study of echocardiography interpretation 

of Ultromics system with cardiologist showed that more 

than 90 percent of the abnormalities found by board cer-

tified cardiologists overlapped with the ones found by the 

AI system [127].

Another example of the use of AI for chronic disease 

management is ResApp Health. �e system uses the 

phone microphone to analyze the subject’s breathing. 

�e AI algorithm is able to give an assessment of sev-

eral lung conditions with high accuracy such as chronic 

obstructive lung disease, pneumonia or chronic asthma 

[128].

Taken together, while high-throughput data genera-

tion strategies are becoming more advanced, quicker, 

and comparatively more affordable, researchers are 

increasingly gaining access to large amounts of molecular 

knowledge from human cohorts. �e volume of poten-

tial data is enormous, and it has been estimated that 

personal lifestyle-based data sum up to 1100 terabytes 

over a lifespan, with genetics and clinical data compris-

ing 6.4 terabytes, which is less than 1% of the total. Omics 

technologies, GWAS, EWAS, smartphone-based digital 

phenotyping, sensors, EHRs, wearable devices to moni-

tor physical activity, geography location data and climate 

data combined with AI have improved the prospect of 

implementing prevention and management strategies 

for chronic diseases [129–132]. �erefore, the use of 

such large multidimensional data requires the establish-

ment of structured collection and big data analytics, as 

well as multidisciplinary integration of high-performance 

computational technologies and integration of ML/AI. 

Hence, AI is quickly becoming a crucial methodology 

in the advancement of precision/personalized medicine 

[133, 134].

Recent developments in the �eld
One of the first large-scale, population-based, prospec-

tive studies which intended to enable comprehensive 

analyses of the genetic and non-genetic causes of diseases 

for middle and old age was the UK biobank study [115, 

135]. In addition, the most ambitious longitudinal study 

in precision medicine so far, the “All of Us” Research Pro-

gram, which aims to focus research on the link between 

environment, lifestyle and biology in health and disease 

is ongoing [136]. �e All of Us program intends to enroll 

one million people across America and plans to imple-

ment deep phenotyping by gathering genetic and health 

data (using EHRs, digital health data), geography, and 

biospecimens for biomarker review. Similarly, a project 

called “�e Project Baseline Health Study (PBHS)” was 

initiated to map human health by deep phenotyping to 

at least 10,000 individuals. �e PBHS study established a 

portal that incorporates and analyzes personalized, lon-

gitudinal, multidimensional data, with a greater focus on 

future than past. It further explore the biological hetero-

geneity of healthy individuals or individuals with chronic 

disease in detail for a longer period of time to create 

reference health status by integrating various aspects of 

health [137].

�e Human Exposome Project, 2020 from the Euro-

pean Union is the largest network of research programs 

aiming to address the environmental exposure such as 

diet, lifestyle, occupational and other environmental 

factors impact on human health (https ://www.human 

expos ome.eu/). Such data-driven approach to expo-

some reduces the conventional decision-making method 

and it may better determine the influence of chemical 

exposures on particular physiological systems proven 

to be affected. Subsequently this would help to create 

novel chemicals with reduced impact on human health 

and the environment [138]. Over the last two decades, 

omics, wearables, sensors, digital medicine and emerging 

innovative technologies together with AI have all made 

incredible advancements in the field of precision/person-

alized medicine. Furthermore, AI is being implemented 

in precision oncology to help clinicians in decision mak-

ing, with the aim of improving patient outcomes [139]. 

AI-based healthcare practices are already being imple-

mented in high-income countries; for instance, the UK 

and Singapore have recently launched national strategies 

to tackle chronic disease burden using AI. Data driven, 

AI-powered health care has the potential to clarify the 

landscape of findings and enable clinical decisions to dig-

itally identify, treat, and manage chronic conditions.

Data protection and privacy
�e frequent collection of personal health and environ-

mental data has been greatly improved through the use of 

decentralized sensors, measurement devices and mobile 

phones. A few decades ago, the measurement of blood 

pressure, glucose level, heart rate could only be done by 

medical experts. Nowadays such information can be con-

tinuously collected through mobile apps. �e rapid intro-

duction of AI technology into the precision medicine is 

advantageous, as AI offers an opportunity to increase 

the efficiency of health care delivery and the quality of 

patient care. However, it is necessary to mitigate the ethi-

cal risks of the AI implementation, which could include 

https://www.humanexposome.eu/
https://www.humanexposome.eu/


Page 9 of 12Subramanian et al. J Transl Med          (2020) 18:472  

data privacy and confidentiality violations, informed 

consent, and patient autonomy. In the world of precision 

medicine, big data and AI, it is of paramount importance 

that data protection legislation is in place that properly 

ensures the privacy of individuals, particularly patients. 

�e raise of privacy concerns related to the collection of 

health data has contributed in the significant progress 

on private AI methods such as Federated Learning or 

Differential Privacy in Machine Learning [140]. Coun-

tries around the world introducing laws to protect the 

privacy of their citizens. �e Health Insurance Portabil-

ity and Accountability Act (HIPAA) in USA the primary 

federal law to protect the privacy of health data. How-

ever, HIPAA has major gaps in current world because 

it protects only relevant health information produced 

by "covered entities" or their "business associates” [141, 

142]. Whereas in Europe, �e General Data Protection 

Regulation (GDPR) has been practical since May 25, 2018 

in all European Union (EU) member states and imple-

mented a new era of extensive data protection law within 

the EU [143, 144]. GDPR regulation has begun a sig-

nificant global shift in data protection, creating political 

campaigns that advocate more privacy for data subjects, 

stricter laws for private corporations and governments 

that control emerging and increasingly evolving technol-

ogy that pose a threat to data security.

Conclusion
Chronic diseases impose a substantial health and eco-

nomic burden worldwide, with nearly one in four adults 

suffering from one or more chronic health conditions. To 

date, the longitudinal cohort studies have set the stage 

for enhancing human health by identifying and defin-

ing the natural history of diseases, identifying their risk 

factors and finding novel biomarkers. Further, the use of 

biosensors and the advances in multi-omics have estab-

lished the foundation for better disease categorization, 

created targeted therapies, and have improved prognosis 

for many diseases. Most importantly, advances in digital 

medicine have helped to determine the underlying causes 

of diseases in individual patients.

Since most chronic diseases are the consequence of 

primary lifestyle factors, individuals can reduce the 

likelihood of developing chronic conditions by making 

healthier lifestyle decisions. Nutrition and lifestyle pref-

erences are affected by a wide variety of socio-economic 

factors including employment, education, geography, 

built environment, social networks, and a climate system. 

Combatting obesity and chronic diseases associated with 

diet needs careful examination of the social determinants 

of food systems, environment and climate change and 

specific public health strategies targeted at minimizing 

health disparities [55, 145, 146].

One aim of public health is promoting healthy life-

style and developing novel approaches to prevent, 

detect, and respond to diseases that commonly affect 

people. With the development of precision medicine 

and the advent of AI, it can be misconstrued that medi-

cine and health care is again drifting towards an indi-

vidualistic approach versus a community approach to 

controlling diseases [147]. On the contrary, precision 

medicine, AI, and our deep understanding of disease 

conditions offer a great opportunity to save resources 

for those countries that have practiced a one-size-fits all 

and a piecemeal approach in their public health think-

ing and programming and have not reaped adequate 

return for their investments. Chronic diseases, and 

their multifactorial nature, the advent of technological 

advancements in the form of AI, and the ‘precision’ in 

precision medicine have the potential to redefine and 

replace conventional public health approaches with 

a new holistic paradigm [148]. �ere remains a huge 

scope for introducing educational programmes, devel-

oping policies, and strengthening systems to capitalize 

on the rapid development in the field and customize 

activities for collectives (persons who share common 

traits and characteristics) rather than communities.
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