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Despite the known heterogeneity of type 2 diabetes and

variable response to glucose lowering medications, cur-

rent evidence on optimal treatment is predominantly

based on average effects in clinical trials rather than

individual-level characteristics. A precision medicine

approach based on treatment response would aim to

improve on this by identifying predictors of differential

drug response for people based on their character-

istics and then using this information to select optimal

treatment. Recent research has demonstrated robust

and clinically relevant differential drug response with

all noninsulin treatments after metformin (sulfonyl-

ureas, thiazolidinediones, dipeptidyl peptidase 4 [DPP-4]

inhibitors, glucagon-like peptide 1 [GLP-1] receptor

agonists, and sodium–glucose cotransporter 2 [SGLT2]

inhibitors) using routinely available clinical features. This

Perspective reviews this current evidence and discusses

how differences in drug response could inform selection

of optimal type 2 diabetes treatment in the near future. It

presents a novel framework for developing and testing

precision medicine–based strategies to optimize treat-

ment, harnessing existing routine clinical and trial data

sources. This framework was recently applied to dem-

onstrate that “subtype” approaches, in which people

are classified into subgroups based on features reflect-

ing underlying pathophysiology, are likely to have less

clinical utility compared with approaches that combine

the same features as continuous measures in probabi-

listic “individualized prediction” models.

Type 2 diabetes is a complex disease, characterized by

hyperglycemia associated with varying degrees of insulin

resistance and impaired insulin secretion and influenced

by nongenetic and genetic factors. Despite this, glucose-

lowering treatment is similar for most people. Current

type 2 diabetes guidelines recommend the choice between

glucose-lowering treatment options is based on clinical

characteristics (1), an approach in line with the central goal

of precisionmedicine: the tailoring of medical treatment to

an individual. After initial metformin, the most recent

guidelines recommend glucagon-like peptide 1 receptor

agonists (GLP-1RA) or sodium–glucose cotransporter

2 inhibitors (SGLT2i) in people with established ath-

erosclerotic cardiovascular disease, heart failure, or chronic

kidney disease, but this stratification only applies to up to

15–20% of people with type 2 diabetes (2,3). For the

remaining majority, evidence of benefit beyond glucose

lowering with these drug classes has not been robustly

demonstrated, and the optimal treatment pathway is not

clear (1). Evidence on the key considerations, notably

glucose-lowering efficacy, tolerability, and side effects, is

mainly derived from average treatment effects from clin-

ical trials. This means there is little information available

on whether a specific person in the clinic is more or less

likely than the average trial participant to respond well to

a particular treatment or develop side effects. Given this

knowledge gap, there is currently great interest in de-

veloping approaches that can characterize people beyond

the standard type 2 diabetes phenotype and use this het-

erogeneity to optimize the selection of glucose-lowering

treatment.

Any successful implementation of precision medicine in

type 2 diabetes is likely to be very different from the most

successful examples of precision medicine to date. These

have been in cancer and single-gene diseases such as mono-

genic diabetes, where expensive genetic testing defines the

etiology and the specific etiology helps to determine treat-

ment (4,5). In type 2 diabetes, unlike cancer, tissue is not
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available, and unlike rare forms of diabetes, current genetic
testing does not allow clear definition of the underlying

pathophysiology (6). This makes identification of discrete, non-

overlapping subtypes of type 2 diabetes much less likely (7).

In this Perspective, I focus on a fundamental aim of

precision medicine—the selection of optimal type 2 diabe-

tes treatment based on likely differences in drug effect

(henceforth, heterogeneity of treatment effect [HTE]). I

provide an overview of the evidence from recent studies of
HTE in type 2 diabetes and present a framework for using

existing routine clinical and trial data sources to develop

and test precision medicine–based strategies to optimize

treatment. The focus is on glycemic response, as nearly all

current evidence of HTE for diabetes drugs is for differ-

ences in HbA1c. However, the framework outlined can

easily be extended to evaluate HTE for nonglycemic end

points, including microvascular and macrovascular com-
plications. Type 2 diabetes is a highly prevalent condition

with relatively inexpensive treatment, meaning precision

medicine approaches based on inexpensive markers have

greatest potential to translate into clinical practice in the

near future. As a result, this article concentrates on the

use of routinely available clinical features to select opti-

mal treatment, although the principles discussed equally

apply to the use of genomic or nonroutine biomarkers (6).
Recent reviews of the pharmacogenomics of type 2 di-

abetes drug response are available elsewhere (8,9).

Why Type 2 Diabetes Glucose-Lowering Treatment Is

an Excellent Candidate for a Precision Medicine

Approach

Type 2 diabetes treatment is an excellent candidate for

a precision medicine approach for the following reasons. 1)

There are many different drug classes available after met-

formin with different mechanisms of action but the same

principal aim: to lower blood glucose. 2) At the individual

level, glucose-lowering response to each drug appears to
vary greatly (Fig. 1). 3) There is not a clear “best” overall

treatment outside a small proportion of individuals with

specific complications. For the remainder, current treat-

ment guidelines do not provide information on which drug

class is best for lowering blood glucose, for which people (1).

4) There is great heterogeneity in the clinical phenotype of

type 2 diabetes, making it plausible that people with dif-

ferent underlying pathophysiology will have varying responses
to the different drug classes, depending on the mechanism of

action of the drug.

Defining the Treatment Selection Approach in

Type 2 Diabetes

Despite the large biological noise in HbA1c, the majority of

people appear to respond when initiated on a glucose-

lowering drug (Fig. 1), and it is unlikely that many who

appear not to respond are true “nonresponders” (10).

Therefore, the aim of precision medicine in type 2 di-

abetes is not to identify people who will and will not

respond (which can only be achieved through repeated

crossover trial designs [11,12]) but instead to identify

people who are likely to have a greater relative benefit
from one drug class over another. This means that the

necessary first step is to identify whether there are markers

robustly predictive of greater or lesser response to each

drug class to a clinically significant degree. In the absence

of single markers with huge effect sizes, which have not

been found to date, the second step is to optimally use

multiple markers in combination to select treatment for

individuals.

Identifying Robust Predictors of Type 2 Diabetes

Treatment Response Using Routine and Trial Data

A focus on identifying routine clinical markers means HTE

can be evaluated using existing observational and trial data

sets that capture information on the drug response of

people initiating type 2 diabetes treatment. The conven-

tional approach is to examine HTE in clinical trials using
“one-at-a-time” subgroup analysis in which participants

are subcategorized based on a set of single characteristics

in turn, such as sex and age (old vs. young). This approach

does not provide credible evidence of differences in re-

sponse due to low statistical power, lack of multivariable

adjustment, and the risk of false-negative and false-positive

findings (13). This means very few “discovered” positive

subgroups are subsequently replicated (14,15).
While subgroup analysis of trials is limited, a combina-

tion of large observational routine clinical data sets and

trial data (increasingly available [16,17]) provides a power-

ful starting point to robustly evaluate HTE. Large anony-

mized routine clinical electronic health record databases,

such as the U.K.’s Clinical Practice Research Datalink (18),

provide a rich source of “real-world” information on de-

mographics, clinical features, diagnoses, laboratory tests,
and prescriptions. One two-step approach to “triangulate”

routine and trial data sources is shown in Fig. 2, on the

basis that the best evidence for robust HTE is replication of

effect in multiple independent data sets with differing

strengths and weaknesses. In step 1, due to the large sample

size and availability of head-to-head data for all drug classes,

routine clinical data are used for “discovery” analysis, with

assessment of drug-by-marker interactions to identify can-
didate features associated with differential response across

drug classes. As in these observational data drug selection is

not random and there are likely to be large differences in

baseline clinical features between treatment groups, careful

identification of confounders and statistical adjustment is

required. To further reduce bias, the use of causal inference

methods such as inverse probability of treatment weighting

(19), or target trial approaches where studies are set up to
emulate the design of an “ideal” randomized trial, should be

considered (20). Nonetheless, unmeasured confounding may

still bias findings, meaning a second step of external valida-

tion is required to confirm findings. In step 2, specific markers

associated with potentially clinically relevant differences in

drug response can be tested for reproducibility as prespeci-

fied hypotheses in clinical trial data sets where treatment

allocation is randomized and blinded and where there is
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systematic baseline assessment and follow-up, meaning the

risk of confounding is much lower (21). This two-step ap-

proach takes advantage of the larger, more heterogeneous

population in routine care data sets for feature discovery while
minimizing the risk of data mining in the smaller, richer trial

data sets.

What Clinical Features Alter Type 2 Diabetes Treatment

Response?

Recent studies have demonstrated clinically relevant dif-

ferences in response by clinical features for all noninsulin

glucose-lowering drug classes commonly used after met-

formin. Studies that do not adjust for baseline HbA1c are
not reported here, given the demonstrated risk of false

associations in such analysis (22).

Sulfonylurea and Thiazolidinedione Treatment

The first robust demonstration of HTE for type 2 diabetes
therapy used the routine and trial data framework pre-

viously described to evaluate differential response to sul-

fonylurea (SU) and thiazolidinedione (TZD) treatment.

Observational data from U.K. primary care data were

used as a discovery data set, in which it was demonstrated

that males without obesity (BMI ,30) have on average

a greater glucose-lowering response with SU compared

with TZD treatment, while, conversely, females with
obesity (BMI $30) have a greater response to TZD

than SU treatment (21). Differences in response in these

subgroups were then validated, and confirmed to hold

for long-term response, in randomized trial replication

data, with differences in effect size within these sub-

groups equivalent to the addition of another glucose-

lowering treatment (Fig. 3).

Dipeptidyl Peptidase 4 Inhibitors and GLP-1RA

With dipeptidyl peptidase 4 inhibitors (DPP-4i), the pro-

spective Predicting Response to Incretin Based Agents

(PRIBA) study demonstrated that markers of higher in-

sulin resistance are consistently associated with lesser
glucose-lowering response in non–insulin-treated partic-

ipants (23). Differences were clinically relevant; a sub-

group defined by obesity (BMI $30) and high triglycerides

($2.3 mmol/L) (31% of participants) had a response less

than half that of a nonobese, low triglyceride (,2.3 mmol/L)

subgroup (22% of participants) (6-month response 25.3

mmol/mol [20.5%] and 211.3 mmol/mol [21.0%], re-

spectively). Conversely, there was no evidence of an
association between markers of insulin resistance and

glucose-lowering response for non–insulin-treated people

initiating GLP-1RA (Fig. 4). Results were replicated in U.K.

primary care data. Interestingly, in insulin-treated peo-

ple but not in non–insulin-treated people, the same study

found that with GLP-1RA, clinical markers of low b-cell

function such as lower C-peptide and longer duration of

diabetes were associated with reduced glucose-lowering
efficacy (24). With DPP-4i, several other studies sup-

port the association between lower BMI, lower insulin

resistance, and greater response and also suggest a ben-

efit in glucose-lowering for people of Asian ethnicity

(25,26).

SGLT2i

Analysis of trial data have reported markedly greater

relative benefit with SGLT2i at higher baseline HbA1c

levels compared with DPP-4i or SU treatment (27,28).

Differences in response with SGLT2i have also been ob-

served by baseline renal function. While the reduced efficacy

Figure 1—Themarked individual-level variation in change in HbA1c at 6months (6-month HbA1cminus baseline HbA1c) by drug in the ADOPT

trial for 3,707 participants with a valid measure of HbA1c at 6 months. A negative change is represented an improvement in HbA1c. Mean (SD)

improvement in HbA1c was greatest at 6 months for SU29.4 (8.6) mmol/mol [0.9%], compared with metformin27.5 (8.1) mmol/mol [0.7%]

and TZD treatment 26.4 (8.6) mmol/mol [0.6%].
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of SGLT2i at estimated glomerular filtration rates (GFRs)

,60 mL/min/1.73 m2 is well established (29), pooled trial

analysis has demonstrated that this likely extends across the

normal range, meaning that people with baseline eGFR

.90 mL/min/1.73 m2 have a greater response compared

with those with eGFR 60–90 mL/min/1.73 m2 (30). In con-

trast, with DPP-4i, response is likelymaintained in people at

lower eGFRs (31). Early work by our group suggests that

these differential treatment effects for SGLT2i and DPP-4i

are replicated in U.K. primary care data (Fig. 5).

Figure 3—Five-year glycemic response (change from baseline in HbA1c) with TZD and SU treatment in males without obesity (BMI,30) (A)

and females with obesity (BMI$30) (B) subgroups in 1,232 participants in the ADOPT clinical trial (21). Data are presented as means6 SD at

each study visit frommixed-effectsmodels. A reduction (improvement) in HbA1c is represented as a negative value. For area-under-the-curve

(AUC) difference estimates, positive values favor SU, and negative values favor TZD. Adapted from Dennis et al. (21).

Figure 2—A “triangulation” approach using routine clinical and trial data to evaluate differences in drug response, and the strengths and

weaknesses of each data source.
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Factors Altering Treatment ResponseMayRelate to the

Underlying Mechanism of Action of Different Drug

Classes

The identified clinical features associated with HTE in

many cases relate to the known mechanisms of action of

the different drug classes. Such “plausibility of effect
modification” greatly strengthens the credibility of HTE

analysis (13). For TZD, in addition to the increased insulin

resistance with higher BMI, variation in response by sex and

obesity is likely to reflect associated differences in adipocyte

distribution and function, as these drugs primarily act on

adipose tissue (32,33). For SU and DPP-4i, which stimulate

insulin secretion by the b-cell, the association between

reduced insulin sensitivity and higher BMI possibly explains
greater response in nonobese people. However, this does

not explain the lack of association between insulin resis-

tance and glucose lowering for the other incretin-based drug

class, GLP1-RA; it is possible this difference could relate to

the added weight-loss effects of this medication class or that

GLP-1RA response was studied in an almost entirely obese

(and therefore insulin resistant) population (23). The lack of

GLP-1RA glycemic benefit in insulin-treated participants

with very severe endogenous insulin deficiency is also

consistent with the known role of potentiation of endog-

enous insulin secretion in their action. Effects on urinary

glucose excretion provide a likely explanation for the var-

iation in glucose-lowering efficacy of SGLT2i with baseline

HbA1c and eGFR (30,31).

How Can Differences in Treatment Response Inform

Selection of Optimal Treatment?

While evidence of robust differences in type 2 diabetes

treatment response is growing, there is current debate and

considerable uncertainty about how to translate this to

inform decision-making in clinical practice. Recent litera-

ture has focused on the following two approaches (Fig. 6).

The first approach is a “subtypes” approach, in which
people with type 2 diabetes are subclassified based on their

underlying pathophysiology (whether clinical, genetic, phe-

notypic, or biomarker traits) on the assumption that once

subtypes are defined, they will have utility to stratify ther-

apeutic decisions and other outcomes such as progression to

complications. This was recently and notably proposed by

Ahlqvist et al. (34) in a sex-stratified, data-driven cluster

Figure 4—Associations between markers of insulin resistance and HbA1c response with DPP-4i and GLP-1RA treatment in the PRIBA study

(n 5 593), in participants not on insulin cotreatment. Estimates denote the mean HbA1c change (mmol/mol) at 6 months (baseline HbA1c

minus 6-month HbA1c) per 1-SD higher baseline value of each marker. Associations were tested in a series of independent linear regression

models adjusted for baseline HbA1c and cotreatment change. Error bars denote 95%CI. Adapted from Dennis et al. (23). HOMA2-IR, HOMA

of insulin resistance; SHBG, sex hormone binding globulin; UCPCR, urine C-peptide creatinine ratio.
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analysis of people close to diabetes diagnosis that grouped

individuals with similar underlying pathophysiology using

five clinical features (age at diagnosis, BMI, HbA1c, and

HOMA-measured insulin resistance and insulin sensitivity)

in Scandinavian registry data. Importantly, similar-looking

subgroups were identifiedwhen the analysis was repeated in

multiple international population-based cohorts (35,36).
Subgroups showed differences in outcomes in observa-

tional follow-up, although differential treatment response

was not assessed. Several other data-driven classifications

have recently been proposed with substantial variation in

the features used for classification and the numbers of

subgroups identified (37–39), including genetically de-

fined clusters (40,41), but their utility to stratify treat-

ment response has similarly not been assessed.
The second approach is to use a person’s specific clinical

information in a probabilistic “individualized prediction”

approach. In this approach, markers reflecting underlying

pathophysiology are used as continuous traits to directly

predict an individual’s treatment response for each drug.

An individual’s specific information can then be used to

predict their likely best drug in terms of glucose-lowering

response (or, alternatively, to identify the absence of clin-
ically relevant differences in response across treatments),

and these predictions can guide selection of optimal treat-

ment. The model developed is specific to the outcome of

treatment response and can be deployed based on a person’s

current information at the point a decision to escalate

treatment is made. Although subtypes could then in theory

be specified based on the prediction of differential response

or optimal therapy, this would make little sense, as the

subtypes would be based on clinical parameters that vary

over time and are affected by treatment, meaning that for

an individual, subtype assignment is unlikely to be stable.

This proposed approach is consistent with the ideas un-

derlying the recently proposed “palette model” of diabetes

(7), which, at a specific point in time, positions an individual

with diabetes on a spectrum of phenotypic variation and
uses this position to predict likely outcome.

While the advantages and disadvantages of each ap-

proach in the context of selecting optimal treatment are

shown in Fig. 6, the fundamental difference between the

two approaches is that the subtypes approach assumes

homogeneity of differential treatment response for all indi-

viduals within a subtype, whereas the individualized pre-

diction approach allows for estimation of differential treatment
effects at the individual level. The use of individual-level

data means that the individualized prediction approach

will almost certainly provide more precise estimates of

treatment response, and thus more accurately guide op-

timal treatment selection, than approaches that lose in-

formation by classifying individuals into subgroups (42).

The same principles will apply to prediction of any other

outcome, for example, predicting disease progression or de-
velopment of microvascular and macrovascular complications.

Evaluating Performance of Strategies for Selecting

Optimal Treatment

Our group has recently applied a novel framework to

evaluate treatment selection models in type 2 diabetes.

Novel approaches are required in this context; conven-

tional measures of prediction model performance are of

Figure 5—Associations between baseline HbA1c and baseline eGFR (Chronic Kidney Disease Epidemiology Collaboration formula) and

HbA1c response at 6 months (baseline HbA1c minus 6-month HbA1c) with SGLT2i and DPP-4i treatment in U.K. primary care data (Clinical

Practice Research Datalink) (n5 20,965). Results are predicted values from a linear regression model including baseline HbA1c-by-drug and

eGFR-by-drug interaction terms (with each modeled as a restricted cubic spline with 3 knots), with additional adjustment for number of

diabetes treatments ever initiated, number of current diabetes treatments, age at treatment, duration of diabetes, sex, and BMI. Gray shading

represents 95% CI. A: Baseline HbA1c. B: Baseline eGFR.
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limited utility when evaluating treatment selection mod-

els (13), as the focus is not the overall ability of a model to

predict response but rather accurate identification of
treatment-by-covariate interactions that predict differ-

ences in response between treatments. At the individual

level these differences are unobservable (13), as at one

point in time the response of a person to multiple

different therapies cannot simultaneously be evaluated.

Our framework was applied to test head-to-head the

Ahlqvist clusters strategy against an individualized pre-

diction strategy for selecting optimal treatment, in post

hoc analysis of individual level data from two large clinical

trials (A Diabetes Outcome Progression Trial [ADOPT] and

Rosiglitazone Evaluated for Cardiac Outcomes and Regu-
lation of Glycaemia in Diabetes [RECORD]; n 5 8,798)

(43–45). This was important, as a key discussion point

raised in the Ahlqvist et al. study was that the clusters

identified could be used to “guide therapy” (34). In both

trials, participants were randomized to either SU, TZD, or

metformin treatment. The same five subtypes proposed

using the Scandinavian data were reproduced in ADOPT

using the same data-driven cluster analysis approach

Figure 6—Individualized prediction compared with classification into subtypes: advantages and disadvantages of two strategies to apply

a precision medicine approach in type 2 diabetes. A) Classification into subtypes. B) Individualized prediction.
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ia
b
e
te

s
jo

u
rn

a
ls

.o
rg

/d
ia

b
e
te

s
/a

rtic
le

-p
d
f/6

9
/1

0
/2

0
7
5
/4

3
1
3
5
0
/d

b
i2

0
0
0
0
2
.p

d
f b

y
 g

u
e
s
t o

n
 2

8
 A

u
g
u
s
t 2

0
2
2



(34,46). Then, within each subtype, average glycemic
response for each of the three treatments was estimated,

and the treatment associated with the greatest average

glycemic response was allocated as the optimal treatment

for all people assigned to that subtype. The utility of the

subtypes was compared with an individualized prediction

strategy that assigned optimal treatment on an individual

rather than subtype level, using a model that estimated

response for each drug for each participant based on their
specific features. Notably, only the simple routine clinical

features (sex, and BMI, HbA1c, and age at diagnosis as

continuous markers) were used for the individualized pre-

diction model; two features used to inform the cluster

analysis, HOMA-IR and HOMA-B (respectively, measures

of insulin resistance and insulin secretion), were not in-

cluded, as they are not routinely available in clinical practice.

Despite including only simple markers, the individual-
ized prediction strategy markedly outperformed the sub-

types strategy in the external validation trial data set

(RECORD trial; n5 4,057) (Fig. 7) (43). For each strategy,

the approach used was to define two subgroups of par-

ticipants: 1) a concordant subgroup whose randomized

treatment was the same as their predicted optimal treat-

ment and 2) a discordant subgroup whose randomized

treatment differed from their predicted optimal treat-
ment (47). The difference between the concordant versus

discordant subgroups was then contrasted for each strat-

egy, with a bigger difference indicating a more useful

treatment selection strategy. Where external test data

sets are available, this evaluative framework represents

a novel and cost-effective means of evaluating the utility

of treatment selection models, whether on their own or in

head-to-head comparison, and can be applied for other
outcomes as well as treatment response.

Future Directions: “omics” and Beyond HbA1c

While this Perspective has focused only on glycemic re-

sponse to diabetes treatment, the approaches outlined can

easily be extended to nonglycemic end points including

microvascular and macrovascular complications. The ideal

precision medicine approach in type 2 diabetes will max-

imize therapeutic benefit while limiting risks (48), which

will also require evaluation of HTE for side effects, glyce-

mic progression, and risk of microvascular or macrovas-
cular complications. Particular subgroups at higher risk of

common treatment-specific side effects are already estab-

lished for several drug classes; for example, the risk of

fracture with TZD is limited mainly to females (49), and

with SGLT2i females and those with a history of prior

infection are at greatly increased risk of genital infections

(50). Methods to overcome unmeasured confounding, such

as the prior event rate ratio, may have particular utility for
evaluating side-effect risk in observational routine care data

where allocation to therapy is not randomized (51,52). A

related but overlooked question for precisionmedicine, with

great clinical relevance, is whether the benefits and risks

of a treatment are positively associated. This is likely the

case for TZD; the risk of edema and likelihood of weight

gain increase with greater glucose-lowering response

(21,53), and this should be an important consideration
when choosing treatment. A further extension of the

current work would be evaluation of effects of higher-

order drug combinations. This will be possible in large

routine clinical data sets where substantial numbers of

patients are on specific combination therapies, although

robust validation approaches will be required.

A key question is how genetics can inform precision

medicine in type 2 diabetes. Proposed genetically defined
type 2 diabetes subtypes reflect and help to understand

Figure 7—Three-year glycemic response (change from baseline in HbA1c) with concordant and discordant subgroups using the subtypes

strategy and the individualized prediction strategy in the RECORD trial independent validation set (n5 4,057). Each strategy was developed

in the ADOPT trial (n 5 3,785). Data are presented as means (95% CI) at each study visit from mixed-effects models. A reduction

(improvement) in HbA1c is represented as a negative value. For area-under-the-curve (AUC) estimates, a more negative value represents

a greater response. Adapted from Dennis et al. (43). A: Subtypes strategy. B: Individualized prediction strategy.
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underlying pathophysiology (40,41). The clear advantage
of using genetics is stability, as subtypes defined solely by

genetics will be constant throughout life. At the moment it is

unknown whether the continuous polygenic scores under-

lying genetic subtypes can improve prediction models that

are based solely on routine clinical features and biomarkers.

For treatment response, individual genetic markers have

shown differences for specific treatments and may be of

clinical utility when genetic information is routinely avail-
able in the medical records (54,55). If clinically relevant

benefit can be demonstrated for polygenic scores and

implementation is cost-effective, such scores can similarly

be integrated into models based on routine clinical features.

A further exciting opportunity is the application of causal

inference, data-driven machine learning, and artificial

intelligence–based approaches to improve HTE predic-

tion accuracy and generalizability of findings from large
data sources such as electronic health records. Data-

driven approaches may be of particular utility when data-

bases start to incorporate high-dimensional genetic infor-

mation (56). One possibility is that individualized prediction

models developed with standard statistical methods based on

classical risk factors could be augmented with data-driven

classification approaches, if data-driven approaches are able

to improve prediction by capturing higher-order complex
traits missed by the standard methods.

Although existing data can be used to develop and test

candidate type 2 diabetes precision medicine approaches,

ultimately, prospective trials, as done in cancer and mono-

genic diabetes (4,57,58), will likely be needed to demon-

strate clinical utility. TriMaster, an ongoing three-way

crossover randomized trial due to report in May 2021, is

one such study in type 2 diabetes (NCT02653209). Tri-
Master will directly test the hypotheses that simple sub-

groups defined by baseline BMI and eGFR alter response

with DPP-4i, SGLT2i, and TZD treatment (59). Not only will

this provide the first prospective randomized evaluation of

a precision medicine approach for glycemic response, the

three-way crossover design will allow an “n of 1” analysis of

patient preferences regarding the three treatments when

they are tried in randomized order in blinded conditions.
However, running prospective trials to test potential can-

didate factors one at a time for personalization is not

a feasible, cost-effective, or efficient strategy. Future trials

could instead test specific precision medicine algorithms

based on multiple factors (potentially both clinical and

genetic features), to test whether use of an algorithm

results in improved outcomes for patients. One simple

trial design for this would be to cluster randomize health
centers (e.g., general practitioner practices in the U.K.) to

either receive or not receive an algorithm—comparing

centers with and without the algorithm would enable

evaluation of its effectiveness and efficacy. If two com-

peting algorithms or strategies need to be tested, this

could be done using three-way cluster randomization.

A final key challenge is implementation of algorithms,

which, to ensure patient benefit, should be not only effective

but transparent, reproducible, and ethically sound (60) and
which should be equally and freely accessible to all health

professionals and patients. A type 2 diabetes treatment

selectionmodel would likely be most appropriately positioned

within clinical practice software systems, so that it can be

automatically populated with relevant clinical information

from the electronic health record and function as a decision

aid at the point of care. Development of software infrastruc-

ture that can utilize routinely collected health records to
support delivery of such probabilistic algorithms will be

required before precision medicine can truly become

a reality for common diseases such as type 2 diabetes.

CONCLUSIONS

Recent demonstration of robust, clinically relevant differ-

ences in glycemic response suggest that a precision med-

icine approach to selecting optimal type 2 diabetes treatment

will soon be possible. The most practical way to implement

this in the near future will be to focus on routine clinical

markers, and the most accurate approach will be integration

of continuous features into individualized, probabilistic pre-
dictionmodels that can be deployed at the point a decision to

escalate treatment is made, rather than subtyping. Estimates

of differences in treatment response can augment the limited

existing stratification of people with type 2 diabetes based on

cardiovascular and renal comorbidity andwill be applicable to

everyone requiring glucose-lowering treatment. For people

for whom differences in response between treatments are

modest, this information is still important, as it can facilitate
selection of treatment based on other criteria. A framework of

discovery in routine data, followed by replication and testing in

existing clinical trial data sets, offers a low-cost and principled

way to evaluate the potential of precision medicine, applicable

to other chronic diseases in addition to type 2 diabetes.
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