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ABSTRACT

We study the limits of accuracy for weak lensing maps of dark matter using diffuse 21-cm
radiation from the pre-reionization epoch using simulations. We improve on previous ‘optimal’
quadratic lensing estimators by using shear and convergence instead of deflection angles. This
is a generalization of the deflection estimator, and is more optimal for non-Gaussian sources.
The cross-power spectrum of shear and convergence is an unbiased estimator of lensing power
spectrum which does not require knowledge of the source four-point function. We find that
non-Gaussianity provides a limit to the accuracy of weak lensing reconstruction, even if
instrumental noise is reduced to zero. The best reconstruction result is equivalent to Gaussian
sources with effective independent cell of side length 2.0 h−1 Mpc. Using a source full map
from z = 10 to 20, this limiting sensitivity allows mapping of dark matter at a signal-to-noise
ratio greater than 1 out to l � 6000, which is better than any other proposed technique for
large-area weak lensing mapping.

Key words: gravitational lensing – methods: N-body simulations – cosmology: observations
– cosmology: theory – dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

Gravitational lensing has been the most successful tool to directly
map the distribution of dark matter, and is an important component
of modern precision cosmology. Weak gravitational lensing has
developed rapidly in recent years, which allows the measurement
of the projected dark matter density along arbitrary lines of sight
using galaxies as sources. Recently, Smith, Zahn & Doré (2007)
have demonstrated the first cosmic microwave background (CMB)
lensing detection. The goal is now to achieve high-precision cos-
mological measurements through lensing, at better than 1 per cent
accuracy.

Galaxies are plentiful on the sky, but their intrinsic properties are
not understood from first principles, and must be measured from the
data. Future surveys may map as many as 1010 source objects. Us-
ing galaxies as lensing sources has several potential limits (Hirata
& Seljak 2004), including the need to calibrate redshift-space dis-
tributions and point spread function (PSF) corrections, to be better
than the desired accuracy, say 1 per cent. This will be challenging
for the next generation of experiments.

Some sources, such as the CMB, are in principle very clean,
since its redshift and statistical properties are well understood. Un-
fortunately, there is only one 2D CMB sky with an exponential
damping at l � 1000, which limits the number of source modes
to ∼106.

�E-mail: ttlu@cita.utoronto.ca (TL); pen@cita.utoronto.ca (U-LP)

The potential of detecting the 21-cm background from the dark
ages will open a new window for cosmological detections. Study-
ing the 21-cm background as high-redshift lensing source, as well
as the physics of the 21-cm background itself, will provide rich
and valuable information to the evolution of Universe. The num-
ber of modes on the sky is potentially very large, with numbers
of 1016 or more. For this reason, 21-cm lensing has recently at-
tracted attention. However, most of the reconstruction methods are
based on a Gaussian assumption (Cooray 2004; Pen 2004; Zahn &
Zaldarriaga 2006; Metcalf & White 2007; Hilbert, Metcalf & White
2007). In contrast to CMB lensing, where the Gaussian assumption
works well, non-Gaussianity in 21-cm lensing may affect the re-
sults. Non-linear gravitational clustering leads to non-Gaussianity,
and ultimately to reionization. In this paper, we will address the
problem of the lensing of pre-reionization gas.

21-cm emission is similar to CMB: both are diffuse backgrounds.
It is natural to apply the techniques used in CMB lensing. Hu
& Okamoto (2002) expand the CMB lensing field in terms of
the gravitational potential (or deflection angles), and construct a
trispectrum-based quadratic estimator of potential with maximum
signal-to-noise ratio (S/N). However, unlike CMB, the 21-cm back-
ground has a 3D distribution and is intrinsically non-Gaussian. A
fully 3D analysis is explored in Zahn & Zaldarriaga (2006), where
they generalize the 2D quadratic estimator of CMB lensing (Hu &
Okamoto 2002) to the 3D Optimal Quadratic Deflection Estimator
(OQDE).

A local estimator was proposed in Pen (2004), which as-
sumed a power-law density power spectrum. In this paper, we
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will design localized estimators for the lensing fields under the
Gaussian assumption, and apply the derived reconstruction tech-
nique to Gaussian and non-Gaussian sources. The influence of non-
Gaussianity can be measured by comparing the numerical results
between the Gaussian and non-Gaussian sources.

Quadratic lensing reconstruction is a two-point function of the
lensed brightness temperature field of the 21-cm emission. In this
paper, 3D quadratic estimators are constructed for the convergence
(κ), as well as the shear (γ ). Our method recovers the κ and γ

directly instead of gravitational potential or deflection angles. Our
estimators have in principle the same form as the OQDE, consisting
of the covariance of two filtered temperature maps. The OQDE re-
constructs the deflection angle, while our estimators reconstruct the
κ and γ fields. Our filtering process can be written as a convolution
of the observed fields. As presented in Appendix A and Section 4,
our combined estimator is unbiased, and equally optimal as the
OQDE for Gaussian sources. Our estimator has better performance
for non-Gaussian sources, and recovers three extra (constant) modes
for finite fields.

Other authors also developed reconstruction methods from alter-
native approaches. Metcalf & White (2007) give an estimator for
shear. They choose 2D slices at different redshifts, and then treat
these slices as independent source samples for the same lensing
structure. They neglect the information between these slices, so
the efficiency of reconstruction depends on the width of the slices.
Cooray (2004) expands the lensed field to higher order of the grav-
itational potential, and investigates the resulting corrections to the
lensed power spectrum.

This paper is organized as follows. The basic framework of lens-
ing and the reconstruction method is introduced in Section 2. The
numerical methods are presented in Section 3. The results are dis-
cussed in Section 4. We conclude in Section 5.

2 L E N S I N G A N D R E C O N S T RU C T I O N

Photons are deflected by the gravitational pull of clumpy matter
when they propagate from the source to the observer. This effect
can be used to map the mass distribution if we can measure the
distortion of an image. In this section, we will first review the
lensing theory, which serves to define our notation. We then develop
an optimal quadratic estimator using a maximum likelihood method.
The reconstruction depends on the power spectrum of the source.
The noise and normalization of the reconstruction are calculated in
Appendix A.

2.1 Lensing

The Jacobian matrix describing the mapping between the source
and image planes is defined as

J(θ , χ ) = 1

fK (χ )

∂x

∂θ
. (1)

Here χ is the radial coordinate and fK (χ ) is the comoving angular
diameter distance. We consider a ray bundle intersecting at the
observer and denote x (θ , χ ) as the comoving transverse coordinate
of a ray.

In the lensing literature, the physical quantities frequently used
to describe a lensing field are convergence κ and shear γ , which are
given by

J(θ , χ ) =
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
.

Equivalently, the convergence and shear can also be written as
κ = (�,11 + �,22)/2 ; γ 1 = (�,11 − �,22)/2 ; γ 2 = �,12 . � is
the projected 2D potential:

� = 2

c2

∫ χ

0
dχ ′ fK (χ ′)fK (χ − χ ′)

fK (χ )
φ[fK (χ ′)θ (χ ′), χ ′]. (2)

Here subscripts ‘1’ and ‘2’ refer to the derivative to the two perpen-
dicular transverse coordinates, and φ is the 3D Newtonian gravita-
tional potential. Note that the integral should be computed along the
actual perturbed path of each photon. In the Born approximation,
the deflection is approximated by an integral along the unperturbed
path.

In the small-angle approximation (Limber 1954), ∇2
⊥ can be

replaced by ∇2 in the integral. We get the Limber equation

κ = 3H 2
0

2
�m

∫ χ

0
dχ ′g(χ ′, χ )

δ

a(χ ′)
, (3)

where g(χ ′, χ ) = fK (χ ′)fK (χ − χ ′)/fK (χ ) . �m is the mass density
parameter, H0 is the current Hubble constant, a is the scalefactor
and δ the overdensity.

Kaiser (1992) derived the Fourier-space version of the Limber
equation

Pκ (l) = 9

4

(
H0

c

)4

�2
m

∫ χH

0
dχ

g2(χ )

a2(χ )
P

(
l

fK (χ )
, χ

)
. (4)

Here Pκ (l) is the 2D power spectrum of the κ field, P(l/fK (χ ),
χ ) is the 3D power spectrum of matter and χH is the comoving
distance to the Hubble horizon. The equation is valid when the
power spectrum Pκ evolves slowly over time corresponding to the
scales of fluctuation of interest, and these fluctuation scales are
smaller than the horizon scale.

2.2 Reconstruction of large-scale structure

We first heuristically review quadratic lensing estimation in two
dimensions. Then we will proceed with a generalization to 3D with
a quantitative derivation.

Lensing changes the spatial distribution of a temperature field.
Lensing estimation relies on statistical changes to quadratic quanti-
ties in the source plane temperature field. We use a tilde to denote a
lensed quantity. All estimators work by convolving the temperature
field with a window,

T̃1(x) =
∫

d2x ′T̃ (x ′)W1(x − x ′), (5)

and a second window

T̃2(x) =
∫

d2x ′T̃ (x ′)W2(x − x ′). (6)

The quadratic estimator is simply the product of the two convolved
temperature fields,

E(x) ≡ T̃1(x)T̃2(x). (7)

In the weak lensing case, the estimator is a linear function of the
weak lensing parameters (κ , γ ). The simplest case is two equal,
azimuthally symmetric window functions W1 = W2 = f (r). We first
consider the limit where κ is a constant value, then the estimator is
linearly proportional to κ:

〈E〉 ∝ κ + V , (8)

and V is a constant related to the mean covariance. Here 〈· · ·〉 means
ensemble average. For a stochastic random field, the ensemble av-
erage can be calculated by the volume average if the volume is big
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enough. We can absorb V as well as the normalization coefficient
into E for convenience, i.e. E(x) ≡ T̃1(x)T̃2(x) − V . When κ is
spatially variable, E needs to be normalized by a scale-dependent
factor b(k). This corresponds to a convolution of κ with a kernel:

〈E(x)〉 =
∫

d2x ′κ(x ′)b(x − x ′), (9)

where kernel b is the Fourier transform of the normalization factor.
Therefore E(k) = b(k)κ̂(k), here κ̂(k) is the Fourier transform of
the estimator κ̂(x).

One can optimize the functions to minimize the error on the
lensing variables. In this paper we will compare various forms of the
smoothing windows, which include as special case the traditional
OQDE. The simplest case is a constant value of κ , for which one
can compute its variance:

〈κ̂2〉 = 〈
(T̃1(x)2)2

〉
. (10)

Lensing is a small perturbation of the variance, therefore we
can calculate the variance from the unlensed source field, i.e.
〈(T1(x)2)2〉 ≈ 〈(T̃1(x)2)2〉. Performing a variation to minimize the
variance, one can find the optimal window function. Generally, one
would think a fixed window function might not be optimal for all
scales, i.e. 〈κ̂(k)2〉 might not be minimized at the same time for all k
modes. Fortunately, it turns out that the optimal window functions
do not depend on the spatial structure of the lensing field. Only the
normalization factor b in equation (9) is scale dependent. We solve
the optimal window function at scales k = |k| � ka , where the con-
stant κ approximation works well. Here the characteristic scale ka

is determined by the smallest scale kc of 21-cm sources resolved in
a given experiment, as well as the non-Gaussianity of sources. We
will explain the details later in Section 3. We expect the resulting
window function to be optimal for all scales, and will verify this at
Section 4.

Shear and deflection angles are tensorial and vectorial quantities
and require anisotropic or vectorial choices of the window function

Eγ = T̃ 1T̃ 2, T̃ 1 =
∫

d2θ ′T̃ (θ ′)W1(θ − θ ′), T̃ 2

=
∫

d2θ ′T̃ (θ ′)W2(θ − θ ′), (11)

Ed = T̃ 1T̃2, T̃ 1 =
∫

d2θ ′T̃ (θ ′)W1(θ − θ ′), T̃2

=
∫

d2θ ′T̃ (θ ′)W2(θ − θ ′). (12)

This will be explained in detail in Sections 2.2.2 and 2.3.
The source is usually treated as a Gaussian random field in the

literature on reconstruction methods. While this is valid for CMB
on large angular scales, 21-cm background sources are not neces-
sarily Gaussian. In this paper we attempt to understand the influence
of this non-Gaussianity. Optimal estimators for Gaussian sources
are not necessarily optimal for non-Gaussian sources. Here, we will
construct the convergence and shear field directly, instead of follow-
ing the deflection angles or potential field reconstruction in CMB
lensing. There are three reasons to do this. First, the strength of
lensing is evident through the magnitude of κ or γ since they are
dimensionless quantities. The rms deflection angle of photons from
21-cm emission is at the magnitude of a few arcmin, which is com-
parable to the lensing scales we are resolving. Some authors argued
that perturbation theory on the deflection angle will break down at
these scales (Cooray 2004; Mandel & Zaldarriaga 2006). However,
κ and γ are still small and can still work with perturbation cal-
culations without ambiguity. Secondly, κ and γ have well-defined

limits as they approach a constant, while only spatially variable
deflection angles or potentials can be measured. This significantly
simplifies the derivations. Finally, κ and γ are standard variables to
use in broader lensing studies, such as strong lensing and cosmic
shear. Using the same convention in different subfields will help to
generalize the underlying physics of lensing.

The estimators are unbiased, as shown in Appendix A. Further-
more, we confirm that our combined estimators from κ and γ have
the same optimality as the OQDE for Gaussian sources. When the
sources are non-Gaussian, our new estimators are more optimal.

2.2.1 Maximum likelihood estimator of κ

We now derive the quantitative window functions for 21-cm lensing
reconstruction. Due to their similarity, it is helpful to quickly review
the reconstruction in CMB lensing. The early work by Zaldarriaga
& Seljak (1999) used the quadratic combination of the derivatives
of the CMB field to reconstruct the lens distribution, originally
also using a κ and γ formulation. Since the CMB has an intrinsic
Gaussian distribution, the optimal quadratic estimator (Hu 2001)
can also be applied to lensing reconstruction with CMB polarization
(Hu & Okamoto 2002). Zahn & Zaldarriaga (2006) generalized the
optimal quadratic estimator of CMB lensing to 21-cm lensing.

We will construct estimators for κ and γ with the 21-cm bright-
ness temperature fields, starting from a maximum likelihood deriva-
tion. We will show that the OQDE and our approach are the same
if the sources are Gaussian; however, the problem is simplified in a
intuitive way by using the limit that κ and γ vary slowly in small
scales. We will show later the optimal window functions have the
same form when κ and γ vary rapidly.

The magnification is

μ = 1

(1 − κ)2 − γ 2
∼ 1 + 2κ. (13)

The last approximation is valid since both κ and γ are much smaller
than 1 in the weak lensing regime.

We use Bayesian statistics and assume the prior distribution of
parameter κ to be flat. For an M-pixel map on the sky, the posterior
likelihood function of the source field has a Gaussian distribution,
and can be written as

P(T̃ (k)) = (2π)−M/2det(CT̃ T̃ )−1/2e−1/2T̃ †CT̃ T̃

−1
T̃ . (14)

Here T̃ = T̃b + n is the brightness temperature of the diffuse
21-cm emission lensed by the large-scale structure plus measure-
ment noise. To simplify the algebra, we use the negative logarithm
L of the likelihood function in our calculation,

L = − lnP = 1

2
T̃ †C−1

T̃ T̃
T̃ + 1

2
ln det CT̃ T̃ . (15)

Here T̃ is the 3D discrete Fourier transform of measured tempera-
ture. CT̃ T̃ = CS + CN is the covariance matrix, and the signal con-
tribution CS and noise contribution CN are both diagonal in Fourier
space and uncorrelated to each other. In the continuum limit, the
likelihood function can be written as

L = 1

4π2

[∫
d3k ln P̃ tot

3D(k) +
∫

d3k
|T̃ (k)|2
P̃ tot

3D(k)

]
. (16)

We use P̃ tot
3D = P̃3D(k) + PN(k) to represent the signal plus noise

power spectrum in the following text, where P̃3D(k) is 3D power
spectrum of the distorted 21-cm field, and PN(k) is the noise power
spectrum. The dimensionless power spectrum of the 3D 21-cm gas
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can be written as

�2
3D(k) = k3

2π2
P3D(k), (17)

where k = |k| since the gas is statistically isotropic.
The geometry of the 21-cm field will be changed by lensing:

T̃b(k⊥, k‖) =
∫

d3xT̃b(x)e−ik·x

=
∫

d2x⊥

∫
dx‖Tb((1 − κ)x⊥, x‖)e−i(k⊥·x⊥+k‖x‖)

= 1

(1 − κ)2
Tb

(
k⊥

1 − κ
, k‖

)
, (18)

where ‘⊥’ and ‘‖’ means the perpendicular and parallel direction to
the line of sight, respectively. We ignore the contribution of shear
first. Then the length-scale is magnified on the transverse plane by
a factor κ . Isotropy is broken in 3D but is still conserved on the 2D
cross-section. The statistical properties of the 21-cm field will be
changed by lensing, i.e. the power spectrum will also change:〈
T̃ ∗

b (k⊥, k‖)T̃b(k′
⊥, k′

‖)
〉 = (2π)2δ2D(k⊥ − k′

⊥)(2π)

× δD(k‖ − k′
‖)P̃3D(k⊥, k‖). (19)

The delta function has the property

δ2D

(
k⊥

1 − κ
− k′

⊥
1 − κ

)
= (1 − κ)2δ2D(k⊥ − k′

⊥). (20)

Therefore the relationship between the unlensed and lensed power
spectrum is

P̃3D(k⊥, k‖) = 1

(1 − κ)2
P3D

(
k⊥

1 − κ
, k‖

)

= 1

(1 − κ)2
P3D

⎡
⎣

√
k2

⊥
(1 − κ)2

+ k2
‖

⎤
⎦ . (21)

The second equivalence is due to the statistical isotropy of the
unlensed power spectrum.

The Taylor expansion of the lensed power spectrum is

P̃ tot
3D = P tot

3D + ∂P̃ tot
3D

∂κ

∣∣∣∣
κ=0

κ + 1

2

∂2P̃ tot
3D

∂κ2

∣∣∣∣
κ=κ�

κ2, (22)

where κ� in the residual term lies between 0 and κ . The first-order
derivative at κ = 0 is 2P3D + �P3D, where �P3D = P′

3D k(k2
⊥/k2)

and P′
3D(k) = dP3D(k)/dk. In this paper, we will only consider the

first-order perturbation. Now we can verify the accuracy of the
approximation �κTaylor/κ , which is the ratio of the residual term
to the second term in equation (22). If we write the first-order
derivative of power spectrum to κ as G(κ) = ∂P̃ tot

3D/∂κ , and the
second-order derivative as R(κ) = ∂2P̃ tot

3D/∂κ2, then

�κTaylor

κ
= 1

2

R(κ = κ�)

R(κ = 0)

R(κ = 0)

G(κ = 0)
κ. (23)

In most cases, power spectra have an approximately power-law
shape P3D = P0kn. For dark matter like power spectrum, �2

3D(k) ∝
k, there is n = −2. R(κ = 0)/G (κ = 0) = 3 − 4(k⊥/k)2 ∈ [−1, 3].
R (κ = κ�)/R (κ = 0) = 1/(1 − κ)4 when k⊥/k = 0; R (κ = κ�)/R
(κ = 0) → 22/(1 − κ)2 − 21 when k⊥/k → 1. κ to the epoch of
reionization is about at the 5 per cent level, therefore∣∣∣∣�κTaylor

κ

∣∣∣∣ ≤ 1.8κ. (24)

The precision of a first-order κ reconstruction would not be better
than the magnitude of κ itself, i.e. the quadratic reconstruction

would not be better than a few per cent level. We will calculate to
first-order accuracy in κ throughout this paper; however, we need
to keep in mind that the first-order perturbation approximation will
contribute several per cent error in our calculation.

The maximum likelihood condition requires

δL
δκ

≈ 1

2
L3

∫
d3k

(2π)3

(
P̃ tot

3D − |T̃ |2L−3
)

P̃ tot2
3D

δP̃3D

δκ
= 0. (25)

Since we calculate to first-order accuracy in κ , a further simplifica-
tion is 1/P̃ tot2

3D ≈ [1 − 2κ(2P3D + �P3D)/P3D]/P 2
3D. The first-order

solution is

Eκ =
∫

d3k

(2π)3
(|T̃ |2L−3)F κ (k) − Vκ. (26)

To simplify the problem, we assume the source is a cube with
physical length L in each dimension. The offset constant Vκ =
〈σ 2〉 = ∫

d3k/(2π)3P tot
3D(k)F κ (k), and the optimal filter F κ is

F κ (k) = 2P3D(k) + �P3D(k)

P tot
3D

2(k)Qκ

, (27)

with Qκ = ∫
d3k/(2π)3(2P3D + �P3D)2(k)/(P tot

3D)2(k).
From Parseval’s theorem, we can rewrite equation (26) in the

form of a convolution of the density field and a window function in
real space:∫

d3k

(2π)3
T̃ ∗(k)T̃ (k)F κ (k) =

∫
d3xT̃ κ

w1
(x)T̃ κ

w2
(x)

= L2

∫
dx‖T̃ κ

w1
(x⊥, x‖)T̃ κ

w2
(x⊥, x‖).

(28)

In equation (28) the two window functions are the decomposi-
tion of the optimal filter Wκ

1 (k)Wκ
2 (k) = F κ (k). The last ‘=’ in

equation (28) holds when κ is constant. One can choose Wκ
1 (k) =

Wκ
2 (k) = √

Fκ . If Fκ < 0, we choose Wκ
1 = −Wκ

2 = √|Fκ |. The
convergence field is equivalent to the covariance of the measured
maps smoothed by two windows. In the slowly spatially varying κ

limit, all decomposition into two windows are equivalent. As we
will show later, the shear construction can also be represented in
the form of the covariance of two filtered temperature maps. These
maps will have symmetric probability density functions (PDFs),
which can reduce the non-Gaussianity of the maps so that a bet-
ter S/N level can be achieved, when the shear window functions
are chosen properly. The last two steps in equation (28) assume
that the fluctuation of the convergence field is slow compared to
the filter. Then we can apply the estimator to each beam in the
map:

Eκ (x⊥) = L−1

∫
dx‖T̃ κ

w1
(x)T̃ κ

w2
(x) − Vκ, (29)

where T̃ κ
w1

and T̃ κ
w2

are the convolution of T̃ and window function
Wκ

1 (x) and Wκ
2 (x), respectively, which are the real-space version

of Wκ
1 (k) and Wκ

2 (k). The reconstruction of κ is dominated by the
gradient of the power spectrum d ln �2/d ln k, which follows from
the expression of our estimator in equation (26).

We can generalize the estimator to a spatially varying lensing
field. In Appendix A we show∫

d2x ′
⊥κ(x ′

⊥)bκ (x⊥ − x ′
⊥) = 〈Eκ (x⊥)〉. (30)

Equivalently, for smaller scales, we will need to normalize the re-
constructed lensing field by a scale-dependent factor in Fourier
space, which is calculated in Appendix A.

κ̂(l) = b−1
κ (l)Eκ (l) = κ(l) + n(l), (31)
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Precision of diffuse 21-cm lensing 1823

where l = k⊥χ (zs), and zs is the redshift of the source. Here
bκ (l) is the normalization factor (lim l→0 bκ (l) = 1) and n(l) is
the noise, since different Fourier modes are independent. They do
not depend on direction because variables related to κ are isotropic
on the transverse plane. In Appendix A, we show that the nor-
malization factor is unity at small l when Qκ has the form as
Qκ = ∫

d3k/(2π)3(2P3D + �P3D)2(k)/(P tot
3D)2(k).

Amblard, Vale & White (2004) have pointed out that the recon-
structed κ could be biased due to the non-Gaussianity of lenses.
One possible reason is that there is only one CMB sky behind each
patch of lensing field. For 21 cm, there are many source planes,
and we expect there is no such bias effect by averaging over these
planes.

2.2.2 Estimator of shear

When shear is taken into account, not only the scale but the direc-
tions of the coordinates are changed. We will start the derivation
from the constant shear case. In analogy to κ , the optimal window
function will be the same when γ is spatially variable:

T̃b(k⊥, k‖) =
∫

d3xT̃b(x)e−ik·x

=
∫

d2x⊥

∫
dx‖Tb(Jx⊥, x‖)e−i(k⊥·x⊥+k‖x‖)

= |J|−1

∫
d2x ′

⊥

∫
dx‖Tb(x ′

⊥, x‖)e−i(k′
⊥·x′

⊥+k‖x‖)

= |J|−1Tb(J−1k⊥, k‖), (32)

here d2x ′
⊥ = |J|d2x⊥, k′

⊥ = J−1k⊥. Now the symmetry is broken
even on the transverse plane due to the anisotropic distortion caused
by the shear.

Since δ2D(J−1k) = |J|δ2D(k), equation (19) implies

P̃3D(k⊥, k‖) = |J|−1P3D(J−1k⊥, k‖) ≈ (1 + 2κ)[P3D(k) + �P3D(k)

× (κ + γ1 cos 2θk⊥ + γ2 sin 2θk⊥ )], (33)

where θk⊥ is the angle between k⊥ and the transverse coordinate.
Note that in the calculation of κ , we have ignored the contribution
from shear. The reason is that the overall contribution of shear would
be zero to first-order magnitude of κ due to the angular dependence
of shear on θk⊥ .

Maximum likelihood requires δL/δγ1 = 0 and δL/δγ2 = 0. The
maximum likelihood shear estimators can be written as a tensor Eγ :

Eγ ij = L−1

∫
dx‖T̃ γ

wi
T̃ γ

wj
, (34)

where T̃ γ
wi

is convolution of the temperature field with Wγ
i ,

and Wγ
i (k) = (2�P3D/P 2

3DQγ )1/2ki/k⊥, ki(i, j = 1, 2) is one
of the two components of k⊥ on the transverse plane. When
�P < 0, we can choose W

γ

1 = |2�P3D/P 2
3DQγ |1/2k1/k⊥, W

γ

2 =
−|2�P3D/P 2

3DQγ |1/2k2/k⊥. The normalization factor Qγ =∫
d3k/(2π)3�P3D(k)(2k1 k2/k

2
⊥)2. The two components of shear

are now

γ̂1 = Eγ 12 = Eγ 21, γ̂2 = Eγ 11 − Eγ 22

2
. (35)

Note that there is a difference between the reconstruction for con-
vergence and shear. Shear reconstruction depends on the gradient
of P(k), while convergence reconstruction depends on the gradient
of �2(k) in a 2D analogue. To test our method, we can generate a
Gaussian source field with power-law power spectrum P(k) = kβ .
In the 2D analogue case, the convergence field cannot be measured

if β = −2, because the variance is conserved. However in three
dimensions, when β = −3, the convergence field can still be mea-
sured, which is due to the more complicated shape of the window
function in 3D. When β = 0, the shear cannot be measured in either
two or three dimensions.

In analogy to κ reconstruction, we can calculate the normalization
factors bγ1 and bγ2 . The calculations for the normalization factors
and noise are presented in Appendix A.

2.3 The combined estimator and the OQDE

The combined estimator of κ can be written as

κ̂comb(l) = c1κ̂(l) + c2γ̂E(l), (36)

where γ̂E is the convergence constructed from shear field,

γ̂E(l) = γ̂1(l) cos 2θ l + γ̂2(l) sin 2θ l , (37)

and θl is the angle of l . c1 and c2 are the weights of two components.
The optimal c1 and c2 can be calculated from the covariance matrix
of the two estimators

Cκ =
(

〈κ̂(l)2〉 − 〈κ̂(l)〉2 〈κ̂(l)γ̂E(l)〉 − 〈κ̂(l)〉〈γ̂E(l)〉
〈κ̂(l)γ̂E(l)〉 − 〈κ̂(l)〉〈γ̂E(l)〉 〈γ̂E(l)2〉 − 〈γ̂E(l)〉2

)
.

To minimize the variance of κ̂comb(l), c1 and c2 are sum of the first
and second row components, respectively, in C−1

κ , the inverse ma-
trix of Cκ . When l <∼ la = kaχ (zs), κ̂(l) and γ̂E(l) are uncorrelated
and the covariance matrix is diagonal. The weights are simply pro-
portional to the reciprocal of the noise of two individual estimators
c1 ∝ Nκ (l)−1 and c2 ∝ NγE

(l)−1.
The lensing power spectrum Pκ is measured by taking the ob-

served power spectrum Pκ̂ and subtracting the computable power
spectrum of the noise Nκ

Pκ (l) = Pκ̂ (l) − Nκ (l). (38)

If the source is Gaussian and its power spectrum is known, the
noise power spectrum of estimator Nκ (l) can be calculated using
the method described in Appendix A. If source is non-Gaussian,
Nκ (l) is not derivable from the two-point function, the lensing power
spectrum could be biased. For scales l <∼ la = kaχ (zs), NκγE

(l) ≈ 0.
The κ̂ − γ̂E cross-power spectrum does not contain the noise term
and does not depend on the source four-point function. It is less
optimal, but more robust. Therefore the cross-power spectrum of
convergence and shear will be an unbiased estimator of lensing
power spectrum even when we do not know the unlensed source
four-point function, and the noise of the two estimators themselves.

The 2D OQDE in CMB lensing can be written as product of
two filtered temperature fields (Hu 2001; Lewis & Challinor 2006).
Furthermore, the 3D OQDE can be written in the same form as
equation (12), though it is not explicit (private communication with
Oliver Zahn):

Ed(θ) = L−1

∫
dx‖T 1(θ, x‖)T2(θ, x‖) (39)

and∫
d2θ ′d(θ ′)bd(θ − θ ′) = 〈Ed(θ)〉. (40)

Here bd is a normalization factor, T 1 = ∫
d2θ ′T (θ ′)W1(θ − θ ′)

and T2 = ∫
d2θ ′T (θ ′)W2(θ − θ ′) are convolved temperature fields,

where the window functions are Fourier transforms of

W 1(l, k‖) = −ilP3D(l, k‖)

P̃ tot
3D(l, k‖)

,

W2(l, k‖) = 1

P̃ tot
3D(l, k‖)

. (41)
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1824 T. Lu and U.-L. Pen

We note that the OQDE and our estimators have the same
form.

The contribution from lensing in equation (10) is secondary, and
the noise of reconstruction is mainly determined by the unlensed
terms. Therefore we can measure the numerical reconstruction noise
without lensing the sources.

3 N U M E R I C A L M E T H O D S

3.1 Simulation

The fluctuation in the 21-cm brightness temperature may depend on
many factors, such as the gas density, temperature, neutral fraction,
radial velocity gradient and Ly α flux (Barkana & Loeb 2005).
In our paper, we do not consider the redshift-space distortion effect
caused by the non-zero radial peculiar velocity gradient, and simply
assume that the brightness temperature is proportional to the density
of the neutral gas:

Tb ≈ (27 mK)

(
1 + z

10

)1/2
Ts − TCMB

Ts
(1 + δHI), (42)

where Tb is the brightness temperature increment respective to
CMB, Ts is the spin temperature, which is expected to be much
bigger than TCMB once structure are non-linear, and δHI is the over-
density of the neutral hydrogen.

Our paper mainly focuses on the non-Gaussian aspect and 3D
properties of the reconstruction, and these effects also exist in a
pure dark matter distribution. The neutral gas will trace the total
mass distribution, which is dominated by the dark matter haloes. A
simplification is to use the dark matter as the source directly. Even
though this will bring some bias at small scales, the approximation is
valid at large scales (Trac & Pen 2004). The dark matter distributions
are generated using the PMFAST code (Merz, Pen & Trac 2005).

The high-resolution PMFAST simulation was performed on a 14563

fine mesh with 3.9 × 108 particles. The production platform was
the IA-64 ‘lobster’ cluster at CITA, which consists of eight nodes.
One of them was upgraded, so we used the remaining seven
nodes. Each node contains four 733 MHz Itanium-1 processors and
64 GB RAM. The simulation started at an initial redshift zi = 100
and ran for 63 steps with comoving box size L = 50 h−1 Mpc. The
initial condition was generated using the Zeldovich approxima-
tion, and the matter transfer function was calculated using CMBFAST

(Seljak & Zaldarriaga 1996). The cosmological parameters were
chosen in accordance with the Wilkinson Microwave Anisotropy
Probe (WMAP) result (Spergel 2003): �m = 0.27, �� = 0.73,
�b = 0.044, n = 1.0, σ 8 = 0.84 and h0 = 0.71. 20 independent
boxes were generated. We had 3D data at z = 7 at hand, and used
them in our numerical tests for convenience.

3.2 Convergence and shear map construction

The dimensionless power spectrum, which is the contribution to the
variance of overdensity per logarithmic interval in spatial wavenum-
ber, can be measured from the source data in the periodic simulation
box.

To reduce the computation time, our numeric results on the recon-
struction used a resampled distribution. We generate 20 independent
sources, each on 5123 grids, to investigate the statistics. The total
comoving length along the line of sight of 20 simulation boxes is
1 h−1 Gpc, which is about the same size as the observable 21-cm
region distributed between redshifts 10 and 20. The correlation be-
tween the boxes can be ignored since the box size is much larger

Figure 1. The average dimensionless power spectrum of the resampled dark
matter from the 14563 N-body simulation in three dimensions are given. The
solid line is the power spectrum on the 5123 grids. The resampled sources
keep the non-linearity and the non-Gaussianity of the structures up to k ∼
30 h Mpc−1. Three different experimental noise cut-offs are shown with
kc = 1, 4, 16 h Mpc−1, which represent the linear, quasi-linear and non-
linear scales.

than the non-linear length-scale, and the number of neglected modes
is small. The evolution of structure over this redshift is significant.
Our simulations were all measured at the same redshift, so we antic-
ipate the real effects of non-Gaussianity to be smaller. On the other
hand, large-scale power is generated by reionization bubbles, which
may contribute to non-Gaussianity as well. In Fig. 1, the solid line is
the average power spectrum of the resampled sources. To measure
the dependence of non-Gaussianity on scale, we will compare the
results with different scales of experimental noise cut-off.

We simply assume the noise to be zero above a cut-off and in-
finity below the cut-off scale. This is a reasonable approximation
for a filled aperture experiment, which has good brightness sensi-
tivity, and an exponentially growing noise at small scales. Three
cut-offs were chosen at kc = 1, 4, 16 h Mpc−1, which represent the
linear, quasi-linear and non-linear scales. Three different experi-
mental noise levels are shown as vertical lines in Fig. 1.

In principle, the convergence map is the variance (or covariance
when the filterF κ has negative value) of the overdensity field after a
specified filtering process. Shear is the covariance of the two maps,
since the anisotropic filter cannot be factored into a perfect square.
We need to smooth the maps to extract the lensing signal with max-
imum S/N. The window function used to smooth the lensed map,
which is isotropic in the transverse directions to the line of sight,
can be calculated using equation (27). The gradient of the power
spectrum becomes negative at small scales; which comes from the
limited resolution of the N-body simulation and is unphysical. The
experimental noise will put a natural cut-off at small scales.

As mentioned in Section 2.2.2, the reconstruction of κ will depend
on 2P + �P. In two dimensions, this is equivalent to the gradient
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Precision of diffuse 21-cm lensing 1825

of the 2D version of �2
2D = k2P2D(k)/2π. In three dimensions,

it is more complicated since �P(k) is not isotropic. The optimal
window functions have two parts W1 and W2, the choice of which is
not unique. One might expect a symmetric decomposition to have
the best S/N. The optimal filter of κ is positive except at a few
modes, and can be decomposed into two equivalent parts (one part
needs to contain a minus sign for those negative value of the filter).
In contrast to κ , the shear construction needs to use the covariance
between two different windowed temperature fields, since there is
a sin or cos component in the window function. The window is a
function of the transverse and parallel components of k.

We can calculate the mean covariance of the two smoothed maps
along the redshift axis for each pixel. From equation (29) we can
construct the convergence map. Shear maps are reconstructed in the
same way, except different optimal window functions are used. The
anisotropic part cos 2θk⊥ can be decomposed into cos θk⊥ − sin θk⊥
and cos θk⊥ + sin θk⊥ . Both windows can generate a field with even
PDF so that the distribution is less non-Gaussian. This is consistent
with the numerical results as shown in Fig. 6. Using these two
maps, we construct the γ 1 map with their covariance, as shown in
equation (35). Similarly we can get the γ 2 map.

4 NUMERICAL RESULTS AND DISCUSSION

Cooray (2004) claims that the variance will not vary considerably
and is not an ideal measurement of the lensing signal. Even though
the κ field itself is only a few per cent, the integrated effect from the
3D images will reduce the noise ratio significantly to uncover the
signal. Zahn & Zaldarriaga (2006) solve the problem from an alter-
native approach by generalizing the minimum variance quadratic
estimator (Hu & Okamoto 2002) in CMB lensing to 3D.

Related work was done in Metcalf & White (2007), where they
also construct quadratic estimators of shear and convergence in real
space, even though they did not include the correlation between
the 2D slices along the line of sight and they did not choose the
estimator with minimized noise.

4.1 Non-Gaussianity

The dark matter distribution is linear at large scales, and can be
treated as Gaussian. In the non-linear scales, when the amplitude
of density fluctuations is big, the structure becomes highly non-
Gaussian. Reference Gaussian sources with identical power spec-
trum to the dark matter are generated.

We treat the 1 h−1 Gpc region at z = 10–20 as 20 independent
sources. Structures at these redshifts are similar to those at z = 7
used by us, though less non-linear. We can expect to see similar
non-Gaussianity effects in the reconstruction with the 1 h−1 Gpc
space except that the non-linear scale is smaller. We compare the
reconstruction noise with three different experimental noise as well
as the lensing signal in Figs 2–4. The thick solid line is the lensing
power spectrum, which is calculated with the Limber integral of
the 3D power spectra of dark matter using equation (4). We use the
publicly available code HALOFIT.F (Smith et al. 2003) to generate the
non-linear dark matter power spectra. The code provides both their
fitting results, and the results using the Peacock–Dodds formula
(Peacock & Dodds 1996, PD96 hereafter). The HALOFIT code fits
the power spectrum at low redshift to Virgo and GIF CDM sim-
ulations, which used the transfer function of Efstathiou, Bond &
White (1992). At higher redshifts, the code does not operate. We
use a combination of the two: HALOFIT power spectra are used for

Figure 2. The noise of lensing maps from different estimators using exper-
imental noise 1, which cuts off at kc = 1 h Mpc−1. We treat the 1 h−1 Gpc
rectangle of gas at z = 10–20 as 20 independent sources each is a 50 h−1 Mpc
box size cube. Structures at these redshifts are similar to those at z = 7 used
by us, though less non-linear. We can expect to see qualitatively similar non-
Gaussianity effects in the reconstruction with the 1 h−1 Gpc space except
that the non-Gaussianity of sources may be smaller, but reionization may
change that, too. The curves are truncated at

√
2kc, where the noise goes to

infinity. The thick solid line is the expected lensing signal. The dotted line
is the lensing reconstruction noise for a simulated Gaussian source with the
same power spectrum. The dashed curve is the noise from the N-body sim-
ulation using the Gaussian estimator, which increases modestly compared
to the Gaussian source. It is identical for the optimal κ , γ reconstruction as
it is for the deflection angle. The thin solid line is noise when shear and
convergence are reweighted by their non-Gaussian variances.

redshifts lower than z = 3.0, and PD96 power spectra are used for
higher redshifts.

Since the reconstruction noise of κ is isotropic, one can always
choose the direction of the lensing mode l to be parallel with a
coordinate axis. In this direction, γ 1(l) = κ(l), γ 2(l) = 0 and γ E =
γ 1, which simplifies the numerical calculation. As shown in Sec-
tion 2.3, the combined estimator becomes the sum of κ and γ E with
weights. The optimal weights are calculated from the inverse matrix
of Cκ , covariance between the two estimators. The matrix is close
to diagonal in small l approximation, so for simplicity we take the
diagonal terms. For Gaussian sources, the weights are the reciprocal
of the noise of the two estimators, respectively. For non-Gaussian
sources, we could use the same weights as the Gaussian sources, i.e.
using the reciprocal of the noise measured from Gaussian sources,
or weight them by calculating their respective measured noise from
non-Gaussian sources. We will show that the combined estimator
with Gaussian noise derived weights has the same noise as the
OQDE for both Gaussian and non-Gaussian sources. Figs 2–4 are
results using noise cut-offs from experiment 1, 2 and 3. The curves
are truncated at

√
2kc. The non-Gaussianity increased the noise of

all estimators. The first cut-off falls in the linear regime, where the
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1826 T. Lu and U.-L. Pen

Figure 3. Same of Fig. 2, but with cut-off at the quasi-linear scales kc =
4 h Mpc−1. The effect of non-Gaussianity of sources is more pronounced.
We can compare the S/N with a fiducial cosmic shear survey of sources in
the same 10 < z < 20 redshift range, which reconstructs the lensing from
the shape of galaxies, with a surface number density of 14 arcmin−2. To
map the lensing to the same S/N with redshift z ∼ 1 sources requires a
density of 56 arcmin−2 (Hu & White 2001) with rms ellipticity of 0.4. We
see that proposed optical lensing surveys are unlikely to outperform 21-cm
sources.

non-Gaussianity only has a modest effect on the noise. The sec-
ond cut-off is at the quasi-linear scale. Here the non-Gaussianity
increases the noise of the OQDE by about one to two orders of
magnitude. At the highly non-linear scales, the non-Gaussian noise
is about 3–4 mag higher than the Gaussian noise, and in fact higher
than that of the more noisy experiment.

Our estimators were derived in the limit that κ and γ are constant.
For spatially variable lens, we solve for the required normalization
factors. In the OQDE, the windows do not depend on the scale of
the lens, so one might guess the same ansatz to hold for the (κ ,
γ ) estimators. We verify this numerically in Fig. 5. The solid and
dotted lines are for the Gaussian and non-Gaussian sources, respec-
tively. The differences are less than a few per cent, and consistent
with integration errors from the tabulated power spectrum, and most
importantly, independent of scale, as we had expected. The verti-
cal line shows the characteristic scale la = χ (zs)ka ∼ χ (zs)kc/2,
or below which the window functions are optimized. As shown in
Fig. 7, the reconstruction noise is proportional to k−3 if sources
are Gaussian, and most of the contribution to the reconstruction is
from scales near kc. Therefore our approximation holds at scales
l < χ (zs)kc/2 with small deviance. For non-Gaussian sources, la
will also be affected by the non-Gaussianity of sources. While the
optimality is only proved at low l, we find the combined estima-
tor and OQDE equally optimal for Gaussian sources at all scales.
For non-Gaussian sources, they also have the same results. We
do note that for a finite size survey, the (κ , γ ) recover the con-

Figure 4. Same of Fig. 2, but with cut-off at the non-linear scales
kc = 16 h Mpc−1. At the highly non-linear scales, the non-Gaussian noise
variance is about 3–4 mag higher than the Gaussian noise. The combined
reweighted estimator (NG–NG κ + γ E) has noise about half an order of
magnitude lower than the OQDE.

stant mode, which is lost in the OQDE. Three more numbers are
recovered.

The combined estimator with κ and γ E weighted by using the
non-Gaussian noise is more optimal than weighted by using Gaus-
sian noise, therefore has lower noise than the OQDE. In fact, the
non-Gaussian noise of γ E is much smaller than κ . To investigate the
origin of this change, we first investigate the cause of the increased
noise in non-Gaussian sources for κ . This could be because either
the non-Gaussianity leads to a high kurtosis in κ , which boosts the
errors; or the non-Gaussianity may lead to correlations between
modes, resulting in a smaller number of independent modes, and
thus a larger error.

In Fig. 6, the PDF of maps smoothed with the κ window are
shown. The top, middle and bottom panel show the results with
experimental noise cut-offs 1, 2 and 3. The solid line is the PDF
for maps smoothed with κ window (Tκ

1 , Tκ
2 in Section 2.2.1). Be-

cause the window functions are almost symmetric, we plot only
one PDF. To see the full dynamic range on the x-axis, we plot
±|T|1/4 as x-axis and PDF (|T|1/4)|T|15/4 as the y-axis. The integral
of the x-axis weighted by the y-axis will give 〈T4〉, which is basically
a estimation of the point-wise non-Gaussian reconstruction noise.
Here PDF (|T|1/4) is the PDF of |T|1/4. To compare with a Gaus-
sian distribution, dotted lines are also plotted. The contributions
to the 〈T4〉 in experiment 1 mainly come from small-fluctuation
regions. In experiment 2, the large outliers play a more important
role but one can still expect the curve to converge. In experiment 3,
most contributions come from rare regions with high fluctuations.
Caution should be exercised in the interpretation of the most non-
linear scales, since a larger number of source samples may result
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Precision of diffuse 21-cm lensing 1827

Figure 5. The comparison of reconstruction noise from the combined (κ ,
γ ) estimator and the OQDE. As shown in Section 2.3, the combined esti-
mator becomes the sum of κ and γ E with weights. For Gaussian sources,
the weights are the reciprocal of the noise of the two estimators, respec-
tively. To compare with the OQDE, we could still use the same weights for
non-Gaussian sources, i.e. using the reciprocal of the noise measured from
Gaussian sources. Note that the combined estimator with these weights will
be less optimal than using weights calculated from the noise of non-Gaussian
sources. The vertical line shows the characteristic scale la below which the
window functions are optimized. While the optimality is only proved at low
l, we find the combined estimator and OQDE equally optimal for Gaussian
sources at all scales. For non-Gaussian sources, they also have the same
results. The scatter is consistent with numerical integration errors from the
tabulated power spectrum. Similarly, the noise for non-Gaussian sources
is consistent between the two estimators. We conclude that the combined
estimator is numerically equivalent to OQDE if the weights are optimized
for Gaussian sources.

in a different error. It is clear, however, that the noise has increased
dramatically.

The kurtosis of κ is 〈(Tκ
1 )4〉/〈(Tκ

1 )2〉2 − 3, and an analogous quan-
tity can be defined by 〈(Tγ

1 Tγ

2 )2〉/(〈(Tγ

1 )2〉〈(Tγ

2 )2〉) − 1 for shear.
Tκ

1 ≈ Tκ
2 , and Tγ

1 is uncorrelated with Tγ

2 . The noise of κ and γ

is determined by both kurtosis and number of independent cells.
For experimental noise 1, the kurtosis of Tκ and Tγ are 1.2 and
0.29, respectively. The effectively independent cube cells for κ and
γ have side length 4.8 and 4.6 h−1 Mpc, respectively. The corre-
sponding Gaussian sources with the same cut-off have effective cell
size 3.0 and 3.5 h−1 Mpc. For experimental noise 2, the kurtosis of
Tκ and Tγ are 18 and 5.7, respectively. The effective cell size for
κ and γ are 1.8 and 1.5 h−1 Mpc, respectively. The corresponding
Gaussian sources with the same cut-off have effective cell size 1.0
and 1.1 h−1 Mpc. For experimental noise 3, the kurtosis for Tκ and
Tγ are 1.6 × 103 and 3.5 × 102, respectively. The effective cell
size for κ and γ are 540 and 310 h−1 kpc, respectively. The corre-
sponding Gaussian sources with the same cut-off have effective cell
size 240 and 290 h−1 kpc. We conclude that the shear measurements
have lower non-Gaussian noise both because of a smaller point-wise
kurtosis and less correlation between modes.

Figure 6. The PDF of maps smoothed with a κ window are shown. The top,
middle and bottom panel show the results with experimental noise cut-offs
1, 2 and 3. The solid line is the PDF for maps smoothed with the κ window
(Tκ in Section 2.2.1). To see the full dynamic range on the x-axis, we plot
the curve with ± |T|1/4 as x-axis and PDF (|T|1/4)|T|15/4 as the y-axis. The
integral of the x-axis weighted by the y-axis will give 〈T4〉, which is basically
an estimation of the reconstruction noise. The error bars are estimated from
the 20 simulations. To compare with a Gaussian distribution, dotted lines are
also plotted. The contributions to the 〈T4〉 in experiment 1 mainly come from
small-fluctuation regions. In experiment 2, the large outliers play a more
important role but one can still expect the curve to converge. In experiment
3, most contributions come from rare regions with high fluctuations. Caution
should be exercised in the interpretation of the most non-linear scales, since
a larger number of source samples may result in a different error. It is clear,
however, that the noise has increased dramatically.

We will see later that experiment 2 has the largest S/N, which
is larger than unity for l � 6000. We can compare the S/N with
cosmic shear surveys, which reconstruct lensing from the shape of
galaxies. The noise can be estimated by 〈γ 2〉/neff (Hu & White
2001; Hoekstra et al. 2006), where we use 〈γ 2〉1/2 ≈ 0.4 as the
rms intrinsic ellipticity, and neff is the effective number density of
galaxies. We plot the shear noise from a survey of sources in the
same redshift range 10 < z < 20 in Fig. 3, with a surface number
density of 14 arcmin−2. For more realistic source redshifts z ∼ 1
in proposed optical surveys (Hu & White 2001), this corresponds
to a surface density of 56 arcmin−2 to achieve the same fidelity of
dark matter reconstruction. In the CFHTLS wide survey the source
galaxies are distributed at redshifts lower than 3, and their effective
number density is ∼12 galaxies arcmin−2 (Hoekstra et al. 2006).
This noise is larger still. Even though non-Gaussian 21-cm lensing
saturates lensing reconstruction, it still measures more modes than
current proposed optical surveys.

In Fig. 7, we show the reconstruction noise at two different l
versus various experimental noise cut-off kc. The top panel is for
the fundamental mode in the box, l1 = 2π/L = 783 and the bottom
panel is for l2 = 6l1 = 4715. As shown in the plot, it is clear that
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Figure 7. The reconstruction noise versus the cut-off in the experimental
noise. The top panel is for l1 = 2π/L = 783 and the bottom panel is for
l2 = 6 l1 = 4715. The noise of Gaussian sources decreases as kc increases,
because of the increasing number of independent modes. The dotted lines
are a least-squares fitting power law N0 k−3

c to the Gaussian noises, and
N0 = 3.1 × 10−2, 1.3 × 10−1 for top and bottom panels, respectively. The
dashed lines connect the non-Gaussian noise of the OQDE. The triangles are
the reconstruction noise for the combined estimator, which is equal to the
OQDE at larger scale kc and about half an order of magnitude lower at large
kc. The noise of the non-Gaussian sources changes slowly and saturates or
even increases at small scales.

the noise of a Gaussian source decreases as kc increases, because of
the increasing number of independent modes. The dotted lines are
a least-squares fitting power law N0 k−3

c to the Gaussian noises, and
N0 = 3.1 × 10−2, 1.3 × 10−1 for top and bottom panels, respec-
tively. This comes from counting the number of available source
modes. The dashed lines connect the non-Gaussian noises of the
OQDE. The triangles are the reconstruction noise for the combi-
nation estimator, which is equal to the OQDE at larger scale kc

and about half an order of magnitude lower at smaller scales of kc.
From this plot, we can see that experiments with lower noise do not
necessarily decrease the reconstruction noise of the OQDE for non-
Gaussian sources. And the experimental noise has a limit around
the quasi-linear scale where the OQDE achieves its best S/N. The
S/N achieves its maximum around kNG

c ≈ 4 h Mpc−1. This cut-off
with maximum S/N varies only slowly with l.

If one wants to estimate the effective number of available lensing
modes, we can derive an effective cut-off of a Gaussian field which
gives the same S/N as the optimal non-Gaussian source estimator.
This is kG

c ≈ 2 h Mpc−1, where the power spectrum of source is
�2 ≈ 0.2. The size of the effectively independent cells is
2.0 h−1 Mpc. A simple equivalent Gaussian noise estimate counts
all modes up to �2(k) < 0.2, which is perhaps surprisingly low.

For our noise estimates, we stacked simulations all at redshift
z = 7. While the angular diameter distance does not change much
to z ∼ 20, the structure does evolve. We do not have access to the

higher redshift outputs to test this effect, but one would expect a
smaller non-linear scale to result in a smaller reconstruction noise.

4.2 Future directions

A possible way to find the optimal window functions for non-
Gaussian sources is to divide the window into N frequency bins
W1(k1, k2, . . . , kN ), and apply a numerical variation to those bins.
The noise can be measured numerically by applying the estimator
to the simulated sources. The process of searching for a optimal
filter is equivalent to look for a minimum of reconstruction noise
in N-dimensional space k1, k2, . . . , kN . In fact, the optimal window
function can be constructed by the inverse of covariance matrix of
the source power spectra. We will present details of the method in a
future paper. In this paper we only considered the class of windows
which are identical to the optimal Gaussian estimators with a hard
cut-off, as well as two weightings for shear and convergence.

One can also try to Gaussianize the sources by modifying the PDF
of all the sources to be Gaussian. The physical explanation and de-
tails of Gaussianization can be found in Weinberg (1992). The basic
idea is that every pixel should preserve its rank in the whole field
during the Gaussianization process. During structure formation, the
non-linear evolution at small scales should not destroy most of the
information on the peaks and dips of the linear field. However, this
Gaussianization process will change the power spectra of sources,
and the reconstructed lensing field will be biased. This is not a linear
process, and the variation of power spectrum does not have analyti-
cal solution, and can only be measured numerically with simulated
sources.

Recently it has been proposed that one could economically
achieve brightness mapping of 21-cm emission at lower redshifts
(Chang et al. 2008), potentially even with existing telescopes. If
individual galaxies are not resolved, one can again ask the question
of how one could reconstruct a lensing signal. This is very similar to
the problem studied in this paper. We will discuss this with optimal
non-Gaussian estimators in a future paper.

5 C O N C L U S I O N

In this paper, we developed the maximum likelihood estimator for
the large-scale structure from the 21-cm emission of the neutral gas
before the epoch of reionization. The convergence and shears can be
constructed separately. They are independent for l � la . The cross-
power spectrum of convergence and shear is more robust unbiased
estimator of lensing power spectrum, which does not require knowl-
edge of the unlensed source four-point function. To test the effects
of non-Gaussianity, we applied our estimators to simulated data.
The sources were generated by N-body simulations, because gas is
expected to trace the total mass distribution. To investigate the influ-
ence of non-Gaussianity, we also use Gaussian sources which have
the same power spectra as the simulated sources. We applied our
estimator and the OQDE on both the Gaussian and non-Gaussian
sources. Though our estimators are derived in the simplified case
of a constant convergence, the noise of our combined estimator of
convergence and shear are the same as the OQDE for Gaussian
sources for spatially variable lenses. For a finite survey area, three
extra constant modes can be recovered.

The non-Gaussian nature of the source can increase the error
bar by orders of magnitude, depending on the experimental cut-
off scale. Shear construction is affected less by non-Gaussianity
than the convergence field, and the combined estimator with non-
Gaussian noise weights is a better choice than reconstructing with
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the OQDE. S/N cannot be boosted infinitely by reducing the ex-
perimental noise, and achieves its maximum for a cut-off around
kNG

c ≈ 4 h Mpc−1. Below that scale the S/N starts to saturate or even
decrease. The maximum S/N for non-Gaussian sources is equal to
Gaussian sources with kG

c ≈ 2 h Mpc−1, where the power spectrum
of sources is �2 ≈ 0.2 and the side length of the effectively in-
dependent cells is 2.0 h−1 Mpc. The maximum S/N is greater than
unity for l � 6000, which makes 21-cm lensing very competitive
compared to optical approaches.
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A P P E N D I X A : N O R M A L I Z AT I O N A N D N O I S E O F TH E E S T I M ATO R

In the end of Section 4, the numerical results of the noise of the estimators are shown. Here we will develop the analytical expression for

Eκ (k⊥) = bκ (k⊥)[κ(k⊥) + n(k⊥)]. (A1)

For shear, a similar relationship holds even though b and n are not isotropic.
When κ is spatially variable,

T̃b(x) = Tb(x⊥ − D0 − δ D(x⊥), x‖) = Tb(x⊥ − D0, x‖) − ∇⊥Tb(x⊥ − D0, x‖) · δ D(x⊥), (A2)

where D(x⊥) = d(x⊥) χ (zs), and d(x⊥) is the deflection angle. Therefore κ = ∇⊥ · δ D, δ D(x⊥) = D(x⊥) − D0 and D0 = D(0). δD � x⊥
and can be treated as small perturbations since κ � 1 .

Fourier transforming equation (29),

Eκ (k⊥) =
∫

d2x⊥Eκ (x⊥)e−ik⊥·x⊥ = 1

L

∫
d3xT̃ κ

w1
(x)T̃ κ

w2
(x)e−ik⊥·x⊥ − (2π)2δ2D(k⊥)Vκ. (A3)

T̃ = T̃b + n, and noise is uncorrelated with the signal. The product in real space can be represented as a convolution in Fourier space:∫
d3xe−ik⊥·x⊥ T̃ κ

w1
(x)T̃ κ

w2
(x) =

∫
d3k′

(2π)3
T̃ κ

w1
(k′

⊥, k′
‖)T̃ κ

w2
(k⊥ − k′

⊥, −k′
‖), (A4)

T̃b(k) =
∫

d3xe−ik·xTb(x⊥ − D(x⊥), x‖) = e−ik⊥·D0 [Tb(k) −
∫

d3xe−ik·x∇⊥Tb(x⊥, x‖) · δ D(x⊥ + D0)], (A5)

and the lensing introduced term can be further simplified as∫
d3xe−ik·x∇⊥Tb(x⊥, x‖) · δ D(x⊥ + D0) =

∫
d3xe−ik·xTb(x⊥, x‖)(ik⊥ − ∇⊥) · δ D(x⊥ + D0)

=
∫

d2k′
⊥

(2π)2
Tb(k⊥ − k′

⊥, k‖)i(k⊥ − k′
⊥) · δ D(k′

⊥)eik′
⊥·D0 . (A6)

The quadratic term in equation (A3) can be written as∫
d3xe−ik⊥·x⊥ T̃ κ

w1
(x⊥, x‖)T̃ κ

w2
(x⊥, x‖) = e−ik⊥·D0

∫
d3k′

(2π)3
Wκ

1 (k′
⊥, k′

‖)Wκ
2 (k⊥ − k′

⊥, −k′
‖)[Tb(k′

⊥, k′
‖)Tb(k⊥ − k′

⊥, −k′
‖)

− Tb(k⊥ − k′
⊥,−k′

‖)
∫

d2k′′
⊥

(2π)2
Tb(k′

⊥ − k′′
⊥, k′

‖)i(k′
⊥ − k′′

⊥) · δ D(k′′
⊥)eik′′

⊥·D0

− Tb(k′
⊥, k′

‖)
∫

d2k′′′
⊥

(2π)2
Tb(k⊥ − k′

⊥ − k′′′
⊥,−k′

‖)i(k⊥ − k′
⊥ − k′′′

⊥) · δ D(k′′′
⊥)eik′′′

⊥ ·D0 ]

+ noise. (A7)
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Using the relationship that

〈Tb(k′
⊥, k′

‖)Tb(k⊥ − k′
⊥, −k′

‖)〉 = (2π)3δ3D(k⊥, 0)P3D(k′
⊥, k′

‖), (A8)

we found that the expectation value of the first terms and the noise term in equation (A7) can cancel the last term in equation (A3). Note
δD (0) = lim�k→0 (� k)−1 ∼ (L/2π), and Wκ

2 (k⊥ −k′
⊥, − k′

‖) ∼ Wκ
2 (k′

⊥, k′
‖) since δ2D(k⊥) is non-zero only when k⊥ = 0. Similarly, the last

two terms can be simplified. Both eik′′
⊥·D0 and eik′′′

⊥ ·D0 terms cancel e−ik⊥·D0 since k′′
⊥ = k⊥ and k′′′

⊥ = k⊥, respectively. The normalization factor

bκ (k⊥) = 2

k2
⊥

∫
d3k′

(2π)3
Wκ

1 (k′
⊥, k′

‖)Wκ
2 (k⊥ − k′

⊥, −k′
‖)[(k⊥ − k′

⊥) · k⊥P3D(k⊥ − k′
⊥, −k′

‖) + k′
⊥ · k⊥P3D(k′

⊥, k′
‖)]. (A9)

Similarly, replacing Wκ
1 , Wκ

2 by W
γ1
1 , W

γ1
2 (Wγ2

1 , W
γ2
2 ), and k2

⊥ by k2
⊥ cos 2θk⊥ (k2

⊥ sin 2θk⊥ ), we find the normalization factor for γ 1(γ 2).
The noise of the estimator can be calculated in the absence of lensing: 〈|κ̂(k⊥)|2〉 = 〈κ̂(k⊥)κ̂�(k⊥)〉. Since 〈|κ̂(k⊥)|2〉 = (2π)2δ2D(0)Nκ (k⊥)

and δ2D(0) = lim�k→0 (�k)−2 ∼ (L/2π)2, Wick’s theorem gives

Nκ (k⊥) = 1

b(k⊥)2L

∫
d2k′

⊥
(2π)2

∫
dk′

‖
(2π)

{P3D(k⊥ − k′
⊥, −k′

‖)P3D(k′
⊥, k′

‖)[Wκ
1 (k⊥ − k′

⊥, −k′
‖)Wκ

2 (k′
⊥, k′

‖)]2

+ P3D(k⊥ − k′
⊥, −k′

‖)P3D(k′
⊥, k′

‖)F κ (k⊥ − k′
⊥, −k′

‖)F κ (k′
⊥, k′

‖)}. (A10)

The first term is the convolution of P3D(k)Wκ
1 (k)2 and P3D(k)Wκ

2 (k)2, and the second term is the convolution of P3D(k)F κ (k) with itself. The
dimensionless quantity k2

⊥ Nκ (k⊥)/(2π) is equivalent to l2Cl/(2π) in the literature.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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