
 Open access  Journal Article  DOI:10.1364/JOSAA.35.000125

Precision of proportion estimation with binary compressed Raman spectrum.
— Source link 

Philippe Réfrégier, Camille Scotté, Hilton B. de Aguiar, Hervé Rigneault ...+1 more authors

Institutions: Aix-Marseille University

Published on: 01 Jan 2018 - Journal of The Optical Society of America A-optics Image Science and Vision (Optical
Society of America)

Topics: Binary number, Filter (signal processing) and Mean squared error

Related papers:

 Binary Complementary Filters for Compressive Raman Spectroscopy

 Assessment of Compressive Raman versus Hyperspectral Raman for Microcalcification Chemical Imaging

 Digital compressive chemical quantitation and hyperspectral imaging

 Photon level chemical classification using digital compressive detection.

 Programmable single-pixel-based broadband stimulated Raman scattering.

Share this paper:    

View more about this paper here: https://typeset.io/papers/precision-of-proportion-estimation-with-binary-compressed-
4yrrgj1u4j

https://typeset.io/
https://www.doi.org/10.1364/JOSAA.35.000125
https://typeset.io/papers/precision-of-proportion-estimation-with-binary-compressed-4yrrgj1u4j
https://typeset.io/authors/philippe-refregier-56083rrrpe
https://typeset.io/authors/camille-scotte-3ipabs51uy
https://typeset.io/authors/hilton-b-de-aguiar-3bb3tiplpv
https://typeset.io/authors/herve-rigneault-24vj6vspwq
https://typeset.io/institutions/aix-marseille-university-2z208r50
https://typeset.io/journals/journal-of-the-optical-society-of-america-a-optics-image-2s1jh4v1
https://typeset.io/topics/binary-number-33791c84
https://typeset.io/topics/filter-signal-processing-s8o2ia8y
https://typeset.io/topics/mean-squared-error-2rehifci
https://typeset.io/papers/binary-complementary-filters-for-compressive-raman-1iwn5yalzl
https://typeset.io/papers/assessment-of-compressive-raman-versus-hyperspectral-raman-4alkish0rl
https://typeset.io/papers/digital-compressive-chemical-quantitation-and-hyperspectral-22iqs1cxco
https://typeset.io/papers/photon-level-chemical-classification-using-digital-2816bxj9mb
https://typeset.io/papers/programmable-single-pixel-based-broadband-stimulated-raman-34b5j8cxq3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/precision-of-proportion-estimation-with-binary-compressed-4yrrgj1u4j
https://twitter.com/intent/tweet?text=Precision%20of%20proportion%20estimation%20with%20binary%20compressed%20Raman%20spectrum.&url=https://typeset.io/papers/precision-of-proportion-estimation-with-binary-compressed-4yrrgj1u4j
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/precision-of-proportion-estimation-with-binary-compressed-4yrrgj1u4j
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/precision-of-proportion-estimation-with-binary-compressed-4yrrgj1u4j
https://typeset.io/papers/precision-of-proportion-estimation-with-binary-compressed-4yrrgj1u4j


HAL Id: hal-01715283
https://hal.archives-ouvertes.fr/hal-01715283

Submitted on 27 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Precision of proportion estimation with binary
compressed Raman spectrum

Philippe Réfrégier, Camille Scotté, Hilton de Aguiar, Herve Rigneault,
Frédéric Galland

To cite this version:
Philippe Réfrégier, Camille Scotté, Hilton de Aguiar, Herve Rigneault, Frédéric Galland. Precision
of proportion estimation with binary compressed Raman spectrum. Journal of the Optical Soci-
ety of America. A Optics, Image Science, and Vision, Optical Society of America, 2018, 35 (1),
฀10.1364/JOSAA.35.000125฀. ฀hal-01715283฀

https://hal.archives-ouvertes.fr/hal-01715283
https://hal.archives-ouvertes.fr


Research Article Journal of the Optical Society of America A 1

Precision of proportion estimation with binary
compressed Raman spectrum
PHILIPPE RÉFRÉGIER1 , CAMILLE SCOTTÉ1 , HILTON B. DE AGUIAR1,2 , HERVÉ RIGNEAULT1 , AND

FRÉDÉRIC GALLAND1,*

1 Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
2Département de Physique, Ecole Normale Supérieure / PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France
*Corresponding author: frederic.galland@fresnel.fr

Compiled November 5, 2017

The precision of proportion estimation with binary filtering of Raman spectrum mixture is analyzed when
the number of binary filters is equal to the number of present species and when the measurements are cor-
rupted with Poisson photon noise. It is shown that the Cramer-Rao bound provides a useful methodology
to analyze the performance of such an approach and in particular when the binary filters are orthogonal.
It is demonstrated that a simple linear mean square error estimation method is efficient (i.e. has a variance
equal to the Cramer-Rao Bound). Evolutions of the Cramer-Rao bound are analyzed when the measuring
times are optimized or when the considered proportion for binary filter synthesis are not optimized. Two
strategies for the appropriate choice of this considered proportion are also analyzed for the binary filter
synthesis. © 2017 Optical Society of America

OCIS codes: 070.4560 - Data processing by optical means, 110.4280 - Noise in imaging systems, 110.3055 - Information theoret-
ical analysis, 300.6450 - Spectroscopy Raman.
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1. INTRODUCTION AND BACKGROUND

A. Introduction

Spontaneous Raman spectroscopy allows one to probe a chem-
ically heterogeneous system with high molecular specificity. In
its most general implementation, Raman inelastically scattered
light is collected and spectrally dispersed on sensitive array
detectors (e.g. charge-coupled device, CCD). As the Raman
cross section is relatively weak, this methodology requires typ-
ically long acquisition times to overcome noise associated with
detection hardware. To overcome these limits, new strategies
have been recently implemented, mostly focused on spectrally
multiplexed measurements that may enable faster or shot-noise
limited performance [1–6]. Nevertheless, these "full spectrum"
multiplexing methodologies still acquire data which might be
not necessary for certain applications, such as in sorting chemi-
cal species whose Raman spectra are known.

An alternative approach based on compressive detection has
been proposed recently [4, 7–10] when the measured spectra is a
linear combination of elementary spectrum of different species.
In this methodology, proportion of known species can be esti-
mated from few measurements (at least as many measurements
as the number of species) . In this framework, each measure-
ment is performed using programmable binary spectral filters

and a single channel detector for each filter. The speed may
thus surpass array detectors (i.e. CCD) with lower acquisition
times or noise level for chemical species quantitative analysis,
hence enabling faster image acquisition using the spontaneous
Raman process.

In this article, we consider the problem of retrieving un-
known proportions from a mixture of known species from com-
pressed spectra that are obtained with measuring the intensity
through optical binary filters. It is assumed that the mixed
spectrum is a linear combination of elementary known spectra
with unknown coefficients zi (see for example [4, 7–11] and ref-
erences herein). The goal is thus to investigate precisely the
performance of the compressed Raman method in comparison
to full Raman techniques (i.e. raster scanning the grating of a
spectrometer or using a CCD detector) when measuring such
kinds of mixed spectra. Issues of practical implementation of
optical filtering of Raman spectra have been discussed in par-
ticular in [1, 2, 4–7, 9] and the purpose of this paper is to in-
vestigate theoretical information properties of the compressed
Raman technique, without analyzing technological limitations,
but with introducing fundamental physical limits such as pho-
ton noise. This approach allows one to analyse the information
properties of both the full and the compressed Raman methods,
when only the fundamental photon noise is taken into account.

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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This study is thus independent of particular implementation
limits such as hardware-related noise sources. However, gen-
eralizing the results in the presence of additive electronic noise
and of background noise is easy as discussed in an appendix.
For that problem, we analyze the ultimate precision described
by the Cramer-Rao lower bound (CRB). Analyzing the CRB has
the advantage of being independent of the choice of the unbi-
ased estimation algorithm that processes the number of pho-
tons measured with each binary filter. Although the general
expression of the CRB can be applied when the number of fil-
ters is larger than the number of known species with unknown
proportion, two particular cases are precisely investigated. In-
deed, a particular attention is provided to situations for which
the number of filters is equal to the number of known species. It
is demonstrated that, in that case, a simple linear mean square
error estimation method [7–10] is efficient (i.e. has a variance
equal to the Cramer-Rao Bound). Estimation performance is
also analyzed with Orthogonal Binary Filters (OBF) that consti-
tute a subset of Binary Filters (BF) [7–10] and that are defined so
that for each frequency at most one filter is equal to 1. Although
practically difficult, the OBF method allows one to implement
the filters in parallel when the measuring times for each binary
filter are equal. In that case, it is possible to precisely compare
the obtained precision with the standard Full Spectral Raman
(FSR) method. The usefulness of the CRB for proportion esti-
mation based on full Raman spectra has been illustrated in [11]
and its comparison with the CRB obtained with OBF allows one
to quantify the efficiency of this last technique. Bounds on the
Cramer-Rao bound with BF techniques are then analyzed as
well as strategies for the choice of the considered proportions
for the binary filters synthesis. These results show that a simple
methodology can be implemented to optimize binary filters for
each particular application.

In order to analyze the information performance of the BF
and OBF approaches and to avoid bias due to any imperfect
experimental condition, the study is performed with numerical
simulations. The numerical results are obtained with the con-
sidered spectrum examples but the proposed analysis provides
a general methodology for other application examples or exper-
imental conditions.

In subsection 1.B the compressed Raman technique and the
noise model is summarized. Then, in Section 2, the Cramer-
Rao bound (CRB) is determined for compressed Raman tech-
nique and the optimization method for binary filter synthesis
is presented as well as numerical simulation results for differ-
ent types of spectra. Then, the efficiency of a simple linear
method analogous to the one introduced in [7–10] is demon-
strated when the number of binary filters is equal to the number
of elementary species. This assumption of equality of the num-
ber of binary filters and of the number of elementary species is
thus considered in the following of the paper. The advantage
of optimizing measuring times for each binary filter is then in-
vestigated and bounds on the CRB are provided. Section 3 is
devoted to the comparison of the compressed Raman technique
with the full Raman approach. Since the binary filters are gener-
ated for particular proportion values, the robustness of the tech-
nique to the choice of these values is also discussed using the
CRB of both the compressed and full Raman techniques. The in-
fluence of the particular proportions used for the binary filters
design is discussed in section 4. Conclusion and perspectives
are provided in section 5 and mathematical proofs and exten-
sions are developed in the appendices.

B. Background

Let Nτ(ν) denote the number of photons measured with a full
Raman process in the frequency bandwidth [ν− δν/2, ν + δν/2]
with acquisition time τ. The statistical average value 〈Nτ(ν)〉 of
this number of photons can be written 〈Nτ(ν)〉 = τ S(ν) where
S(ν) is proportional to the integral of the Raman spectrum for
frequencies between ν − δν/2 and ν + δν/2. The measurements
are performed for K sampled frequencies νk with k = 1, .., K
so that νk+1 − νk ≥ δν. The average total measured number

of photons is thus Nτ = ∑
K
k=1〈Nτ(νk)〉. The spectrum S(ν) is

assumed to be a linear combination of Q known spectra Si(ν)
so that

S(ν) =
Q

∑
i=1

zi Si(ν) (1)

where the coefficients zi can be considered as proportion coeffi-
cients that are unknown. It will be also assumed that Si(ν) ≥ 0.
This is a natural assumption if Si(ν) is a spectral density but
it would not have been the case if only the linear combination

S(ν) = ∑
Q
i=1 zi Si(ν) is constrained to represent spectral densi-

ties. The zi coefficients are proportional to the proportion of
photons emitted by species number i. This equation is thus
based on the assumption that the mixing of species does not
modify the emission spectra Si(ν) in the range of concentration
variation that are considered for the estimation. Let Z denote
the variation domain of the zi and z

sup
i denote the maximal val-

ues of zi in Z . Let us introduce zi = z′i z
sup
i then clearly z′i ≤ 1

and Eq. (1) can thus be written

S(ν) =
Q

∑
i=1

z′i z
sup
i Si(ν) =

Q

∑
i=1

z′i S′
i(ν) (2)

with the constraint that 0 ≤ z′i ≤ 1. Thus, assuming that proper
normalization has been performed, it will be considered below
that 0 ≤ zi ≤ 1 ∀i = 1, .., Q. Furthermore, the constraint

∑
Q
i=1 zi = 1 will also sometimes be considered. The set of z

(with z = (z1, z2, ..., zQ)
T where T denote the transpose opera-

tion) that satisfy 0 ≤ zi ≤ 1 ∀i = 1, .., Q and ∑
Q
i=1 zi = 1 will be

noted T in the following. This condition will be used below for
some numerical simulations in section 3.D and for some theo-
retical and numerical results in section 4. It is also interesting to
notice that, with this model, one of the elementary spectra can
be a background spectrum.

It has been shown [7–10] that linear function of the propor-
tion zi, can be estimated when the intensity is not measured for
each νk but through M binary filters Fm(ν) (m = 1, ..., M) with
M ≥ Q. Binary filters, defined so that Fm(ν) = 0 or 1, are used
for optical implementation simplicity reasons and their optimal-
ity has been discussed in [7, 8].

The measured number of photons nm through filter number
m is a random variable and, with standard Raman emission,
its probability law can be assumed to be a Poisson distribution
when the measurements are limited by photon noise. In that
case, the probability to observe nm photons is:

Pm(nm) = e−µm
µnm

m

nm!
(3)

where a! = 1 × 2 × ... × a and µm = 〈nm〉, and thus:

µm = τm

K

∑
k=1

Fm(νk) S(νk) (4)
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where τm is the measuring time for filter Fm =

(Fm(ν1), Fm(ν2), ..., Fm(νK))
T . Using Eq. (1) into Eq. (4)

leads to [4, 7]:

µm =
Q

∑
i=1

Gmi zi (5)

with Gmi = τm gmi and gmi = ∑
K
k=1 Fm(νk) Si(νk). Introducing

the matrix G so that [G]mi = Gmi, Eq. (5) can be written

µ = G z (6)

where µ = (µ1, µ2, ..., µM)T. Eq. (6) suggests that z can be esti-

mated from µ if GTG is non singular [4, 7].

2. CRAMER-RAO BOUND

A. Cramer-Rao bound with binary filters

A standard statistical approach consists in looking at unbiased
estimations with minimal variance [12]. If ẑ = (ẑ1, ẑ2, ..., ẑQ)

T

is an estimation of z, then this estimator is unbiased if 〈ẑ〉 = z.
The precision of an unbiased estimator can be characterized by

its covariance matrix Γ = 〈δẑ δẑT〉 with δẑ = ẑ − 〈z〉. The M fil-
ters Fm(ν) can thus be determined in order to optimize a figure
of merit deduced from Γ such as the mean square error of ẑ ob-
tained with a linear function of the measures nm [7–9]. Comple-
mentary information can be obtained with analyzing the CRB.
Such an approach has been developed in [11] for standard Ra-
man spectroscopy perturbed with Poisson noise. It is shown
in the following that it can be helpful for binary compressed
Raman spectrum. Indeed, for any unbiased estimator:

〈δẑ2
i 〉 = [Γ]ii ≥

[
IF

−1
]

ii
= [Υ]ii (7)

where Υ is the CRB matrix, IF is the Fisher matrix, which is

obtained with [IF]ij = −
〈

∂zi
∂zj

ℓ(n)
〉

, and where ℓ(n) is the

log-likelihood and n = (n1, n2, ..., nM)T .
If the measures nm are statistically independent, then ℓ(n) =

∑
M
m=1 log [Pm(nm)]. The following property is easy to show.

Property 1: The Cramer-Rao bound (CRB) matrix with binary
filters is

Υij = [IF
−1]ij (8)

with the information matrix:

[IF]ij =
M

∑
m=1

GmiGmj

µm
=

M

∑
m=1

τm gmigmj

∑
Q
ℓ=1 gmℓ zℓ

(9)

The proof is analog to the one developed in [11] and is not de-
tailed here. This property shows that the precision is a function
of τm, zi and of gmi and thus of the binary filters Fm.

B. Description of the considered examples

In the following the results are illustrated with three exam-
ples. For these examples, it is assumed that M = Q = 3
with measuring times τm for each filter equal to τ (i.e. inde-
pendent of the filter). These examples are considered since they
show different correlation coefficients and different intensity ra-
tios between the spectra. Furthermore, τ is adjusted so that

τ ∑
K
k=1 Si(νk) = αi with αi values reported in Table 1. The

spectra of the first example, have been generated such that

Si(νk) =
∣∣gi,k

∣∣5 where the gi,k (i ∈ [1, 3], k ∈ [1, 50]) are iden-
tically distributed and statistically independent realizations of
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Fig. 1. Noiseless version of the considered Raman spectra. (a):
numerical synthesis on 50 frequency channels of three random
spectra (see text for details). (b): Considered models for Ra-
man spectra of Chloroform and Dimethyl sulfoxide (DMSO)
acquired on 511 frequency’s channels. In this last case, a con-
stant Raman spectrum is added in order to introduce possi-
ble background noise. (c) : analogous to (a) but with different
spectra (see text for details).

zero mean real Gaussian random variables and normalized so
that τ ∑

K
k=1 Si(νk) = αi with K = 50. A noiseless example of

such spectra is shown in Fig.1.a. The second example (Fig.1.b)
corresponds to the considered models (i.e. noiseless) for Ra-
man spectra of Chloroform and Dimethyl sulfoxide (DMSO)
acquired on 511 frequency channels. These spectra are sam-
pled on K = 511 frequencies and a constant background is also
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Ex of Fig.1.a Fig.1.b Fig.1.c

α1 3000. 1456.3 3000.

α2 3000. 5904.89 15000.

α3 3000. 1638.81 75000.

r12 0.0396 0.4882 0.5602

r23 0.1656 0.3191 0.6536

r13 0.0106 0.4074 0.6065

Table 1. Values of αi = τ ∑
K
k=1 Si(νk) for spectra

of Fig. 1. Correlation coefficients correspond to rij =

∑
K
k=1[Si(νk)Sj(νk)]/

√
(∑K

k=1 Si(νk)2)(∑K
k=1 Sj(νk)2).

present in order to introduce possible background noise.

The third example is generated as for the first example but
with spectra Si(νk) =

∣∣gi,k

∣∣ (see Fig.1.c) normalized so that

τ ∑
K
k=1 Si(νk) = αi with values reported Table 1. Examples

of Figs. 1.a and 1.c have only K = 50 frequencies to simulate
low variation with the frequency channel observed with most
real spectra, but the methodology can be applied with any K
value larger than Q and M. The normalized correlation values
between the spectra are also reported in table 1. They show
that the considered examples of Figs. 1.a, 1.b and 1.c also corre-
spond to different overlap between the spectra.

C. Numerical simulation results

The set F of the M filters Fm can be determined by minimizing a
scalar quantity deduced from Υ. Analyzing the trace Etr = tr[Υ]
of the CRB matrix is interesting since, for unbiased estimators,
Etr is a bound of the minimal value of the mean square error
(i.e. of tr[Γ]). The set F can be obtained with a simple numeri-
cal optimization technique that consists in choosing randomly
an m value and a k value and changing the value Fm(νk) into
1− Fm(νk) if Etr is decreased. The process can then be iterated a
fixed number of trials. Such a simple approach does not guaran-
tee optimality properties and the convergence can correspond
to local minima.

Results of convergence with 50 different random initial con-
ditions for the binary filters of the spectra of Fig.1 are shown in
Figs.2, 3 and 4. For these numerical experiments the set F have
been obtained when the proportion coefficients zi are equal to
1/3. The influence of such an arbitrary choice will be discussed
in a following section. The number of iterations for each ran-
dom initialization is 9 103 for the example of Fig.1.a and Fig.1.c
and is 9 104 for the example of Fig.1.b. It can be observed that
the optimization process does not always lead to the same cri-
terion values and thus to the same filters. An important gain
for the CRB can nevertheless be seen after filter optimization
in comparison to the values before optimization. Convergence
problems for some trials lead to higher CRBs than the mini-
mal value. It can thus be appropriate with such a simple op-
timization process to perform several optimizations with differ-
ent initial values and to select the best solution. More sophis-
ticated optimization algorithms could be implemented [7, 8] to
improve the convergence properties of the method if necessary.
However, such a possibility will not be analyzed in this paper
since, in the following, it will be imposed that the binary filters

are orthogonal.
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Fig. 2. Results for spectra of Fig. 1.a.
Left: decimal logarithm value of the optimized criterion Etr

obtained for 50 different random initial conditions with BF
determined for zi = 1/3.
Right: Normalized values of the obtained CRB determined
with 50 different initial conditions with ρii(n) = Υii(n)/Υii

and ρT(n) = 1
3 ∑

3
i=1 ρii(n), where Υii = 1

50 ∑
50
n=1 Υii(n) and

where Υii(n) is the obtained value for trial number n.
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Fig. 3. Same as Fig. 2 but for spectra of Fig. 1.b.
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Fig. 4. Same as Fig. 2 but for spectra of Fig. 1.c.

D. Particular case of M = Q

The particular case for which the number of filters M is equal
to the number of known species Q is specially interesting. In-
deed, not only it corresponds to the minimal number of needed
filters to perform the estimation, but also it allows one to ob-
tain several useful properties. In particular, Property 1 can be
simplified in that case into the following corollary.

Corollary 1: When M = Q and if G is not singular, then

Υ = G−1
Λ [GT ]−1 (10)

where the diagonal matrix Λ is defined so that [Λ]mm = µm.
This equation can be developed, which leads to the following
corollary that will be helpful in the following.
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Corollary 2: When M = Q and when G is non-singular, the
CRB Υii can be written

Υii =
Q

∑
n=1

Q

∑
m=1

ηimn
zn

τm
(11)

with

ηimn = b2
im gmn ≥ 0 (12)

where b = g−1 with [g]mn = gmn and [b]im = bim.

This result shows that the CRB Υii is a linear function of zi

when M = Q.

E. Efficient estimator when M = Q

It is not sure in general that an unbiased estimator with a vari-
ance equal to the CRBs exists. The pseudo-inverse solution,
which is analogous to the proposed method of [4, 7, 9], corre-
sponds to:

ẑlin =
[
GTG

]−1
GT n (13)

where it is assumed that GTG is non singular. This linear

method is unbiased since 〈ẑlin〉 =
[
GTG

]−1
GT

µ which, with

Eq. (6), leads to 〈ẑlin〉 = z.

When M = Q and when G is non-singular the relation of

Eq. (13) simplifies into ẑlin = G−1 n. Furthermore, the covari-
ance matrix of the estimations is

Γ
(lin) =

〈
δẑlinδẑT

lin

〉
(14)

where δẑlin = ẑlin − 〈ẑlin〉. Since nm are random Poisson vari-
able 〈δn2

m〉 = 〈nm〉 = µm, where δnm = nm − 〈nm〉. With the
diagonal matrix Λ defined above, when M = Q and when G is
non singular, the covariance matrix can be written

Γ
(lin) = G−1

Λ [GT ]−1 = Υ (15)

which shows that this estimator is efficient (i.e. unbiased with
a variance equal to the CRB). It can also be shown that it corre-
sponds to the maximum likelihood estimator (see Appendix A).
These results can be summarized in the following property.

Property 2: When M = Q and when G is non-singular, the
linear estimation method

ẑlin = G−1 n (16)

is efficient for the estimation of each zi, i.e. unbiased with min-
imum variance. Furthermore, this solution corresponds to the
maximum likelihood estimator.

Furthermore, since Γ
(lin) = Υ, this result shows that min-

imizing the mean square error [7–9] is efficient with Poisson
noise model for the considered application when M = Q. In
other words, it is equivalent to design the binary filters by min-
imizing either the trace of the CRB matrix or the mean square
error when M = Q.

F. Bounds with unequal measuring times when M = Q

It has been mentioned in [7, 8] that the time τm can be chosen in
order to minimize the mean square error of the zi estimations.
It is possible to obtain a bound on the possible gain that can
be expected for a fixed set F of binary filters as shown by the
following property (shown in Appendix B).

Property 3: Let Υ
(τ0)
ii denote the CRBs with BF method with

equal measuring time τ0 = T/Q when M = Q and Υ
(τ)
ii the

CRBs obtained with measuring times τ = (τ1, .., τQ)
T with

∑
Q
i=1 τi = T. Then,

Υ
(τ)
ii ≥ 1

Q
Υ
(τ0)
ii (17)

Thus, optimizing the measuring times cannot lead to a de-
crease of the CRB larger than a factor Q in comparison to the
result obtained with equal measuring times. In other words,
the gain is bounded by a factor Q but it can nevertheless be ob-

served that if τm → 0 then Υ
(τ)
ii → ∞ which shows that the loss

is not bounded if an inappropriate choice of the τm is done.

G. Case of upper bounded measuring times when M = Q

The situation is different if the constraint corresponds only to
upper bounded measuring time τm. Such a situation appears
if the filters are applied in parallel. Although practically dif-
ficult to implement, this situation is in principle possible with
orthogonal binary filters. In that case the following property
shows that no gain can be expected with τm optimization when
M = Q.

Property 4: When M = Q and when the constraint τm ≤ τ0 is
imposed, the minimal CRB values are obtained with τm = τ0.

Indeed, Corollary 2 leads to (see Appendix B)

Υ
(τ)
ii =

Q

∑
m=1

βim

τm
≥

Q

∑
m=1

βim

τ0
(18)

since βim ≥ 0. The minimal CRB values are thus obtained with
equal measuring times τm = τ0.

H. Discussion when M = Q

The comparison between systems for which the binary filters
are applied sequentially or in parallel is interesting. Indeed, let
T be the total measuring time. With M BF applied sequentially

the constraint is ∑
M
m=1 τm = T. With M OBF applied in parallel

the constraint is τm ≤ T and the optimal solution (i.e. that min-

imizes the CRB) is τm = T. However, Υ
(T/Q)
ii = Q Υ

(T)
ii which

is another illustration of the result of property 4 that there is
no possible gain when OBF are applied in parallel with opti-
mization of the measuring times. Since in the following, OBF
will be assumed implemented in parallel when compared to
full Raman method, the measuring times will be considered
equal. However, the results obtained below do not need that
the binary filters are implemented in parallel. If they are imple-
mented sequentially, the CRB have thus simply to be multiplied
by M for the same total measuring time.
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3. COMPARISON WITH FULL RAMAN METHOD

A. Cramer-Rao bound of the full Raman method

The CRB for estimating the zi coefficients with full Raman meth-
ods has been determined in [11]. The most favorable situation
for the full Raman technique is obtained when the noise is pho-
ton limited. In that case, the CRB is simple and leads to the
following corollary.

Corollary 3: The information matrix with full Raman method
is

[IF
(F)]ij = τ

K

∑
k=1

Si(νk)Sj(νk)

S(νk)
(19)

An extension of this result in the presence of detector noise
and background noise is discussed in Appendix C. This corol-
lary also shows that the CRB is inversely proportional to the
measuring time (which is also the case for BF and OBF with
equal measuring times for each filter).

B. Orthogonal binary filters

Orthogonal binary filters (OBF) are defined so that Fm(νk) = 0

or 1 and ∑
M
m=1 Fm(νk) ≤ 1. In other words, for each frequency

νk only at most one of the binary filters satisfies Fm(νk) = 1.
Although difficult to realize, such OBF allows one to perform
the measurements with BF in parallel.

The BF optimization technique can be adapted to design the
set F of the OBF. For each randomly chosen k, a new set of the M

values Fm(νk) that satisfies Fm(νk) = 0 or 1 and ∑
M
m=1 Fm(νk) ≤

1 is chosen randomly. This new set of values is accepted if Etr

is decreased. Results of convergence with 50 different random
initial OBF for the spectra of Fig.1 are shown in Figs.5, 6 and
7. The number of iterations for each random initialization is
9 103 for the example of Fig.1.a and Fig.1.c and is 9 104 for the
example of Fig.1.b. It is interesting to notice on these examples
that OBF do not lead to an important increase of the CRB in
comparison to the ones of the BF.
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Fig. 5. Same as Fig. 2 but with OBF.
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Fig. 6. Same as Fig. 3 but with OBF.
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Fig. 7. Same as Fig. 4 but with OBF.

C. Comparison of orthogonal binary filters with full Raman
method

When the measuring times for each filter are equal, it is pos-
sible to compare the OBF method to the full spectral Raman
measurements (FSR). Indeed, when the filters are orthogonal
the probability law of nm with m = 1, .., M is equal to the one of

n′
m = ∑

K
k=1 Fm(νk)Nτ(νk) where Nτ(νk) is the number of pho-

tons that would have been obtained with the FSR approach. In
other words, the n′

m determined with a numerical binary filter-
ing of photons detected with a full Raman approach are inde-
pendent if the binary filters are orthogonal. Thus, orthogonal-
ity of the filters assures that the n′

m are statistically indepen-
dent and the CRB with either the nm or the n′

m are still given
by Eq. (9). From an information theory point of view, the OBF
approach is thus equivalent to perform the estimation on the bi-
nary numerically filtered signal obtained after the photons have
been detected with a full Raman approach (FSR). OBF are then
a subset of possible algorithms with FSR, and thus, the CRBs
with OBF cannot be smaller than the ones with FSR. These con-
siderations lead to the following property.

Property 5: Let Υ
(F,τ0)
ii denote the CRB with Full Raman mea-

surements with measuring time τ0 and Υ
(τ0)
ii the optimal CRBs

obtained with OBF with equal measuring times τ0, the CRBs
satisfy

Υ
(τ0)
ii ≥ Υ

(F,τ0)
ii (20)

Obviously this property implies that Etr = ∑
Q
i=1 Υ

(τ0)
ii ≥

E (F)
tr = ∑

Q
i=1 Υ

(F,τ0)
ii . It is interesting to emphasize that this

property is not shown for non orthogonal binary filters. In-
deed, in that latter case (i.e. with BF), the random values nm

with m = 1, .., M, obtained with the binary filters are statis-
tically independent since they result from independent Pois-
son measurements. However, the random variables n′

m =
∑

K
k=1 Fm(νk)Nτ(νk), where Nτ(νk) is the number of photons

that would have been obtained with the FSR approach, are not
statically independent if the values Fm(νk) are non zero for sev-
eral m values.

D. Robustness to the chosen proportion for OBF synthesis

In the above examples the BF or OBF have been determined

by minimizing Etr when the proportions are z
(d)
i = 1/3. Since,

the proportion values are unknown, it is interesting to analyze
the robustness of the estimation method when the actual pro-

portions zi are different to z
(d)
i . The CRB of the Full Spectrum

Raman (FSR), which can be easily determined for each zi pos-
sible values, is useful for that purpose. The CRBs obtained
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with OBF and with FSR and the ratios of their square-roots are
shown in Figs. 8 and 9 as a function of z1 and z2 (assuming
z3 = 1 − z1 − z2) for both examples of Fig.1.a and Fig.1.b. It
can be seen for these examples that these ratios are close to 1,
although differences appear on the boundary of the triangle.
Thus, with examples of Figs. 1.a and 1.b, designing OBF with

Etr calculated for z
(d)
i = 1/3 does not lead to an important loss

of performance for a large set of zi values. Obviously, these ex-
amples are not representative of all the possible situations as
shown with Fig.10 that reports an analogous analysis for exam-
ple of Fig.1.c. It clearly appears that the loss of performance is
higher than for the previous examples but it is still small since
it is of the order of 50 % (for the standard deviation). For this ex-
ample the number of measured photons is larger than for exam-
ples of Figs. 1.a and 1.b but the CRBs are still of the order 10−2.
Higher losses can probably appear for other examples and the
proposed methodology allows one to precisely quantify them.
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Fig. 8. Results for spectra of Fig.1.a.
Left: CRB obtained with orthogonal binary filters (OBF) de-

signed for z
(d)
i = 1/3 and with the full Raman spectrum as a

function of z1 and z2 (z3 = 1 − z1 − z2).
Right: Ratio of the square-root of the CRB obtained with or-

thogonal binary filters (OBF) designed for z
(d)
i = 1/3 with

the square-root of the CRB using the full Raman spectrum as a
function of z1 and z2.

It has to be noticed that the comparison has been done as-
suming that the M measurements with OBFs are performed in
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Fig. 9. The same as for Fig.8 but for spectra of Fig.1.b.

parallel. If the measurements are performed sequentially, equiv-
alent CRBs are obtained only if the total measuring time for
OBF is M times the one of FSR.

With this assumption of parallel measurements, several re-
marks can be mentioned when the CRBs for OBF and for the
full Raman method are approximately equal. Indeed, in that
case, using only few binary combinations of the Raman spec-
trum does not degrade significantly the precision in retrieving
the proportions zi. Firstly, minimizing the sum of the CRBs (or
equivalently the mean square error) for OBF optimization is ap-
proximately efficient to minimize the CRB for each species al-
though they can be different for each species. Secondly, using
more OBF than the number of species will not decrease signifi-
cantly the CRB. Thirdly, specializing the OBF for each zi value
may not be necessary for a large set of zi values.

However, there is no proof that the CRBs for OBF and for
the full Raman method are always approximately equal and it
is not the case as shown with the example of Fig.1.c. It is thus
interesting to analyze more precisely the influence of the choice

of the proportion z
(d)
i considered for the OBF synthesis.
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Fig. 10. The same as for Fig.8 but for spectra of Fig.1.c.

4. INFLUENCE OF THE CONSIDERED PROPORTION
FOR OBF DESIGN

A. Problem

In the above analyses, the proportion z for which the BF (or
OBF) filters have been designed was chosen a priori. In the
following, two approaches are considered in order to optimize
this choice. With the first one, the mean average value of the

criterion in the set T (i.e. so that ∑
Q
i=1 zi = 1 with zi ≥ 0)

is minimized when the probability density function of the zi

satisfies symmetry properties. The second approach is a mini-
max technique that consists in minimizing the maximal value
in T . Although the results presented below are developed for
BF when M = Q they will be illustrated for OBF with the same
hypothesis.

Eq. 11 of corollary 2 can be written Υii = ∑
Q
n=1 γin zn with

γin = ∑
Q
m=1

b2
im gmn

τm
≥ 0. Let F(x) be the set of BF Fm that mini-

mizes Etr for proportion x. Then, mentioning explicitly the pro-
portion x for which the BF have been optimized and the propor-
tion z for which the BF are used, the CRB can be written

Υii(z, F(x)) =
Q

∑
n=1

γin(x) zn (21)

Furthermore, Etr(z, F(x)) = ∑
Q
i=1 Υii(z, F(x)) and thus

Etr(z, F(x)) =
Q

∑
n=1

zn En(x) (22)

where En(x) = ∑
Q
i=1 γin(x). This result clearly shows that

Etr(z, F(x)) is a linear function of z, which allows one to show
several properties.

B. Minimizing the mean value of the mean square error

When the BF are synthesized for zi = 1/Q the CRB of the es-
timation of zi is bounded in D, where D is the set of z values
that satisfy 0 ≤ zi ≤ 1, as shown by the following property (see
Appendix D).

Property 6: When M = Q and when g is non-singular, the CRB
for D satisfies

Υii(z, F(xQ)) ≤ Q Υii(xQ, F(xQ)) (23)

where xQ = (1/Q, ..., 1/Q)T .

Thus choosing equal proportions xQ for filter synthesis may
lead in D to an increase of the CRB bounded by a factor Q.

When no a priori information is available on the zi values,
it can be interesting to consider a probability density function
(pdf) of the zi in T that is invariant by the permutation of the zi.
In that case the following property can be shown (see Appendix
E).

Property 7: When M = Q and when g is non-singular, the aver-
age value of Etr(z, F(x)) over z in T with a probability density
function of z invariant by permutation of the zi, is equal to its
value for zi = 1/Q.

With such symmetrical pdf, determining BF or OBF for zi =
1/Q is equivalent to minimize the mean value of the CRB in

T . However, if the constraint ∑
Q
i=1 zi = 1 is not satisfied this

property will generally not be valid.

C. Minimizing the maximal value of the mean square error

Minimizing the average value of Etr(z, F(x)) is not the only pos-
sible strategy. For example it can be interesting to develop meth-
ods that minimize the maximal value of Etr(z, F(x)) for z ∈ T .
Such a minimax strategy does necessary lead to the solution
zi = 1/Q. The minimax solution (i.e. the value of x that mini-
mizes the maximal value of Etr(z, F(x)) for z ∈ T ) is dependent
of the considered problem and thus of spectra Si(νk).

The minimax algorithm is simple to implement with the
properties shown above. Indeed, Eq. 22 leads to

max
z∈T

Etr(z, F(x)) = max
n

En(x) (24)

Thus for each x values, the set F(x) that minimizes Etr(x, F)
can be determined with the method described in the previous
section. The values En(x) are thus obtained for each tested x
value and it is straightforward to get maxn En(x). Both values
Etr(z, F(z)) and maxx∈T Etr(x, F(z)) are shown in Fig.11 for the
considered examples of this article for OBF synthesis. For that
purpose the zi are sampled on 21 values between 0.003333.. and
0.993333....

These results show that designing OBF for one proportion
may not be a robust approach. Indeed, if the filter is de-
signed for proportion xd, the value of the optimized criterion
Etr(xd, F(xd)) can be small in comparison to its maximal value
in T . It can also be seen on the considered examples, that
maxz∈T Etr(z, F(x)) is minimal for proportion x near the one
that maximizes Etr(x, F(x)).
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The above analysis is based on the assumption that z ∈ T
that allows one to get simple representations and algorithms.

However, ∑
Q
i=1 zi = 1 may not be satisfied for some species

mixing. The minimax strategy could nevertheless be adapted
to more complex situations with a numerical search of the max-
imal value of Etr(z, F(x)).

Etr(z,F(z))

z2

z2

z1
z1

z2

z2

z2

z1
z1

z2

z1

z1

z2

Fig. 11. Lower surfaces: Etr(z, F(z)) and upper surfaces:
maxx∈T Etr(x, F(z)).
First Line: example of fig1.a.
Second Line: example of fig1.b.
Third Line: example of fig1.c.

5. CONCLUSION AND PERSPECTIVES

In conclusion, binary filtering of Raman spectra and Full Ra-
man spectrum method have been compared for proportion es-
timation of mixing of several species [4, 7] when the measured
spectrum is a linear function of the elementary species. A par-
ticular attention has also been devoted to the case for which the
number of filters is equal to the number of unknown species
and to the mixing of three species. Furthermore, the analysis

has also been conducted for orthogonal binary filters, which al-
lows one to perform the measurements in parallel. Bounds on
the Cramer-Rao bounds have been provided when the measur-
ing times are optimized or when the considered proportions for
binary filter synthesis are not optimized. For parallel implemen-
tation, it is not relevant to optimize the measuring times but
analyzing the considered proportions for binary filter synthesis
can be important. Two strategies for an appropriate choice of
this considered proportions have been analyzed for the binary
filter synthesis. In particular, the analysis of a minimax strat-
egy has shown that non robust solutions can be obtained when
these proportions are not chosen carefully. The methodology
described in this article has been illustrated with several partic-
ular examples, but it can be easily applied to each new mixing
of species with known Raman spectra.

Several perspectives exist to this work. Numerical analy-
sis should be performed for mixing of more than three species
since it can be expected that, for a fixed number of Raman spec-
trum frequencies, the efficiency of binary filtering can decrease
[7] and more sophisticated filter optimization algorithms may
be required [8]. Other criterion than the ones optimized in this
paper could also be considered. More interesting, for both a
theoretical and experimental point of view, would be the gen-
eralization of the analysis to situations for which the relation
between the total spectrum and the elementary spectra is not
a linear function. The CRB is an interesting concept to investi-
gate such situations. However, the most interesting perspective
is probably to implement the proposed method experimentally
for practical applications with a precision close to the Cramer-
Rao Bound. In particular, since estimation of the proportion co-
efficients zi is only based on the inversion of the matrix G that
can be measured in situ, simple calibration techniques could be
implemented.
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A. APPENDIX A.

The maximum likelihood estimate of µm is µ̂m = nm. Thus due
to the invariance property of the maximum likelihood estima-
tion [12], the maximum likelihood estimation ẑi of zi satisfies

∑i Gmi ẑi = µ̂m.
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B. APPENDIX B.

Corollary 2 leads to Υ
(τ)
ii = ∑

Q
m=1

βim

τm
with βim =

b2
im (∑

Q
n=1 gmn zn). Thus βim ≥ 0 and

Υ
(τ)
ii =

Q

∑
m=1

βim

τ0

τ0

τm
≥

Q

∑
m=1

βim

τ0
min

m

[
τ0

τm

]
(25)

However Υ
(τ0)
ii = ∑

Q
m=1

βim

τ0
and minm

[
τ0
τm

]
≥ 1

Q and thus

Υ
(τ)
ii ≥ 1

Q
Υ
(τ0)
ii (26)

C. APPENDIX C.

Detector and background noise can also be taken into account.
Since detector noise is generally described with an additive
Gaussian probability density function of zero mean while back-
ground noise can be considered as Poisson distributed, several
approximations can be considered to determine an approxima-
tion of the CRB (see also [11]). At sufficiently high flux, Poisson
distribution can be approximated with a Gaussian distribution
with variance equal to its mean which leads to

P(n(ν)) = 1√
2π(σ2

d(ν)+B(ν)+S(ν))

× exp

(
− [n(ν)−B(ν)−S(ν)]

2

2[σ2
d (ν)+B(ν)+S(ν)]

) (27)

where σ2
d (ν) is the spectral density power of the additive noise

and B(ν) is a background noise spectrum. Assuming σ2
d (νk) +

B(νk) + S(νk) ≫ 1 leads to the information matrix:

[IF
(F)]ij ≃ τ

K

∑
k=1

Si(νk)Sj(νk)

σ2
d (νk) + B(νk) + S(νk)

(28)

This expression is identical to Eq. (19) when σ2
d (ν) = B(ν) =

0. This approach can also be applied to compressed measure-
ments which, when M = Q and when G is non singular, leads
to the covariance matrix

Γ
(lin) = G−1

ΛB,d [G
T ]−1 (29)

where ΛB,d is the diagonal matrix with diagonal elements[
ΛB,d

]
mm = µm + τm ∑

K
k=1 Fm(νk)B(νk) + σ2

m where σ2
m is the

variance of the detector additive noise of the measurement with
filter Fm.

D. APPENDIX D.

It has been shown that Υii(z, F(xQ)) = ∑
Q
n=1 γin(xQ) zn with

γin(xQ) = ∑
Q
m=1

b2
im gmn

τm
≥ 0. Thus, in D, the CRB satisfies

Υii(z, F(xQ)) ≤ ∑
Q
n=1 γin(xQ). Furthermore, Υii(xQ, F(xQ)) =

1
Q ∑

Q
n=1 γin(xQ) that leads to the result of property 6.

E. APPENDIX E.

Let us consider a probability density function P(z) that is invari-
ant to zi permutations. Thus P(z) = P(z′), where z′ is obtained
by permutation of the zi coordinates of z. Eq.22 leads to the
average value

Etr(z, F(x)) =
Q

∑
n=1

En(x)
∫

...
∫

zn P(z)
Q

∏
j=1

dzj (30)

Since P(z) is assumed invariant to zi permutations,∫
...
∫

zn P(z) ∏
Q
j=1 dzj = a, which is independent of n.

Furthermore, ∑
Q
n=1 zn = 1 implies ∑

Q
n=1 zn = 1 = Q a and thus

a = 1/Q, which ends the proof.
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