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Abstract. The four-loop determination of the strong coupling from fully inclusive ob-

servables is reviewed. Special attention is given to the low-energy measurement ex-

tracted from the hadronic τ decay width. A recent exhaustive analysis of the ALEPH

data, exploring several complementary methodologies with very different sensitivities to

inverse power corrections and duality violations, confirms the strong suppression of non-

perturbative contributions to Rτ. It gives the value αs(m
2
τ) = 0.328±0.013, which implies

αs(M2
Z) = 0.1197 ± 0.0015. The excellent agreement with the direct measurement at

the Z peak, αs(M2
Z) = 0.1196 ± 0.0030, provides a beautiful test of asymptotic freedom.

Together with the most recent lattice average from FLAG and the NNLO determinations

from e+e−, PDFs and collider data quoted by the PDG, these two inclusive determinations

imply a world average value αs(M2
Z) = 0.1180 ± 0.0010.

1 Introduction

All strong interaction phenomena should be described in terms of the strong coupling αs, the single

free parameter of Quantum Chromodynamics (QCD). The overwhelming consistency of the many de-

terminations of αs, performed in different processes and at different mass scales provides a beautiful

verification of QCD. A good understanding of the uncertainties associated with the different measure-

ments is needed in order to appreciate the significance of this test, which must be then restricted to

observables where perturbative techniques are reliable and enough terms in the perturbative expan-

sion are available. The PDG [1] requires a NNLO (or higher) theoretical accuracy. In addition, small

non-perturbative corrections are always present, specially at low energies, and one should also worry

about the expected asymptotic behaviour of the perturbative series.

The most reliable determinations of αs have been compiled in Refs. [2–6]. I will focus the discus-

sion on the very precise inclusive observables RZ and Rτ, which are already known to four loops, i.e.,

to N3LO, and will update the PDG information with the most recent developments, not yet included

in the official averages.

2 Running coupling and effective QCD theories

The QCD coupling obeys the renormalization group equation

µ
dαs(µ

2)

dµ
= αs(µ

2) β(αs) , β(αs) =
∑

n=1

βn an
s , as =

αs

π
. (1)
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Figure 1. Scale dependence of αs at different perturbative orders (left). The right plot compares the 5-loop

evolution of αs(m
2
τ), determined from hadronic τ decays, with the measurement of αs(M2

Z) from ΓZ .

The fifth-order coefficient of the β function has been recently computed in Ref. [7] (see also Ref. [8]),

which provides a quite precise perturbative control of the scale dependence of αs. In the MS scheme

(β1 and β2 are scheme independent), the known coefficients are [7, 9, 10]:

β1 =
1

3
n f −

11

2
, β2 = −

51

4
+

19

12
n f , β3 =

1

64

[

−2857 +
5033

9
n f −

325

27
n2

f

]

,

β4 =
−1

128

[

149753

6
+ 3564 ζ3 −

(

1078361

162
+

6508

27
ζ3

)

n f +

(

50065

162
+

6472

81
ζ3

)

n2
f +

1093

729
n3

f

]

,

β5 = −
1

512

{

8157455

16
+

621885

2
ζ3 −

88209

2
ζ4 − 288090 ζ5

+ n f

[

−336460813

1944
− 4811164

81
ζ3 +

33935

6
ζ4 +

1358995

27
ζ5

]

+ n2
f

[

25960913

1944
+

698531

81
ζ3 −

10526

9
ζ4 −

381760

81
ζ5

]

+ n3
f

[

−630559

5832
− 48722

243
ζ3 +

1618

27
ζ4 +

460

9
ζ5

]

+ n4
f

[

1205

2916
− 152

81
ζ3

] }

. (2)

The very modest growth of βn with the perturbative order gives rise to a surprisingly smooth power

expansion. For n f = 5, for instance, β(αs) = β1as

(

1 + 1.26 as + 1.47 a2
s + 9.83 a3

s + 7.88 a4
s

)

.

The scale dependence of αs over a wide range of energies, at different levels of approximation, is

shown in figure 1. The 5-loop precision in the β function implies a resummation of N4LO logarithmic

contributions to the running of αs, i.e., corrections of the form ∆αs(Q
2) ∼ αs(µ

2)n+5 logn (Q2/µ2).

Owing to the fast convergence of the β function, the NLO resummation gives already an excellent

approximation to the running coupling. The achieved accuracy is quite impressive; the four and five

loop corrections are so small that it is difficult to appreciate them in the figure.
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The small discontinuities in the plotted curves reflect the crossing of the charm and bottom thresh-

olds where one needs to properly match the different QCDn f
effective theories. Since the βn coeffi-

cients are functions of n f , the strong coupling depends on the considered number of “active” quark

flavours. When a quark is heavy enough to decouple, it is convenient to remove it from the La-

grangian and work with an effective QCD theory which has one quark less and a different value of αs.

The matching conditions relating the effective QCD theories with n f and n f − 1 flavours are known to

four loops [11, 12].

3 Inclusive observables

Inclusive observables, such as σ(e+e− → hadrons) at high-enough energies, Γ(Z → hadrons) or

Γ(W → hadrons), can be accurately predicted with perturbative methods. Since the final hadrons

are produced through the vector V
µ

i j
= ψ̄ jγ

µψi and axial-vector A
µ

i j
= ψ̄ jγ

µγ5ψi colour-singlet quark

currents (i, j = u, d, s . . .), the QCD dynamics is governed by the two-point correlation functions

Π
µν

i j,J
(q) ≡ i

∫

d4x eiqx 〈0|T (J
µ

i j
(x) Jνi j(0)†)|0〉 =

(

−gµνq2 + qµqν
)

Π
(0+1)

i j,J
(q2) + gµνq2 Π

(0)

i j,J
(q2) , (3)

where J = V, A and the superscript L = 0, 1 denotes the angular momentum in the hadronic rest

frame. The correlators Π
(L)

i j,J
(q2) are analytic functions of q2, in the complex q2 plane, except along the

(physical) positive real axis where their imaginary parts have discontinuities which correspond to the

measurable hadronic spectral distributions with the given quantum numbers.

For massless quarks, sΠ
(0)

i j,J
(s) = constant (there is a non-perturbative Goldstone-pole contribution

to Π
(0)

i j,A
at s = 0, which cancels in Π

(0+1)

i j,A
). When i , j, the two quark currents must necessarily be

connected through a quark loop (non-singlet topology), which gives identical contributions to the vec-

tor and axial massless correlators: Π(s) ≡ Π(0+1)

i, j,V
(s) = Π

(0+1)

i, j,A
(s). They are conveniently parametrized

through the Euclidean Adler function (Q2 = −q2 and NC = 3 is the number of quark colours)

D(Q2) ≡ −Q2 d

dQ2
Π(Q2) =

NC

12π2















1 +
∑

n=1

Kn

(

αs(Q
2)

π

)n














, (4)

which is known to O(α4
s) [13–15]:

K1 = 1 , K2 = 1.98571 − 0.115295 n f , K3 = 18.2427 − 4.21585 n f + 0.0862069 n2
f ,

K4 = 135.792 − 34.4402 n f + 1.87525 n2
f − 0.0100928 n3

f . (5)

There are additional singlet contributions to the neutral-current correlators (i = j), with each current

coupling to a different quark loop. Since gluons have JPC = 1−− and colour, these topologies start to

contribute at O(α3
s) and O(α2

s), respectively, for the vector and axial-vector currents:

∆SDV (Q2) =
NC

12π2

∑

n=3

dV
n

(

αs(Q
2)

π

)n

, ∆SDA(Q2) =
NC

12π2

∑

n=2

dA
n

(

αs(Q
2)

π

)n

. (6)

The vector-current coefficients are dV
3
= −0.41318 and dV

4
= −5.94225 + 0.191628 n f [16].
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The ratio of the electromagnetic e+e− → hadrons and e+e− → µ+µ− cross sections is given by

Re+e− (s) ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= 12π



















∑

f

Q2
f ImΠ(s) +

















∑

f

Q f

















2

Im∆SΠV (s)



















=
∑

f

Q2
f NC















1 +
∑

n≥1

Fn

(

αs(s)

π

)n














+ O














m2
q

s
,
Λ4

s2















. (7)

The sum over quark electric charges of different signs strongly suppresses the singlet contribution,

which has been included as a small correction to the coefficients Fn≥3. For n f = 5 flavours, one gets

F1 = 1, F2 = 1.4092, F3 = −12.805 and F4 = −80.434 [16].

The perturbative series in Eq. (7) is actually an expansion in powers of αs(µ
2) with coefficients

containing a polynomial dependence on log (s/µ2). These logarithms are resummed into the running

coupling by taking µ2 = s. Although the physical ratio Re+e− (s) is independent of the renormalization

scale µ, the truncated series contains a residual µ-dependence of O(αN+1
s ), where N = 4 is the last

included term, which must be taken into account in the theoretical uncertainty. Since non-perturbative

corrections are suppressed by Λ4/s2 (the gauge-invariant operators contributing to the current corre-

lators have dimensions D ≥ 4), at high energies one can perform a N3LO determination of αs(s).

Unfortunately, the experimental uncertainties are large.

3.2 Γ(Z → hadrons)

The electroweak neutral current J
µ

Z
=

∑

f (v f V
µ

f f
+a f A

µ

f f
) contains vector and axial-vector components,

weighted with the corresponding Z couplings. The singlet axial contributions of the two members of

a weak isospin doublet cancel each other for equal quark masses because a f = 2I f ; however, the large

value of the top mass generates very important singlet axial corrections which start at O(α2
s). The ratio

of the hadronic and electronic widths of the Z boson involves the QCD series (mb = 0, mt , 0)

RZ ≡
Γ(Z → hadrons)

Γ(Z → e+e−)
= REW

Z NC















1 +
∑

n=1

F̃n













αs(M2
Z
)

π













n














, (8)

with F̃1 = 1, F̃2 = 0.76264, F̃3 = −15.490 and F̃4 = −68.241 [16]. Taking properly into account the

electroweak corrections and QCD contributions suppressed by powers of m2
b
/M2

Z
[17, 18], the ratio

RZ is included in the global fit to electroweak precision data. This results in a quite accurate value of

αs(M2
Z
) [19]:

α
(n f=5)
s (M2

Z) ≡ αs(M2
Z) = 0.1196 ± 0.0030 . (9)

This determination assumes the validity of the electroweak Standard Model.

4 Hadronic decay width of the τ lepton

The hadronic W± decay width does not provide yet a competitive determination of αs. A much

better alternative [20–22] is the hadronic τ decay, which proceeds through a virtual W± boson. The
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Figure 2. Spectral functions for the V , A and V + A channels, determined from ALEPH τ data [26].

QCD correlation function of two left-handed charged currents receives only non-singlet contributions.

Restricting the analysis to the dominant Cabibbo-allowed decay width,

Rτ,V+A ≡
Γ[τ− → ντ + hadrons (S = 0)]

Γ[τ− → ντe−ν̄e]
(10)

= 12π |Vud |2 S EW

∫ m2
τ

0

ds

m2
τ

(

1 − s

m2
τ

)2 [

(

1 + 2
s

m2
τ

)

ImΠ
(0+1)

ud,V+A
(s) − 2

s

m2
τ

ImΠ
(0)

ud,V+A
(s)

]

,

where S EW = 1.0201 ± 0.0003 incorporates the electroweak radiative corrections [23–25]. The

measured invariant-mass distribution of the final hadrons determines the spectral functions ρJ(s) ≡
1
π

ImΠ
(0+1)

ud,J
(s), shown in figure 2 (the only relevant contribution to the s ImΠ0

ud,V+A
(s) term is the π−

final state at s = m2
π).

Using the analyticity properties of the Π
(L)

i j,J
(s) correlators, the experimental spectral distribution

can be related with theoretical QCD predictions through moments of the type [22, 27]

Aω
J (s0) ≡

∫ s0

sth

ds

s0

ω(s) ImΠ
(0+1)

ud,J
(s) =

i

2

∮

|s|=s0

ds

s0

ω(s)Π
(0+1)

ud,J
(s) , (11)

where sth is the hadronic mass-squared threshold, ω(s) is any weight function analytic in |s| ≤ s0, and

the complex integral in the right-hand side (rhs) runs counter-clockwise around the circle |s| = s0. For

large-enough values of s0, the operator product expansion (OPE)

Π
(0+1)

ud,J
(s)OPE =

∑

D

1

(−s)D/2

∑

dimO=D

CD,J(−s, µ) 〈O(µ)〉 ≡
∑

D

OD, J

(−s)D/2
, (12)

can be used to predict the rhs integral as an expansion in inverse powers of s0 (the D = 0 term contains

the perturbative contribution), while the lhs is directly determined by the experimental data.

The ratio Rτ,V+A in Eq. (10) corresponds to the particular weight ω(x) = (1 − x2)(1 + 2x) =

1−3x2+2x3, with x ≡ s/s0 and s0 = m2
τ. Thus, owing to Cauchy’s theorem, the contour integral is only

sensitive to OPE corrections with D = 6 and 8, which are strongly suppressed by the corresponding

powers of the τ mass (there is in addition a further suppression of the D = 6 term because the vector

and axial-vector contributions have opposite signs, cancelling to a large extent). Moreover, ω(s)

contains a double zero at s = s0 which heavily suppresses the contribution to the integral from the

region near the real axis, where the OPE is not valid. This makes Rτ,V+A a very clean observable to

measure αs. It is very sensitive to the strong coupling because αs(m
2
τ) is sizeable, and non-perturbative

effects are smaller than the perturbative uncertainties.
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Method αs(m
2
τ)

CIPT FOPT Average

ALEPH moments 0.339 + 0.019
− 0.017

0.319 + 0.017
− 0.015

0.329 + 0.020
− 0.018

Modified ALEPH moments 0.338 + 0.014
− 0.012

0.319 + 0.013
− 0.010

0.329 + 0.016
− 0.014

A(2,m) moments 0.336 + 0.018
− 0.016

0.317 + 0.015
− 0.013

0.326 + 0.018
− 0.016

s0 dependence 0.335 ± 0.014 0.323 ± 0.012 0.329 ± 0.013

Borel transform 0.328 + 0.014
− 0.013

0.318 + 0.015
− 0.012

0.323 + 0.015
− 0.013

The availability of good experimental data makes possible to determine the small non-perturbative

corrections from the data themselves, using weights with different powers of s which are sensitive

to the corresponding power corrections in the OPE [27]. The dominant uncertainty in the αs(m
2
τ)

determination comes from the perturbative error associated with the unknown higher-order corrections

to the Adler series in Eq. (4). For a given value of αs, the so-called contour-improved perturbation

theory (CIPT) [28, 29], which resumms large corrections arising from the long running along the circle

s = s0, results in a smaller perturbative contribution than the truncated fixed-order perturbation theory

(FOPT) approximation [22]. Therefore, CIPT leads to a larger fitted value of αs(m
2
τ) than FOPT.

4.1 Numerical analysis

A detailed reanalysis of the αs(m
2
τ) determination from τ decay has been recently performed [30], in-

cluding many consistency checks to assess the potential size of non-perturbative effects. All strategies

adopted in previous works have been investigated, studying the stability of the results and trying to un-

cover any potential hidden weaknesses, and several complementary approaches have been considered.

Once their uncertainties are properly estimated, all adopted methodologies result in very consistent

values of αs(m
2
τ). Table 1 summarizes the most reliable determinations.

All analyses have been done both in CIPT and FOPT. Within a given approach the perturbative

errors have been estimated varying the renormalization scale in the interval µ2/s0 ∈ [0.5 , 2], and

taking K5 = 275 ± 400 as an educated guess of the maximal range of variation of the unknown

fifth-order contribution [31]. These two sources of theoretical uncertainty have been combined in

quadrature, together with the experimental errors. The different values quoted in the table include, as

an additional uncertainty, the variations of the results under various modifications of the fit procedures.

The systematic difference between the values obtained with the CIPT and FOPT prescriptions appears

clearly manifested in the table. The CIPT and FOPT results have been finally averaged, but adding in

quadrature half their difference to the smallest of the CIPT and FOPT errors.

The first determination in table 1 follows the method adopted in the ALEPH analysis of Ref. [26],

taking the weights ωkl(x) = (1 − x)2+k xl(1 + 2x) with (k, l) = {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3)} and

s0 = m2
τ. With five moments, one can make a global fit of αs(m

2
τ), the gluon condensate, O6 and O8.

To assess possible errors associated with neglected higher-order condensates, a second fit including

O10 has been performed and the variation on the fitted value of the strong coupling has been included

as an additional uncertainty. A quite precise value of αs(m
2
τ) is obtained, in good agreement with

Ref. [26]. The extracted condensates have large relative errors exhibiting a very little sensitivity to

power corrections. This has been further verified, taking away from the weights the factor (1 + 2x)

which eliminates the highest-dimensional condensate contribution to every moment. This gives the
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Figure 3. Dependence on s0 of the experimental moments A(1,0)(s0) (left) and A(2,0)(s0) (right), together with their

purely CIPT and FOPT perturbative predictions for α
(n f =3)

s (m2
τ) = 0.329 + 0.020

− 0.018
. Data points are shown for the V

(red), A (green) and 1
2

(V + A) (blue) channels. The horizontal (pink) line indicates the free-parton result [30].

fitted values shown in the second line of table 1, which are in perfect agreement with the results of the

previous fit (first line) and are even more precise.

The doubly-pinched weights ω(2,m)(x) = (1 − x)2
∑m

k=0(k + 1) xk = 1 − (m + 2) xm+1 + (m + 1) xm+2

are only sensitive to O2(m+2) and O2(m+3). A combined fit of five different A(2,m) moments (1 ≤ m ≤ 5)

gives the results shown in the third line of table 1. First, a global fit with four free parameters,

assuming O12 = O14 = O16 = 0, has been done. To account for these missing power corrections,

the fit has been repeated with the inclusion of O12 and the variation in the fitted value of αs(m
2
τ) has

been taken as an additional uncertainty. The agreement with the results obtained in the previous fits

is excellent. Similar results (not included in the table) are obtained from a global fit to four A(n,0)

(0 ≤ n ≤ 3) moments based on the n-pinched weights ω(n,0)(x) = (1 − x)n which receive corrections

from all condensates with D ≤ 2(n + 1), but are protected against duality violations for n , 0.

Neglecting all non-perturbative effects, one can determine αs(m
2
τ) from a single moment. This

interesting exercise has been also done in Ref. [30], making 13 separate extractions of the strong

coupling with six A(2,m) moments (0 ≤ m ≤ 5), six A(1,m) moments (0 ≤ m ≤ 5) based on the weights

ω(1,m)(x) = 1 − xm+1 = (1 − x)
∑m

k=0 xk which are only sensitive to O2(m+2), and the moment A(0,0)

where OPE corrections are absent but it is very exposed to duality-violation effects. In all cases, the

resulting determinations of the strong coupling are in agreement with the values in table 1, reflecting

the minor numerical role of the neglected non-perturbative corrections.

Non-perturbative contributions should manifest in a distinctive s0 dependence. Figure 3 shows as

function of s0 the experimental moments A(1,0)(s0) and A(2,0)(s0), in the V , A and 1
2

(V + A) channels,

together with their predicted values with α
(n f=3)
s (m2

τ) = 0.329 + 0.020
− 0.018

, neglecting all non-perturbative

contributions. A(1,0)(s0), which can only get corrections from O4, exhibits a surprisingly good agree-

ment with its pure perturbative prediction. In spite of being only protected by a single pinch factor,

the data points above s0 ∼ 2 GeV2 closely follow the central values predicted by CIPT. In that energy

range non-perturbative contributions appear to be too small to become numerically visible within the

much larger perturbative uncertainties covering the shades areas of the figure. The splitting at lower

values of s0 of the V and A moments must be assigned to duality violations, since their D = 4 power

corrections are approximately equal. However, these duality-violation effects clearly compensate in

V + A, with an impressively flat distribution of the experimental data which does not deviate from the
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without OPE corrections. A(2,0)(s0) looks slightly more sensitive to non-perturbative contributions and

seems to prefer a power correction with different signs for V and A, which cancels to a good extend

in V + A. This fits nicely with the expected O6,V/A contribution, although the merging of the V , A

and V + A curves above s0 ∼ 2.2 GeV2 suggests a very tiny numerical effect from this source at high

invariant masses.

Fitting the s0 dependence of a single A(2,m)(s0) moment, one can determine the values of αs(m
2
τ),

O2(m+2) and O2(m+3). The sensitivity to power corrections is very bad, as expected, but one finds an

amazing stability in the extracted values of αs(m
2
τ). Including the information from the three lowest

moments (m = 0, 1, 2) and the nine energy bins above s0 = 2.0 GeV2, and adding as an additional

uncertainty the small fluctuations observed when changing the number of fitted bins, one obtains

the values of αs(m
2
τ) quoted in the fourth line of table 1. Although they are much more sensitive to

violations of quark-hadron duality (fitting the s0 dependence of several consecutive bins, one is using

information about the local structure of the spectral function), these results turn out to be in excellent

agreement with the more solid determinations in the first three lines of the table. The very flat shape

of the V + A hadronic distribution above s0 = 2.0 GeV2 implies small duality-violation effects in that

region which, moreover, are very efficiently suppressed in the doubly-pinched moments A(2,m)(s0).

The marginal role of power corrections has been also corroborated, making independent αs(m
2
τ)

determinations from seven A(1,m)(s0) (0 ≤ m ≤ 6) and six A(2,m)(s0) (0 ≤ m ≤ 5) moments, as

function of s0 and ignoring all non-perturbative effects. In spite of the fact that these 13 moments

get completely different OPE corrections, carrying a broad variety of inverse powers of s0, all results

exhibit a similar functional dependence on s0. The small fluctuations among the different moments

stay in all cases well within the much larger perturbative uncertainties shown in figure 3.

Using weights of the type ω
(1,m)
a (x) = (1− xm+1) e−ax, one suppresses potential violations of duality

because the exponential factor nullifies the highest invariant-mass region, but paying the price that

all condensates contribute to every moment. For a = 0 one recovers the A(1,m)(s0) moments, only

affected by O2(m+2), while for a ≫ 1 the moments become independent of m. Thus, if one neglects

all non-perturbative contributions, the OPE corrections should manifest in a larger instability under

variations of s0 than in the a = 0 case. However, with a , 0 one gets even more stable results, and

the different moments converge very soon when a increases, indicating again that power corrections

are not very relevant. From the analysis of seven V + A moments (m = 0, · · · , 6), accepting for

each moment all values of αs(m
2
τ) in the Borel-stable region, and adding as additional theoretical

uncertainties the differences among moments and the variations in the region s0 ∈ [2, 2.8] GeV2), one

gets the determination of αs(m
2
τ) shown in the fifth line of table 1.

4.2 Violations of quark-hadron duality

The small differences between the true values of the moments Aω
J
(s0) and their OPE approximations

are known as (global) duality violations. Using analyticity, they can be fomally expressed as [32–35]

∆A
ω,DV
J

(s0) ≡ i

2

∮

|s|=s0

ds

s0

ω(s)
{

Π
(0+1)

ud,J
(s) − Π(0+1)

ud,J
(s)OPE

}

= −π
∫ ∞

s0

ds

s0

ω(s) ∆ρDV
J (s) , (13)

with ∆ρDV
V/A

(s) the differences between the physical spectral functions and their OPE estimates which,

unfortunately, are unknown beyond the experimentally accessed region. Owing to asymptotic free-

dom, the violations of duality should decrease very fast as s0 increases. In practice, they are minimized

by taking “pinched” weight functions which vanish at s = s0 and suppress the contributions from the

region near the real axis where the OPE is not valid [22, 27]. The many tests discussed before clearly

indicate that these effects are negligible in the extraction of αs(m
2
τ) from the V + A distribution.
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λV αs(m
2
τ) δV γV p-value

0 0.298 (10) 3.6 (5) 0.6 (3) 5.3 %

1 0.300 (12) 3.3 (5) 1.1 (3) 5.7 %

2 0.302 (11) 2.9 (5) 1.6 (3) 6.0 %

4 0.306 (13) 2.3 (5) 2.6 (3) 6.6 %

8 0.314 (15) 1.0 (5) 4.6 (3) 7.7 %

Figure 4. Vector spectral function ρ
V

(s), fitted with the ansatz (14) for different values of λV , compared with the

data points. The right table shows a representative subset of the fitted parameters with FOPT [30].

Instead of using clean moments where duality violations are suppressed, some works focus on

observables more sensitive to these uncontrollable effects [36], modelling them with an ansatz for

∆ρDV
J

(s) which is fitted to the measured spectral functions. Since the OPE is not valid on the physical

cut, one loses theoretical control and gets at best an effective model description with unclear relation

with QCD. Let us consider the slightly generalized ansatz (in GeV units)

∆ρDV
J (s) = sλJ e−(δJ+γJ s) sin (αJ + βJ s) , s > ŝ0 , (14)

which for λJ = 0 coincides with the model assumed in Ref. [36]. The combination of a dumping

exponential with an oscillatory function is expected to describe the fall-off of duality violations at very

high energies, but this functional form is completely ad-hoc and difficult to justify at low energies.

Since there are far too many parameters to be fitted to a highly-correlated data set, Ref. [36] con-

centrates in the moment A
(0,0)

V
(s0) which is very exposed to violations of duality (ω(x) = 1) and does

not receive OPE corrections (owing to the tail of the a1 resonance, the axial channel is not very use-

ful). The model parameters and αs are determined fitting the s0 dependence for s0 ≥ ŝ0 = 1.55 GeV2.

This choice has the largest, but still too small, p-value and gives the smallest αs. However, the p-value

falls dramatically when one moves from this point, becoming worse at higher ŝ0 values where the

model should work better. The extracted value of αs is very unstable under small modifications of the

fit procedure and the fitted ansatz strongly deviates from the data as soon as one moves from the fitted

region. This is illustrated in figure 4 which shows the results of this exercise with FOPT, for different

values of the power λV and ŝ0 = 1.55 GeV2. The actual uncertainties are much larger than the quoted

fit errors; varying ŝ0 in the range [1.15, 1.75] GeV2, with λV = 0, induces 3σ fluctuations of αs(m
2
τ).

All models reproduce well ρ
V

(s) in the fitted region (s ≥ 1.55 GeV2), but they fail badly below

it. The choice λV = 0 assumed in Ref. [36] is clearly the worse one. Increasing the power λV , the

ansatz slightly approaches the data below the fitted range, while the exponential parameters δV and

γV adapt themselves to compensate the growing at high values of s with the net result of a smaller

duality-violation correction. The statistical quality of the fit improves also with growing values of λV ,

while αs(m
2
τ) increases approaching the more solid FOPT values in table 1. The strong correlation of

the fitted αs(m
2
τ) with the assumed model should not be a surprise because one is just fitting models to

data without any strong theoretical guidance (the OPE is no longer valid), and αs has been converted

into one more model parameter. In spite of all caveats, one gets still quite reasonable values of the

strong coupling, but they are model dependent and, thus, unreliable.
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4.3 Updated determination of αs(m
τ
)

The results shown in table 1 are based on solid theoretical principles (the s0-dependence extraction as-

sumes, however, local duality) and exhibit a good stability under small variations of the fit procedures.

The overall agreement among determinations extracted under very different assumptions shows their

reliability and even indicates that the uncertainties are probably too conservative. Averaging the five

determinations, but keeping the smaller uncertainties to account for the large correlations, one finds

α
(n f=3)
s (m2

τ)
CIPT = 0.335 ± 0.013 , α

(n f=3)
s (m2

τ)
FOPT = 0.320 ± 0.012 . (15)

The same results are obtained irrespective or whether one includes or not in the average the determi-

nation from the s0 dependence of the moments. Averaging the CIPT and FOPT “averages” in table 1,

one finally gets

α
(n f=3)
s (m2

τ) = 0.328 ± 0.013 . (16)

These results nicely agree with the value of the strong coupling extracted from Rτ [37].

After evolution up to the scale MZ , the strong coupling decreases to

α
(n f=5)
s (M2

Z) = 0.1197 ± 0.0015 , (17)

in excellent agreement with the direct measurement at the Z peak in Eq. (9). The comparison of these

two determinations, graphically shown in the right panel of figure 1, provides a beautiful test of the

predicted QCD running; i.e., a very significant experimental verification of asymptotic freedom:

α
(n f=5)
s (M2

Z)
∣

∣

∣

∣

τ
− α(n f=5)

s (M2
Z)

∣

∣

∣

∣

Z
= 0.0001 ± 0.0015τ ± 0.0030Z . (18)

Improvements on the determination of αs(m
2
τ) from τ decay data would require high-precision

measurements of the spectral functions, specially in the higher kinematically-allowed energy bins.

Both higher statistics and a good control of experimental systematics are needed, which could be

possible at the forthcoming Belle-II experiment. On the theoretical side, one needs an improved

understanding of higher-order perturbative corrections.

5 World average value of αs

Figure 5 compares the N3LO determinations of αs(M2
Z
) from Z and τ decays with other precise mea-

surements of the strong coupling. Following the PDG criteria [2], only those determinations which are

at least of NNLO are taken into account. This includes several event-shape analyses in hadronic final

states of e+e− annihilations, and studies of parton distribution functions from deep inelastic scattering

and hadron collider data. The numbers quoted in the figure correspond in both cases to the recent

PDG compilation [2].

The PDG includes also in the average the CMS determination from the tt̄ production cross section

at
√

s = 7 TeV, αs(M2
Z
) = 0.1151 + 0.0028

− 0.0027
[38], which requires as input a value of the top quark mass

(either αs or mt are fitted to the data, but not both). Although there are more recent measurements

of this cross section from ATLAS and CMS, at
√

s = 7, 8 and 13 TeV, none of them quotes further

determinations of αs. Applying the same procedure, these measurements would imply larger values

of αs(M2
Z
) than the one of Ref. [38], which is nevertheless included in the average.

The most precise value of αs(M2
Z
) is obtained from lattice simulations, with a growing number

of groups measuring (non-perturbatively) various short-distance quantities, through numerical evalu-

ations of the QCD functional integral, and comparing the results with the corresponding perturbative
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0.114 0.116 0.118 0.120 0.122

τ decay 2016]

Lattice FLAG 2016]

PDF PDG 2016]

e
+
e
- [PDG 2016]

Z [Gfitter 2014]

LHC [CMS 2014]

Average

0.1197 ± 0.0015

0.1182 ± 0.0012

0.1156 ± 0.0021

0.1169 ± 0.0034

0.1196 ± 0.0030

0.1151 ± 0.0028

0.1180 ± 0.0010

Figure 5. Summary of the most precise determinations of αs(M2
Z).

expansions in powers of the strong coupling. The present situation has been recently summarized by

the FLAG working group [39] which quotes the lattice world-average shown in figure 5.

The different determinations in figure 5 are in good agreement, within their quoted errors. From

these results, one obtains the final world average value

αs(M2
Z) = 0.1180 ± 0.0010 . (19)

This number is very close to the 2016 PDG average (0.1181± 0.0011), which does not yet include the

most recent τ decay and lattice results. The central value has been directly obtained as the weighted

average of the six input determinations, while the error has been enlarged applying the PDG pre-

scription, i.e., adjusting all individual uncertainties by a common factor such that χ2/dof equals

unity. Removing the CMS determination would slightly increase the central value, giving as aver-

age αs(M2
Z
) = 0.1183 ± 0.0011. The overall uncertainty is largely determined by the precise lattice

result.
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